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Abstract

A wide range of real world optimization problems involves continuous decisions
and non-linearities. Each non-linear component of such problems can be mod-
eled either linearly or non-linearly, considering or not additional integer vari-
ables. This results into different modeling choices that can drastically impact
the solution time and quality. In this paper, we evaluate representative mod-
eling alternatives, including common models from the literature as well as new
models featuring less common functions. The single plant Hydro Unit Com-
mitment problem (1-HUC) is the considered non-linear use case. Among the
non-linearities of the 1-HUC, we focus on those involved in the power produc-
tion, more precisely the head effect and the turbine efficiency. The power is
defined as a two-dimensional non-convex and non-concave function of the water
flow and head decision variables, the latter being itself a one-dimensional con-
cave function of the turbined volume. We consider both the general problem and
a common special case, assuming that the water head is fixed. Several available
solvers are used for each non-linear model and the best virtual solver is retained
to focus on the model capabilities rather than on the solver performance. Based
on the numerical experiments, three models stand out as the most efficient in
terms of computational time, solution quality and feasibility, sometimes in a
counter-intuitive manner. For each of these models, a solver is highlighted as
the most adequate.

Keywords: Non-linear programming, non-linear modeling, Hydro Unit
Commitment

1. Introduction

In the real world, systems involving continuous decisions and non-linearities
are frequent. In the literature, optimizing such systems via mathematical pro-
gramming using directly off-the-shelf solvers requires to choose between two
main modeling alternatives of each non-linear component, namely either a lin-
ear or a non-linear model, yielding possibly additional integer variables. A
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non-linear model usually represents more closely a physical system than a lin-
ear one, but tends to require a longer computing time, in particular when no
convexity property applies. Within these two main modeling possibilities, there
are still a lot of modeling choices to make. For illustration purposes, Figure
1 shows a real-world continuous non-linear function on interval [0; 10] and four
alternative functions, amongst many others, to model it. Figure (1a) shows the
real-world continuous non-linear function. We consider a situation where this
function, while closely reflecting the reality, cannot be handled by the solvers,
or at least not efficiently. Consequently, we need another modeling alternative,
which can be one of the following. Alternative (1b) relies on a single non-linear
function, simpler than the real-word one. Alternative (1c) uses a family of el-
ementary non-linear functions. Alternative (1d) is based on a piecewise-linear
(PWL) function. Alternative (1e) considers a finite set of discrete points. These
alternatives have several differences, such as the type of function(s) involved:
non-linear non-convex non-concave for (1b), concave for (1c) and linear for
(1d), or the need of additional binary variables for (1c), (1d) and (1e). Thus,
two alternatives can have different properties, meaning their solutions may be
nothing alike. Facing real-world non-linear problems, it is crucial to chose the
best modeling alternative.

The non-linear use case considered in this paper is the single plant Hydro
Unit Commitment (1-HUC). For the 1-HUC, we consider a valley with a plant
located between an upstream and a downstream reservoir. Water flows from the
upstrem reservoir to the downstream reservoir, going through the plant which
generates power. The aim is to schedule the power production of the plant in
order to maximize the value of the valley. The non-linearities of the 1-HUC
studied in this paper are the power as a non-linear function of the flow and
the head, the latter being a non-linear function of the volume in the reservoirs.
Such a problem appears to be a core element in a valley. First there exist
real-world valleys restricted to a single plant. Second a valley with cascaded
plants can be decomposed with respect to single plants. In this work, we focus
on the modeling of non-linearities related to the economic value; we will not
consider various other non-linearities even though they are in practice useful
from an operational point-of-view. The idea is to study a simplified problem
capturing sensitive non-linear aspects of the power production. To that end, we
analyze the effect of different modeling alternatives using several performance
indicators given hereafter. Incorporating several nonlinear functions would make
this analysis impracticable. More precisely, the considered 1-HUC features two
non-linearities: a one dimensional concave non-linearity and a two dimensional
non-convex non-concave non-linearity. Such non-linearities can lead to various
issues, which can be highlighted using different indicators, such as precision,
feasibility, computing time or solution quality. The modeling of the hydroelectric
power function already raised interest in the literature, e.g., in [16].

In this paper, we push further the study of the impact of non-linear model-
ing. To do so, we first propose a non-linear model which closely corresponds to
a set of real world data. As this model is out of reach for current solvers, other
models must be considered. Many different models are proposed in the litera-
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ture. However, none of them feature a power function which can be considered
as the exact analytic function corresponding to the physics. Hence, we propose
seven different models. These models cover a large panel, ranging from linear to
non-linear models, with and without integer variables, and are representative of
how the literature handles the approximation functions described in Figure 1.
More precisely, four models are proposed with a unique function as represented
by Figure (1b), and one is proposed for each of the alternatives represented in
Figure( 1c), (1d) and (1e). As any two non-linear solvers do not implement
the same tools, they are expected to behave differently. This is why the pro-
posed non-linear models will be solved using five black-box global optimization
solvers available on Neos Server [12]. The principle is to evaluate these models
for the 1-HUC using the indicators as defined in the previous paragraph. We
then identify the non-linear features of the 1-HUC instances that impact their
solution time and quality. The main contribution of the paper is to make general
modeling recommendations based on the numerical experiments, depending on
the features of the instance, the desired precision and the allowable computing
time.

In Section 2 a literature review of solution approaches for non-linear opti-
mization problems is proposed. In Section 3, the 1-HUC is defined, followed by
a literature review on the non-linearities of the HUC. In Section 4 the proposed
models are described and compared from a theoretical point of view. In Section
5, numerical experiments illustrate the comparative performance of the models
on different sets of realistic 1-HUC instances. In Section 6, concluding remarks
and perspectives for further research are drawn.

2. State-of-the-art and problem statement

In this paper, the focus is to evaluate different modeling alternatives for the
1-HUC solved directly by off-the-shelf exact solvers. Some solution approaches
for non-linear problems and for the Hydro Unit Commitment will not be cov-
ered. In particular, we do not cover approaches such as instance decomposition
[25], heuristics [38] or dynamic programming [4]. Hence, in this section, we
first review the main generic modeling techniques, along with state-of-the-art
solution methods implemented in the non-linear solvers used for the numerical
experiments. Then, we review modeling alternatives described in the literature
of hydro power systems and we present some recent modeling comparisons.

2.1. Solution approaches for (non)-linear optimization problems

As aforementioned, there are two main modeling possibilities to optimize a
non-linear system using mathematical programming: either using a linear model
or a non-linear model. Linear models lead to Mixed Integer Linear Programs
(MILP), and non-linear models lead to Non-Linear Programs (NLP) or Mixed
Integer Non-Linear Programs (MINLP). For these three types of programs, exact
algorithms are based on a divide and conquer strategy: the search space is
divided into sub-spaces for which upper and lower bounds can be obtained.
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mentary functions

2 4 6 8 10

2

4

6

8

(d) Approximation with a PWL func-
tion

2 4 6 8 10

2

4

6

8

10

(e) Approximation with a discrete set of
decisions

Figure 1: Four different approximations of a real-world non-linear function

For a minimization problem, the upper bound is derived from any feasible
solution, and the lower bound is obtained by solving a relaxation of the problem.
For an MILP, the relaxed problem generally consists in ignoring the integrity
constraints [28]. For an NLP and an MINLP, the relaxed problem is obtained
by ignoring the integrity constraints and also by replacing non-linearities by
convex under-estimators [48].

Pointing out the differences between the models’ families is also important
because the tools used to solve a problem depend on its structure. To solve an
MILP, the well known Branch and Bound (BB) algorithm [28] and its derivatives
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the Branch and Cut [36], the Branch and Price [45] and the Branch and Cut
and Price [13] can be used. To solve a convex (MI)NLP, as the relaxation is
similar to a MILP, a variant of the BB algorithm can be used. To solve a
non-convex (MI)NLP, a global optimisation algorithm is required. The main
algorithm involved in most global optimization tools is the spatial Branch and
Bound (sBB) [48], designed to solve an MINLP. If modeling requires no integer
variables, the model remains continuous (Figure (1b)) and results in an NLP.
Variations of the sBB for NLP can be used, such as the α Branch and Bound,
the Reduced Space Branch and Bound [17], or the Branch and Contract [53].
If modeling requires additional integer variables (Figure (1c)), the algorithms
involved in the tool must be able to handle an MINLP. As aforementioned, the
sBB can solve this type of models as well as other algorithms such as the Branch
and Reduce [43], the sBB with interval analysis [50] or the GMIN and SMIN
algorithms [2].

2.2. Literature of the power and head function of the HUC

The power functon considered in this paper is a non-linear function of the
flow and the water head, with the water head being the vertical distance between
the water level of the upstream and the downstream reservoir. For this purpose,
we introduce the following variables for each time period t:

� pt : the continuous variable representing the power produced;

� dt : the continuous variable representing the water flow;

� vnt : the continuous variable representing the volume in reservoir n ∈
{1, 2};

� ht : the continuous variable representing the head.

We also introduce functions F and f two generic functions such that pt =
F (dt, ht) and ht = f(vt). The aim of this review is to identify which functions
are considered for F and f in the literature.

In [16], it is mentioned that there are cases of the HUC where no perfect
analytic representation of the hydroelectric power function is known. Neverthe-
less, in various papers of the literature [6, 16, 29, 32, 35, 37], the shape of the
power function is described as non-convex and non-concave, mainly due to the
turbine efficiency. The turbine efficiency is non-linear with respect to the water
flow dt even with fixed-head H. Similarly, the turbine efficiency is non-linear
with respect to the head ht even for a fixed water flow dt. We can then specify
function F (dt, ht), with g the turbines efficiency.

F (dt, ht) = ρ ·G · ht · g(dt, ht) (1)

The power function is a product of ρ the density of water, G the gravitational
constant, ht the head and g(dt, ht) the turbines efficiency. Note that the function
g can represent the efficiency of each turbine individually, or the efficiency of
all turbines combined, depending on the modeling choice. In the following, we
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review multiple ways of modeling the power function, taking into account the
turbines efficiency.

A simplified hydroelectric power function in [23] is (1) with g(dt, ht) = dt:

F (dt, ht) = ρ ·G · ht · dt

As such, function F is a bilinear function of the flow dt and the head ht. Note
that a bilinear function is non-convex and non-concave [40], however it becomes
linear when the head ht is fixed. Hence, such a function does not correspond
to the shape of the power function as described in the previous paragraph.
Nevertheless, some (MI)NLP models of the HUC described in the literature
features bilinear functions or a similar function. This is because a bilinear
function is a common non-linear function, well handled by non-linear solvers
even for large-scale instances. In [32] the HUC considered has multiple cascaded
plants, and is modeled as an NLP, with the power defined as a bilinear function
depending on the water flow and the head. In [30], an algorithm called spatial
Hydro Branch and Bound (sHBB) has been developed to solve to optimality the
HUC with cascading plants. This algorithm is used to solve an MINLP, where
the power is a bilinear function of the head and the water flow.

A common modeling approach is to rely on polynomial functions, which are
well known in the literature of MINLP. In [35] a more sophisticated function
than a bilinear function is provided, where the power is represented by:

F (dt, ht) = C1 · (v1t )2 + C2 · (dt)2 + C3 · v1t · dt + C4 · v1t + C5 · dt + C6

with C1 to C6 being constants. This function is a sum of a bilinear function
and two polynomials of degree two, depending on the volume and the water
flow respectively. The formulation is further enhanced in [15], [18], [19] and
[20] where the power function F (dt, ht) from [35] depicts the turbine efficiency,
rather than the whole power function. In these papers, the whole power function
is more complex, and also takes into account other non-linear functions, which
we describe later in this review. In particular, the power function in these for-
mulations can feature polynomial functions with degrees higher than 2. Using
similar ideas, in [37] an NLP is presented, where the power function is approxi-
mated by a family of polynomials of degree two. More recently [7], a data-driven
study of the non-linearities of the HUC has been conducted. The efficiency func-
tion considered is a piecewise polynomial function, where polynomial functions
are not necessarily of degree two. In the same category of function, in [1] the
power function of a unit features a fraction between polynomial functions:

F (dt, ht) =
dt + C1 · (v1t )2 + C2 · v1t + C3

C4 · v1t + C5

with C1 to C5 being constants.
Another common modeling approach uses a grid to have a reference for the

hydroelectric power function obtained by discretizing the water flow and the
head [16]. An algorithm is described in [46] to obtain a set of such grids, each
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of them representing the power function for a given number of active units. For
each point on one of these grids, the value of the hydroelectric power function is
computed with a dynamic programming algorithm based on a bilinear function.
The resulting grids are overvaluations of the power function, meaning that they
do not necessarily reflect its actual shape.

Another modeling approach is to approximate the power function with a
piecewise linear function. In [9] and [39], authors introduce a family of univari-
ate PWL functions to model the power depending on the water flow. Each PWL
function of this family represents the power with respect to the water flow for
a specific volume. The model proposed in [6] for the 1-HUC also expresses the
power with a family of univariate PWL functions of the water flow, for specific
volumes. Besides, it takes into account the maximum variation of the water flow
between two consecutive time periods. An improvement of this model features
the rectangle method [14]. The aim is to compute a better approximation when
v1t is between two of the specific volumes selected to compute the PWL func-
tions. To do so, the method computes a projection of the power between the two
surrounding specific volumes in order to rectify the approximation. There are
also iterative methods using PWL functions. In [21] the HUC with cascading
plants is considered. It is pointed out that if the head is fixed, then the power
depends only on the water flow. Using a PWL function with two pieces, the
procedure is to solve HUC with fixed head iteratively, while updating the head
between each iteration until convergence. A variant of the standard PWL mod-
els is to consider a PWL function approximating the convex hull of the power
function [47]. In such a case, there is a loss of precision in concave parts, but the
benefit is that there is no need for any binary variable. Indeed, for any water
flow, the corresponding piece of the PWL function is always the one leading to
the best value for the objective function. Besides PWL formulations, hyper-
planes formulations have also been developed [42]. The aim is to create a set of
hyperplanes for each number of active units, in order to linearize the non-linear
power function. More precisely, the hyperplanes are deduced from the most ef-
ficient point, and each set forms a concave over-estimator of the power function
for a given number of active units. As a maximization problem is considered,
these hyperplanes yield a convex optimization region. Defining multiple sets
aims to produce a more precise approximation, based on the aforementioned
grid approximation of the power function for each number of active units [46].
For a given number of active units, the linearization does not require any ad-
ditional binary variable. However, binary variables are required to indicate the
number of active units at each time period, thus resulting in a MILP. Using the
hyperplanes is in practice quite similar to using a PWL function approximating
the convex hull of the non-linear function, presented previously for [47].

Comparing modeling alternatives raised interest in recent literature. In [16]
three models for the hydro power maintenance scheduling are compared. The
three models involve respectively a formulation with hyperplanes [42], a PWL
formulation from [14], and a five degree polynomial function. The grid approach
[46] is considered as a baseline to compare the economic value of the solutions.
The result of this comparison is that the hyperplanes formulation is overall the
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best compromise between the size and complexity of the optimization problem
and the deviation from the reference data. It becomes relevant to include more
sophisticated models in this comparison, as they may lead to smaller approxima-
tion errors. Another comparison has been made between modeling alternatives
[15]. The three models considered are a model with high degree polynomials,
a standard piecewise linear model, and a piecewise linear model of the con-
vex hull of the power function. The results show that considering a non-linear
model yields the best trade-off, as it requires a lower computational time than
the standard PWL model, but a higher objective value than the convex hull
PWL model. Another comparison has been carried out in [18], but instead of
comparing modeling alternatives, the following three solution approaches are
compared: solving a non-linear HUC with a Lagrangian relaxation, solving a
non-linear HUC with the AIMMS outer approximation algorithm, and solving
a linearized HUC with a MILP solver. The results show that the first two op-
tions yield the best results in terms of objective functions, while solving the
MILP model deteriorates the objective function by 1 to 2%. However, the com-
putational times of solving the MINLP model are much higher than the other
options.

When it comes to the head effect, few alternatives are considered in the
models of the literature. Indeed, modeling the head effect involves polynomial
functions as described for instance in [1, 15, 18, 19, 29, 32]. No other modeling
alternative is proposed for the head effect.

2.3. Problem statement

As the focus is to represent the power function, the 1-HUC considered in this
paper is simplified with respect to other components. Thus, many constraints
from the literature, listed hereafter, will be ignored.

The spillage [8, 32, 39] is the process of discharging water from the up-
stream reservoir to the downstream reservoir without going through the plant.
The spilled water does not play a major role in the economic value of the valley.
Indeed, it directly goes to the downstream reservoir, without activating any
turbine, hence no energy is produced by the spilled water. The main purpose of
spilling water is to avoid overfloods. Ramping constraints [14] limit the varia-
tion of the water flow between two consecutive time periods. These constraints
are used in practice in order to take into account several other uses of water
in the valley. In some models, there are start-up and shut-down costs [21, 30],
making the start up and shut down of a unit impact the profit. We also consider
a fixed unit start-up sequence [16]. This makes it possible to compare models
aggregating all units, but also models where each unit is represented individ-
ually. Without such a fixed sequence, comparing models would become more
difficult because the efficiency of a turbine can be impacted by the sequence.
Also, some plants can have units operating in reverse in order to pump the water
from the downstream reservoir to the upstream reservoir but this case will not
be considered in this paper.

As we focus on the power function, we also consider a simplified head func-
tion. In the following, we consider the gross head, which does not take into
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account the penstock losses [7]. The penstock loss is the power loss due to the
friction between the water and the penstock. We also ignore the tailrace level [7],
which depends on the water flow. As such, the head considered solely depends
on the volumes, which allows for a more comprehensive study of the power func-
tion with respect to the water flow. More specifically, in such a case, the head is
the height difference between the surface of the water in the upstream reservoir
and the downstream reservoir. However, in the 1-HUC there is no control on
the downstream reservoir as there is no downstream unit. In this problem, we
focus the study of the head effect on the sensitivity to changes in the height
of the upstream reservoir, rather than on the difference between upstream and
downstream reservoirs. Since there is no unit downstream to turbine the coming
water, the effect could indeed be amplified. For a more comprehensive study,
considering a downstream unit would be needed which is beyond the scope of
this work.

In this paper, we compare modeling alternatives, such as in [15] and [16], but
not solution techniques as done in [18]. To do so, we consider generic models
corresponding to the three common alternatives to represent the power func-
tion in the literature, namely a PWL function, a bilinear function or polynomial
functions. We also consider generic models with non-linear functions that have
not yet been studied in the literature of the HUC. As such, we push further the
comparison done in [15] and [16], by considering a wider variety of models. In-
deed, LP, MILP, NLP and MINLP models are considered, where some represent
the power function of the whole plant, while others represent the power function
of each unit explicitly. Besides, all models considered will also be compared for
a standard simplification of the 1-HUC where the head is a constant.

3. 1-Hydro Unit Commitment

3.1. Definition of the problem

The 1-HUC is defined as follows. Consider a valley containing a hydro power
plant located between a single upstream reservoir and a single downstream reser-
voir. From the hydroelectric production principle, the water from the upstream
reservoir flows through the plant to the downstream reservoir, operating the N
units of the plant. A unit is a combination of a turbine and a generator. When
operating the units, electric power is generated. The units are not necessarily
identical, and have a prescribed start-up order. The time horizon is discretized
in T time periods, each of duration ∆. At each time period t the water flow
dt going through the units must lie within the interval [D,D]. The power pt
produced at the time period t depends on the water flow dt, but also on the
reservoir head ht. The head ht is the height difference between the surface of
the water in the upstream reservoir and the plant, and depends on the volume
of the upstream reservoir v1t . Each reservoir n ∈ {1, 2} has a maximum capac-
ity V

n

t and minimum capacity V n
t , variable through time. Variable maximum

and minimum capacity makes it possible to set target volumes for specific time
periods, when V

n

t = V n
t . We detail the purpose of target volumes later in this
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section. At each time period, the reservoir n has an additional intake of water
An

t , which can be positive (rain, melting snow) or negative (use of water for
surrounding agriculture). At each time period, we consider the energy to be
sold at forecasted unitary price Λt, variable through the time. At the end of
time period T , the water in reservoir n has an expected unitary value Φn. Value
Φn is the expected value of the energy produced using the water. A higher Φn

will lead to preserve more water and produce less energy, and the other way
around for a lower Φn.

At Electricité de France (EDF), the HUC is considered as a revenue-maximizing
price-taker scheduler problem, where the power prices, the water expected value,
the reservoir external inflows and the reservoirs capacities are parameters. This
is because the Unit Commitment Problem, which schedules the national pro-
duction in order to meet the demand, is solved at EDF by a Lagrangian de-
composition [41]. This decomposition yields sub-problems of the same nature
(thermal, hydraulic, solar, ...). The prices, Φn and Λt in the case of the HUC,
are given by the master problem.

Introducing target volumes allows to take into account water management
policies. At EDF, these target volumes are defined on a year ahead basis to
make the best use of water resource from an economical perspective. In this
case, target volumes exist for the last time period of each day. Hence, depending
on the number of days considered, there are up to one target volume for each
day considered.

There exist other types of HUC, for instance where the aim is for the energy
produced to meet the demand [21]. The work of our paper extends to these
variants of the HUC because the non-linear hydro production functions are the
same.

The profit takes into account the total value of the water in each reservoir
at the end of time period T , and the value of the energy produced. Solving the
HUC consists in maximizing the profit, while satisfying the capacities and the
target volumes at each time period.

A generic model (Pgen) can be defined, using the water flow dt, the power
pt, the volume in the upstream reservoir v1t , the volume in the downstream
reservoir v2t and the head of the upstream reservoir ht as decision variables.
As introduced in Section 2.3, function f gives the water head ht at time
period t with respect to the volume and function F represents the power of
the units, depending on the water flow dt and the head ht. Function f is a
one-dimensional concave function and F is a two-dimensional non-convex and
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non-concave function. Model (Pgen) is given as follows:

max

T∑
t=1

∆ · Λt · pt +
2∑

n=1

Φn · vnT (2)

s.t. v1t = V 1
0 +

t∑
t′=1

(
A1

t′ − dt′∆
)

∀t ≤ T (3)

v2t = V 2
0 +

t∑
t′=1

(
A2

t′ + dt′∆
)

∀t ≤ T (4)

ht = f(v1t ) ∀t ≤ T (5)

pt = F (dt, ht) ∀t ≤ T (6)

V n
t ≤ vnt ≤ V

n

t ∀t ≤ T, ∀n ∈ {1, 2} (7)

D ≤ dt ≤ D ∀t ≤ T (8)

Constraints (3) and (4) are volume conservation constraints. Note that it
is also possible to define these constraints with consecutive time periods, which
yields the same relaxation and similar computational times. Constraints (5)
express the water head ht, using the concave function f of the volume v1t .
Constraints (6) define the power pt, using the non-convex non-concave non-
linear function F of the water flow dt and the head ht. Constraints (7) and
(8) give upper and lower bounds for variables. The criterion to maximize is the
profit, which is a linear expression described by (2).

This model acts as a framework for the various models proposed in this
paper, hence (Pgen) is as generic as possible, functions f and F being not
specified. We can still be more specific about some characteristics of (Pgen).
Clearly, the volume vnt is non-negative. The water flow dt is also non-negative
because we only consider units with turbines. By definition of the head and
the power, both functions f and F are non-decreasing and non-negative. This
means that variables ht and pt are also non-negative. Besides, we consider in
this case a standard non-linearity for the turbines efficiency, which is a concave
function for each unit.

A standard simplification of the 1-HUC is to assume a constant head ht = H,
which leads to the fixed-head 1-HUC. This simplification is relevant for some
instances of the 1-HUC where volume variations are small enough for the impact
on the turbines efficiency to be insignificant. In such a case, equality (5) and
(6) from (Pgen) are replaced by:

pt = F (dt, H) ∀t ≤ T (9)

therefore, function F becomes a one-dimensional function, but remains non-
convex non-concave. Note that even if the head is constant, we still consider
variables v1t and v2t in the model, to ensure that reservoir capacities are re-
spected.
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3.2. Non-linear reference model for the 1-HUC

In this section, we describe a reference model (Pref ) for the 1-HUC. This
model will be considered in the remaining of this paper as the real-word model
(see Figure 1a). To define (Pref ), we consider the generic model (Pgen), to
which we specify functions f and F .

Firstly, we will focus on function f to define the head. Figure 2a shows the
evolution of the head depending on the volume for a realistic instance named
B-T-1, described in Appendix C. More generally, function f has the following
form:

ht = f(v1t ) = γ1 + γ2 · v1t + γ3 · (v1t )γ4 ∀t ≤ T (10)

where γi are parameters depending on the instance, and γ4 ∈ [0.5, 1], which
means that this function is necessarily concave. Depending on the shape of the
reservoir, the function can be quasi linear or have a very noticeable non-linearity,
but always stays concave.

Secondly, we will focus on the power function F , featuring the turbine ef-
ficiency g as in equation (1). There is no analytic function g that perfectly
represents the physics. In the following we define function g as well as pos-
sible, based on data and on the following information about the shape of the
hydroelectric power function.

When the head is fixed, the power is the product of function g and constants,
but remains non-convex and non-concave. The reason why g is non-convex and
non-concave is because the function g includes the turbine efficiency of each
unit. In particular, the turbine efficiency is concave, as represented in [3], and
the plant has N units which start-up in a prescribed order. Adding multiple
units adds non-concavity to the resulting function. To push the analysis further,
function g also has the following characteristics. For each unit, function g is
almost linear when the unit starts, then it incurves more and more until the
next unit starts. When another unit starts, we notice a break in the function
shape. The four main characteristics of g are described in Table 1.

Table 1: Characteristics of the power function

C1 non-convex and non-concave
C2 locally linear when a unit starts
C3 concave for each unit with respect to the water flow
C4 non-differentiable points when starting up a new unit

In order to be as close to the physics as possible, we define g as a piecewise
non-linear function with N different five parameter logistic functions (5PL)
[24]. 5PL functions are described in Appendix B. The 5PL i represents the
power produced by the first i units combined with respect to the waterflow dt.
In the general case, function g also depends on the head. In particular, function
g for the maximum head is not a linear transformation of function g for the
minimum head. First, the turbine efficiency increases non-linearly with respect
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to the head. Second, with a larger head, the apex of the efficiency curve is
obtained with a higher water flow. Consequently, with a larger head one can
use a turbine on a wider range of water flows, meaning that even the water
flow dt to start-up the units is larger. To take these effects into account, the
parameters of the 5PL functions are dependent on the head ht.

We define g as a piecewise non-linear function. To do so, we define the
following notations:

� ait : the binary variables such that ait = 1 if we use the 5PL function
associated with the first i units at time period t;

� xjit : the continuous variables being the j
th parameter of the 5PL function

for the first i units at time period t;

� αji and βji : constants such that xjit linearly depends on ht with these
parameters.

With these notations, we introduce the following constraints:

xjit = αji + βji · ht ∀j ≤ 5∀i ≤ N, ∀t ≤ T (11)

N∑
i=1

ait ≤ 1 ∀t ≤ T (12)

ait ∈ {0, 1} ∀i ≤ N, ∀t ≤ T (13)

pt = F (dt, ht) = ρ ·G · ht ·
N∑
i=1

ait · 5PL(dt, x1it, . . . , x5it) ∀t ≤ T (14)

Equalities (11) define parameters xjit to be linearly dependent on ht. Con-
straints (12) and (13) ensure that at most one 5PL function is considered at
each time period. Equalities (14) are the power at time period t with g as a
piecewise non-linear function.

The complete MINLP model (Pref ) features objective function (2), con-
straints (3)-(4), (7)-(8) and (10)-(14). The 5PL functions are parameterized
such that only the concave part of the 5PL is considered when i units are active,
as well as locally linear when a unit starts. Besides, there is a non-differentiable
point when starting up a new unit. As the power is clearly non-convex and
non-concave, the non-linear power function in (Pref ) features the four main
characteristics described in Table 1.

When considering a piecewise (non-)linear model, one usually requires ad-
ditional constraints to match the values of the binary variables corresponding
to the pieces with the values of the decision variables. For model (Pref ), this
means adding constraints to indicate, for a given time period t, which binary
variable ait is equal to 1, depending on dt. However, in some cases, there is
no need to describe which binary variable must be equal to 1, and sometimes
binary variables are not even required such as for convex PWL functions [47].
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For model (Pref ), the 5PL functions are such that, for a given water flow dt
the 5PL function with the highest value represents the power of the units. As
we maximize the profit, for a given water flow, the 5PL with the highest value,
for a given dt, will be considered for the optimal solution if energy prices Λt

are positive. In this case, the model does not require additional constraints to
indicate, for a given t, which one of the variables ait is equal to 1. The consid-
ered instances satisfy Λt ≥ 0, thus there is no need to add constraints specifying
which variable ait is equal to 1 for a time period. Conversely, the additional
constraints are required for the PWL model shown in Section 4.3. Note that
equation (12) is still required, otherwise the model could consider multiple 5PL
functions at a given time period, which would induce an incorrect value of the
power pt.

Figure 2b shows the evolution of function g with respect to dt for instance
B-T-1 (see Table 9 in Appendix C). The functions in black are for the
minimum and the maximum head, and the grey region represents the power
function for the possible values of ht.
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(a) Example of function f (constraint (10))
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(b) Example of function g for two units for the
minimum and maximum head (constraint (14))

Figure 2: Examples of function f and g

Preliminary computations show that (Pref ) involves higher computing times
than any other model presented, and is not practical for most of the instances
considered, even for the smallest ones. This is often the case in real world appli-
cations where the functions modeling a physical system are either too complex
to be implemented or not supported by any solver.

For solution purposes, the idea is to derive more tractable models than (Pref )
to capture the non-linearity in the power function.

4. Models for the 1-HUC

The following sections propose different models to represent the non-linearities
of the 1-HUC arising from the power generation function and its characteristics.
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The models are also described for the fixed-head 1-HUC, which is a special case
often considered.

4.1. (Mixed Integer)Non-Linear Program modeling elementary non-linear func-
tions

The models in this section represent the power function of each unit explic-
itly, in order to have a representation close to the physics. The downside is
that for each unit, auxiliary variables are required. Three models are presented.
The first one features a family of polynomial functions, the second one a family
of 5PL functions with the max function, and the last one a family of 5PL
functions without the max function.

4.1.1. MINLP with a family of polynomial functions: model (P2D−poly)

The power function of one unit for a given head has a parabolic shape. A
parabolic shape can be represented with a polynomial function with degree 2.
Each polynomial function represents the power generated by a unit, plus the
contribution of the previous ones, following their start-up order. Figure 3
shows an example with two units. We define the following notations:

� bit : the binary variables such that bit = 1 if we use the polynomial
function of unit i at the time period t;

� ykit : the continuous variables that are the coefficients of monomial dkt in
the polynomial of unit i at time period t;

� γki and δki : the constants such that ykit linearly depends on ht with these
parameters.

We introduce the following constraints:

ykit = γki + δki · ht ∀k ≤ 2,∀i ≤ K,∀t ≤ T (15)

K∑
i=1

bit = 1 ∀t ≤ T (16)

bit ∈ {0, 1} ∀i ≤ K,∀t ≤ T (17)

pt = ρ ·G · ht ·
K∑
i=1

bit ·
2∑

k=0

ykit · (dt)k ∀t ≤ T (18)

Equalities (15) define parameters ykit as linearly dependent on ht. Constraints
(16) and (17) ensure that only one of the polynomials is active for each time
period. Equalities (18) express the power with function g represented by a
family of polynomial functions.

The complete model, called (P2D−poly) is defined by objective function (2)
and constraints (3)-(4), (7)-(8), (10), (15)-(18). It appears that (P2D−poly) is a
non-convex MINLP as (10) and (18) are non-linear. Indeed, function f com-
puting ht in (10) is concave, and the polynomial functions in (18) are concave.
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But ykit is linear with respect to ht in (15), and variable ykit is multiplied by ht
in (18). So the power function is convex with respect to ht, as it is an increasing
polynomial of degree 2. Consequently, the region for the optimization is non-
convex. This model represents well the power function, as it takes into account
characteristics C1, C3 and C4. However, this model still has downsides, mainly
the addition of auxiliary binary variables.

In a similar fashion as for model (Pref ), model (P2D−poly) does not require
additional constraints to match the values of bit with the values of dt. Indeed,
for any given water flow dt, the polynomial with the highest value represents the
power of the units. In opposition, one can identify these additional constraints
for the PWL model in Section 4.3. Note that equation (16) is still required.
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Figure 3: Function g with polynomial functions

Model (P2D−poly) for the fixed-head 1-HUC problem. To adapt the model (P2D−poly)
to the fixed-head 1-HUC problem, with head H, we introduce the following no-
tations:

� Yki : the constant coefficient of (dt)
k for unit i.

The power function becomes (19)

pt = ρ ·G · h·
( K∑

i=1

bit · (
2∑

k=0

Yki · (dt)k)
)

∀t ≤ T (19)

Model (P2D−poly) for the fixed-head 1-HUC problem contains objective function
(2) and constraints (3)-(4), (7)-(8), (16)-(17), (19) and is an MINLP. Despite
the concavity of the polynomials of degree 2 and the fact that we maximize the
objective function, the region of optimization for the continuous relaxation is
not convex. This is because the polynomials are multiplied by binary variables
bit, which become continuous for the continuous relaxation.
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4.1.2. NLP with 5PL functions using function max: model (P5PL−max)

Function g can be represented as a sum of 5PL functions [24], where each
5PL represents the power of one unit. By summing properly parameterized
5PL functions, the sum can be a precise approximation of the physical data.
Figure 4 shows an example of the sum of 5PL functions as a solid line, and
the two separated 5PL as dashed lines.
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Figure 4: Function g with a sum of 5PL functions

To represent g with such a sum of 5PL functions, the 5PL functions need to
depend on the water flow and the head. As such, these parameters are variables
and depend on the unit i and time step t. To use 5PL functions, we introduce
the following notations:

� zjit : the continuous variables that are the jth parameter of the 5PL
function for the unit i at the time period t;

� ηji and θji : the constants such that zjit linearly depends on ht with these
parameters.

For this model we need the following equalities:

zjit = ηji + θji · ht ∀j ≤ 5,∀i ≤ K,∀t ≤ T (20)

pt = ρ ·G · ht ·
( K∑

i=1

z4it +
−z4it(

1 +
(

max(0,dt−z1it)
z3it

)z2it)z5it

)
∀t ≤ T (21)

Equalities (20) set the parameters of the 5PL functions used in function g.
Equalities (21) express the power with g as a sum of non-linear functions. These
functions are a slight variant of the 5PL functions detailed in Appendix B.
This is because such 5PL functions are not defined when dt < z1it. Conse-
quently, it is necessary to introduce a max function in equalities (21) in order
for the 5PL functions to always be defined.
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The model (P5PL−max) includes objective function (2) and constraints (3)-
(4), (7)-(8), (10), (20)-(21). It is a non-convex non-concave NLP, and the non-
linearity takes into account characteristics C1 and C2. As this model contains
a max function, it is not supported by some global optimization solvers.

Model (P5PL−max) for the fixed-head 1-HUC problem. To adapt the model
(P5PL−max) to the fixed-head 1-HUC problem, with head H, we introduce the
following notations:

� Zji : the j
th parameters for the 5PL function of the unit i.

The power is defined by equalities (22).

pt = ρ ·G · h·
( K∑

i=1

Z4i +
−Z4i(

1 +
(

max(0,dt−Z1i)
Z3i

)Z2i
)Z5i

)
∀t ≤ T (22)

Model (P5PL−max) for the fixed-head 1-HUC problem contains objective func-
tion (2) and constraints (3)-(4), (7)-(8), (22).

4.1.3. MINLP with 5PL functions using auxiliary variables: model (P5PL−bin)

This model is a variation of (P5PL−max), where the max is linearized by
adding linear constraints and auxiliary variables. We introduce the following
notations:

� cit : the binary variables equal to 1 if dt ≥ z1it;

� mit : the continuous variables equal to max(0, dt − z1it).

We introduce the following set of constraints:

dt − z1it ≤ mit ≤ dt − z1it + (1− cit) · (D − Z1it) ∀i ≤ K,∀t ≤ T (23)

0 ≤ mit ≤ cit · (D − Z1it) ∀i ≤ K,∀t ≤ T (24)

cit ∈ {0, 1} ∀i ≤ K,∀t ≤ T (25)

pt = ρ ·G · ht ·
( K∑

i=1

z4it +
−z4it(

1 +
(

mit

z3it

)z2it)z5it

)
∀t ≤ T (26)

Set of constraints (23)-(25) ensures mit = max(0, dt − z1it). Equalities (26)
express the power in the same manner as equalities (21), but using mit.

The model (P5PL−bin) contains objective function (2) and constraints (3)-
(4), (7)-(8), (10), (20), (23)-(26). Unlike the NLP model (P5PL−max), model
(P5PL−bin) is an MINLP, as it requires auxiliary binary variable cit. Model
(P5PL−bin) can be solved by more MINLP solvers than model (P5PL−max), as
function max has been linearized. The representation of the power function is
the same for (P5PL−max) and (P5PL−bin), and both models take into account
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characteristics C1 and C2. Note that the model (Pgen), with the piecewise
non-linear function with 5PL, is also an MINLP. The difference is that the
binary variables are not the same as the ones in (P5PL−bin). Indeed, the binary
variables of (P5PL−bin) only acts in order to linearize the function max, while
in (Pgen) they are decision variables.

Model (P5PL−bin) for the fixed-head 1-HUC problem. To adapt the model (P5PL−bin)
to the fixed-head 1-HUC problem, with head H, we introduce the following no-
tations:

� Zji : the constants for the parameter j for the 5PL function of the unit
i;

� mit : the continuous variables such that mit = max(0, dt − Z1i).

To ensure the behaviour of variable mit, we add the set of constraints (27)-(30),
defined as (23)-(26), where variables zjit are replaced by constants Zji for all
t ≤ T . Model (P5PL−bin) for the fixed-head 1-HUC problem contains objective
function (2) and constraints (3)-(4), (7)-(8), (27)-(30).

4.2. (Mixed Integer)Non-Linear Program modeling an aggregated non-linear func-
tion

The models introduced in this section represent all units as an aggregated
function. The principle is to consider a single function to represent the whole
power function, instead of a family or a sum of elementary functions. A single
function being less precise, the expected benefit is a quick solution by MINLP
tools, as few additional variables and constraints are required. The functions
we propose are the following: a polynomial function, a bilinear function, and a
finite set of operating flows.

4.2.1. NLP with a high degree polynomial function: model (PHD−poly)

A model using an aggregated function that represents well the physics is
obtained by using a single polynomial function as function g. Figure 5 shows
an example of an 8th degree polynomial function for an instance with two units.
As g depends on the head ht, the coefficients of the polynomial are linearly
dependent on ht. We introduce the following notation

� Q : the degree of the polynomial, with Q = 4 ·K, where K denotes the
number of units;

� uqt : the continuous variable that are the coefficient of monomial dqt in
the polynomial function at time period t;

� µq and νq : the constants such that uqt linearly depends on ht with these
parameters.
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For this model, we need the following equalities:

uqt = µq + νq · ht ∀q ≤ Q,∀t ≤ T (31)

pt = ρ ·G · ht ·
( Q∑

q=0

uqt · (dt)q
)

∀t ≤ T (32)

Equalities (31) set the parameters of the polynomial function. Equalities (32)
define the power with g as a polynomial function.

The model, called (PHD−poly) includes objective function (2) and constraints
(3)-(4), (7)-(8), (10), (31)-(32). It is an NLP featuring characteristic C1 as it
is non-convex and non-concave. The benefits compared to (P2D−poly) is that
(PHD−poly) considers only a single polynomial function. This means that no
auxiliary binary variables are required. The downside of (PHD−poly) is that
high degree polynomials (8 for two units, 20 for five units) can induce large
approximation errors. If the water flow can fluctuate between 0 and 100, then
it means that the solver might need to compute numbers such as 0.18 or 1008,
which are either too small or too large numbers for standard solvers’ precision.
Moreover, computational errors can have a dramatic impact for the HUC, as an
error for a time period will cumulate and carry over all future time periods [44].
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Figure 5: Function g with a single polynomial function

Model (PHD−poly) for the fixed-head 1-HUC problem. To adapt the model (PHD−poly)
to the fixed-head 1-HUC problem, with head H, we introduce the following no-
tations:

� Uq : the coefficients for the degree q of the polynomial function.

The power function becomes:

pt = ρ ·G · h·
( Q∑

q=0

Uq · (dt)q
)

∀t ≤ T (33)

The model (PHD−poly) for these special instances contains objective function
(2) and constraints (3)-(4), (7)-(8), (33).
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4.2.2. NLP with a bilinear function: model (Pbilin)

A type of model often described in the literature to solve the HUC as an
MINLP is a bilinear model [32], [8]. Figure 6 shows an example of a bilinear
function. The power is linear with respect to the water flow, and to the head. In
the model (Pgen), the power is already linear with respect to the head. We need
to make it also linear with respect to the water flow. To do so, we introduce
the following notations:

� ϕ and ψ: the constants such that the power is linearly dependent on the
water flow.

We adapt the power function as follows:

pt = ρ ·G · ht · (ϕ+ ψ · dt) ∀t ≤ T (34)

Equalities (34) express the power as a bilinear function of the head ht and the
water flow dt.

The model (Pbilin) contains objective function (2) and constraints (3)-(4),
(7)-(8), (10), (34). Equalities (34) feature a bilinear function of ht and dt.
A bilinear function is non-convex non-concave even if both variables are pos-
itive [40]. However, this function remains simpler than the ones featured in
previously described models, such as polynomial or 5PL functions. Besides,
unlike (P2D−poly), (PHD−poly), (P5PL−max) or (P5PL−bin), model (Pbilin) does
not require any additional binary variables. This makes this model a potential
candidate to solve quickly the problem. The downside is that this model has
the roughest approximation of all models. Indeed, the bilinear function features
none of the non-linear characteristics C1, C2, C3 or C4.
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Figure 6: Function g with a bilinear function

Model (Pbilin) for the fixed-head 1-HUC problem. When we adapt the model
(Pbilin) to the fixed-head 1-HUC problem, with head H, the model becomes a
linear model, where the power is a linear function of the water flow. To do so,
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we simply adapt the power function as follows:

pt = ρ ·G · h·(ϕ+ ψ · dt) ∀t ≤ T (35)

The model (Pbilin) for the fixed-head 1-HUC problem contains objective function
(2) and constraints (3)-(4), (7)-(8), (35), which yields an LP.

4.2.3. MINLP with a discrete set of decisions: model (Pop)

Having a discrete set of decisions for the 1-HUC problem means that only
a given number of operating flows, say L, are authorized. Figure 7 shows
an example of a discrete set of decisions, with L = 9. These operating flows
are specifically chosen where the power production is the most profitable, and
usually are in the concave parts of the original power function in (Pref ). We
introduce the following notations:

� di : the constant being the ith operating flow;

� oit : the binary variable such that oit = 1 if we use the ith operating flow
at time period t.

We consider a model with disjunctive constraints between the operating flows.
As such, we need the following constraints:

L∑
i=1

oit ≤ 1 ∀t ≤ T (36)

v1t′ = V 1
0 +

t′∑
t=1

(
A1

t − (

L∑
i=1

oit · di) ·∆
)

∀t′ ≤ T (37)

v2t′ = V 2
0 +

t′∑
t=1

(
A2

t + (

L∑
i=1

oit · di) ·∆
)

∀t′ ≤ T (38)

pt = ρ ·G · ht · g(
L∑

i=1

oit · di, ht) ∀t ≤ T (39)

Inequalities (36) ensure that only one operating flow can be active at each time
period. The set of equalities (37)-(39) corresponds to equalities (3), (4) and (6)
from (Pgen), with operating flows instead of the water flow dt.

This leads to a new generic model (Pop) containing objective function (2)
and constraints (7), (10), (36)-(39). Function g in (39) can be any of the
previously described function for models (PHD−poly), (P2D−poly), (P5PL−max),
(P5PL−bin) or (Pbilin). Because we have a finite set of operating flows, function
g for (Pop) will feature none of the characteristics C1 to C4, regardless of the
function considered. Model (Pop) can be beneficial because its solution space
is drastically smaller than the others but does not offer as much freedom, in
particular when target volumes occur. As the operating flows are amongst the
most profitable ones, the solution might still be close to the optimal solution.
The downside of this model is that target volumes can be unreachable with the
chosen set of operating flows, thus leading to infeasibility.
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Figure 7: Function g with a discrete set of decisions

Model (Pop) for the fixed-head 1-HUC problem. When we adapt the model (Pop)
for the fixed-head 1-HUC problem, with head H, the model becomes a MILP
model. In this case the power only depends on the water flow, thus there is a
finite set of possible powers. As such, the model becomes a MILP as we have to
choose a pair (operating flow, power produced) amongst a list of pairs at each
time period. We introduce the following notations:

� pi : the constant being the power generated for the ith operating flow.

The model is very similar to (Pop) for the general 1-HUC problem, but we define
the power differently as we use constants pl:

pt =

L∑
i=1

oit · pi ∀t ≤ T (40)

The model (Pop) adapted for the fixed-head 1-HUC problem contains objective
function (2) and constraints (7), (36)-(38), (40). We can notice that this model
contains very few variables, as only the decision variables oit are required.

4.3. Mixed Integer Linear Program modeling piecewise linear functions: model
(Ppwl)

The model of this section follows the common practice of using a PWL
approximation when modeling a non-linear expression. Figure 8 shows an
example of a piecewise linear function. Our comparisons of a PWL model with
the previously described non-linear models are mostly focused on the precision,
i.e., the quality of the solutions obtained. As such, we will consider a standard
PWL formulation [11] [22], more precisely the convex combination formulation.
There exist much more efficient formulations, e.g. the logarithmic formulation
in [51], but they will not be considered as it will not impact the value of the
solution, but only the computing time.
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A generic way to obtain a two-dimensional PWL function is to use the one-
dimensional method described in [14]. It is a generalization of the convex com-
bination formulation [22]. The method described to approximate a non-linear
function f(x, y) is as follows. We fix I variables on the x axis, (x̃1, .., x̃I), and
J variables on the y axis (ỹ1, .., ỹJ). For each ỹj , we approximate f(x, ỹj) with
a PWL function l(x, ỹj), where each x̃i, i ≤ I acts like a break point. It means
that piece i of l(x, yj) is a linear function between x̃i and x̃i+1. We obtain
then J PWL functions with I − 1 pieces. The value for l(x, y), y ∈ [ỹj , ỹj+1],
is approximated by l(x, ỹj). For the 1-HUC problem, we will approximate the
power function with respect to the water flow dt for a set of fixed volumes ỹj ,
j ∈ 1, ..., J .

In this model, we aggregate both non-linear functions f and g as a unique
function to represent the power. To do so, it is possible to replace ht by f(v

1
t )

in equalities (6) from (Pgen). Thus, the power is defined as follows, and we
only need to approximate one two-dimensional non-linear function for the whole
model:

pt = F (dt, v
1
t ) = ρ ·G · f(v1t ) · g(dt,f(v1t ))

To use the PWL approximation, we introduce the following notations:

� l(v1t , dt) : the PWL approximation of F (v1t , dt);

� J : the number of PWL functions allocated on the volume axis;

� I : the number of breakpoints on the water flow axis;

� ṽ1j : the volume corresponding to the jth one dimensional PWL function;

� d̃i : the breakpoint i for all J PWL functions.

And we include the following variables:

� lj,t : the value l(ṽ1j , dt) of the PWL function j at time period t;

� rit : the binary variables such that rit = 1 if dt is located on the interval
[d̃i, d̃i+1];

� wit : the continuous variables such that dt is the convex combination
witd̃i + wi+1td̃i+1;

� sjt : the binary variables such that sjt = 1 if v1t is located in the interval
[ṽ1j , ṽ

1
j+1].

The PWL formulation requires the following constraints:
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I∑
i=1

rit = 1 ∀t ≤ T (41)

wit ≤ ri−1t + rit ∀i ≤ I, ∀t ≤ T (42)

I∑
i=1

wit = 1 ∀t ≤ T (43)

dt =

I∑
i=1

wit · d̃i ∀t ≤ T (44)

lj,t =

I∑
i=1

wit · F (ṽ1j , d̃i) ∀j ≤ J, ∀t ≤ T (45)

rit ∈ {0, 1} ∀i ≤ I, ∀t ≤ T (46)

0 ≤ wit ≤ 1 ∀i ≤ I, ∀t ≤ T (47)

J∑
j=1

sjt · ṽ1j ≤ v1t ≤
J∑

j=1

sjt · ṽ1j+1 ∀t ≤ T (48)

J∑
j=1

sjt = 1 ∀t ≤ T (49)

lj,t − P t · (1− sjt) ≤ pt ≤ lj,t + P t · (1− sjt) ∀j ≤ J, ∀t ≤ T (50)

sjt ∈ {0, 1} ∀j ≤ J, ∀t ≤ T (51)

Constraints (41)-(47) are the standard convex combination formulation for
a one-dimensional PWL function, applied to approximate function F for each
given volume. These constraints ensure that lj,t is the value, at time period t
of the PWL function approximating F for volume ṽ1j . Equalities (41) express
that exactly one variable rit is equal to one at time period t, meaning that
we consider one piece of the PWL function at time period t. Inequalities (42)
allow the weight rit of a breakpoint to be greater than zero only if one for
the two surrounding pieces is considered at time period t. Equalities (43)-(44)
ensure that dt is the convex combination of the d̃i with the weights rit at time
period t. Equalities (45) define the PWL approximation of the power function.
Constraints (46)-(47) give the domain of variables rit and wit.

We have described the constraints to obtain lt,j the approximated value of
F at time period t using univariate PWL functions. Now we need constraints
(48)-(51) in order to obtain the power from the value lt,j for the fixed volume
ṽ1j , with ṽ

1
j ≤ v1t ≤ ṽ1j+1. Constraints (48)-(49) ensure sj,t = 1 if v1t ∈ [ṽ1j ; ṽ

1
j+1],

and exactly one variable sj,t is equal to 1. Variable sj,t then indicates which
PWL function should be considered depending on the volume. Inequalities (50)
ensure pt = lj,t if sj,t = 1, or give trivial bounds if sj,t = 0. Constraints (51)
provide the domain of sjt.
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The MILP model (Ppwl) contains objective function (2) and constraints
(3)-(4), (7)-(8), (41)-(51). The consequences of this model being a MILP are
twofold. On the one hand, it can be solved with powerful MILP tools. On the
other hand it includes a lot of auxiliary variables and constraints, and it does
not include any of the non-linear characteristics of the power function.

2 4 6 8
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20

30

40

dt

g(dt, ht)

Figure 8: Function g with a piecewise-linear function

Model (Ppwl) for the fixed-head 1-HUC problem. When we adapt the model
(Ppwl) to the fixed-head 1-HUC problem, with head H, we approximate a one-
dimensional power function. To do so, we use the convex combination formula-
tion [22], which is the formulation generalized for model (Ppwl) in the general
case. The convex combination formulation adapted for the fixed-head 1-HUC
problem requires constraints (41)-(44) and (46)-(47). We express the power as
follows:

pt =

I∑
i=1

wit · ρ ·G · h·g(d̃i, H) ∀t ≤ T (52)

Thus the model (Ppwl) for these special instances contains objective function
(2) and constraints (3)-(4), (7)-(8), (41)-(44),(46)-(47), (52).

4.4. Summary of models and non-linear functions

We have described a total of fourteen different models. All models have the
same objective function (2). Also, most of the models share the same set of con-
straints. We define constraint sets S1=(3)-(4),(7)-(8),(10) and S2=(3)-(4),(7)-
(8). Table 2 summarizes all models with their constraints. The difference
between these models is the representation of the power function.

Table 3 shows the characteristics and the type of program for each model.
The convexity and the linearity of a model do not take into account the integer
variables, thus concerns the continuous relaxation. From a theoretical point of
view, none of the presented models perfectly fits the power function of (Pref ).
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Table 2: Summary of the proposed models

Model Section General cases Fixed-head cases
(P2D−poly) 4.1.1 S1,(15)-(18) S2,(16)-(17),(19)
(P5PL−max) 4.1.2 S1,(20)-(21) S2,(22)
(P5PL−bin) 4.1.3 S1,(20),(23)-(26) S2,(27)-(30)
(PHD−poly) 4.2.1 S1,(31)-(32) S2,(33)
(Pbilin) 4.2.2 S1,(34) S2,(35)
(Pop) 4.2.3 (2),(7),(10),(36)-(39) (2),(7), (36)-(38),(40)
(Ppwl) 4.3 S2,(41)-(51) S2,(41)-(44),(46)-47,52

Indeed, none of the models features all four non-linear characteristics of the
power functions. However, it will be shown in the numerical experiments that
some models allow for very small approximation errors, while other models, with
simpler non-linear expressions, lead to shorter computing times. Table 4 shows
the size of each model, namely the number of constraints (#cst), the number
of binary and continuous variables (respectively #b-var and #c-bar). We recall
that N is the number of units, T the number of time periods, Q the degree of
the polynomial function in model (PHD−poly), I the number of breakpoints of
the PWL functions and J the number of PWL functions in model (Ppwl).

Table 3: Comparison of the models non-linear characteristics

1-HUC Fixed-head 1-HUC Characteristics
Model Type Convexity Type Convexity C1 C2 C3 C4

(P2D−poly) MINLP non-convex MINLP non-convex ✓ ✗ ✓ ✓
(P5PL−max) NLP non-convex NLP non-convex ✓ ✓ ✗ ✗
(P5PL−bin) MINLP non-convex MINLP non-convex ✓ ✓ ✗ ✗
(PHD−poly) NLP non-convex NLP non-convex ✓ ✗ ✓ ✗
(Pbilin) NLP non-convex LP linear ✗ ✗ ✗ ✗
(Pop) MINLP non-convex MILP linear ✗ ✗ ✗ ✗
(Ppwl) MILP linear MILP linear ✗ ✗ ✗ ✗

Table 4: Nomber of constraints, binary variables and continuous variables for each model

1-HUC Fixed-head 1-HUC
Model #cst #b-var #c-var #cst #b-var #c-var

(P2D−poly) (11 + 3 ·N) · T N · T (5 + 3 ·N) · T 10 · T N · T 4 · T
(P5PL−max) (10 + 5 ·N) · T 0 (5 + 5 ·N) · T 9 · T 0 4 · T
(P5PL−bin) (10 + 15 ·N) · T N · T (5 + 10 ·N) · T (9 + 10 ·N) · T N · T (4 + 5 ·N) · T
(PHD−poly) (10 +Q) · T 0 (5 +Q) · T 9 · T 0 4 · T
(Pbilin) 10 · T 0 5 · T 9 · T 0 4 · T
(Pop) 9 · T L · T 5 · T 8 · T L · T 4 · T
(Ppwl) (14 + 4 · I + 4 · J) · T (I + J) · T (4 + I + J) · T (12 + 4 · I) · T I · T (4 + I) · T

It is also possible to compare the models, on the basis of the difficulty for
the solvers to handle their non-linear expression. A way to measure this is to
compare the size of the reformulation binary tree for the non-linear expressions
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as in [48]. Following this metric, 5PL functions are by far the most difficult
functions, followed by high degree polynomials, two degree polynomials, bilinear
functions and linear functions.

Recall that the power function of model (P5PL−max) features a max func-
tion. Consequently, the power function for (P5PL−max) is nonsmooth and with
discontinuous derivatives. This means that this model is not supported by all
non-linear solvers.

5. Numerical experiments

The computational evaluation is performed via Neos Server [12] in October
and November 2021. All experiments are performed on Neos Server machine
prod-exec-7 (a 2x Intel Xeon Gold 5218 @ 2.3GHz processor with 384 GB of
RAM), using a single thread. The computing time limit is set to 10800 seconds.

5.1. Solvers considered

Five non-linear solvers are considered in this numerical comparison, ANTIGONE
[33], BARON [49], COUENNE [5], LINDOGlobal [31] and SCIP [52], as they
are accessible on Neos Server [12] with GAMS format. All of the five solvers
implement global optimization algorithms, and use the sBB algorithm or its
derivatives. To improve the solution time and quality, the solvers complement
variations of the sBB with different tools. However, the set of implemented tools
greatly differs from one solver to another. As shown in the following, it can hap-
pen that one solver is more efficient than another one for a given model, while
the opposite can be true for another model. This variation is the reason why
we consider multiple non-linear solvers, in order not to have a biased conclusion
due to the solvers.

As comparing linear solvers is beyond the scope of this work, a well known
and efficient linear solver CPLEX [10] is arbitrarily chosen to solve MILP mod-
els. Solver CPLEX is accessible on Neos Server with LP format.

The six solvers are further described in Appendix A.

5.2. Instances, parameters, terminology and metrics

Parameters of the original power function. The numerical values for the pa-
rameters of the power functions featured in the different models are obtained
by fitting their power functions to the one of (Pref ). The fitting is done via
Scipy’s curve fit function1, using a non-linear least squares method. This ap-
proach does not provide an a priori precision for the resulting function with
respect to the data. Recall that the purpose of this work is to study and anal-
yse various approximations of the power function. Thus the parameters of the
head functions of all proposed models are the ones of (Pref ).

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_

fit.html, accessed: 2023-01-09
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Parameters of model (Ppwl). For model (Ppwl) we also want to take into account
the impact of the number of linear pieces, therefore we will define three variants
of (Ppwl): (P 1

pwl), (P
2
pwl) and (P 3

pwl), respectively with I and J equal to 5, 20
and 100. For every variant, the breakpoints are defined as equidistant instead
of being tailored to each instance. Preliminary results show that model (Ppwl)
is not significantly penalized in terms of approximation error compared to the
other models, with equidistant breakpoints. Hence, we will not investigate the
best distribution of the breakpoints, in order to keep a simple model for each
modeling alternative.

Parameters of model (Pop). For model (Pop), a discrete set of decision variables
is to be chosen. For the considered instances, we define g as the non-linear
function of model (P5PL−bin), and we consider 5 operating flows per unit. We
will not consider models with more operating flows, as the model contains 5PL
functions that are already difficult to handle. Additional operating flows would
make the model irrelevant as it would become too hard to solve.

Variable bounds. All models contain variables that are subject to an equal-
ity constraint such as the head ht or power pt. These variables have physical
bounds, but these are not expressed explicitly in the models, as they are set
through the equality constraints. However, when using global solvers, it is a
good practice to bound every variable. Hence, for the experiments, every vari-
able has an upper and lower bound, even if these bounds are trivially satisfied
through the equality constraints. Note also that these bounds could be im-
proved, but this requires a complete work which is out of the scope of this
study. Moreover, solvers usually implement bound tightening techniques. As
we also compare the solvers for the proposed model, we do not implement ex-
tra features (reformulation, bound tightening etc...). As such the solvers are
compared taking into account their complete sets of tools.

Instances. All instances considered are derived from parameter sets A and B,
detailed in Appendix C. These parameter sets are inspired from real instances
from EDF. Different variants of these sets are created to form a larger set of
instances. The varying non-linear features and the corresponding parameters
of the 1-HUC problem are as follows. The size of the instance varies with the
number of time periods. Equality constraints appear as soon as target volumes
are accounted for in the instance. Two features of the non-linear function can
be changed: the number of inflection points and the degree of non-linearity.
These features are respectively linked to the number of units, and to when the
transition from a unit to another occurs when increasing or decreasing the water
flow. The last feature is the sensitivity of the decision variables, which measures
how much the decision can affect the dynamical behavior of the physical system.
For the 1-HUC problem, the smaller the water flows are relative to the absolute
volume, the less the volumes change over the time periods. In Appendix C,
the features are further described, and an equation for the sensitivity of the
decision variables is provided. Also, Table 13 summarizes the instances and
their features.
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Terminology, notations and metrics. We introduce additional terminology to
compare the different models on the considered instances. For the comparisons,
we also define the metrics used and their notation.

A configuration is defined as a pair (instance, model). For all models, a
configuration is solved to optimality when the optimality gap between the primal
and dual values is below 0.1%. Note that the optimality gap is not computed in
the exact same manner for every solver, but remains very similar. The optimal
solution of a configuration is the solution when the configuration is solved to
optimality. The value of a configuration is the value of its optimal solution. The
recalculated value of a solution is the value of the solution, evaluated with the
non-linear functions of (Pref ). Such value is obtained as follows. Consider the
water flows of a solution. The recalculated value of this solution is the value
of the objective function of (Pref ) with the same water flows. The recalculated
value of a configuration is the recalculated value of the optimal solution of the
configuration. A configuration is solvable by a solver if the solver supports the
model. A configuration is solved if it is solved to optimality with at least one
solver within the time limit. A configuration is feasible with a solver when it
is not solved to optimality, but a solution is found within the time limit. A
configuration is infeasible with a solver if the solver proves the configuration to
have no feasible solution within the time limit.

The metrics used to compare the models and the solvers are as follows.
The computing time (CT) of a configuration is the time required to return the
optimal solution. The approximation error (AE) of a configuration is the relative
difference between the value of the optimal solution of the configuration, and
the recalculated value of the configuration. The distance to the best recalculated
value (DB) of a configuration is the relative difference between the recalculated
value of the configuration, and the highest recalculated value of all configurations
with the same instance.

As specified, configurations are solved with several solvers. We define the
virtual best solver (VBS) [27] of a given configuration as the solver that requires
minimal CT to solve the configuration. Results show that the AE (resp. the
DB) of a configuration is the same for every solver. Thus, for our results, the
VBS is the solver that has the configuration solved to optimality in minimal
CT. For our analysis we use the metrics of the configurations with their VBS.
All figures and tables for the results are with the VBS, except for Tables 8 and
9 that display the results for each solver. Note that some configurations are
not solvable with every solver. Indeed, model (P5PL−max) is only supported by
LINDOGlobal and SCIP.

5.3. Model comparison

In this section, we present the results of the model comparison.

Results summary. To summarize the results, Figure 9 shows a bargraph which
represents two categories of results. First, the height of the bar for a model
corresponds to the proportion of configurations solved with their VBS. Second,
the lightest color shows for a model the proportion of configurations for which
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Figure 9: Proportion of configurations for each model solved by their VBS

the model has the lowest DB compared to the other models. Similarly, the
second and third lightest color for a model correspond to the proportion of
configurations for which the model has the second and third lowest DB. The
darkest color for a model corresponds to the proportion of configurations for
which the model does not yield a DB which is amongst the three lowest DB.
These results are distinguished for both the 1-HUC problem and the fixed-head
1-HUC problem.

In the remainder of this section, we highlight key observations of the model
comparison for both 1-HUC problems, with and without a fixed-head.

Finding 1: Infeasibility of model (PHD−poly). None of the configurations with
(PHD−poly) returns a feasible solution.

Model (PHD−poly) contains high degree polynomials which can yield very
large and small numbers. This produces floating point errors for the solvers,
which makes this model impractical without a dedicated solver.

It follows that results related to model (PHD−poly) are not enclosed.

Finding 2: Models (Pop), (P2D−poly) can yield infeasibilities. Table 5 shows,
for each model, the proportion of solved (%solved), feasible (%feasible), and
infeasible (%infeasible) configurations with their VBS. Note that there is no
case where the status is undefined: for every configuration, either a feasible
solution is found, or the infeasibility is proven within three hours.

In the case of (Pop) infeasibilities can happen because there are instances
with target volumes that cannot be reached with the finite set of operating
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flows. In the case of (P2D−poly), infeasibilities occurs for instances of the 1-
HUC problem with high degree of non-linearity. However, it is not clear why
such configurations are deemed infeasible by the solvers.

Table 5: Proportion of solution status returned for the configurations for each model by their
VBS

1-HUC Fixed-head 1-HUC
Model %solved %feasible %infeasible %solved %feasible %infeasible

(P5PL−max) 86.1 13.9 0.0 100.0 0.0 0.0
(P5PL−bin) 91.7 8.3 0.0 100.0 0.0 0.0
(P2D−poly) 88.9 0.0 11.1 100.0 0.0 0.0

(Pop) 88.9 2.8 8.3 91.7 0.0 8.3
(Pbilin) 100.0 0.0 0.0 100.0 0.0 0.0
(P 3

pwl) 94.4 5.6 0.0 100.0 0.0 0.0

(P 2
pwl) 100.0 0.0 0.0 100.0 0.0 0.0

(P 1
pwl) 100.0 0.0 0.0 100.0 0.0 0.0

Finding 3: Considering a fixed-head leads to reduced CT. Figure 10 shows on
the y-axis the proportion of configurations solved with their VBS, under a CT
threshold given on the x-axis. The configurations are color-coded depending on
the model of the configuration.

Clearly, for every model, the CT is reduced when solving the fixed-head
1-HUC problem.

There are multiple reasons why the CT is lower for the fixed-head case.
First, a single one-dimensional non-linearity is considered, in opposition to a
two-dimensional one and a one-dimensional one in the general case. Also, for
all models by (Pbilin), fewer variables are required when the head is fixed. Then,
models (Pop), (Pbilin) have a linear relaxation in the fixed-head case, whereas
these models have a non-linear relaxation in the general case.

Finding 4: Considering a fixed-head leads to increased AE, yielding similar AE
for all models. Figure 11 shows on the y-axis the proportion of configura-
tions solved with their VBS, under an AE threshold given on the x-axis. The
configurations are color-coded depending on the model of the configuration.

It appears that the AE increases for each model in the fixed-head case. In
addition, all models then yield a very similar AE.

We can explain the increased AE for the fixed-head case as follows. In
practice, when the volume changes, then the head also changes. However this
is not captured when the fixed-head is considered. As such, a fixed-head model
will induce higher AE independently of the model selected. This is why all
models yield high and similar AE.

Finding 5: Models (Pbilin), (P
2
pwl), (P2D−poly) and (P5PL−bin) are the most ef-

ficient ones for the 1-HUC problem. Table 6 shows for each model, the average
CT and AE for both the 1-HUC problem and the fixed-head 1-HUC problem.
When calculating the average CT, a CT of 10800 seconds (the time limit) is
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considered for configurations that are not solved to optimality. Infeasible con-
figurations are not taken into account for this average. Figure 12 depicts the
trade-off between the average CT and AE for each model as a Pareto-front, for
the 1-HUC problem with and without fixed-head.

When considering the CT and the AE metrics as two criterias, models
(Pbilin), (P

2
pwl), (P2D−poly) and (P5PL−bin) are the most efficient ones. Indeed,

for any other model, one of the four cited models has a lower CT and a lower
AE. We cannot deduce the best overall model, as it depends on the user needs.

Finding 6: Models (P 2
pwl), (P2D−poly), (Pop) and (P5PL−max) are the most ef-

ficient ones for the fixed-head 1-HUC problem. In a similar fashion as for the
previous finding, we detect models (P 2

pwl), (P2D−poly), (Pop) and (P5PL−max)

to be the most efficient ones. Note that models (P 2
pwl), (P2D−poly) are amongst

the most efficient for the 1-HUC problem with and without a fixed-head.
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Figure 10: Proportion of configurations solved with their VBS where the CT is under a CT
threshold

Table 6: Average CT and AE for each model with its VBS, and CT and AE trade-off for each
pair of models for the 1-HUC problem

model (P5PL−max) (P5PL−bin) (P2D−poly) (Pop) (Pbilin) (P 3
pwl) (P 2

pwl) (P 1
pwl)

1-HUC
average CT 1832.1 1200.6 12.6 520.1 0.1 618.4 0.7 0.1
average AE 1.16 0.96 2.88 4.16 19.14 3.43 7.33 40.26

fixed-head 1-HUC
average CT 600.6 13.1 0.5 3.3 0.1 0.1 0.1 0.1
average AE 12.90 13.85 14.11 13.43 37.92 18.34 18.14 18.93

Finding 7: Metrics DB and AE are correlated. Figure 13 shows on the y-axis
the proportion of configurations solved with their VBS, under a DB threshold
given on the x-axis.

Results show that (P5PL−bin) and (P5PL−max) solve more than 60% of the
1-HUC problem instances with a DB below 0.01%. In opposition, models (P 1

pwl)

33



10−2 10−1 100 101 102
0

20

40

60

80

100

AE (%)

S
ol
ve
d
co
n
fi
gu

ra
ti
on

s
(%

)

1-HUCNL

10−2 10−1 100 101 102

AE (%)

Fixed-head 1-HUCNL

(M5PL−max)

(M5PL−bin)

(M2D−poly)

(Mop)

(Mbilin)

(M3
pwl)

(M2
pwl)

(M1
pwl)

Figure 11: Proportion of configurations solved with their VBS where the AE is under an AE
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Figure 12: Trade-off between the average CT and AE for each model

and (Pbilin) yield a DB above 1% for nearly all instances. Besides, models with
the smallest DB tend to be the ones with smaller AE. The only exception is
model (Pop) with high DB despite a low AE.

The reason why the DB is correlated to the AE is because models with lower
AE correspond more precisely to the physics. Hence, the solutions obtained
with these models are closer to the real optimal solution of (Pref ) than the
solutions obtained with models with a higher AE. Model (Pop) is an exception.
Indeed, model (Pop) has a similar AE as (P5PL−max) and (P5PL−bin) as shown in
Figure 11. However the DB for (Pop) is much higher than for (P5PL−max) and
(P5PL−bin) (Figure 13), which means that its solutions are of lesser economic
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quality. This is because for (Pop), there is a finite set of operating flows, and
every solution must have water flows within this set. It is possible that the
optimal solutions obtained with (Pop) are far from the optimal solutions of
(Pref ) for which the water flows are not restricted to a finite set.
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Figure 13: Proportion of configurations solved with their VBS where the DB is under a DB
threshold

Impact of each characteristic. We now summarize the impact of modifying the
characteristics of the 1-HUC problem. In Table 7, we present the general
impact for the 1-HUC problem when modifying one characteristic. One arrow
up (resp. down) means a moderate increase (resp. decrease), and two arrows up
(resp. down) means a large increase (resp. decrease). We also added remarks
for some models. The results presented here are further described in Appendix
D, and the corresponding tables are shown in Appendix E.

Table 7: Summary of the impact of each characteristic

modified characteristics 1-HUC fixed-head 1-HUC remarks
increased size CT↑↑ AE↑↑ CT increases much more for slower models

added equality constraints CT↓, AE↓↓ AE↓↓ (Pop) can yield infeasibilities
increased degree of non-linearity AE↑↑ AE↑↑ (P2D−poly) can yield infeasibilities

increased number of inflection points CT↑ CT↑ CT increases only for (P2D−poly), (P5PL−bin) and (P5PL−max)
decreased sensitivity to decision variables CT↓ AE↓↓ all variants of (Ppwl) can yield high AE

5.4. Solvers comparison

Previous results are presented with respect to the virtual best solver (VBS).
However, in a practical case it may not be convenient to use the VBS, as it
could be difficult to have access to as many solvers. In this section we will an-
alyze the behaviour of each solver independently. As aforementioned, a solved
configuration has, for every solver, the same AE. Only the proportion of config-
urations solved and the CT can change from a solver to another. Hence, we do
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not consider metric AE when comparing the solvers. In the tables presented in
this section, the following notations are used:

� %S: proportion of configurations solved;

� avg-CT: average CT in seconds, for solved configurations;

� NS: model not supported by the solver;

� NR: model supported by the solver, but experiments are not reported.

For a model, a solver dominates another solver if it has a higher %S, and a
smaller avg-CT.

Finding 1: The performance of a solver highly depends on the model. Table 8
and Table 9 show for each model the proportion of configurations solved with
each solver, and the average CT, respectively for the 1-HUC problem and for
the fixed-head 1-HUC problem. For each model, the smallest avg-CT and the
highest %S are emphasized in bold. If for a model, both metrics are in bold for
a solver, then it dominates every other solver for the model.

The results confirm that the performance of a solver highly depends on the
model. For instance, when the 1-HUC problem is considered (Table 8), solver
SCIP dominates solver ANTIGONE for model (P5PL−bin), but ANTIGONE
dominates SCIP for model (P2D−poly).

Table 8: Proportion of configurations for each model solved by each solver and related average
CT for the 1-HUC problem

ANTIGONE BARON COUENNE LINDOGlobal SCIP CPLEX
Model %S avg-CT %S avg-CT %S avg-CT %S avg-CT %S avg-CT %S avg-CT

(P5PL−max) NS NS NS 38.9 616.36 86.1 606.87 NS
(P5PL−bin) 19.4 824.84 88.9 25.63 69.4 163.23 86.1 446.92 88.9 218.00 NS
(P2D−poly) 44.4 2.51 88.9 31.32 63.9 91.27 80.6 30.36 19.4 828.72 NS

(Pop) 50.0 235.24 83.3 258.94 52.8 439.83 75.0 375.10 69.4 44.23 NS
(Pbilin) 75.0 0.10 100.0 0.08 97.2 0.25 75.0 4.72 100.0 0.17 NS
(P 3

pwl) NR NR NR NR NR 94.4 19.07

(P 2
pwl) NR NR NR NR NR 100.0 0.71

(P 1
pwl) NR NR NR NR NR 100.0 0.02

Table 9: Proportion of configurations for each model solved by each solver and related average
CT for the fixed-head 1-HUC problem

ANTIGONE BARON COUENNE LINDOGlobal SCIP CPLEX
Model %S avg-CT %S avg-CT %S avg-CT %S avg-CT %S avg-CT %S avg-CT

(P5PL−max) NS NS NS 97.2 159.96 94.4 0.13 NS
(P5PL−bin) 30.6 856.07 100.0 13.13 100.0 109.84 61.1 58.80 100.0 2.95 NS
(P2D−poly) 72.2 0.15 100.0 0.51 100.0 0.87 100.0 1.36 100.0 100.31 NS

(Pop) NR NR NR NR NR 91.7 0.01
(Pbilin) NR NR NR NR NR 100.0 0.00
(P 3

pwl) NR NR NR NR NR 100.0 0.05

(P 2
pwl) NR NR NR NR NR 100.0 0.02

(P 1
pwl) NR NR NR NR NR 100.0 0.01
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Finding 2: Solvers SCIP , BARON and CPLEX are the most efficient ones.
Tables 10 and 11 show the proportion of instances where a solver is the VBS,
for each model.

Solver SCIP is the most efficient for model (P5PL−max). Solver BARON is
the most efficient for any other non-linear model, namely models (P5PL−bin),
(P2D−poly), (Pbilin) and (Pop) for the 1-HUC problem and models (P5PL−bin)
and (P2D−poly) for the fixed-head 1-HUC problem. Solver CPLEX is efficient
for any linear model, namely models (P 1

pwl), (P
2
pwl) and (P 3

pwl) for the 1-HUC
problem and models (Pbilin), (Pop) for the fixed-head 1-HUC problem.

We distinguish two exceptions where solver ANTIGONE is the most efficient:
for model (Pbilin) for the 1-HUC problem and model (P2D−poly) for the fixed-
head 1-HUC problem. However, Tables 8 and 9 show that in these cases, the
problem is solved very quickly. Thus it is possible that ANTIGONE is quicker
than BARON only on easy configurations, so it may only be quicker to start-up.

Table 10: Proportion of configurations for each model where a solver is the VBS for the 1-HUC
problem

Model ANTIGONE BARON COUENNE LINDOGlobal SCIP CPLEX
(P5PL−max) NS NS NS 16.1 83.9 NS
(P5PL−bin) 0.0 54.6 30.3 15.2 0.0 NS
(P2D−poly) 12.5 84.4 3.1 0.0 0.0 NS

(Pop) 0.0 90.6 0.0 6.3 3.1 NS
(Pbilin) 63.9 33.3 0.0 0.0 2.8 NS
(P 3

pwl) NR NR NR NR NR 100.0

(P 2
pwl) NR NR NR NR NR 100.0

(P 1
pwl) NR NR NR NR NR 100.0

Table 11: Proportion of configurations for each model where a solver is the VBS for the
fixed-head 1-HUC problem

Model ANTIGONE BARON COUENNE LINDOGlobal SCIP CPLEX
(P5PL−max) NS NS NS 5.6 94.4 NS
(P5PL−bin) 2.8 72.2 0.0 13.9 11.1 NS
(P2D−poly) 52.8 33.3 0.0 13.9 0.0 NS

(Pop) NR NR NR NR NR 100.0
(Pbilin) NR NR NR NR NR 100.0
(P 3

pwl) NR NR NR NR NR 100.0

(P 2
pwl) NR NR NR NR NR 100.0

(P 1
pwl) NR NR NR NR NR 100.0

In Appendix D an analysis of the impact of each feature of a 1-HUC
problem instance is described.

5.5. General modeling recommendations derived from the numerical experiments

The results show that the choice of the model highly depends on the needs
of a user. Indeed, if a low AE is required, models (P5PL−bin), and (P5PL−max)
are the most efficient. However, not all solvers support (P5PL−max), and larger
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CT can be induced, meaning that (P5PL−bin) is overall a better alternative than
(P5PL−max). For the fixed-head 1-HUC problem, models (Pop) and (P2D−poly)
can also be considered, as they yield nearly the same AE as (P5PL−bin), and
(P5PL−max). In opposition, if one requires low computational times, models
(Pbilin), and (P 1

pwl) are the most suitable. However, the AE can be very high
with such models. For a more balanced option, three types of models stand out:
(Ppwl) and (P2D−poly) for the 1-HUC problem and (Ppwl), (Pop) and (P2D−poly)
for the fixed-head 1-HUC problem. We discuss them hereafter, giving for each
of them their main strengths and weaknesses. Firstly, (Ppwl) usually provides a
good trade-off between CT and AE. However the proper number of pieces cannot
always be deduced in advance. Consequently, a trial-and-error procedure may
be necessary to determine a piecewise linear function with a good trade-off.
Secondly, model (Pop) can lead to the smallest AE, and it can be solved faster
than the sophisticated models (P5PL−bin) and (P5PL−max). The drawback is
that in the case of an instance with equality constraints there may not be a
feasible solution for model (Pop). Thirdly, model (P2D−poly) also yields a very
good trade-off between AE and CT. However, for some configurations featuring
model (P2D−poly), all solvers fail to find a solution, even if there is a feasible
solution with the model. This illustrates the intrinsic difficulties of the current
solvers for some non-linear models (see also the case of (PHD−poly) described in
Section 5.3).

The choice of the solver impacts the CT and the proportion of instances
solved. The results indicate that BARON is the most efficient non-linear solver
when the model is supported, otherwise SCIP is the most efficient one. For
the three balanced models highlighted, solver BARON is the most efficient for
the non-linear ones (model (Pop) for the 1-HUC problem and (P2D−poly) in any
case), and a specialized MILP solver should be considered for the linear ones
(model (Pop) for the fixed-head 1-HUC problem and (Ppwl) in any case).

6. Conclusion

In this paper various non-linear and linear modeling alternatives to solve
a non-linear problem are compared, in terms of feasibility, approximation er-
ror, distance to the best recalculated value and computational time. The
considered non-linear problem is the 1-HUC, featuring two non-linearities: a
one-dimensional concave function, and a two-dimensional non-convex and non-
concave function. A common special case of the 1-HUC, the fixed-head 1-HUC,
is also considered, featuring a single non-linearity: a one-dimensional non-convex
and non-concave function. A simplified model, with the power as a non-linear
function of both the turbing efficiency and the head is defined for the 1-HUC
and for the fixed-head 1-HUC. However, this model features too difficult non-
linearities to be solved in a reasonable time, even for small instances. Seven
alternative models are proposed, the focus being to represent the non-linearities
of both the 1-HUC and the fixed-head 1-HUC. These models cover a large panel
of modeling alternatives, including the common models for the 1-HUC from the
literature, but also new models with uncommon non-linear functions. Several
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sets of instances with different features of the 1-HUC and the fixed-head 1-HUC
are solved with each of the proposed model, using five global solvers, and one
linear solver. The results show that three of the seven models, namely (Pop),
(P2D−poly) and (Ppwl), stand out as the most appealing, offering the best trade-
off between computational time, approximation error and feasibility. As the
computing time of a non-linear model highly depends on the available global
solver, preferred solvers are also highlighted for these three models.

As future research, refining the three most efficient models revealed by the
present study, via advanced or dedicated solution methods, is promising. First,
one can reformulate the models, using logarithmic disjunctive constraints [51].
This would benefit to all models, as it would reduce the number of variables.
Second, introducing bound-tightening techniques can also lead to better results.
Indeed we relied on the bound-tightening provided by the solvers, but one might
induce tighter bounds dedicated to the 1-HUC. Third, model (Ppwl) can be im-
proved by extending methods from the literature that optimize the number of
breakpoints with an approximation guarantee in a PWL bounding framework
[34]. Fourth, as model (P2D−poly) features quadratic constraints, making use of
quadratic programming techniques could improve the feasibility and the com-
putational time. Finally, in opposition to the other presented models, the water
flow is discretized in model (Pop) due to the finite set of operating points. Con-
sequently there is a large combinatorics, which usually increases exponentially
with the size of the instances. The use of combinatorial optimization methods,
such as a polyhedral study could lead to smaller computing times. One inter-
esting approach for future work would be to solve the 1-HUC with a fast model
in order to quickly provide an initial solution to a more precise model. If the
solution provided is better than the first solution obtained by the solvers, this
approach could greatly reduce the computational time, yet still leading to a
low approximation error. Lastly, MILP commercial solvers such as CPLEX and
Gurobi [26] are currently being extended in order to solve non-linear problems.
At the moment, very few of our models are supported, and the optimum is
not guaranteed. However, these solvers might take into account a larger set of
our models in the future, and may be more efficient than the non-linear solvers
considered in the paper.
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A., and González, A. (2003). Under-relaxed iterative procedure for feasible
short-term scheduling of a hydro chain. In 2003 IEEE Bologna Power Tech
Conference Proceedings,, volume 2, page 6 pp.

[22] Geißler, B., Martin, A., Morsi, A., and Schewe, L. (2012). Using piecewise
linear functions for solving MINLPs. InMixed integer nonlinear programming,
volume 154 of The IMA Volumes in Mathematics and its Applications, pages
287–314. Springer.

[23] Glasnovic, Z. and Margeta, J. (2009). The features of sustainable solar
hydroelectric power plant. Renewable energy, 34(7):1742–1751.

[24] Gottschalk, P. G. and Dunn, J. R. (2005). The five-parameter logistic: a
characterization and comparison with the four-parameter logistic. Analytical
biochemistry, 343(1):54–65.

41



[25] Guignard, M. and Kim, S. (1987). Lagrangean decomposition: A model
yielding stronger lagrangean bounds. Mathematical programming, 39(2):215–
228.

[26] Gurobi Optimization, LLC (2023). Gurobi Optimizer Reference Manual.

[27] Kerschke, P., Kotthoff, L., Bossek, J., Hoos, H. H., and Trautmann, H.
(2018). Leveraging TSP solver complementarity through machine learning.
Evolutionary computation, 26(4):597–620.

[28] Land, A. H. and Doig, A. G. (2010). An automatic method for solving
discrete programming problems. In 50 Years of Integer Programming 1958-
2008, pages 105–132. Springer.

[29] Li, X., Li, T., Wei, J., Wang, G., and Yeh, W. W.-G. (2013). Hydro unit
commitment via mixed integer linear programming: A case study of the three
gorges project, china. IEEE Transactions on Power Systems, 29(3):1232–
1241.

[30] Lima, R. M., Marcovecchio, M. G., Novais, A. Q., and Grossmann, I. E.
(2013). On the computational studies of deterministic global optimization of
head dependent short-term hydro scheduling. IEEE Transactions on Power
Systems, 28(4):4336–4347.

[31] Lin, Y. and Schrage, L. (2009). The global solver in the LINDO api.
Optimization Methods & Software, 24(4-5):657–668.

[32] Mariano, S., Catalão, J., Mendes, V., and Ferreira, L. (2008). Optimising
power generation efficiency for head-sensitive cascaded reservoirs in a compet-
itive electricity market. International Journal of Electrical Power & Energy
Systems, 30(2):125–133.

[33] Misener, R. and Floudas, C. A. (2014). ANTIGONE: algorithms for con-
tinuous/integer global optimization of nonlinear equations. Journal of Global
Optimization, 59(2-3):503–526.

[34] Ngueveu, S. U. (2019). Piecewise linear bounding of univariate nonlin-
ear functions and resulting mixed integer linear programming-based solution
methods. European Journal of Operational Research, 275(3):1058–1071.

[35] Orero, S. and Irving, M. (1998). A genetic algorithm modelling framework
and solution technique for short term optimal hydrothermal scheduling. IEEE
Transactions on Power Systems, 13(2):501–518.

[36] Padberg, M. and Rinaldi, G. (1991). A branch-and-cut algorithm for the
resolution of large-scale symmetric traveling salesman problems. SIAM re-
view, 33(1):60–100.

[37] Paredes, M., Martins, L., and Soares, S. (2014). Using semidefinite relax-
ation to solve the day-ahead hydro unit commitment problem. IEEE Trans-
actions on Power Systems, 30(5):2695–2705.

42



[38] Pearl, J. (1984). Heuristics: intelligent search strategies for computer prob-
lem solving. Addison-Wesley Longman Publishing Co., Inc.
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Appendices
A. Solver description

ANTIGONE [33] is based on an sBB algorithms. The problem is reformu-
lated in order to find special structures. Once the structures are found, the
relaxation of the problem is solved. The search space is split and the process re-
peated until convergence of the upper and the lower bounds. Upper bounds are
computed with local optimization algorithms. Only twice differentiable func-
tions, that are not trigonometrical functions, are supported by ANTIGONE.

BARON [49] implements a deterministic Branch and Reduce algorithm. This
algorithm contains constraint programming, interval analysis and duality tech-
niques for tightening variables bounds. Heuristics, cutting planes and paral-
lelism are combined with the Branch and Reduce algorithm. Trigonometrical
functions and max functions are not supported.

COUENNE [5] implements an sBB with linearization, bound reductions and
branching method. The main four components are: reformulation, separation of
linearization cuts, branching rules and bound tightening methods. COUENNE
only supports functions that can be reformulated into univariate functions and
does not support function max.

LINDOGlobal [31] is the only solver that does not directly implements an
sBB algorithm. Instead, it implements a branch and cut algorithm that breaks
the model into sub-problems. The sub-problems are further split until each
sub-problem is convex. The sub-problems are then solved with a BB or sBB
algorithm. LINDOGlobal supports most non-linearities, and binary operators
such as AND, OR and NOT.

SCIP [52] implements an sBB, where the non-linearities are represented
within graphs. These graphs help finding convex non-linearities, and refor-
mulating the non-linear functions. During the solving process, SCIP also adds
various cuts, depending on the non-linearities. Bound tightening methods are
also applied. Trigonometrical functions are not supported by SCIP and it is the
only solver which requires a linear objective function.

CPLEX [10] implements a quite effective multipurpose Branch and Cut algo-
rithm, which generates automatically various cuts [10]. Furthermore it is paired
with pre-processing and heuristics.

B. Five parameters logistic function

A 5PL is the following function, where x is a variable and y1 to y5 the
parameters:

5PL(x, y1, y2, y3, y4, y5) = y4 +
−y4

(1 + (x−y1

y3
)y2)y5
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In the context of the 1-HUC, variable x is the water-flow dt. The 5PL has a
shape similar to a more common function, the sigmoid:

sig(x, y′1, y
′
2, y

′
3) =

y′3
1 + e−y′

2(x−y′
1)

The advantages of the 5PL is that it is more flexible than a sigmoid. The
sigmoid is necessarily symmetric with respect to its inflection point, whereas
5PL is not. However, a 5PL function is not defined if x < y1, which can occur
when representing a unit by a 5PL function. To adapt the 5PL function to
the use case of the 1-HUC, it is possible to insert a max function inside the
5PL function as follows:

5PL(x, y1, y2, y3, y4, y5) = y4 +
−y4(

1 +
(

max(0,x−y1)
y3

)y2
)y5

With this modification, if x < y1 then the 5PL function is equal to y4 +
(−y4/1) = 0, if x ≥ y1, the 5PL has the same behaviour as previously defined.

C. Instances description

The instances are derived from the following parameter sets A and B, by
changing the value of only one parameter at a time. The idea is to evaluate
the impact of the parameters on the resolution and the solution with multiple
metrics. Table 12 shows the parameters of each parameter set.

Table 12: Parameter sets

Parameter set A Parameter set B

V 1
0 = 500, V 2

0 = 200 V 1
0 = 90, V 2

0 = 10

T = 4 T = 4

V
1

t = 1000, V 1
t = 0 ∀t ≤ T V

1

t = 100, V 1
t = 0 ∀t ≤ T

V
2

t = 500, V 2
t = 0 ∀t ≤ T V

2

t = 90, V 2
t = 0 ∀t ≤ T

D = 0, D = 25 D = 0, D = 8

P t = 0, P t = 15 ∀t ≤ T P t = 0, P t = 32 ∀t ≤ T

Φ1 = 230, Φ2 = 0 Φ1 = 850, Φ2 = 0

Λ = [0.2, 0.15, 0.1, 0.2] Λ = [0.1, 0.2, 0.5, 0.4]

A1
t = A2

t = 0 ∀t ≤ T A1
t = A2

t = 0 ∀t ≤ T

γ = [0, 0.1, 5, 0.7] γ = [100, 0.2, 2, 0.6]

The modified features are the following:

� Size of the instance;

� Equality constraints;
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� Number of inflection points of the non-linear function;

� Degree of non-linearity of the function;

� Sensitivity of the decision variables to the non-linear effect.

In these parameter sets, the maximum and minimum volumes are artificially
large, to see the impact of each feature. Below, we justify the choice for each
feature and explain how the changes are instantiated on the 1-HUC. Note that
every instance is built such that there is at least one feasible solution with
continuous water flows dt.

C.1. Size of the instance

Larger instances are in general harder to solve as they contain more variables
and constraints. In the case of the 1-HUC, larger instances considered will have
a larger number of time periods T . Increasing T exponentially increases the
number of feasible solutions. Three instances are considered, A-T-1 to A-T-3
(resp. B-T-1 to B-T-3) corresponding to the variations of the parameter set A
(resp. B) with 4, 7 and 10 time periods T . To take into account more time
periods, prices are supplemented as follows: Λ = [0.2, 0.15, 0.1, 0.2, 0.1, 0.05,
0.1, 0.2, 0.15, 0.05] (resp. Λ = [0.1, 0.2, 0.5, 0.4, 0.3, 0.2, 0.3, 0.5, 0.4, 0.2]).
These instances are such that the volume of each reservoir can not reach the
maximum or minimum volume. The water flow will not be affected by the
bounds on the volume, in contrary to some other sets of instances.

C.2. Equality constraints

Equality constraints can highly affect the resolution. Indeed, equality con-
straints drastically reduce the number of feasible solutions and can also be hard
to satisfy. Moreover, depending on the approximation used in the model, equal-
ity constraints may lead to non efficient solutions. In the case of the 1-HUC,

target volumes are equality constraints, when V 1
t = V

1

t for a time period t. Six
instances are considered, A-E-1 to A-E-6 (resp. B-E-1 to B-E-6) which are vari-
ations of parameter set A (resp. B), where target volumes are only for the last
time period T . For A-E-1 to A-E-3 (resp. B-E-1 to B-E-3) the target volumes
are 480, 450 and 420 (resp. 80, 70 and 60). For A-E-4 to A-E-6 (resp B-E-4
to B-E-6), the target volumes are 500 (resp. 90), but the additional intake of
water at the last time period are 20, 50 and 80 (resp. 10, 20, 30). One can
notice that for instance A-E-1, the difference between the initial and the target
volume is 20, while for instance A-E-4 it is 0, but the additional intake of water
is 20. Thus, feasible solutions for A-E-1 are feasible solutions for A-E-4 and
vice-versa. Instances A-E-2 and A-E-5, B-E-1 and B-E-4 and so on are built
similarly.
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C.3. Number of inflection points of the non-linear function

With a different number of inflection points, the shape of a non-linear func-
tion is changed, which can lead to more local optimal solutions, or less efficient
under-estimators. The functions used to under-estimate and approximate the
functions are also changed. Thus, the resolution and approximation error could
be impacted by the number of inflection points of the non-linear function. In
the case of the 1-HUC, the number of inflection points of the power function
can be changed by defining a larger number of smaller units. We still have the
same maximum power and maximum water flow, only the shape of the power
function is different. Three instances are considered, A-N-1 to A-N-3 (resp. B-
N-1 to B-N-3) which are variations of the parameter set A (resp. B) with 2, 4
and 6 units.

C.4. Degree of non-linearity of the non-linear function

As for the number of inflection points, changing the degree of non-linearity is
another way to change the shape of a function. Thus, the resolution and approx-
imation error could be affected by the degree of non-linearity of the functions.
In the case of the 1-HUC, one way to increase the non-linearity of the power
function is to change the water flow when each unit starts and stops, increasing
or reducing the degree of curvature for each concave part of the function, as
represented by. The resulting power function for the plant can be quasi-linear
or have a high degree of non-linearity. In addition, it also changes the domain
of some variables. Six instances are considered, A-D-1 to A-D-6 (resp. B-D-1
to B-D-6) being variations of parameter set A (resp. B). Instances A-D-1 and
A-D-4 feature a quasi linear function, with D = 22 and P t = 14.5, ∀t ≤ T ,
instances A-D-2 and A-D-5 correspond to a non-linear function, with D = 25
and P t = 15, and instances A-D-3 and A-D-6 use a very non-linear function,
with D = 28 and P t = 16. The target volume for instances A-D-4 to A-D-6 is
460. Similarly, instances B-D-1 and B-D-4 feature a quasi linear function, with
D = 6 and P t = 28, instances B-D-2 and B-D-5 feature a non-linear function,
with D = 8 and P t = 32, and instances B-D-3 and B-D-6 feature a very non-
linear function, with D = 10 and P t = 34. The target volume for instances
B-D-4 to B-D-6 is 75.

C.5. Sensitivity of the decision variables to the non-linear effect

Depending on the problem, decision variables can have a very large, or very
small impact on the non-linearities. When the impact is small, it is possible
that some simplifications of the problem would not induce large approximation
errors. In the case of the 1-HUC, the sensitivity of the decision variables to the
non-linear effect can change by considering larger or smaller reservoirs. Two
instances are considered, A-S-1 and A-S-2 (resp. B-S-1 and B-S-2) are variations
of parameter set A (resp. B). Instance A-S-2 is similar to A-S-1, but has all
initial, maximal and minimal volumes multiplied by 100, and supplemented
prices Λ = [0.005, 0.00375, 0.0025, 0.005]. Analogously, B-S-2 is similar to B-S-1
with initial, maximal and minimal volumes all multiplied by 100, and adapted
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prices Λ = [0.005, 0.01, 0.025, 0.02]. The unitary prices Λ are reduced in order to
obtain similar solutions for instances A-S-1 and A-S-2 (resp. B-S-1 and B-S-2).

One can compute bounds on the variation of the volume, by calculating the
maximum and minimum water processed while respecting the capacities. These
bounds give an interval for the final volume in the reservoirs. It is then possible
to compute the maximum difference in terms of volume between two feasible
solutions, and compare it to the capacity of the reservoirs in order to predict if
the instance might induce high volume variations or not. The sensitivity S can
be computed as follows:

S =
D × T −D × T

min(V
1

T − V 1
T , V

2

T − V 2
T )

For instance A-S-1, the sensitivity is 100/500 = 0.2, for instance A-S-2: 0.002,
for instance B-S-1: 0.36 and for instance B-S-2: 0.0036. Note that the parameter
set A (resp. B) has the same sensitivity as instance A-S-1 (resp. B-S-1).

Table 9 summarizes these instances and their features.

Table 13: Instance features

Instances Features Modified parameter
A-T-1 to A-T-3

Size of the instance Number of time periods
B-T-1 to B-T-3
A-E-1 to A-E-6

Equality constraints
Different target volumes, with and

B-E-1 to B-E-6 without additional intakes of water
A-N-1 to A-N-3

Number of inflection points Number of units
B-N-1 to B-N-3
A-D-1 to A-D-6

Degree of non-linearity
Quasi-linear, non-linear or very linear

B-D-1 to B-D-6 function, with and without target volumes
A-S-1, A-S-2,

Sensitivity of the decision variables Size of the reservoirs
B-S-1, B-S-2

D. Analysis of the impact of the instance features

Let us analyse the impact of each feature of a 1-HUC instance on the reso-
lution. The tables related to the results described in the following section are
in Appendix E.

D.1. Size of the instance

Changing the number of time periods (instances A-T-1 to A-T-3 and B-T-1
to B-T-3) has a big effect on the resolution. Indeed, we see from Table 14
and Table 15 that configurations with more time periods require a drastically
increased CT compared to configurations with fewer time periods. The most
salient case is for the 1-HUC where with T = 10 the only configurations solved
under three hours by their VBS are with one of the following four models:
(P2D−poly), (Pbilin), (P

1
pwl) and (P 2

pwl). Moreover, with T = 7 configurations
with model (P5PL−max) are never solved by their VBS within three hours. The
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AE also increases for configurations with instances with more time periods. It
is especially visible for the fixed-head 1-HUC, with T = 10 the minimal AE is
around 20% using models (P5PL−max), and the average AE are around 40% at
least.

As there are more time periods, more variables and constraints are intro-
duced, exponentially increasing the number of feasible solutions. The reason
why the AE increases is due to the fact that errors are propagated through the
time periods. Also, for the fixed-head 1-HUC, more time periods mean, in gen-
eral, more water processed. The volume varies with a higher magnitude from
the initial volume when there are more time periods, leading to larger AE when
considering a fixed-head.

D.2. Equality constraints

Taking fixed target volumes (instances A-E-1 to A-E-6 , B-E-1 to B-E-6,
A-D-1 to A-D-6 and B-D-1 to B-D-6) has a non-homogeneous impact on the
resolution. From Table 16 and Table 17 we notice that configurations with
target volumes reduce the CT required for the 1-HUC, compared to configura-
tions without target volumes. For the AE, we notice multiple behaviours. For
most models, configurations with target volumes yields to smaller average AE,
but higher maximal AE, compared to configurations without target volumes.
Non-represented results also showed that ANTIGONE solves less than 25% of
configurations with target volumes whereas it solves more than 60% of configu-
rations without target volumes. A similar but less marked behaviour is noticed
for COUENNE.

The decreased CT is probably due to the fact that fewer solutions are feasi-
ble. The reduced AE are due to the target volume being very close to the initial
volume for some instances. Less volume is processed, meaning a smaller power,
and smaller AE. Besides, for the fixed-head 1-HUC, it also means less errors due
to the fixed head, as the volume may not vary to much from the initial volume.
We notice that some configurations with model (Pop) are not solved, for both
the 1-HUC and the fixed-head 1-HUC. This is because the target volume may
not be reachable with the finite set of water flows.

D.3. Degree of non-linearity

Changing the non-linearity of the power function (instances A-D-1 to A-D-6
and B-D-1 to B-D-6) can have an impact on the CT and the AE in the case
of the 1-HUC, but only on the AE for the fixed-head 1-HUC. From Table 18
and Table 19, we notice that configurations with pronounced non-linearities
have larger CT for the 1-HUC than configurations with quasi-linear functions.
The configurations with non-linear models also have larger AE with pronounced
non-linear functions, for both the 1-HUC and the fixed-head 1-HUC. The AE for
configurations with linear model is not affected. We also see that all the configu-
rations with model (P2D−poly) are infeasible with every solver when the instance
has a pronounced non-linear function, even if there exist feasible solutions for
the instance.
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The general increase of the AE for non-linear models can be explained by
two reasons. Firstly, by instance construction, the units are the same for every
instances, and the water-flow interval for each unit is changed in order to have
a different degree of non-linearity. As such, it is possible that fewer non-linear
functions can closely approximate the function of (Pref ) on a larger interval.
Secondly, a highly non-linear function can be harder to approximate by simpler
functions, leading to larger AE for every model.

D.4. Number of inflection points

Changing the number of units (instances A-N-1 to A-N-3 and B-N-1 to B-
N-3) has only a noticeable impact on models representing each unit explicitly,
namely (P5PL−max), (P5PL−bin) and (P2D−poly). Indeed, Table 20 and Table
21 show the increased CT required for configurations with these models and
with instances with more units. Also, increased number of units reduces the
degree of non-linearity. Thus it is possible to see similar behaviours as when
changing the degree of non-linearity.

The reason why the CT increases for configurations with one of the four
mentioned models and an instance with many units is because as they represent
each unit explicitly, more variables and constraints are required.

D.5. Sensitivity of the decision variables to the non-linear effect

In order to have negligible variation of the volume, the volumes can be set to
larger values than the water flows. Table 22 and Table 23 show that the CT
tends to be smaller for configurations with large volumes compared to configu-
rations with smaller volumes. Larger volumes usually lead to an improvement
of the AE for the fixed-head 1-HUC. However, the maximal AE of PWL mod-
els can be very large with large volumes. More precisely, with a PWL models,
half the configurations has a large AE, and the other half has a smaller AE,
compared to configurations with small volumes

The improvement of AE for the fixed-head 1-HUC is because with small
variations, the volume is very similar to the initial volume at any time period.
The AE from the fixed-head becomes very small. The high AE of the PWL
models can be explained as follows. These models only consider a family of
univariate PWL function for a finite set of possible volumes. It is then possible
that the volume is never similar to the volumes used by this family of functions.

E. Numerical experiments when partitioning instances

� %S: proportion of configuration solved;

� min-CT, max-CT, avg-CT: minimum, maximum, and average CT for ev-
ery solved configurations;

� min-AE, max-AE, avg-AE: minimum, maximum and average AE for every
solved configurations.
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E.1. Size of the instance

Table 14 and Table 15 represents the proportion of configurations with
instances with 4, 7 and 10 time periods and each model solved by their VBS,
and related minimum, maximum and average CT and AE.

Table 14: Proportion of configurations solved with their VBS, CT and AE statistics for the
1-HUC for different number of time periods (instances A-T-1 to A-T-3 and B-T-1 to B-T-3)

Instances Model %S min-CT max-CT avg-CT min-AE max-AE avg-AE

T=4

(P5PL−max) 100.0 103.34 186.38 144.86 0.2 0.4 0.3
(P5PL−bin) 100.0 15.28 28.47 21.88 0.2 0.4 0.3
(P2D−poly) 100.0 0.43 0.69 0.56 0.8 3.9 2.4

(Pop) 100.0 1.47 2.25 1.86 0.3 0.4 0.3
(Pbilin) 100.0 0.03 0.05 0.04 24.3 26.1 25.2
(P 3

pwl) 100.0 0.4 7.06 3.73 1.3 3.5 2.4

(P 2
pwl) 100.0 0.09 0.18 0.14 5.8 6.5 6.2

(P 1
pwl) 100.0 0.01 0.02 0.01 11.8 67.9 39.9

T=7

(P5PL−max) 0 - - - - - -
(P5PL−bin) 100.0 10 367.97 10 367.97 10 367.97 0.4 0.4 0.4
(P2D−poly) 100.0 8.31 36.18 22.25 0.8 3.3 2.0

(Pop) 100.0 78.69 574.13 326.41 4.0 14.3 9.2
(Pbilin) 100.0 0.06 0.26 0.16 24.1 31.3 27.7
(P 3

pwl) 100.0 39.12 39.12 39.12 1.3 1.3 1.3

(P 2
pwl) 100.0 0.15 2.88 1.51 5.7 8.7 7.2

(P 1
pwl) 100.0 0.03 0.06 0.04 27.9 67.9 47.9

T=10

(P5PL−max) 0 - - - - - -
(P5PL−bin) 0 - - - - - -
(P2D−poly) 100.0 44.71 344.08 194.39 0.8 14.1 7.5

(Pop) 100.0 7062.75 7062.75 7062.75 78.6 78.6 78.6
(Pbilin) 100.0 0.07 0.09 0.08 40.4 46.3 43.3
(P 3

pwl) 50.0 558.73 558.73 558.73 1.1 1.1 1.1

(P 2
pwl) 100.0 0.46 19.05 9.76 7.4 14.0 10.7

(P 1
pwl) 100.0 0.05 0.16 0.11 32.4 66.8 49.6

E.2. Equality constraints

Table 16 and Table 17 represents the proportion of configurations with
instances with and without target volumes and each model solved by their VBS,
and related minimum, maximum and average CT and AE.

E.3. Degree of non-linearity

Table 18 and Table 19 represents the proportion of configurations with
instances with a quasi linear, a non-linear and a very non-linear function and
each model solved by their VBS, and related minimum, maximum and average
CT and AE.

E.4. Number of inflection points

Table 20 and Table 21 represents the proportion of configurations with
instances with 2, 6 and 6 units and each model solved by their VBS, and related
minimum, maximum and average CT and AE.
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Table 15: Proportion of configurations solved with their VBS, CT and AE statistics for the
fixed-head 1-HUC for different number of time periods (instances A-T-1 to A-T-3 and B-T-1
to B-T-3)

Instances Model %S min-CT max-CT avg-CT min-AE max-AE avg-AE

T=4

(P5PL−max) 100.0 0.11 0.12 0.11 10.7 20.6 15.7
(P5PL−bin) 100.0 0.25 0.4 0.33 10.7 20.6 15.7
(P2D−poly) 100.0 0.06 0.08 0.07 14.6 27.3 20.9

(Pop) 100.0 0.0 0.01 0.01 10.3 21.0 15.7
(Pbilin) 100.0 0.0 0 0.0 41.0 66.6 53.8
(P 3

pwl) 100.0 0.02 0.02 0.02 20.2 21.9 21.0

(P 2
pwl) 100.0 0.01 0.01 0.01 19.9 21.8 20.9

(P 1
pwl) 100.0 0.01 0.01 0.01 21.9 22.2 22.0

T=7

(P5PL−max) 100.0 0.11 0.14 0.12 12.4 32.1 22.2
(P5PL−bin) 100.0 2.77 10.14 6.46 18.6 32.1 25.4
(P2D−poly) 100.0 0.06 0.1 0.08 23.6 43.4 33.5

(Pop) 100.0 0.01 0.01 0.01 17.8 33.1 25.5
(Pbilin) 100.0 0.0 0 0.0 60.2 115.6 87.9
(P 3

pwl) 100.0 0.03 0.03 0.03 31.5 32.1 31.8

(P 2
pwl) 100.0 0.01 0.01 0.01 30.8 31.6 31.2

(P 1
pwl) 100.0 0.01 0.01 0.01 30.2 35.7 33.0

T=10

(P5PL−max) 100.0 0.11 0.15 0.13 19.6 59.2 39.4
(P5PL−bin) 100.0 6.25 50.0 28.12 29.7 59.2 44.5
(P2D−poly) 100.0 0.08 0.08 0.08 34.7 67.3 51.0

(Pop) 100.0 0.01 0.01 0.01 28.4 49.0 38.7
(Pbilin) 100.0 0.0 0 0.0 78.7 149.9 114.3
(P 3

pwl) 100.0 0.04 0.04 0.04 44.7 47.0 45.9

(P 2
pwl) 100.0 0.01 0.02 0.01 44.2 46.1 45.2

(P 1
pwl) 100.0 0.01 0.01 0.01 42.9 52.8 47.8

Table 16: Proportion of configurations solved with their VBS, CT and AE statistics for the
1-HUC with and without target volumes (instances A-T-1, B-T-1, A-E-1 to A-E-6, B-E-1 to
B-E-6, A-D-1 to A-D-6 and B-D-1 to B-D-6)

Instances Model %S min-CT max-CT avg-CT min-AE max-AE avg-AE

No target volume

(P5PL−max) 100.0 51.99 212.62 148.12 0.0 12.3 1.9
(P5PL−bin) 100.0 4.08 31.84 21.97 0.0 12.3 1.9
(P2D−poly) 100.0 0.4 0.81 0.53 0.0 7.2 2.8

(Pop) 100.0 1.47 2.95 1.94 0.1 12.7 1.9
(Pbilin) 100.0 0.03 0.06 0.04 19.4 32.3 26.2
(P 3

pwl) 100.0 0.4 8.98 3.6 0.9 4.2 2.5

(P 2
pwl) 100.0 0.09 0.18 0.13 4.4 6.5 5.8

(P 1
pwl) 100.0 0.01 0.03 0.02 10.0 70.6 39.8

target volume

(P5PL−max) 100.0 0.66 399.96 94.73 0.0 9.3 1.1
(P5PL−bin) 100.0 0.1 18.31 7.66 0.0 9.3 0.8
(P2D−poly) 100.0 0.09 0.48 0.29 0.2 4.2 1.4

(Pop) 100.0 0.56 23.96 3.81 0.0 10.5 1.2
(Pbilin) 100.0 0.03 0.13 0.07 0.5 27.4 12.4
(P 3

pwl) 100.0 0.14 1.0 0.44 0.8 22.9 3.4

(P 2
pwl) 100.0 0.01 0.17 0.07 1.3 30.8 6.6

(P 1
pwl) 100.0 0.01 0.02 0.01 4.9 69.4 33.0

E.5. Sensitivity of the decision variables to the non-linear effect

Table 22 and Table 23 represents the proportion of configurations with
instances with small and large volumes and each model solved by their VBS,
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Table 17: Proportion of configurations solved with their VBS, CT and AE statistics for the
fixed-head 1-HUC with and without target volumes (instances A-T-1, B-T-1, A-E-1 to A-E-6,
B-E-1 to B-E-6, A-D-1 to A-D-6 and B-D-1 to B-D-6)

Instances Model %S min-CT max-CT avg-CT min-AE max-AE avg-AE

No target volume

(P5PL−max) 100.0 0.1 0.12 0.11 7.3 24.1 15.9
(P5PL−bin) 100.0 0.2 0.48 0.35 8.8 28.7 17.8
(P2D−poly) 100.0 0.06 0.14 0.08 9.6 28.4 20.8

(Pop) 100.0 0.0 0.01 0.01 8.0 27.8 17.4
(Pbilin) 100.0 0.0 0 0.0 29.0 87.5 56.5
(P 3

pwl) 100.0 0.02 0.03 0.03 17.7 27.5 21.4

(P 2
pwl) 100.0 0.01 0.02 0.01 17.2 27.4 21.1

(P 1
pwl) 100.0 0.01 0.01 0.01 18.4 29.2 22.2

target volume

(P5PL−max) 100.0 0.1 0.93 0.2 2.0 19.5 7.6
(P5PL−bin) 100.0 0.03 1.06 0.52 1.0 80.0 14.0
(P2D−poly) 100.0 0.06 0.23 0.13 0.6 28.8 10.4

(Pop) 100.0 0.0 0.02 0.01 1.0 19.9 7.1
(Pbilin) 100.0 0.0 0 0.0 2.7 49.8 21.2
(P 3

pwl) 100.0 0.02 0.17 0.07 0.8 33.5 10.6

(P 2
pwl) 100.0 0.01 0.04 0.02 0.8 33.5 10.6

(P 1
pwl) 100.0 0.0 0.01 0.01 0.9 33.6 10.8

Table 18: Proportion of configurations solved with their VBS, CT and AE statistics for the
1-HUC for different degree of non-linearity (instances A-D-1 to A-D-6 and B-D-1 to B-D-6)

Instances Model %S min-CT max-CT avg-CT min-AE max-AE avg-AE

Quasi linear

(P5PL−max) 100.0 2.41 399.96 162.15 0.0 0.5 0.3
(P5PL−bin) 100.0 3.18 31.84 13.63 0.0 0.5 0.3
(P2D−poly) 100.0 0.23 0.4 0.35 0.0 7.2 2.9

(Pop) 100.0 1.43 1.68 1.54 0.1 0.5 0.2
(Pbilin) 100.0 0.03 0.08 0.05 10.2 27.7 18.1
(P 3

pwl) 100.0 0.2 3.39 1.15 1.0 3.6 2.2

(P 2
pwl) 100.0 0.1 0.14 0.12 4.4 6.2 5.4

(P 1
pwl) 100.0 0.01 0.02 0.02 10.0 68.7 38.8

Non-linear

(P5PL−max) 100.0 43.21 239.32 148.84 0.2 0.4 0.3
(P5PL−bin) 100.0 8.83 29.02 17.6 0.2 0.4 0.3
(P2D−poly) 100.0 0.21 0.81 0.46 0.8 3.9 1.9

(Pop) 100.0 1.08 2.93 1.98 0.3 0.4 0.3
(Pbilin) 100.0 0.04 0.08 0.05 0.9 26.1 16.7
(P 3

pwl) 100.0 0.15 6.73 2.01 1.3 3.6 2.6

(P 2
pwl) 100.0 0.03 0.16 0.1 5.8 7.1 6.4

(P 1
pwl) 100.0 0.01 0.02 0.02 11.8 68.4 40.0

Very non-linear

(P5PL−max) 100.0 62.31 208.98 151.88 1.0 12.3 6.2
(P5PL−bin) 100.0 0.56 27.81 15.87 0.0 12.3 5.7
(P2D−poly) 0 - - - - - -

(Pop) 100.0 0.83 3.58 2.29 0.9 12.7 6.3
(Pbilin) 100.0 0.03 0.1 0.06 7.8 32.3 21.7
(P 3

pwl) 100.0 0.37 8.98 2.87 0.9 4.2 2.6

(P 2
pwl) 100.0 0.09 0.17 0.14 5.2 7.2 6.3

(P 1
pwl) 100.0 0.02 0.03 0.02 10.0 70.6 40.0

and related minimum, maximum and average CT and AE.
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Table 19: Proportion of configurations solved with their VBS, CT and AE statistics for the
fixed-head 1-HUC for different degree of non-linearity (instances A-D-1 to A-D-6 and B-D-1
to B-D-6)

Instances Model %S min-CT max-CT avg-CT min-AE max-AE avg-AE

Quasi linear

(P5PL−max) 100.0 0.1 0.13 0.11 7.1 18.4 10.2
(P5PL−bin) 100.0 0.2 0.82 0.46 7.1 18.4 10.5
(P2D−poly) 100.0 0.06 0.14 0.1 6.8 28.4 14.3

(Pop) 100.0 0.01 0.01 0.01 7.9 16.8 10.9
(Pbilin) 100.0 0.0 0 0.0 21.1 53.2 31.4
(P 3

pwl) 100.0 0.02 0.03 0.03 7.5 18.5 14.8

(P 2
pwl) 100.0 0.01 0.02 0.01 7.4 18.4 14.7

(P 1
pwl) 100.0 0.01 0.01 0.01 6.8 19.8 15.2

Non-linear

(P5PL−max) 100.0 0.11 0.17 0.12 6.2 20.6 11.7
(P5PL−bin) 100.0 0.32 1.03 0.56 6.2 20.6 11.5
(P2D−poly) 100.0 0.06 0.23 0.15 7.5 27.3 14.1

(Pop) 100.0 0.0 0.01 0.01 6.1 21.0 11.5
(Pbilin) 100.0 0.0 0 0.0 18.7 66.6 37.3
(P 3

pwl) 100.0 0.02 0.03 0.03 7.8 21.9 16.1

(P 2
pwl) 100.0 0.01 0.01 0.01 7.6 21.8 16.0

(P 1
pwl) 100.0 0.01 0.01 0.01 6.1 22.2 15.9

Very non-linear

(P5PL−max) 100.0 0.1 0.12 0.11 10.1 24.1 15.9
(P5PL−bin) 100.0 0.35 1.01 0.56 10.3 28.7 19.9
(P2D−poly) 100.0 0.06 0.19 0.11 6.8 26.8 15.7

(Pop) 100.0 0.01 0.02 0.01 5.0 27.8 18.7
(Pbilin) 100.0 0.0 0 0.0 26.1 87.5 52.6
(P 3

pwl) 100.0 0.03 0.12 0.05 8.1 27.5 18.8

(P 2
pwl) 100.0 0.01 0.03 0.02 8.0 27.4 18.5

(P 1
pwl) 100.0 0.01 0.01 0.01 12.2 29.2 20.2
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Table 20: Proportion of configurations solved with their VBS, CT and AE statistics for the
1-HUC for different number of units (instances A-N-1 to A-N-3 and B-N-1 to B-N-3)

Instances Model %S min-CT max-CT avg-CT min-AE max-AE avg-AE

N=2

(P5PL−max) 100.0 103.34 186.38 144.86 0.2 0.4 0.3
(P5PL−bin) 100.0 15.28 28.47 21.88 0.2 0.4 0.3
(P2D−poly) 100.0 0.43 0.69 0.56 0.8 3.9 2.4

(Pop) 100.0 1.47 2.25 1.86 0.3 0.4 0.3
(Pbilin) 100.0 0.03 0.05 0.04 24.3 26.1 25.2
(P 3

pwl) 100.0 0.4 7.06 3.73 1.3 3.5 2.4

(P 2
pwl) 100.0 0.09 0.18 0.14 5.8 6.5 6.2

(P 1
pwl) 100.0 0.01 0.02 0.01 11.8 67.9 39.9

N=4

(P5PL−max) 100.0 1764.35 5988.44 3876.39 0.1 0.4 0.2
(P5PL−bin) 100.0 13.75 63.73 38.74 0.1 0.4 0.2
(P2D−poly) 100.0 2.76 3.47 3.12 0.4 3.1 1.8

(Pop) 100.0 0.49 1.57 1.03 0.0 0.3 0.1
(Pbilin) 100.0 0.04 0.05 0.04 19.6 22.1 20.9
(P 3

pwl) 100.0 0.75 5.73 3.24 0.3 3.3 1.8

(P 2
pwl) 100.0 0.11 0.15 0.13 4.0 6.4 5.2

(P 1
pwl) 100.0 0.02 0.02 0.02 12.0 70.9 41.5

N=6

(P5PL−max) 100.0 1055.49 1055.49 1055.49 0.0 0 0.0
(P5PL−bin) 100.0 7.63 36.01 21.82 0.0 0.3 0.1
(P2D−poly) 100.0 1.11 3.81 2.46 0.7 8.7 4.7

(Pop) 100.0 0.38 1.3 0.84 0.0 0.9 0.5
(Pbilin) 100.0 0.04 0.04 0.04 13.6 20.4 17.0
(P 3

pwl) 100.0 0.5 6.63 3.56 0.4 4.2 2.3

(P 2
pwl) 100.0 0.14 0.22 0.18 3.7 6.4 5.1

(P 1
pwl) 100.0 0.02 0.02 0.02 10.6 75.8 43.2
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Table 21: Proportion of configurations solved with their VBS, CT and AE statistics for the
fixed-head 1-HUC for different number of units (instances A-N-1 to A-N-3 and B-N-1 to B-N-3)

Instances Model %S min-CT max-CT avg-CT min-AE max-AE avg-AE

N=2

(P5PL−max) 100.0 0.11 0.12 0.11 10.7 20.6 15.7
(P5PL−bin) 100.0 0.25 0.4 0.33 10.7 20.6 15.7
(P2D−poly) 100.0 0.06 0.08 0.07 14.6 27.3 20.9

(Pop) 100.0 0.0 0.01 0.01 10.3 21.0 15.7
(Pbilin) 100.0 0.0 0 0.0 41.0 66.6 53.8
(P 3

pwl) 100.0 0.02 0.02 0.02 20.2 21.9 21.0

(P 2
pwl) 100.0 0.01 0.01 0.01 19.9 21.8 20.9

(P 1
pwl) 100.0 0.01 0.01 0.01 21.9 22.2 22.0

N=4

(P5PL−max) 100.0 0.11 0.33 0.22 12.2 24.9 18.5
(P5PL−bin) 100.0 0.14 0.76 0.45 14.4 22.4 18.4
(P2D−poly) 100.0 0.06 0.09 0.07 10.3 11.2 10.8

(Pop) 100.0 0.01 0.01 0.01 11.6 22.0 16.8
(Pbilin) 100.0 0.0 0 0.0 36.7 56.7 46.7
(P 3

pwl) 100.0 0.02 0.03 0.03 22.7 23.4 23.0

(P 2
pwl) 100.0 0.01 0.01 0.01 22.8 23.0 22.9

(P 1
pwl) 100.0 0.01 0.01 0.01 21.7 26.5 24.1

N=6

(P5PL−max) 100.0 0.1 0.33 0.22 13.0 25.4 19.2
(P5PL−bin) 100.0 0.03 0.82 0.42 24.7 90.2 57.5
(P2D−poly) 100.0 0.06 0.07 0.07 13.9 15.6 14.8

(Pop) 100.0 0.0 0 0.0 10.3 24.0 17.1
(Pbilin) 100.0 0.0 0 0.0 35.0 48.4 41.7
(P 3

pwl) 100.0 0.02 0.03 0.03 23.1 25.1 24.1

(P 2
pwl) 100.0 0.01 0.01 0.01 23.5 24.9 24.2

(P 1
pwl) 100.0 0.01 0.01 0.01 22.2 23.6 22.9

Table 22: Proportion of configurations solved with their VBS, CT and AE statistics for the
1-HUC for small and large volumes (instances A-S-1, A-S-2, B-S-1 and B-S-2)

Instances Model %S min-CT max-CT avg-CT min-AE max-AE avg-AE

S ∈ {0.2, 0.36}

(P5PL−max) 100.0 103.34 186.38 144.86 0.2 0.4 0.3
(P5PL−bin) 100.0 15.28 28.47 21.88 0.2 0.4 0.3
(P2D−poly) 100.0 0.43 0.69 0.56 0.8 3.9 2.4

(Pop) 100.0 1.47 2.25 1.86 0.3 0.4 0.3
(Pbilin) 100.0 0.03 0.05 0.04 24.3 26.1 25.2
(P 3

pwl) 100.0 0.4 7.06 3.73 1.3 3.5 2.4

(P 2
pwl) 100.0 0.09 0.18 0.14 5.8 6.5 6.2

(P 1
pwl) 100.0 0.01 0.02 0.01 11.8 67.9 39.9

S ∈ {0.002, 0.0036}

(P5PL−max) 100.0 123.58 131.2 127.39 0.5 0.8 0.7
(P5PL−bin) 100.0 7.2 16.72 11.96 0.5 0.8 0.7
(P2D−poly) 100.0 0.26 0.36 0.31 3.7 17.5 10.6

(Pop) 100.0 0.18 0.43 0.3 0.5 1.0 0.8
(Pbilin) 100.0 0.05 0.06 0.06 9.6 29.8 19.7
(P 3

pwl) 100.0 0.05 0.11 0.08 2.7 171.9 87.3

(P 2
pwl) 100.0 0.01 0.01 0.01 10.8 173.6 92.2

(P 1
pwl) 100.0 0.01 0.02 0.01 86.3 100.9 93.6
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Table 23: Proportion of configurations solved with their VBS, CT and AE statistics for the
fixed-head 1-HUC for small and large volumes (instances A-S-1, A-S-2, B-S-1 and B-S-2)

Instances Model %S min-CT max-CT avg-CT min-AE max-AE avg-AE

S ∈ {0.2, 0.36}

(P5PL−max) 100.0 0.11 0.12 0.11 10.7 20.6 15.7
(P5PL−bin) 100.0 0.25 0.4 0.33 10.7 20.6 15.7
(P2D−poly) 100.0 0.06 0.08 0.07 14.6 27.3 20.9

(Pop) 100.0 0.0 0.01 0.01 10.3 21.0 15.7
(Pbilin) 100.0 0.0 0 0.0 41.0 66.6 53.8
(P 3

pwl) 100.0 0.02 0.02 0.02 20.2 21.9 21.0

(P 2
pwl) 100.0 0.01 0.01 0.01 19.9 21.8 20.9

(P 1
pwl) 100.0 0.01 0.01 0.01 21.9 22.2 22.0

S ∈ {0.002, 0.0036}

(P5PL−max) 100.0 0.14 0.18 0.16 0.1 1.2 0.7
(P5PL−bin) 100.0 0.72 0.84 0.78 0.2 1.0 0.6
(P2D−poly) 100.0 0.09 0.09 0.09 4.2 16.7 10.4

(Pop) 100.0 0.0 0 0.0 0.2 1.1 0.7
(Pbilin) 100.0 0.0 0 0.0 9.8 30.3 20.1
(P 3

pwl) 100.0 0.03 0.03 0.03 0.8 176.3 88.6

(P 2
pwl) 100.0 0.01 0.01 0.01 0.8 175.8 88.3

(P 1
pwl) 100.0 0.01 0.01 0.01 0.7 177.8 89.2
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