
HAL Id: hal-04729481
https://hal.science/hal-04729481v1

Submitted on 10 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ILP representation for Limited Preemption in
Energy-Neutral Single-Core Systems

Pierre-Emmanuel Hladik, Houssam-Eddine Zahaf, Sébastien Faucou, Audrey
Queudet

To cite this version:
Pierre-Emmanuel Hladik, Houssam-Eddine Zahaf, Sébastien Faucou, Audrey Queudet. ILP represen-
tation for Limited Preemption in Energy-Neutral Single-Core Systems. The 32nd International Con-
ference on Real-Time Networks and Systems, Nov 2024, Porto, Portugal. �10.1145/3696355.3696366�.
�hal-04729481�

https://hal.science/hal-04729481v1
https://hal.archives-ouvertes.fr

ILP representation for Limited Preemption in Energy-Neutral
Single-Core Systems

Pierre-Emmanuel Hladik Houssam-Eddine Zahaf

Sébastien Faucou Audrey Queudet
∗

Nantes Université, École Centrale Nantes, CNRS, LS2N,

UMR 6004, F-44000 France

firstname.lastname@ls2n.fr

ABSTRACT
In this work, we present an Integer Linear Programming (ILP)

based approach that optimally selects preemption points for a set

of real-time tasks. Beyond to meeting real-time constraints, the

system must also consider energy availability constraints to ensure

energy neutrality. This enables the design of autonomous low-end

IoT devices with real-time constraints, minimizing maintenance

operations to battery replacements.

We demonstrate that our system, despite being modeled using

ILP, achieves strong temporal performance, even for large-scale

problems. We evaluated its performance using the Gurobi solver

across a wide range of synthetic experiments.

ACM Reference Format:
Pierre-Emmanuel Hladik, Houssam-Eddine Zahaf, Sébastien Faucou, andAu-

drey Queudet. 2024. ILP representation for Limited Preemption in Energy-

Neutral Single-Core Systems. In International Conference on Real-Time Net-
works and Systems (RTNS ’24), November 7–8, 2024, Porto 0, Portugal. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3696355.3696366

1 INTRODUCTION
One of the key challenges in designing low-end IoT devices is max-

imizing device lifespan.A significant limitation impacting system

longevity is energy availability. When the system operates with-

out a wired power supply, efficient energy management becomes

crucial. Two main approaches are commonly used. In the first, the

system designer maximizes the system’s lifetime by reducing en-

ergy consumption through minimizing operating frequencies and

controlling sleep modes. In this approach, the battery capacity must

be calibrated to meet the system’s lifetime objectives. Once the bat-

teries are exhausted, maintenance operations to replace them are

required. This approach is feasible when the device is accessible.

However, for inaccessible low-end devices, battery replacement

can be costly or even impossible. The second approach focuses on

∗
Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

RTNS ’24, November 7–8, 2024, Porto 0, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1724-6/24/11. . . $15.00

https://doi.org/10.1145/3696355.3696366

designing an energy-neutral system with a significantly extended

lifespan. Such a system must harvest energy from its surrounding

environment and rely only on this available energy to operate. In

scenarios with limited energy availability, it is crucial to optimize

energy consumption by carefully scheduling workloads based on

energy availability.

Based on energy availability and predictability, two categories

of energy-neutral systems can be designed:

• Systems Allowing Failures: These systems are typically de-

signed for environments where energy availability is random.

In the literature, numerous works have addressed this by

inserting checkpoints to save the task execution state in

permanent memory (e.g., FRAM). This approach prevents

replaying previously executed segments of the task code.

If an energy failure (runout of energy) occurs during the

execution of a segment, that segment must be replayed.

• Systems Avoiding Failures: the systems are designed to pre-

vent failures during workload execution, eliminating the

need to replay any part of the task. This requires accurate

knowledge of energy availability to ensure the system con-

sistently maintains sufficient energy to complete each exe-

cution without interruption.

When these devices operate under real-time constraints, it is essen-

tial to have an accurate understanding of the energy availability

profile. Either the complete energy harvesting profile is known in

advance, allowing for clairvoyant strategies to be built, or mini-

mal guarantees about the harvested energy are ensured. Optimal

preemptive schedulers, such as ED-H [15], have been proposed in

the literature. In such systems, a task is guaranteed to be executed

when both schedulability and energy constraints are satisfied. This

approach assumes tasks can resume execution as soon as energy

becomes available, without factoring in the preemption costs linked

to resuming execution or the constraints of saving task states. Con-

sequently, these approaches remain theoretical, and implementing

them would require significant modifications, resulting in the loss

of optimality.

A practical solution involves enabling non-preemptive sched-

uling. In this scenario, once a task begins execution, it runs to

completion. However, fully executing a task may require more

energy than the storage device can provide. One solution is to de-

compose the task execution into multiple basic blocks. Each basic

block must execute to completion. By inserting charging times be-

tween blocks when required and/or desired, it is possible to ensure

that all basic blocks will always execute to completion. The sched-

uler can be invoked at the completion of each basic block, allowing

https://doi.org/10.1145/3696355.3696366
https://doi.org/10.1145/3696355.3696366

RTNS ’24, November 7–8, 2024, Porto 0, Portugal Pierre-Emmanuel Hladik, Houssam-Eddine Zahaf, Sébastien Faucou, and AudreyQueudet

for preemption. Therefore, each basic block can be associated with

a preemption cost, including permanent context saving, resuming,

cache-related preemption delays, etc. Generally, more basic blocks

increase system robustness. However, this also increases the total

cost of preemption and may increase the complexity of system

analysis.

Contributions. In this work, we select preemption points to avoid

preempting a task at every basic block, reducing both temporal and

energy preemption costs. We ensure that, under energy availability

constraints, all defined non-preemptive regions—a sequence of basic

blocks—will always execute to completion while respecting timing

constraints.

We model the problem of selecting preemption points while

respecting real-time and energy availability constraints using an

Integer Linear Program (ILP). To avoid the explosion of real-time

constraints, we use a parameterized scheduling constraint inspired

by [8]. This approach over-constrains the system without loss of
optimality, handling the intrinsic complexity of the problem.

We demonstrate that our system, although modeled using an

ILP, is capable of achieving good temporal performance even for

large-scale problems. We use the Gurobi solver on a large set of

synthetic experiments.

Paper structure. The article begins by presenting the model em-

ployed to represent the problem, then introduces in Section 4.3 a

scheduling analysis method for the studied problem in the form

of a parameterized version. The subsequent section provides a de-

tailed account of the formulation of energy constraints. Section 5

provides a brief overview of existing works. Section 6 focuses on

presenting the conducted experiments and the obtained results,

before concluding in the final Section 7.

2 SYSTEM MODEL
2.1 Overview of the system
Designing an energy harvesting system involves the integration

of several key hardware and software components to efficiently

capture, convert, store, and manage ambient energy from various

sources. A typical design of our target systems is illustrated in

Figure 1. The Transducer converts ambient energy from the envi-

ronment (input) into usable electrical energy. These transducers can

be piezoelectric (vibrations), RF (Radio Frequency), electromagnetic,

or other types. Depending on the energy sources, transducers are

able to harvest varying amounts of energy, which might be subject

to fluctuations. On the one hand, solar transducers are efficient in

harvesting energy from solar radiation, but they are usually subject

to significant fluctuations. On the other hand, when harvesting en-

ergy from RF sources, this energy is typically available with reduced

fluctuation within cities. Similar characteristics apply to transduc-

ers harvesting energy from vibrations, hydrokinetics, etc. We use

the latter types of transducers and energy sources. The Rectifier
is designed to maximize energy extraction from the transducer.

The Regulator is designed to maintain a stable voltage for the

system. "When the energy source is predictable, such as those cited

above, and by using voltage regulators, it is possible to guarantee

a lower bound of power. The energy is either used to replenish a

battery/capacitor or directly supply the single-core board, which is

itself connected to different I/O (sensors, wireless communication

output, etc.).

i
n
p
u
t
E
n
e
r
g
y

Transducer Rectifier Regulator

BMS Battery
Single Core

µCI
/
O
s

Figure 1: Typical EH system design

The charging profile of a battery depends on the design of the

Battery Management System (BMS). A typical design for the

BMS of low-end devices such as those operated by lithium-ion bat-

teries, uses a CC-CV (Constant Current-Constant Voltage) charging

profile. In CC-CV, BMS provides a constant current and monitors

the evolution of the battery voltage. Under constant current, the

increase in voltage is almost linear [22].

From a software level, the system is managed using an operating

system that executes several tasks, within their respective deadline.

Each task is made up of a set of basic blocks that are executed

sequentially. A basic block executes atomically, without possible

preemption. In this work, we assume that conditionals and loops

are confined within the basic blocks.

The beginning of a basic block represents a potential preemption

point. A preemption point will be considered active if it allows task

preemption (to generalize the approach, we consider that the initial

basic block of a task is active). If a preemption point is not active,

then the two basic blocks surrounding that point are executed

sequentially without possible preemption.

In addition, the energy consumption of tasks is taken into ac-

count. Each basic block is thus characterized by its worst-case

consumption, and the system is equipped with an energy storage

device, which can be a battery or a capacitor. This device is charac-

terized by a maximal storage capacity. Moreover, the system is able

to harvest energy from the environment, and we suppose that we

know a lower bound on the amount of power that can be harvested

at every time instant.

2.2 Task model
A system is composed of a set of 𝑛 sporadic independent tasks

T = {𝜏1, . . . , 𝜏𝑛}. Each task 𝜏𝑖 is characterized by a tuple (G𝑖 , 𝑑𝑖 , 𝑝𝑖),
with:

• G𝑖 = {𝛾𝑖,1, . . . , 𝛾𝑖,𝑛𝑖 } the list of 𝑛𝑖 = |G𝑖 | basic blocks. The tu-
ple (𝑐worst

𝑖, 𝑗
, 𝑐best
𝑖, 𝑗

, 𝑐over
𝑖, 𝑗

, 𝑒worst
𝑖, 𝑗

, 𝑒over
𝑖, 𝑗

, 𝑣•
𝑖, 𝑗
) characterizes a basic

block 𝛾𝑖, 𝑗 with :

– 𝑐worst
𝑖, 𝑗

its worst-case execution time;

– 𝑐best
𝑖, 𝑗

its best-case execution time;

– 𝑐over
𝑖, 𝑗

its temporal preemption overhead if𝛾𝑖, 𝑗+1 starts with
an active preemption point;

– 𝑒worst
𝑖, 𝑗

its worst-case energy consumption;

– 𝑒over
𝑖, 𝑗

the energy consumption overhead if 𝛾𝑖, 𝑗+1 starts by
an active preemption point;

ILP representation for Limited Preemption in Energy-Neutral Single-Core Systems RTNS ’24, November 7–8, 2024, Porto 0, Portugal

– 𝑣•
𝑖, 𝑗

the relative difference between harvested and con-

sumed energy during the basic block execution (see be-

low).

Note that the temporal overhead and energy consumption of

preemption are already taken into account in the last basic

block so 𝑐over
𝑖,𝑛𝑖

and 𝑒over
𝑖,𝑛𝑖

are zero.

• 𝑝𝑖 : the period of the task. It represents the minimum amount

of time that separates two consecutive activations of 𝜏𝑖 .

• 𝑑𝑖 : the relative deadline of the task, i.e., 𝛾𝑖,𝑛𝑖 , the last basic
block of 𝜏𝑖 , must complete no later than 𝑑𝑖 after the last

activation of 𝛾𝑖,1. We consider constrained deadlines 𝑑𝑖 ≤ 𝑝𝑖 .

We also assume that tasks are ordered by non-decreasing

deadlines, i.e., 𝑑𝑖 ≤ 𝑑𝑖+1.

2.3 Energy model
The device is characterized by its maximal energy storage capacity,

denoted as 𝑣max
. The lower bound on the amount of power that

can be harvested at every time instant is denoted as𝑤 load
, and the

level of energy in the storage device at time instant 𝑡 is denoted as

v(𝑡). Corresponding to the earlier discussion (see Section 2.1), we

assume linear charging profiles. This means that the quantity of

energy available to execute tasks increases linearly with time.

Therefore, the energy level in the energy storage device at time

instant 𝑡 + Δ𝑡 (with no consumption between 𝑡 and 𝑡 + Δ𝑡) is com-

puted as follows:

v(𝑡 + Δ𝑡) = v(𝑡) + Δ𝑡 ·𝑤 load
(1)

For a basic block 𝛾𝑖, 𝑗 we define its relative difference in energy

consumed, 𝑣•
𝑖, 𝑗
, which represents the minimum energy the system

could harvest during the execution of 𝛾𝑖, 𝑗 minus the maximum

energy consumed by the basic block:

𝑣•𝑖, 𝑗 = 𝑤 load · 𝑐best𝑖, 𝑗 − 𝑒worst𝑖, 𝑗 (2)

The term on the left side of the equality represents the minimum

energy that will be harvested during the execution of the basic block,

and the term on the right side represents its maximum consumption.

A basic block is said to be energetically positive if 𝑣•
𝑖, 𝑗

≥ 0, i.e.,
its energy consumption is always smaller than the energy that can

be harvested by the system during basic block’s execution, and

energetically negative otherwise.

3 OUR SCHEDULER FOR ENERGY
HARVESTING SYSTEMS

We consider the Earliest Deadline First (EDF) algorithm to schedule

active tasks. The scheduler is activated at each active preemption

point and determines the highest priority task based on absolute

deadlines. It then checks if the energy storage has enough power to

execute this task until the next active preemption point (or its termi-

nation). If sufficient energy is available, the task runs immediately

until the next active preemption point. If not, a charging period

begins until enough energy is accumulated. The scheduler does not

re-invoke at the end of charging periods, which are treated as part

of task execution. We provide methods to calculate the required

energy at each preemption point.

The processor operates in three states: (i) busy, where it executes

task code while simultaneously harvests and discharges energy; (ii)

charging, where it is assigned a task but not executing, allowing the

energy storage to recharge; and (iii) idle, where it is not executing

any task but is still charging the storage device. Throughout the

system’s operation, the energy storage’s accumulated energy never

exceeds its maximum capacity.

Example 3.1. Let us consider a task system composed of two

tasks. Task 𝜏1 has a period of 20 and a deadline of 8, while Task 𝜏2
has a period of 30 with a deadline of 15 (see Table 1).

We assume that all preemption points are active, resulting in 2

active preemption points for 𝜏1 and 3 for 𝜏2. We illustrate a sched-

ule scenario in Figure 2 considering only one instance per task.

The worst-case energy consumed to execute the different blocks

is reported in Table 1. We consider that the energy and execution

time of preemption points are zero.

In this example, we consider𝑤 load
equal to 0.5 and 𝑣max

equals 2.

Gray dashed boxes denote the charging periods, and the green solid

ones denote the non-preemptive blocks execution.

Table 1: Temporal and energy characteristics of exampe tasks

Task Basic blocks 𝑐worst
𝑖, 𝑗

𝑐best
𝑖, 𝑗

𝑒worst
𝑖, 𝑗

𝑣•
𝑖, 𝑗

𝜏1 𝛾1,1 3 1 2.5 -2

𝛾1,2 2 1 2.5 -2

𝜏2 𝛾2,1 1.5 1 2 -1.5

𝛾2,3 2.5 2 3 -2

𝛾2,3 3 2 1 0

Time

E
n
e
r
g
y

0 5 10 15 20

0

1

2

𝜏2

𝜏1

Figure 2: Example an energy-constrained EDF scheduling

The instance of 𝜏2 is activated first at time 𝑡 = 2. At this time,

the energy level in the storage is 1. The first non-preemptive block

𝛾2,1 requires a storage level of 1.5 to ensure it finishes its execution.

Therefore, a charging period of 1 time unit is inserted before the

task starts its execution. At the completion of the non-preemptive

block 𝛾2,1, the energy level in the storage device is 1 (at time 𝑡 = 4).

Note that the block’s consumption was lower than expected, so the

storage level is higher than anticipated.

The high-priority task 𝜏1 arrives at time 𝑡 = 3 when the non-

preemptive block of the low-priority task is executing. Since the

scheduler has already scheduled a non-preemptive block of 𝜏2, it

does not preempt it. Preemption occurs only at the completion of

𝛾2,1. The required energy for 𝛾1,1 is 2, so another charging period is

inserted. Once the high-priority task completes its execution, the

low-priority task can resume its execution.

RTNS ’24, November 7–8, 2024, Porto 0, Portugal Pierre-Emmanuel Hladik, Houssam-Eddine Zahaf, Sébastien Faucou, and AudreyQueudet

The required energy for the second non-preemptive block of

the low-priority task is equal to 2, which is already available in

the storage device. Therefore, non-preemptive block 𝛾2,2 starts its

execution immediately. When it completes, the energy storage level

is equal to 1. The last non-preemptive block of 𝜏2 does not require

a charging period, as it allows the harvesting of more energy than

it consumes.

4 ILP FORMULATION FOR PREEMPTION
POINTS SELECTION

In this section, we present our ILP formulation. We outline the

decision variables, describe the various constraints and methods

used to linearize them, and explain how schedulability and energy

harvesting constraints are incorporated into our ILP model.

4.1 Preemption point activation
First, we introduce binary decision variable a𝑖, 𝑗 . It determines

whether or not a preemption point is active. The 𝑗th preemption

point of task 𝜏𝑖 is active if and only if a𝑖, 𝑗 equals 1.

a𝑖, 𝑗 ∈ {0, 1} : 𝑖 ∈ [1..𝑛], 𝑗 ∈ [1..𝑛𝑖 + 1]

Please note that the first preemption point is always selected,

that is a𝑖,1 = 1. Additionally, we define a new preemption point

at the end of the last basic block to indicate task completion. This

preemption point is also always selected, therefore a𝑖,𝑛𝑖+1 = 1.

4.2 Region
We denote by Υ𝑖, 𝑗 the set of successive basic blocks that start with

𝛾𝑖, 𝑗 and end at the first activated preemption point
1
:

Υ𝑖, 𝑗 = {𝛾𝑖,𝑘 | 𝑗 ≤ 𝑘 ≤ min{𝑙 | 𝑗 ≤ 𝑙 ≤ 𝑛𝑖 ∧ a𝑖,𝑙+1 = 1}} (3)

Please note that in this definition, regions do not necessarily

begin with an active preemption point. Therefore, it is possible that

all basic blocks of region Υ𝑖, 𝑗 are included in larger region Υ𝑖,𝑘 , such
that 𝑘 < 𝑗 . This formulation allows us to easily express the different

constraints.

We introduce an integer variable c𝑖, 𝑗 to denote the sum of the

worst-case execution times of basic blocks of the region Υ𝑖, 𝑗 and
the execution overhead of its last basic block.

The variable c𝑖, 𝑗 is defined recursively, starting from the last

region, where c𝑖,𝑛𝑖 is by definition equal to 𝑐worst
𝑖,𝑛𝑖

. The other values

of c𝑖, 𝑗 are then calculated based on the value of c𝑖, 𝑗+1 and depending
on a𝑖, 𝑗+1. If the preemption point is not active (i.e. a𝑖, 𝑗+1 = 0), then

the value of c𝑖, 𝑗+1 is simply added to 𝑐worst
𝑖, 𝑗

without considering

the overhead induced by the preemption point. On the contrary, if

the activation point is active, the execution duration of the region

is simply equal to its worst-case execution time plus the overhead

induced by the preemption point:

c𝑖,𝑛𝑖 = 𝑐worst𝑖,𝑛𝑖
(4)

c𝑖, 𝑗 =

{
𝑐worst
𝑖, 𝑗

+ 𝑐over
𝑖, 𝑗

if a𝑖, 𝑗+1 = 1

𝑐worst
𝑖, 𝑗

+ c𝑖, 𝑗+1 otherwise

: 𝑗 ∈ [1..𝑛𝑖 − 1] (5)

1
In the worst-case, it encounters the last basic block of task 𝜏𝑖 , as it is always activated

For each region Υ𝑖, 𝑗 , we also introduce a variable b𝑖, 𝑗 representing
the time required to reach a sufficient energy level to execute the

region without starvation, assuming an initial energy level of zero.

For instance, we assume that this value is computed. We will show

further the techniques to compute the worst-case (largest) charging

time for a given region.

We define the variable z𝑖, 𝑗 as the total duration for the execution

of region Υ𝑖, 𝑗 . It is computed as the sum of the required charging

time to reach a sufficient energy level and its worst-case execution

time:

z𝑖, 𝑗 =
{

c𝑖, 𝑗 + b𝑖, 𝑗 if a𝑖, 𝑗 = 1

0 otherwise

(6)

We highlight that Equation (6) considers only regions that start

with an active preemption point.

We introduce the variable q𝑖 to denote the largest total duration

for all regions for task 𝜏𝑖 :

q𝑖 =
𝑛𝑖
max

𝑗=1
{z𝑖, 𝑗 } (7)

This variable will be used later to assess the system’s schedula-

bility, as it represents the maximum blocking time that a task might

impose on higher-priority tasks.

Finally, we denote by w𝑖 the worst-case busy time of a task 𝜏𝑖 ,

defined as the sum of the duration of all regions:

w𝑖 =

𝑛𝑖∑︁
𝑗=1

z𝑖, 𝑗 (8)

4.3 Schedulability analysis constraints
In this section, we will show how the schedulability constraints are

expressed using linear constraints. To formulate the schedulability

test, we draw inspiration from the work of Bertogna et al. [9],
adapting it to our problem to take into consideration the energy

aspects.

We start by introducing the demand bound function for a task

𝜏𝑖 at instant 𝑡 as:

dbfi (t) =
(
1 +

⌊
t − di
pi

⌋)
wi (9)

and its maximum blocking time:

B𝑖 =
{

0 if 𝑖 = 𝑛

max𝑖<𝑘≤𝑛{q𝑘 } otherwise

(10)

Note that the task set is sorted in increasing order of tasks’ dead-

lines, and so B𝑖 denotes the maximum blocking time caused by

tasks with larger deadlines, i.e., lower priority.

We define the set D as:

D = {𝑘 · 𝑝 𝑗 + 𝑑 𝑗 |𝑘 ∈ N, 𝑗 ∈ [1..𝑛]} (11)

and the value 𝑑𝑛+1 as:

𝑑𝑛+1=min

[
𝐻,max

(
𝑑𝑛,

1

1 − ∑𝑛
𝑖=1

w𝑖

𝑝𝑖

·
𝑛∑︁
𝑖=1

w𝑖

𝑝𝑖
(𝑝𝑖 − 𝑑𝑖)

)]
(12)

where 𝐻 is the hyperperiod, i.e. the least common multiple of 𝑝1,

𝑝2, . . . , 𝑝𝑛 . The value 𝑑𝑛+1 represents an upper bound on the time

ILP representation for Limited Preemption in Energy-Neutral Single-Core Systems RTNS ’24, November 7–8, 2024, Porto 0, Portugal

window within which it is necessary to check the schedulability of

a task.

Theorem 4.1. Task set T is schedulable with limited preemption
EDF if for all 𝑖 ∈ [1..𝑛] and for all 𝑡 ∈ D such that 𝑑𝑖 ≤ 𝑡 ≤ 𝑑𝑖+1

B𝑖 ≤ 𝑡 −
𝑛∑︁
𝑗=1

dbfj (t) (13)

Proof. According to the condition in the theorem, the processor

time demand, including charging periods, is less than the available

processor time. If the sum of execution time and charging peri-

ods are schedulable, and since EDF is sustainable, then the timing

constraints are respected.

By definition, including charging time in the total task duration

prevents every non-preemptive region from energy starvation, thus

respecting the energy constraints.

Therefore, our task set is schedulable as both energy starvation

and real-time constraints are respected.

□

In the design of our ILP, it is mandatory to express the schedula-

bility and energy constraints using linear constraints. In our case,

𝑑𝑛+1 is not linear because the variables w𝑖 are present in both the

numerator and denominator of the max. Additionally, since 𝑑𝑛+1
can potentially be very large, we have considered other approaches.

Several methods to express EDF schedulability tests using ILP

have been proposed by Baruah et al. in [8] such as a parametric

schedulability test. It computes the demand bound function using

either the exact value or an approximation, depending on a cer-

tain value of 𝑘 that expresses the level of approximation. This is

expressed as follows:

dbf (k)j (t) =


(
1 +

⌊
𝑡−𝑑 𝑗

𝑝 𝑗

⌋)
w𝑗 if 𝑡 ≤ (𝑘 − 1)𝑝 𝑗 + 𝑑 𝑗(

1 + 𝑡−𝑑 𝑗

𝑝 𝑗

)
w𝑗 otherwise

In the following theorem, we demonstrate that incorporating

energy starvation constraints does not invalidate the dbf approxi-
mation.

Theorem 4.2. A restricted-preemption sporadic task system T =

{𝜏1, ..., 𝜏𝑛} is schedulable under limited preemption EDF if:

∀𝑖 ∈ [1..𝑛],∀𝑡 ∈ 𝑆𝑘 ,B𝑖 ≤ 𝑡 −
𝑛∑︁
𝑗=1

dbf (k)j (t) (14)

where

S𝑘 =

𝑛⋃
𝑗=0

𝑘⋃
ℎ=0

{𝑑 𝑗 + ℎ𝑝 𝑗 }

Proof. Assume the setD = {𝐷1, . . . , 𝐷 |D |} is ordered, i.e.,𝐷𝑖 ≤
𝐷𝑖+1. By definition, we have S𝑘 ⊂ D and 𝐷1 ∈ S𝑘 .

Assume that for 𝐷𝑙 , 1 ≤ 𝑙 < |D| we have ∀𝑖 ∈ [1..𝑛],B𝑖 ≤
𝐷𝑙 −

∑𝑛
𝑗=1 dbf

(k)
j (Dl) (this holds for 𝐷1) and that Equation (14) is

true.

There are two cases for 𝐷𝑙+1:

• If 𝐷𝑙+1 ∈ S𝑘 : ∀𝑖 ∈ [1..𝑛],B𝑖 ≤ 𝐷𝑙 −
∑𝑛

𝑗=1 dbf
(k)
j (Dl+1).

• If 𝐷𝑙+1 ∉ S𝑘 : There exists (𝜄, 𝜅) ∈ [1..𝑛] × N𝑠𝑢𝑐ℎ𝑡ℎ𝑎𝑡𝐷𝑙+1 =
𝜅𝑝𝜄 + 𝑑𝜄 and 𝐷𝑙+1 > 𝑘𝑝𝜄 + 𝑑𝜄 (otherwise 𝐷𝑙+1 would be in

S𝑘). By definition, we have dbf
(k)
𝜄 (Dl) =

(
1 + Dl−d𝜄

p𝜄

)
w𝜄 and

dbf (k)𝜄 (Dl+1) =
(
1 + Dl+1−d𝜄

p𝜄

)
w𝜄 .

Furthermore, there is no tuple (𝜄 ′, 𝜅 ′) in [1..𝑛] ×Nwith 𝜄 ′ ≠ 𝜄

such that 𝐷𝑙 ≤ 𝜅 ′𝑝𝜄′ + 𝑑𝜄′ < 𝐷𝑙+1. Hence, for 𝜄
′ ≠ 𝜄:

– if dbf (k)
𝜄′ (Dl) =

(
1 + Dl−d𝜄′

p𝜄′

)
w𝜄′ then dbf

(k)
𝜄′ (Dl+1) =

(
1 + Dl+1−d𝜄′

p𝜄′

)
w𝜄′

– if dbf (k)
𝜄′ (Dl) =

(
1 +

⌊
t−d𝜄′
p𝜄′

⌋)
w𝜄′ then dbf (k)

𝜄′ (Dl+1) =

dbf (k)
𝜄′ (Dl).

From these results, we have:

𝑛∑︁
𝑗=1

dbf (k)j (Dl+1) ≤
n∑︁
j=1

dbf (k)j (Dl) + (Dl+1 − Dl)
n∑︁
j=1

wj

pj

To be schedulable, it is necessary that

∑𝑛
𝑗=1

w𝑗

𝑝 𝑗
≤ 1, thus:

𝑛∑︁
𝑗=1

dbf (k)j (Dl+1) ≤
n∑︁
j=1

dbf (k)j (Dl) + (Dl+1 − Dl)

and:

𝐷𝑙+1 −
𝑛∑︁
𝑗=1

dbf (k)j (Dl+1) ≥ Dl −
n∑︁
j=1

dbf (k)j (Dl) ≥ Bi

This leads to the conclusion that Equation (14) implies Equa-

tion (13). □

4.4 Energy constraint
The problem is to identify a set of active preemption points that

guarantee the system is schedulable. In addition to timing con-

straints, it is also necessary to evaluate the duration b𝑖, 𝑗 , which
represents the minimum charging time to guarantee that the region

Υ𝑖, 𝑗 executes without starvation.
A region starting with an active preemption point is said to be in

energy starvation if it is not possible to guarantee a minimal energy

threshold that allows completing its execution without interruption.

In other words, a region is not in starvation if there exists an energy

storage threshold from which it is possible to end-to-end execute

all the basic blocks of the region.

We begin by introducing the variable v𝑖, 𝑗 , which represents the

energy level at the end of the execution of a basic block, assuming

that the energy level of the energy storage was zero at the previous

active preemption point.

The energy level v𝑖, 𝑗 after execution of the basic block 𝛾𝑖, 𝑗 is

defined as:

v𝑖,1 = min{𝑣max, 𝑣•𝑖, 𝑗 − a𝑖,2 · 𝑒over𝑖,1 } (15)

v𝑖, 𝑗 =

{
min{𝑣max, 𝑣•

𝑖, 𝑗
− a𝑖, 𝑗+1 · 𝑒over𝑖, 𝑗

} if a𝑖, 𝑗 = 1

min{𝑣max, v𝑖, 𝑗−1 + 𝑣•
𝑖, 𝑗

− a𝑖, 𝑗+1 · 𝑒over𝑖, 𝑗
} otherwise

(16)

For each 𝑘th preemption point of a task 𝜏𝑖 , we evaluate the source

energy level after execution of the basic block 𝛾𝑖,𝑘 by adding the

remaining energy to the energy recovered during execution of 𝛾𝑖,𝑘 ,

and then substracting the energy consumed by 𝛾𝑖,𝑘 and by the

preemption point if it is active.

RTNS ’24, November 7–8, 2024, Porto 0, Portugal Pierre-Emmanuel Hladik, Houssam-Eddine Zahaf, Sébastien Faucou, and AudreyQueudet

Moreover, we consider the saturation of the source energy, i.e., the
source energy cannot be greater than 𝑣max

, and we reset the energy

to zero after a preemption point.

For a basic block 𝛾𝑖, 𝑗 , we also introduce its energy margin m𝑖, 𝑗 ,

which is the difference between the maximum energy level reached

and the source’s maximum energy since the last active preemption

point:

m𝑖,1 = min{𝑣max, 𝑣max − v𝑖,1} (17)

m𝑖, 𝑗 =

{
min{𝑣max, 𝑣max − v𝑖, 𝑗 } if a𝑖, 𝑗 = 1

min{m𝑖, 𝑗−1, 𝑣max − v𝑖, 𝑗 } otherwise

(18)

The energy margin is depicted in green in Figure 3. The energy mar-

gin represents the maximum harvested energy that can be invested

for the execution of the next basic blocs, taking into account the

saturation effect of the storage. This means that it is not possible

to harvest more energy than this value before the start of the region.

𝑣max

0

−𝑣max

OK

KO

Figure 3: Example of an energy profile for a region starting
with an active preemption point. The horizontal axis shows
the non-active preemption points within the region, rather
than time. The blue curve illustrates the energy level in the
storage (v𝑖, 𝑗). Each blue point denotes the end of a basic block
or a non-active preemption point. The green bars represent
the energy margin (−m𝑖, 𝑗), with their height indicating the
available energy after each basic block. The dashed red line
indicates the minimum required energy (r𝑖, 𝑗) to ensure exe-
cution without energy starvation.

To avoid the starvation state of a region, it is essential to en-

sure that sufficient energy is available before starting its execution.

As discussed earlier, a region can only harvest up to its energy

margin. Consequently, the energy consumption at each preemp-

tion point must be less than or equal to the available harvestable

energy. Figure 3 illustrates this situation. On the right side of the

figure, the trajectory represents a scenario where the region will

not experience starvation, indicating that adequate energy is stored.

Conversely, the left side depicts a scenario where insufficient en-

ergy is available to complete the execution, leading to potential

starvation. This is captured by the following constraint

−v𝑖, 𝑗 ≤ m𝑖, 𝑗 (19)

This constraint ensures that there must be an ample energy margin

to offset the consumption of a region between two preemption

points. If this constraint is not satisfied, it indicates that the energy

source cannot guarantee the successful execution of the region.

When this constraint is satisfied, it implies that it is possible to

execute the region without starvation. The total amount of energy

needed before executing the region must account for all the energy

expenditures during the execution of its basic blocks. The minimum

energy to be harvested is therefore equal to the lowest energy level

that the region can reach (the blue dashed line in Figure 3). This

value can be computed recursively. The minimum energy to be

harvested, denoted as r𝑖, 𝑗 , for the region Υ𝑖, 𝑗 is defined by:

r𝑖,𝑛𝑖 = min{0, v𝑖,𝑛𝑖 } (20)

r𝑖, 𝑗 =
{

min{ 0, v𝑖, 𝑗 } if a𝑖, 𝑗+1 = 1

min{v𝑖, 𝑗 , r𝑖, 𝑗+1} otherwise

: 𝑗 ∈ [1..𝑛𝑖 − 1]

(21)

To begin execution of a region Υ𝑖, 𝑗 , the energy level must reach

at least r𝑖, 𝑗 . The most challenging scenario occurs when the initial

energy level is minimal, i.e., zero. In this case, the waiting time b𝑖, 𝑗
required before starting the region Υ𝑖, 𝑗 is:

b𝑖, 𝑗 = − 1

𝑤𝑙𝑜𝑎𝑑

· r𝑖, 𝑗 : 𝑗 ∈ [1..𝑛𝑖] (22)

4.5 ILP solving using Gurobi
In this work, we use the Gurobi Solver to find feasible schedules

and optimize our ILP.

In our formulation, some constraints are defined based on specific

conditions. Such constraints can be straightforwardly linearized, as

shown in [5]. The Gurobi Solver has the capability to automatically

handle the linearization of constraints conditioned on a boolean

variable
2
. Similarly, Gurobi supports the expression of the global

constraintmax_, which can be applied to a sets of decision variables
to compute the maximum value. Thus, explicit linearization of this

constraint is not required when using Gurobi. However, for other

solvers, linearization remains a straightforward process.

Note that in equation (6), b can be directly replaced by r as

follows:

z𝑖, 𝑗 =
{

c𝑖, 𝑗 − 1

𝑤𝑙𝑜𝑎𝑑
· r𝑖, 𝑗 if a𝑖, 𝑗 = 1

0 otherwise

(23)

Finally, it is possible to optimize an objective function for min-

imizing preemption costs, or set the objective function to zero,

causing the solver to stop at the first feasible solution. The latter

approach can reduce solving time.

To optimize the preemption costs, we introduce the cost function

defined by:

Minimize 𝑐 (a) =
𝑛∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=0

a𝑖, 𝑗+1 · 𝑐over𝑖, 𝑗 (24)

Note that, to the best of our knowledge, none of the existing

limited preemption approaches offer this capability.

Appendix A presents a complete formulation of the problem,

including the various equations presented above.

2
The Gurobi documentation explains that “an indicator constraint 𝑦 = 𝑓 → 𝑎𝑇 𝑥 ≤ 𝑏

states that if the binary indicator variable 𝑦 is equal to 𝑓 in a given solution, where

𝑓 ∈ {0, 1}, then the linear constraint 𝑎𝑇 𝑥 ≤ 𝑏 has to be satisfied. On the other

hand, if 𝑦 ≠ 𝑓 (i.e., 𝑦 = 1 − 𝑓) then the linear constraint may be violated." https:

//www.gurobi.com/documentation/9.5/refman/constraints.html

https://www.gurobi.com/documentation/9.5/refman/constraints.html
https://www.gurobi.com/documentation/9.5/refman/constraints.html

ILP representation for Limited Preemption in Energy-Neutral Single-Core Systems RTNS ’24, November 7–8, 2024, Porto 0, Portugal

5 RELATEDWORK
In this work, we focus on designing energy-neutral real-time sys-

tems using limited preemption models. We propose an ILP formu-

lation for selecting preemption points under energy constraints.

Consequently, we review related research on the use of ILP for

schedulability analysis, as well as studies related to limited preemp-

tion. Additionally, we provide an overview of existing research on

real-time energy-neutral systems and intermittent computing. To

the best of our knowledge, this is the first work that integrates all

these concepts.

Significant effort has been made to enhance the efficiency of

ILP solvers [5]. Today, ILP-solving libraries such as Gurobi and

CPLEX are highly optimized and widely available. These solvers

can automatically linearize a broad range of constraints, though au-

tomatic linearization is feasible under specific conditions. Modern

ILP solvers, especially when used on powerful computing clusters,

can solve very large problems within a reasonable time frame de-

spite system complexity. Therefore, solving ILP exactly, rather than

approximately, is a practical approach for our problem. Baruah et al.
have explored ILP formulation to schedulability tests using demand

bound function (dbf) approximation [8]. The real-time community

has also utilized ILPs for various purposes, including schedulability

problems [2, 30], allocation problems [3, 8], and energy optimiza-

tions [28].

From the perspective of limited preemption, many studies have

focused on controlling preemption costs [6, 9, 13, 16]. Due to space

constraints, we review only those most relevant to our work. For

a more comprehensive review, see Buttazzo et al. [12]. Limited

preemption has been addressed through various approaches and

models. Preemption Threshold Scheduling (PTS) was introduced

in [26], where a task can disable preemption up to a specified prior-

ity level (preemption threshold). Preemption is allowed only when

a task’s priority exceeds the threshold of the preempted task. The

limited preemption models used in this work were proposed later.

These models can be classified into two categories: the floating

preemption point model and the fixed preemption point model. The

floating preemption point model [7] defers preemption until the

maximum length of the non-preemptive region is reached when

a higher priority task arrives. This can reduce the number of pre-

emptions at runtime. The fixed preemption point model [9] selects

preemption points in advance during the schedulability analysis

phase, allowing preemption only at these predefined points. This

approach is similar to ours. Limited preemption methods have been

developed for both EDF and Fixed Priority (FP) scheduling. Extend-

ing our work to FP would be straightforward and similar to the

approach by [27]. However, due to space constraints, this extension

is not covered here.

Regarding energy awareness, Dynamic Voltage and Frequency

Scaling (DVFS) and Dynamic Power Management (DPM) has been

used to control energy consumption [10, 14, 19, 21, 25, 28, 29]. These

studies treat energy as an objective, whereas we consider it as a

constraint. Research on real-time energy-neutral systems has been

conducted over the past two decades.For instance, [4] proposed an

optimal scheduler under a harvesting model similar to ours. [24]

introduced an optimal Lazy Scheduling Algorithm based on EDF,

assuming all tasks consume energy at the same rate using a linear

model. Liu et al. [23] extended this algorithm to adjust the operat-

ing frequency and improve system schedulability. [1] proposed a

fixed-priority scheduling algorithm, PF-PASAP, which was the first

to consider DVFS in energy harvesting contexts, assuming linear

energy consumption and constant power delivery. [15], presented

ED-H, an idling and clairvoyant variant of EDF with energy Har-

vesting capabilities, which is optimal under the assumption that

tasks always discharge energy. None of these works account for the

impact of preemption on energy consumption as we do. Intermit-

tent system may face power failure during computations, making it

challenging to ensure real-time guarantees. This is particularly true

for systems powered by unpredictable energy sources like sunlight.

To provide real-time guarantees, assumptions about the power

supply’s evolution are necessary. In [18], Celebi-offline and Celebi-

online scheduling algorithms are proposed, introducing charging

times before task execution when needed. Only Celebi-offline guar-

antees real-time guarantees, assuming a priori knowledge of energy

availability. Both algorithms aim to minimize charging times while

maximizing schedulability. The tasks are either computation or har-

vesting. The schedulability of the system is validated by simulation

over its hyperperiod. In [20], the authors consider an intermittent

system whose energy source is characterized by an interval 𝐶𝑐 ,

a period 𝑃𝑐 , and a power 𝑝: in a period 𝑇𝑐 . In [17], the authors

present an optimal energy-aware scheduling algorithm for battery-

less devices using Mixed Integer Linear Programming (MILP). Their

algorithm decomposes the application task into smaller subtasks

and determines, based on the available energy, the dec subtasks

should be executed.

6 EXPERIMENTATIONS
To evaluate the performance of the ILP formulation, we generated

systems with various parameters, such as the number of tasks,

processor utilization rate, number of preemption points, etc. The

objective is to demonstrate the scalability of this formulation and

its applicability to realistically sized systems. The primary metric

observed is the time required to compute the optimal solution.

In the second phase of the study, we also examine the impact

of the parameter 𝑘 on overall performance (number of generated

constraints, computation time, and accuracy).

We used the Gurobi v10 ILP solver (https://www.gurobi.com)

with an Academic Licence. In addition to its high performance,

this solver is compatible with numerous programming languages

(we used the Python interface) and provides modeling abstractions

that simplify the expression of constraints such as min, max, or

conditional constraints. The solver automatically reformulates these

general constraints into a linearized form.

All experiments were conducted on a MacBook Pro with a 2

GHz Intel Core i5-1038NG7 quad-core processor and 32 GB of

memory. The code is available in a repository https://gitlab.univ-

nantes.fr/hladik-pe-1/artefact-rtns-2024.

6.1 Task set Generation
For each test, a task set is generated randomly. The system pa-

rameters include the number of tasks, processor utilization factor,

minimum and maximum number of basic blocks per task, and an

https://www.gurobi.com
https://gitlab.univ-nantes.fr/hladik-pe-1/artefact-rtns-2024
https://gitlab.univ-nantes.fr/hladik-pe-1/artefact-rtns-2024

RTNS ’24, November 7–8, 2024, Porto 0, Portugal Pierre-Emmanuel Hladik, Houssam-Eddine Zahaf, Sébastien Faucou, and AudreyQueudet

utilization factor representing the overhead induced by preemption

points.

For each task, the periods are randomly selected from the set

{10, 25, 50, 100, 200, 250, 500} and the worst-case execution times

are computed using the UUniFast algorithm [11]. Task deadlines

are set equal to their periods (although our schedulability analysis

remains valid for constrained deadlines).

The number of basic blocks per task is randomly chosen from

the range defined by the minimum and maximum number of basic

blocks. The worst-case execution time for each basic block is also

calculated using the UUniFast algorithm (with the task’s execution

time as utilization factor) and the best-case times are randomly

selected between 20% and 80% of the worst-case execution times.

UUniFast is further used to calculate the execution times of each pre-

emption points so that the sum of the execution times corresponds

to the overhead utilization factor specified as a parameter.

Energy-related parameters include the maximum energy level of

the source and the energy harvesting rate. To ensure that the energy

consumption of each basic block remains within the capacity of

the storage device’s capacity, we adjust the energy consumption

by randomly inflating it as necessary. Additionally, we scale down

both the basic block execution time and energy consumption by

a random factor to calculate the temporal and energy preemption

costs.

6.2 Problem Complexity
We conducted an initial experiment to demonstrate how problem

complexity increases as a function of the number of preemption

points per task. For this experiment, we generated 20 sets of 10

tasks, with a processor utilization rate of 70% and an additional 10%

overhead due to preemption points. The parameter we varied was

the number of preemption points per task, which ranged from 5 to

30 in increments of 5.

Figure 4 illustrated the number of problem variables and the con-

straints generated as a function of the number of preemption points.

Binary variables represent decision variables, while continuous vari-

ables serve as intermediate variables. Linear constraints refer to

the "traditional" constraints expressed in linear form, whereas gen-

eral constraints represent simpler relationships between variables,

such as minimum, maximum, absolute value, or logical OR oper-

ations. The techniques for translating these general constraints

into traditional linear constraints are well-known and are auto-

matically handled by Gurobi. Unsurprisingly, we observe that all

these quantities increase linearly with respect to the number of pre-

emption points. Notably, the number of decision variables remains

manageable, so the search space does not grow exponentially.

Figure 5 displays the number of solver statuses reached within

a 30-second timeout. Four possible statuses can be identified: (1)

the solver proved within 30 seconds that the system is infeasible,

(2) the solver finds the optimal solution within 30 seconds, (3) the

solver times out but finds a suboptimal solution, and (4) the solver

times out without finding any solution or before proving that the

system is infeasible.

We observe the expected behavior: a small number of preemption

points prevents the solver from finding a solution because the basic

blocks cause excessively long blocking times, while a larger number

5 10 15 20 25 30

0

1,000

2,000

3,000

4,000

#Preemption points

N
u
m
b
e
r

#General constraints #Linear constraints

#Continuous variables #Binary variable

Figure 4: Number of variables and constraints as a function
of the number of preemption points for a set of 10 tasks

of preemption points provides greater flexibility in scheduling. It is

important to note that in this experiment, the scheduling constraint

induced by the overhead of preemption points is quite low (10%),

which makes it relatively easy to find solutions. Furthermore, the

30-second time limit for finding a solution often causes the solver

to terminate before it can verify the optimality of a solution or

even identify an initial solution. However, this time constraint

is relatively short given the problem size and was applied here

primarily to illustrate overall trends.

5 10 15 20 25 30

0

5

10

15

20

Number of basic blocks per task

C
u
m
u
l
a
t
i
v
e
n
u
m
b
e
r
o
f
s
t
a
t
u
s
e
s

Infeasible Feasible

Timeout with a solution Timeout without a solution

Figure 5: Result statuses for 10 taskswith a 30-second timeout
as a function of the number of basic blocks per task

6.3 Influence of preemption point overheads
In this experiment, we vary the utilization rate of preemption point

overheads to examine their impact on the overall problem complex-

ity. We used a set of 10 tasks with a total utilization rate of 70%,

where each task had 25 preemption points. The overall utilization

rate of the preemption points represents the processor load that

would be consumed by the overheads of the preemption points if

they were all active. The experiment involved varying this rate from

0.1 and 0.6 in increments of 0.1. The time limit for each experiment

was set to 300 seconds and we generated 40 sets of tasks for each

utilization rate.

ILP representation for Limited Preemption in Energy-Neutral Single-Core Systems RTNS ’24, November 7–8, 2024, Porto 0, Portugal

Figure 6 shows the distribution of the results across three cat-

egories: infeasible solutions, feasible solutions, and timeouts. As

expected, increasing the utilization factor of preemption points

decreases the feasibility of the problem. We also observe that the

problem becomes more difficult to optimize when the utilization

factor ranges between 0.3 and 0.4, as indicated by the increased

number of timeouts. This is explained by the fact that the problem

is constrained by the overheads, but not enough to allow significant

pruning of the solution space during exploration.

0.1 0.2 0.3 0.4 0.5 0.6

0

10

20

30

40

Overhead utilization factor for preemption points

C
u
m
u
l
a
t
i
v
e
n
u
m
b
e
r
o
f
s
t
a
t
u
s
e
s

Infeasible Feasible

Timeout with a solution Timeout without a solution

Figure 6: Result statuses for 10 tasks with a 300-second time-
out as a function of the overhead of preemption points

The execution times of the solver for producing either a feasible

or infeasible solution as a function of the overhead utilization rate

are presented in Table 2. We observe that the time required to prove

infeasibility is generally short, indicating that in these cases, the

problems are highly constrained.

In constrat, the time needed to find the optimal solution is longer,

with median values increasing as the overhead utilization rate rises.

However, for an overhead utilization rate of 0.6, the median times

are lower. This can be attributed to the fact that the problem be-

comes more constrained at higher overheads, making infeasibility

easier to prove and enabling more effective cuts in the search space

for feasible solutions.

6.4 Influence of energy constraint
To illustrate a possible application of this method, we use this

modeling approach to determine the optimal parameters for sizing

the energy source. For a given task system, a binary search method

can be employed to find the minimal value of the energy storage

capacity, 𝑣max
, or the lower bound on the amount of power that

can be harvested,𝑤 load
, such that the system is schedulable.

We applied this method with a set of 30 tasks with 40 preemption

points per task, a utilization rate of 80%, and an overhead rate of

30%. Our goal was to determine the minimal value of 𝑣max
given

the amount of power that can be harvested, 𝑤 load
. Note that we

used a 30-second timeout for this initial search. It is not necessary

to find the optimal solution to verify whether a solution exists for

a given 𝑣max
. Therefor, the search is conducted quickly, and once

𝑣max
is determined, a longer timeout can be used to find a potential

optimal solution.

Table 2: Solver execution time in second

Overhead 0.1 0.2 0.3 0.4 0.5 0.6

Infeasible problems

min 0.22 0.06 0.11 0.08 0.14 0.06

1e quartile 3.92 0.30 0.28 0.26 0.34 0.14

median 8.82 6.80 0.45 0.33 0.60 0.27

3d quartile 11.34 8.65 10.27 7.75 4.17 0.34

max 15.08 21.35 46.46 84.20 49.47 23.96

Feasible problems

min 31.49 23.32 32.11 34.72 30.96 21.70

1e quartile 37.60 33.47 64.65 35.64 70.96 39.57

median 47.35 38.47 74.65 78.85 123.73 49.60

3d quartile 58.76 47.03 86.52 79.67 181.04 114.85

max 222.44 140.63 126.36 106.28 273.42 235.04

6.5 Influence of the scheduling parameter
In this section, we investigate the influence of the parameter 𝑘 on

the expression of the function dbf in Eq. (14). To achieve this, we

generate systems of 10 tasks, each having 20 preemption points,

a utilization rate of 70%, and an overhead utilization rate of 20%.

We vary the parameter 𝑘 between 1 and 4. The timeout is set to

30 seconds. The task sets remains consistent; only the constraints

representing the schedulability are affected by the parameter 𝑘 .

In terms of model complexity, varying 𝑘 results in an increase in

both the number of continuous variables (which are not decision

variables) and the number of linear constraints. Table 3 presents

these values.

Table 3: Average number of continuous variables and linear
constraints as a function of the parameter 𝑘

𝑘 #linear constraints #continuous variables

1 495 1886

2 515 1916

3 541 1971

4 551 1997

In terms of the impact on solution quality, no difference was

observed. The objective value remains consistent for both feasible

systems and those exceeding their timeout. Regarding execution

time, the difference is not significant. A very slight increase in

execution time is noted with increasing values of 𝑘 , but this remains

marginal compared to the variability in time induced by the solver.

Finally, we tested a system composed of 30 tasks, each with 40

basic blocs. A feasible solution was found with a maximum of 150

seconds.

7 CONCLUSION
In this work, we focused on energy-harvesting real-time systems

and extended the deferred preemption model to incorporate energy

availability constraints.

RTNS ’24, November 7–8, 2024, Porto 0, Portugal Pierre-Emmanuel Hladik, Houssam-Eddine Zahaf, Sébastien Faucou, and AudreyQueudet

We employed an ILP representation for selecting preemption

points while satisfying both energy and real-time constraints. Our

implementation is available online and has been tested under dif-

ferent settings to demonstrate its effectiveness and to highlight the

impact of optimality loss when using approximated schedulability

analysis compared to exact analysis, versus the benefit in analysis

time. We evaluated the performance of the proposed methods using

a comprehensive set of synthetic task sets. The results show that

our approach is able to handle real-world settings within a very

reasonable time frame.

For future work, we plan to incorporated multicore scheduling,

for both global and partitioned scheduling. This problem becomes

more when considering C-state constraints across all cores. While

global scheduling has not yet been addressed, even without energy

constraints, even without energy constraints, the partitioned ap-

proach offers a more straightforward path. It is feasible to extend

our ILP by adding allocation constraints, as the system state space

is discrete. We also aim to integrate our scheduler into the Trampo-

line open-source RTOS to study and validate its practical use and

assess its performance on a real target.

REFERENCES
[1] Yasmina Abdeddaïm, Younès Chandarli, and Damien Masson. 2013. The optimal-

ity of PFPasap algorithm for fixed-priority energy-harvesting real-time systems.

In Proc. of the IEEE 25th Euromicro Conference on Real-Time Systems (ECRTS).
47–56.

[2] Kunal Agrawal, Sanjoy Baruah, and Pontus Ekberg. 2023. Rethinking Tractability

for Schedulability Analysis. In 2023 IEEE Real-Time Systems Symposium (RTSS).
IEEE, 1–12.

[3] Ahmad Al Sheikh, Olivier Brun, Maxime Chéramy, and Pierre-Emmanuel Hladik.

2013. Optimal design of virtual links in AFDX networks. Real-Time Systems 49, 3
(2013), 308–336.

[4] Andre Allavena and Daniel Mosse. 2001. Scheduling of frame-based embedded

systems with rechargeable batteries. In Workshop on Power Management for
Real-time and Embedded systems.

[5] Mohammad Asghari, Amir M. Fathollahi-Fard, S.M.J. Mirzapour Al-e hashem,

and Maxim A. Dulebenets. 2022. Transformation and Linearization Techniques

in Optimization: A State-of-the-Art Survey. Mathematics 10, 183 (2022).
[6] Sanjoy Baruah. 2005. The limited-preemption uniprocessor scheduling of sporadic

task systems. In 17th Euromicro Conference on Real-Time Systems (ECRTS). 137–
144. https://doi.org/10.1109/ECRTS.2005.32

[7] Sanjoy Baruah. 2005. The limited-preemption uniprocessor scheduling of sporadic

task systems. In Proc. of the 17th Euromicro Conference on Real-Time Systems
(ECRTS). 137–144.

[8] Sanjoy K Baruah, Vincenzo Bonifaci, Renato Bruni, and Alberto Marchetti-

Spaccamela. 2019. ILP models for the allocation of recurrent workloads upon

heterogeneous multiprocessors. Journal of Scheduling 22 (2019), 195–209.

[9] Marko Bertogna, Orges Xhani, Mauro Marinoni, Francesco Esposito, and Giorgio

Buttazzo. 2011. Optimal selection of preemption points to minimize preemption

overhead. In Proc. of the 23rd Euromicro Conference on Real-Time Systems (ECRTS).
217–227.

[10] Enrico Bini, Giorgio Buttazzo, and Giuseppe Lipari. 2005. Speed modulation in

energy-aware real-time systems. In Proc. of the 17th Euromicro Conference on
Real-Time Systems (ECRTS). 3–10.

[11] Enrico Bini and Giorgio C. Buttazzo. 2005. Measuring the Performance of Schedu-

lability Tests. Real-Time Systems 30, 1 (2005), 129–154. https://doi.org/10.1007/

s11241-005-0507-9

[12] Giorgio C Buttazzo, Marko Bertogna, and Gang Yao. 2012. Limited preemp-

tive scheduling for real-time systems. a survey. IEEE transactions on Industrial
Informatics 9, 1 (2012), 3–15.

[13] Bipasa Chattopadhyay and Sanjoy Baruah. 2014. Limited-preemption scheduling

on multiprocessors. In Proc. of the 22nd International Conference on Real-Time
Networks and Systems (RTNS). 225–234.

[14] Jian-Jia Chen and Chin-Fu Kuo. 2007. Energy-Efficient Scheduling for Real-Time

Systems on Dynamic Voltage Scaling (DVS) Platforms. In Proc. of the 13th IEEE
International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA). 28–38.

[15] Maryline Chetto. 2014. Optimal scheduling for real-time jobs in energy harvesting

computing systems. IEEE Transactions on Emerging Topics in Computing 2, 2

(2014), 122–133.

[16] Robert I Davis, Alan Burns, Jose Marinho, Vincent Nelis, Stefan M Petters, and

Marko Bertogna. 2015. Global and partitioned multiprocessor fixed priority

scheduling with deferred preemption. ACM Transactions on Embedded Computing
Systems (TECS) 14, 3 (2015), 1–28.

[17] CarmenDelgado and Jeroen Famaey. 2021. Optimal energy-aware task scheduling

for batteryless IoT devices. IEEE Transactions on Emerging Topics in Computing
10, 3 (2021), 1374–1387.

[18] Bashima Islam and Shahriar Nirjon. 2020. Scheduling Computational and Energy

Harvesting Tasks in Deadline-Aware Intermittent Systems. In 2020 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS). 95–109.
https://doi.org/10.1109/RTAS48715.2020.00-14

[19] Ravindra Jejurikar, Cristiano Pereira, and Rajesh Gupta. 2004. Leakage aware

dynamic voltage scaling for real-time embedded systems. In Proc. of the 41st ACM
annual Design Automation Conference. 275–280.

[20] Mohsen Karimi, Hyunjong Choi, Yidi Wang, Yecheng Xiang, and Hyoseung

Kim. 2021. Real-Time Task Scheduling on Intermittently Powered Batteryless

Devices. IEEE Internet of Things Journal 8, 17 (2021), 13328–13342. https:

//doi.org/10.1109/JIOT.2021.3065947

[21] Ying Li, Jianwei Niu, Meikang Qiu, and Xiang Long. 2015. Optimizing Tasks

Assignment on Heterogeneous Multi-core Real-Time Systems with Minimum

Energy. In Proc. of the IEEE 17th International Conference on High Performance
Computing and Communications, IEEE 7th International Symposium on Cyberspace
Safety and Security, and IEEE 12th International Conference on Embedded Software
and Systems. 577–582.

[22] Haining Liu, Ijaz Haider Naqvi, Fajia Li, Chengliang Liu, Neda Shafiei, Yulong Li,

and Michael Pecht. 2020. An analytical model for the CC-CV charge of Li-ion

batteries with application to degradation analysis. Journal of Energy Storage 29
(2020), 101342.

[23] Shaobo Liu, Qing Wu, and Qinru Qiu. 2009. An adaptive scheduling and volt-

age/frequency selection algorithm for real-time energy harvesting systems. In

Proceedings of the 46th Annual Design Automation Conference. 782–787.
[24] Clemens Moser, Davide Brunelli, Lothar Thiele, and Luca Benini. 2007. Real-time

scheduling for energy harvesting sensor nodes. Real-Time Systems 37 (2007),

233–260.

[25] Eduardo Valentin, Mario Salvatierra, Rosiane de Freitas, and Raimundo Barreto.

2015. Response time schedulability analysis for hard real-time systems accounting

DVFS latency on heterogeneous cluster-based platform. In Proc. of the 25th
IEEE International Workshop on Power and Timing Modeling, Optimization and
Simulation (PATMOS). 1–8.

[26] Yun Wang and Manas Saksena. 1999. Scheduling fixed-priority tasks with pre-

emption threshold. In Proc. of the 6th IEEE International Conference on Real-Time
Computing Systems and Applications (RTCSA). 328–335.

[27] Gang Yao, Giorgio Buttazzo, and Marko Bertogna. 2009. Bounding the maximum

length of non-preemptive regions under fixed priority scheduling. In Proc. of
the 15th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA). 351–360.

[28] Houssam-Eddine Zahaf, Abou El Hassen Benyamina, Richard Olejnik, and

Giuseppe Lipari. 2017. Energy-efficient scheduling for moldable real-time tasks

on heterogeneous computing platforms. Journal of Systems Architecture 74 (2017),
46–60. https://doi.org/10.1016/j.sysarc.2017.01.002

[29] Houssam-Eddine Zahaf, Giuseppe Lipari, Marko Bertogna, and Pierre Boulet.

2019. The Parallel Multi-Mode Digraph Task Model for Energy-Aware Real-Time

Heterogeneous Multi-Core Systems. IEEE Trans. Comput. 68, 10 (2019), 1511–1524.
https://doi.org/10.1109/TC.2019.2909886

[30] Houssam-Eddine ZAHAF, Giuseppe Lipari, Smail Niar, and Abou El Has-

san Benyamina. 2020. Preemption-Aware Allocation, Deadline Assignment for

Conditional DAGs on Partitioned EDF. In 2020 IEEE 26th International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA). 1–10.
https://doi.org/10.1109/RTCSA50079.2020.9203643

A COMPLETE ILP FORMULATION
The problem involves selecting active preemption points for the

different tasks while minimizing the overhead caused by the pre-

emption points. This problem can be formulated as an ILP problem.

The decision variables are the a binary variables:

a𝑖, 𝑗 ∈ B : 𝑖 ∈ [1..𝑛], 𝑗 ∈ [1..𝑛𝑖 + 1]

Other variables v, m, b, B, etc. are intermediate variables used only

to represent constraints.

The optimization problem is formulated as:

https://doi.org/10.1109/ECRTS.2005.32
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1109/RTAS48715.2020.00-14
https://doi.org/10.1109/JIOT.2021.3065947
https://doi.org/10.1109/JIOT.2021.3065947
https://doi.org/10.1016/j.sysarc.2017.01.002
https://doi.org/10.1109/TC.2019.2909886
https://doi.org/10.1109/RTCSA50079.2020.9203643

ILP representation for Limited Preemption in Energy-Neutral Single-Core Systems RTNS ’24, November 7–8, 2024, Porto 0, Portugal

minimize 𝑐 (a) =
𝑛∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=0

a𝑖, 𝑗+1 · 𝑐over𝑖, 𝑗

s. t.

𝑖 ∈ [1..𝑛] :
a𝑖,1 = 1

a𝑖,𝑛𝑖+1 = 1

𝑖 ∈ [1..𝑛], 𝑗 ∈ [1..𝑛𝑖] :
a𝑖, 𝑗+1 =1 ⇒ c𝑖, 𝑗 = 𝑐worst𝑖, 𝑗 + 𝑐over𝑖, 𝑗

𝑖 ∈ [1..𝑛], 𝑗 ∈ [1..𝑛𝑖 − 1] :
a𝑖, 𝑗+1 =0 ⇒ c𝑖, 𝑗 = 𝑐worst𝑖, 𝑗 + c𝑖, 𝑗+1

𝑖 ∈ [1..𝑛], 𝑗 ∈ [1..𝑛𝑖] :

a𝑖, 𝑗 = 1 ⇒ z𝑖, 𝑗 = c𝑖, 𝑗 −
1

𝑤𝑙𝑜𝑎𝑑

· r𝑖, 𝑗

𝑖 ∈ [1..𝑛], 𝑗 ∈ [1..𝑛𝑖] :
a𝑖, 𝑗 =0 ⇒ z𝑖, 𝑗 = 0

𝑖 ∈ [1..𝑛] :

w𝑖 =

𝑛𝑖∑︁
𝑗=1

z𝑖, 𝑗

q𝑖 =
𝑛𝑖
max

𝑗=1
{z𝑖, 𝑗 }

B𝑛 = 0

𝑖 ∈ [1..𝑛 − 1] :
B𝑖 = max

𝑖<𝑘≤𝑛
{q𝑘 }

𝑖 ∈ [1..𝑛], 𝑗 ∈ [1, 𝑛𝑖] :
a𝑖, 𝑗 = 1 ⇒ v𝑖, 𝑗 = min{𝑣max, 𝑣•𝑖, 𝑗 − a𝑖, 𝑗+1 · 𝑒over𝑖, 𝑗 }

𝑖 ∈ [1..𝑛], 𝑗 ∈ [2, 𝑛𝑖] :
a𝑖, 𝑗 = 0 ⇒ v𝑖, 𝑗 = min{𝑣max, v𝑖, 𝑗−1 + 𝑣•𝑖, 𝑗 − a𝑖, 𝑗+1 · 𝑒over𝑖, 𝑗 }
𝑖 ∈ [1..𝑛], 𝑗 ∈ [1..𝑛𝑖] :

a𝑖, 𝑗 = 1 ⇒ m𝑖, 𝑗 = min{𝑣max, 𝑣max − v𝑖, 𝑗 }
𝑖 ∈ [1..𝑛], 𝑗 ∈ [2..𝑛𝑖] :

a𝑖, 𝑗 = 0 ⇒m𝑖, 𝑗 = min{m𝑖, 𝑗−1, 𝑣max − v𝑖, 𝑗 }
𝑖 ∈ [1..𝑛], 𝑗 ∈ [1..𝑛𝑖] :

a𝑖, 𝑗+1 = 1 ⇒r𝑖, 𝑗 = min{0, v𝑖, 𝑗 }
𝑖 ∈ [1..𝑛], 𝑗 ∈ [1..𝑛𝑖 − 1] :

a𝑖, 𝑗+1 = 0 ⇒r𝑖, 𝑗 = min{v𝑖, 𝑗 , r𝑖, 𝑗+1}
𝑖 ∈ [1..𝑛], 𝑗 ∈ [1..𝑛𝑖] :

−v𝑖, 𝑗 ≤ m𝑖, 𝑗

𝑖 ∈ [1..𝑛], 𝑡 ∈ S𝑘 , 𝑡 ≤ (𝑘 − 1)𝑝𝑖 + 𝑑𝑖 :

dbf (k)i (t) =
(
1 +

⌊
𝑡 − 𝑑𝑖

𝑝𝑖

⌋)
w𝑖

𝑖 ∈ [1..𝑛], 𝑡 ∈ S𝑘 , 𝑡 > (𝑘 − 1)𝑝𝑖 + 𝑑𝑖 :

dbf (k)i (t) =
(
1 + 𝑡 − 𝑑𝑖

𝑝𝑖

)
w𝑖

𝑖 ∈ [1..𝑛], 𝑡 ∈ S𝑘 :

B𝑖 ≤𝑡 −
𝑛∑︁
𝑗=1

dbf (k)j (t)

	Abstract
	1 Introduction
	2 System model
	2.1 Overview of the system
	2.2 Task model
	2.3 Energy model

	3 Our scheduler for energy harvesting systems
	4 ILP Formulation for preemption points selection
	4.1 Preemption point activation
	4.2 Region
	4.3 Schedulability analysis constraints
	4.4 Energy constraint
	4.5 ILP solving using Gurobi

	5 Related Work
	6 Experimentations
	6.1 Task set Generation
	6.2 Problem Complexity
	6.3 Influence of preemption point overheads
	6.4 Influence of energy constraint
	6.5 Influence of the scheduling parameter

	7 Conclusion
	References
	A Complete ILP formulation

