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Abstract—In critical real-time systems, the worst-case execu-
tion time (WCET) of software tasks must be statically bounded
in order to guarantee that they all satisfy their timing constraints
(e.g. deadlines). Obtaining such bounds is challenging due to the
complexity of the software and of the acceleration mechanisms
implemented in the hardware. Particular behaviors, known as
timing anomalies, break some simplifying assumptions for the
computation of WCET in single and multi-core processors. Some
cores have been designed to implement a pipeline-level property
known as monotonicity that guarantees that no timing anomaly
can occur in the pipeline. Proving the monotonicity of a pipeline
is tedious and error-prone, and so is reading the proof and
convincing oneself of its validity. We thus propose to rely on the
Coq proof assistant to guarantee the soundness of the proofs.
In this paper, we show how the monotonicity property and the
standard elements composing a pipeline can be modelled in Coq.
Using an example based on an open-hardware RISC-V core from
the literature, we introduce the main elements of the proof and
discuss their reusability for other cores. We conclude that the
model and proofs that we provide can be easily adapted to
describe other in-order pipelines of equivalent complexity.

Index Terms—Timing anomalies, Pipeline monotonicity,
Coq proof assistant.

I. INTRODUCTION

Real-Time systems are composed of increasingly complex
programs running on increasingly complex hardware. Current
processors feature mechanisms such as pipelines, caches, out-
of-order and speculative execution of instructions, and embed-
ded systems-on-chips include several of such cores, sometimes
along with accelerators such as GPUs or vector processing
units. Accurately modelling these components, their timing
behavior and their interactions is a challenge from a static anal-
ysis perspective. Worst-Case Execution Time (WCET) analysis
relies on such models in order to derive a safe but precise upper
bound on the execution time of a program or task running on
a particular hardware target. These analyses are sometimes
unable to precisely determine the state of the hardware (e.g.
the cache contents) at a particular point in the target program
execution. In order to remain safe, the analyses must then
consider all the combinations of all outcomes of uncertain
events (e.g. cache hit or miss). To keep the analyses tractable, it
is mandatory to make simplifying assumptions. However, these
assumptions are invalidated by particular situations called
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timing anomalies (TAs). A TA occurs when a local worst-
case situation (e.g. a cache miss) does not lead to the worst-
case execution time of the program, or when the the difference
between two possible outcomes of a local event gets amplified
by the execution of the remainder of the program, to an
unbounded extent. TAs were first characterized in out-of-order
processors, but have since been shown to occur also in simple
in-order pipelines [1]. In [2], [3], Hahn and Reineke propose
a way to design TA-free pipelines and a modelling framework
to prove the absence of TA in such pipelines. The proofs rely
on the notion of monotonicity of the progress of instructions
in the pipeline. In short, if each instruction is guaranteed
to never be delayed by younger instructions in the pipeline
(i.e. instructions that appear later in the program order), the
progress of the instructions is monotonic. The monotonic
property guarantees that in case of unpredictable event, the
outcome that is locally slower always leads to longer a global
execution time than the locally faster outcome. Moreover, this
property also allows the derivation of safe upper-bounds on the
global effect of a local event. The corresponding proof can be
separated in two subsets: high-level, generic proof arguments
that do not depend on a particular pipeline implementation,
and pipeline specific proofs that rely on the pipeline topology
and particularities.

In this paper, we provide elements to specify and prove the
progress monotonicity property using the Coq proof assistant.
Although our Coq proof targets the MINOTAuR pipeline [4],
[5], we present the generic elements of the model and the
proofs, so that the reader can use them to model and prove
the monotonicity of other pipelines. The remainder of the
paper is organised as follows: Sections II and III provide the
formal definition of the pipeline model and of the monotonicity
property. Section IV presents the proof. Then Section V
presents the MINOTAuR core and discusses how the proof
was applied to its pipeline. Section VI summarises the related
work, and Section VII concludes the paper.

II. ABSTRACT PIPELINE MODEL

In this section, we give an overview of the pipeline model
introduced in [2] and make it more generic (i.e. applicable to
other pipelines than the SIC).

A program is seen as a sequence of instructions numbered
in the order they enter the pipeline (i.e. the program order):
I := i0, i1, . . . , in. Each instruction has an opcode opc(i)



that determines the nature of the functional unit that executes
it.

A processor pipeline is described as a set of stages S
partially ordered by relation ⊏S . Two virtual stages are added
to S: pre and post . According to ⊏S , pre (resp. post) is lower
(resp. greater) than all the other stages of the pipeline, making
the pipeline model a lattice.

At any given execution cycle, the progress of an instruction
is in P := S × N: it captures the stage the instruction is
currently in, as well as the number of cycles (hereafter named
counter) that the instruction must still spend in the stage. An
order is defined on P:
∀(sa, na), (sb, nb) ∈ P,

(sa, na) ⊑P (sb, nb) :⇔ sa ⊏S sb ∨ (sa = sb ∧ na ≥ nb)

A pipeline state maps each instruction to its progress. The
set of all possible pipeline states is C ⊆ I → P . Given two
pipeline states ca and cb, cb is said to have at least the progress
of ca if the progress of each instruction in cb is superior or
equal to its progress in ca:

ca ⊑ cb ⇔ ∀i ∈ I . ca(i) ⊑P cb(i)

where c(i) denotes the progress of instruction i in state c.
The behaviour of the pipeline, i.e. function cycle(c) that

maps a pipeline state c to its successor state, is specified
through a set of functions that apply to c and determine how
instructions will progress in the pipeline in the next cycle:

• nstg(i) returns the next stage for instruction i (it depends
on its current stage and its opcode);

• lstg(o) returns the stage where opcode o completes its
execution;

• cnt(i) updates the counter of instruction i. If it is not
zero, it is decremented by 1, reflecting that one cycle has
passed;

• next(i) returns if this instruction i is in pre and no other
earlier instruction is in pre stage. That is to say, i is
the next instruction being in pre stage which is ready to
progress. next(i) is generalised in isnext(s, i) for any
stage (not only pre);

• pending(i) functions return booleans that indicate
whether instruction i has control or data dependencies.
In [2], three pending functions are defined: brpending ,
mempending and stpending to deal with branch (resp.
memory and store) operations. They are used to check
whether the pipeline contains such operations that have
not completed their execution yet. This family of pending
functions can be generalised when adding an opcode as
a parameter;

• ready(i) returns a boolean that tells whether instruction
i is ready to move to its next stage in the next cycle: it
checks if its counter has reached 0, as well as additional,
stage-specific rules (e.g. data dependencies are satisfied
before entering a functional unit);

• free(s) returns a boolean that tells whether a stage is
able to accept a new instruction in the next cycle. This is
true if the stage is currently empty, or if the instruction

it contains will move to the next stage in the next cycle.
The second part is computed recursively (will the next
stage be able to accept an instruction?), also using the
ready function (is the instruction currently in the stage
ready to move?).

In the rest of the document, these functions will be refer-
enced as predicates.

All the program instructions are initially in the pre stage,
and they all finish their execution in the post stage. The
program is completed once all instructions have reached the
post stage.

III. THE MONOTONICITY PROPERTY

In [2], the monotonicity property is defined as follows:

Property 1. Pipeline monotonicity. A pipeline meets the
monotonicity property iff:

∀ca, cb ∈ C, ca ⊑ cb ⇒ cycle(ca) ⊑ cycle(cb)

If pipeline state cb is more advanced than state ca, the order
is maintained when applying cycle.

Its demonstration is achieve thanks to this lemma:

Lemma 1. Update enable. Let ca, cb two states ∈ C. Let i ∈ I
an instruction with equal progress in ca and cb (ca(i) = cb(i))
and each older instruction j < i has progressed more in cb
than in ca (ca(j) ⊑P cb(j)). Then:{

ca.ready(i) ⇒ cb.ready(i)
ca.free(ca.nstg(i)) ⇒ cb.free(cb.nstg(i))

Lemma 1 expresses that an instruction cannot be delayed in
its progress by a younger instruction. The proof is pipeline-
dependent and relies on the enumeration of all possible cases
for the progress of instruction i in ca and cb. Then the proof
of the monotonicity property is generic: for any instruction
i, since ca ⊑ cb, either ca(i) ⊏P cb(i) or ca(i) = cb(i).
In the former case, it is impossible for i to be more ad-
vanced in cycle(ca) than in cycle(cb) (at most cycle(ca)(i) =
cycle(cb)(i)). In the latter case, the update enable lemma can
be applied to conclude that if i advances to the next stage in ca,
then it does also in cb: again, cycle(ca)(i) ⊑P cycle(cb)(i).

Pen-and-paper proofs of the lemma and monotonicity are
provided in [2], [3]. These are tedious, both to write and
to read. They are also error-prone. This motivates our work
towards an automatic (assisted) proof.

IV. GENERAL VIEW OF THE COQ PROOF

The Coq proof assistant [6] is a formal proof management
system. It provides a formal language to write mathematical
definitions, executable algorithms and theorems together with
an environment for semi-interactive development of machine-
checked proofs. By using the Coq environment, we take
advantage of the proof assistance process and improve our
confidence in the proofs.

This section presents the generic elements of the Coq proof,
that is elements that are pipeline-independent and can be used
as a basis for any processor that can be described within the
framework over-viewed in Section II.



A. Data structures

While the objective is to generate a Coq model that is as
close as possible to the predicate-logic model of Section II,
the perspective is a bit different: in the logic model, the focus
is put on the pipeline stages and on the instructions they host;
in the Coq version, the focus is on the instructions.

As shown in Listing 1, an instruction is represented by:
• an operation code (opcode: load, store, branch, etc.);
• an index idx that reflects the order in which instructions

enter the pipeline, sometimes called instruction number;
• a list of initial latency valuations latlist for each

pipeline stage;
• a boolean pwrong that indicates whether the instruction

is mispredicted or not (used for branches).
The progress of an instruction is implemented as a

couple: its current stage and its counter (remaining latency
represented as a natural number).

The association of an instruction and its progress is
paired in a couple: instruction progress (instr_progress).

The pipeline_state is then defined as a list of
instruction_progress. This representation is generic, and
can be enriched by adding metadata to the opcode, such as the
operands of the instruction.

Definition latlist := list (stage * nat)%type.

Record instruction : Set := {
opc : opcode ;
idx : nat ;
lats : latlist ;
pwrong : bool

}.

Definition progress := (stage * nat)%type.
Definition instr_progress := (instruction * progress)%type.
Definition pipeline_state := list instr_progress.

Listing 1. Basic definitions in Coq. stage and opkind, being pipeline-
specific, are not shown here.

The resulting data structure is straightforward to manipulate
with Coq, although it requires demonstrating that the cycle

function, which is subsequently defined, only modifies the
progress of instructions in the pipeline, without altering the
instructions themselves.

Comparators of instruction progress (⊑P ) and pipeline
state (⊑) are defined. In Listing 2, stage_leb : stage ->

stage -> bool is the boolean implementation version of the
relation order ⊑S and progress_leb implements ⊑P .

Most comparators have a boolean equivalent that allows
them to be used in functions, and an equivalence lemma
to switch from one representation to the other one. The
decidability of the stage equality is proved1, and used to derive
the boolean equality function, as shown in Listing 3.

As said in the introduction of this section, the representation
differs from the original model introduced in Section II, where
the set of instructions I is separated from the pipeline states. In

1As the stage type should be a simple variant, the decide equality
tactic is sufficient for this proof.

(* Definition of ⊑S *)
Definition stage_leb s1 s2 :=
match s1, s2 with
| Pre, _ ⇒ true
| ... (* depends on the pipeline model *)
| Post, Post ⇒ true
| Post, _ ⇒ false
end.

(* Definition of ⊑P *)
Definition progress_leb pra prb :=
match pra, prb with
| (stga, na), (stgb, nb) ⇒

if stage_beq stga stgb then
Nat.leb nb na

else
stage_leb stga stgb

end.

Listing 2. Order relations in Coq

(* Decidable equality between stages *)
Lemma stage_eq_dec :

forall (s s’ : stage), {s = s’} + {s <> s’}.

(* Boolean definition of equality between stages *)
Definition stage_beq s s’ :=
if stage_eq_dec s s’ then true
else false.

Listing 3. Boolean stage equality in Coq

the Coq model, a pipeline state holds each instruction and its
progress. In terms of notations, in the remainder of the paper,
ip refers to an instruction progress in a pipeline state and i
to the actual instruction, characterized by its index. There is a
direct equivalence in the notation between i in Coq, and i in
the model of Section II.

B. Predicates

Most of predicates and functions defined in the model are
straightforward to transcribe in Coq. However, for some of
them, it is convenient to demonstrate intermediate properties
or lemma.

This can be illustrated by the nstg predicate that returns
the next stage for an instruction progress. Its definition in the
Coq model is associated with several basic properties that are
straightforward to prove:

• the next stage is greater or equal to the current stage2:
stage_le (stg ip) (nstg ip);

• if the next stage is equal to the current stage, then they
are both equal to Post;

• if the current stage is not equal to Post, then the next
stage is strictly greater.

The definition of dependencies between instructions re-
lies on predicates depRaW and depWaW (resp. for Read-
after-Write and Write-after-Write data hazards). They are
defined with a parametric function of type instr_progress

-> instr_progress -> bool. These dependencies depend
only on the opcode of the instructions, and not on the

2As mentioned earlier, stage_leb is the boolean function version of the
stage_le property.



current progress of the instructions. Based on these defini-
tions, the Coq model defines the dep function that deter-
mines whether an instr_progress ip depends on another
instr_progress jp that is further away in the pipeline. This
function heavily depends on the design of the pipeline.

Functions pending, isnext, and ready are implemented
as described in Section II. They are straightforward to define.
Their signature is shown in Listing 4.
pending : opcode → instr_progress →

list instr_progress → bool

isnext : stage → instr_progress →
list instr_progress → bool

ready : instr_progress → pipeline_state → bool

Listing 4. Basic predicate signatures

In particular:
• the model of Section II mentions three variant of the
pending predicate, one for each type of instruction that
is considered. In our Coq model, we define this predicate
in a generic fashion: pending is parameterized with an
opcode. This facilitates the proofs by treating all cases
with a single predicate;

• isnext depends on the stage order defined earlier;
• ready is pipeline-specific and will be described in more

details in Section V.
For the free : stage -> pipeline_state -> bool

predicate, special care is required. As defined in the models
we consider, it is recursive on its first argument (a pipeline
stage s): if s hosts an instruction i that is ready to move to
the next stage in the next cycle, then the stage is considered to
be free if the next stage of i is free. This recursion extends to
the Post stage, which is always free regardless of the pipeline
structure.

It is necessary to have a well-founded relation on stages
in order to stop the recursion in the definition of free. In
Coq, it is obtained by using Post as a minimal element for
the relation order ⊐S

3 and by defining measure_stage :

stage -> nat that maps each stage to a number.
In practice, ⊑S is reduced into measure_stage with the

< (Peano.lt) order on natural numbers. Thus:

forall s s’, stage_le s s’ -> measure_stage s’
< measure_stage s

with Post being valued to 0, and Pre having the highest
valuation of all stages. The Coq model then shows that:

forall ip c, stg ip <> Post -> measure_stage
(nstg ip c) < measure_stage (stg ip)

This proves measure_stage is indeed well-founded, and
allows to define the free predicate.

Defining the free predicate as a Fixpoint has been ex-
perimented, but yielded hard-to-manipulate dependently-typed
terms in the proof of Lemma 1. Hence, the Fix combinator is
used instead, in the way shown in [7]. The Coq model shows

3The pipeline may contain other stages that are always free (i.e. instructions
are never stalled in these stages). If so, they also act as minimal elements.

that a de-recursified form of free is equivalent to its fully-
recursive counterpart using the Fix_eq lemma. Depending on
the pipeline mechanism, this proof may require the use of the
functional extensionality axiom.

Finally, the cycle function, which maps each instruction
progress of a given pipeline state to its next progress, is defined
as shown in Listing 5, in which the lat and cnt operations are
observers for the execution latency of an instruction progress
in a given stage, and the counter of the current instruction
progress in its current stage. This function is generic and does
not depend on the pipeline structure.

Definition cycle_elt c ip :=
let progress :=
if ready ip c && free (nstg ip c) c then
let nextstg := nstg ip c in
(nextstg, lat ip nextstg)

else
(stg ip, (cnt ip) - 1) in

(fst ip, progress).

Definition cycle c := map (cycle_elt c) c.

Listing 5. Implementation of the cycle function in Coq

C. Specification of hypotheses

In a pen-and-paper proof of the monotonicity of a pipeline,
such as the one given in [2], some assumptions that are
crucial to the validity of a proof are omitted. Even though
for a human reader, they follow naturally from the system
being modelled, they have to be clearly specified in the Coq
model. For instance, in the pen-and-paper proofs, multiple
pipeline states are considered, which associate each instruction
in the sequence to an instruction state. Consequently, all
pipeline states implicitly have the same size. In the chosen
representation as a list of instruction progress, it is however
necessary to explicitly state that for a same sequence of
instructions, two pipeline states have the same length.

This section defines the major hypotheses that are used
throughout the proof. Two of them (validity and consistency)
are related to how a processor pipeline operates, and allow
to discard cases that are impossible in practice. The last
hypothesis is purely related to Coq and how our data structures
are used in the proofs.

A pipeline state is considered valid if the current progress of
each instruction is valid (no instruction progress corresponds
to impossible cases).

A pipeline state is considered consistent with regard to
another pipeline state if it is more advanced (the progress of
each instruction in this state is greater or equal than in the
other) and the order between the progress of each instruction
is the same in both pipeline states. Consistency also requires
other purely Coq-related conditions that are detailed in the
remainder of the section. The consistency also checks minor
properties such as the size of the pipeline state.

The way Coq deals with universality of variables, it is
necessary to link variables together: for instance set that for all
pipeline state designated by variable ca in the proofs, and for



all instr_progress designated by variable ip, ip is linked
to ca by its localization in the instruction progress list.

We now provide a more in-depth presentation of these
properties.

1) Validity: Listing 6 displays the definition of the validity
property for the progress of an instruction. First, predicate
fits_in_stage checks if the considered progress for the
instruction corresponds to an impossible case: for example, an
addition instruction cannot have a progress indicating that it
resides in the Load/Store Unit (LSU). These cases are pipeline-
specific. Additionally, the property ensures that the counter
of the instruction does not exceed the initial value that this
instruction gets assigned in its current stage.

Definition progress_valid e :=
fits_in_stage (stg e) e ∧ cnt e <= lat (stg e) e.

Listing 6. Instruction validity property in Coq

Then, the validity of a pipeline state depends on the validity
of the progress of each instruction, and on pipeline-specific
conditions on stage capacities: in a valid state, no stage has
more instructions than its capacity.

In the following proofs, all pipelines states that are manip-
ulated are valid by hypothesis.

2) Consistent progress: In in-order pipelines, except in
a few particular stages that may operate in parallel (e.g.
execution stage with multiple parallel functional units) the
instructions always respect the program order. The definition
of the aforementioned fits_in_stage predicate contains the
information on which stages allow instructions to progress
outside of the program order. In the model, Property 1 is based
on ca and cb such that ca ⊑ cb, i.e. ∀i ∈ I, ca(i) ⊑P cb(i).
However, this hypothesis that seems natural to a human reader
is too weak in Coq for all stages in which instructions must
progress in order. Indeed, with this hypothesis, it is possible to
specify two pipeline states ca ⊑ cb and two instructions i and j
such that ca(i) ⊐P ca(j)∧cb(i) ⊏P cb(j): j has less progress
than i in ca and has more in cb. This means that the program
order is not respected, either in ca or in cb. This in turn means
that this definition of the hypothesis tolerates behaviors that
are impossible in practice, and that preclude the proof of the
monotonicity property. Although these impossible behaviors
are easily discarded in a pen and paper proof, the Coq proof
requires a stricter definition of the hypothesis. We restrict
the definition using the consistent_progress predicate
displayed in Listing 7. For all stages that maintain program
order, if instruction i has less progress than j in ca, then it must
also have less progress than j in cb, because necessarily i > j
in the program order. The consistent_progress predicate
also checks that the instruction sequence has the same length in
ca and cb and that the opcodes of i and j are consistent in both
states. Finally, in processors that feature speculative execution,
instructions can be flushed after a branch misprediction. Such
instructions do not respect the program order, so they must
be excluded from this restrictive hypothesis. This is done by
not considering instructions j for which cb.stg(j) = post . The

speculative case is dealt with directly in the ready predicate,
using the pwrong attribute of the corresponding instruction.

Definition consistent_progress (ca cb : pipeline_state) :=
length ca = length cb ∧
forall i i’, In (i, i’) (combine ca cb) →
opc i = opc i’ ∧ progress_le (snd i) (snd i’) ∧
(forall j j’, In (j, j’) (combine ca cb) →

stg j’ <> Post →
stage_lt (stg i’) (stg j’) →
fits_in_stage (stg i’) j’ →
stage_le (stg i) (stg j) ∧ idx j < idx i).

Listing 7. Restrictions and consistency between ca and cb in Coq

The hypothesis defined in Listing 7 is sufficient to enable the
proof of Lemma 1. Since it does not interfere with speculative
execution, and that pipeline-specific cases are excluded with
predicate fits_in_stage, this definition should work for all
in-order pipelines.

3) Locality: The proof of monotonicity holds for all
pipeline states. When an instruction progress is introduced in
the hypothesis, it needs to be logically linked to a pipeline
state. This logical link is the index of the instruction in the
instructions list, designated by variable n in the proofs. In
Listing 8, a series of variables and hypotheses stipulate that
ip (resp. ip′) corresponds to the progress of the instruction of
index n in ca (resp. cb).

D. Proof strategy
The main goal of the proof is to show that a specific pipeline

is monotonic, which means showing that: ∀i ∈ I, ca(i) ⊑P
cb(i) ⇒ ∀i ∈ I, cycle(ca)(i) ⊑P cycle(cb)(i). To do so, we
assume any instruction i such that ca(i) ⊑P cb(i), and show
that the order is preserved by applying the cycle function to
both ca and cb.

The proof strategy is schematized in Figure 1 by
an extract of the tree of proof dependencies. The
root is_monotonic theorem is proven using two lem-
mas unmoved_is_monotonic (in Subsection IV-D2) and
moved_is_monotonic (in Subsection IV-D1). In this figure,
consistent refers to the consistent hypothesis; pending, free,
ready, isnext refer to their corresponding predicates; flush
refers to the pipeline flush mechanism; remains refers to
conservation across cycle. Generic properties and lemmas are
depicted in green: they can be reused for any in-order pipeline.
The properties depicted in blue are pipeline-specific.

The main theorem is_monotonic is detailed in Listing 8.
The theorem can be read as follows: for two valid pipeline
states ca and cb, with cb being consistently more advanced
than ca, let ip be an instruction progress in ca, ip′ be the
instruction progress of the same instruction i in cb, if progress
ip is lower (⊑P ) than ip′ then cycle(ca)(i) ⊑P cycle(cb)(i).

At the highest level, the proof works by dissociating two
cases: either ca(i) ⊏P cb(i) or ca(i) = cb(i). In the remainder
of the section, we provide the main ideas behind the proof
of both cases. The proof of the first case is completely
generic and works for any in-order pipeline. The equality
case, however, is proven using a variant of the update enable
property (Lemma 1), which is pipeline-specific.



Update enable

is_monotonic
~10 lines

moved_is_monotonic
~90 lines

unmoved_is_monotonic
~40 lines

consistent_flush_remains
~5 lines

consistent_ready_remains
~30 lines

consistent_free_remains
~1400 lines

consistent_not_pending_remains
~5 lines

consistent_nodep_remains
~60 lines

consistent_isnext_remains
~15 lines

consistent_not_abstract_pending_remains
~5 lines

consistent_abstract_pending_comes_from_somewhere
~20 lines

Fig. 1. Proof dependencies

Variable ca cb ca’ cb’ : pipeline_state.
Variable ip ip’ : instr_progress.
Variable stga stgb : stage.
Variable o : ocpode.

(* Validity *)
Hypothesis Hvalida : pipeline_valid ca.
Hypothesis Hvalidb : pipeline_valid cb.

(* Consistency *)
Hypothesis Hconsistent : consistent_progress ca cb.

(* Locality *)
Variable n : nat.
Variable capre cbpre capost cbpost: pipeline_state.
Hypothesis Hca : ca = capre ++ ip :: capost.
Hypothesis Hcb : cb = cbpre ++ ip’ :: cbpost.
Hypothesis Hn : n = List.length capre.
Hypothesis Hn’ : n = List.length cbpre.

(* Monotonicity *)
Hypothesis Hca’ : ca’ = cycle ca.
Hypothesis Hcb’ : cb’ = cycle cb.

Theorem is_monotonic : forall na nb,
ip = (o, (stga, na)) → ip’ = (o, (stgb, nb)) →
progress_leb (stga, na) (stgb, nb) = true →
option_progress_leb (nth_error ca’ n) (nth_error cb’ n) =

↪→ true.

Listing 8. Monotonicity in Coq

1) ca(i) ⊏P cb(i) (Coq lemma moved_is_monotonic):
Either i is in a less advanced stage in ca than in cb, or it is in
the same stage, but has a higher counter in ca. In the first case,
whatever happens, i can at most reach the more advanced stage
in cycle(ca), but in this case, it has a higher counter than in
cycle(cb), or i has also moved to another stage in cycle(cb).
In the second case, the counter of i is decremented by one
in cycle(ca) which means that it is either higher or equal to
the counter in cycle(cb) or that i moves to another stage in
cycle(cb).

This is summarized in the next two lemmas, that translate
in Coq to the goals of Listing 9.

Lemma 2. Different stages. When ca.stg(i) ⊏S cb.stg(i), then
cycle(ca)(i) ⊑P cycle(cb)(i).

Lemma 3. Equal stages. When ca.stg(i) = cb.stg(i), then
cycle(ca)(i) ⊑P cycle(cb)(i).

(* Moved is monotonic *)
option_progress_leb
(Some (fst ip, if ready ip ca && free (nstg ip ca) ca

then (nstg ip ca, lat ip (nstg ip ca))
else (stg ip, cnt ip - 1)))

(Some (fst ip’, if ready ip’ cb && free (nstg ip’ cb) cb
then (nstg ip’ cb, lat ip’ (nstg ip’ cb))
else (stg ip’, cnt ip’ - 1))) = true

Listing 9. Goal to prove when ip is not equal to ip’

2) ca(i) = cb(i) (Coq lemma unmoved_is_monotonic):
In this case, either i is not completely processed in its current
stage (in both ca and cb), and in this case its counter is
decremented in the next cycle in both states, or it is completely
processed. In this case, we need to show that if i goes to the
next stage in the next cycle in ca, it does so also in cb.

option_progress_leb
(Some (fst ip, if ready ip ca && free (nstg ip ca)

then (nstg ip ca, lat e (nstg ip ca)
else (stg ip, cnt ip - 1))))

(Some (fst ip, if ready ip cb && free (nstg ip cb)
then (nstg ip cb, lat e (nstg ip cb)
else (stg ip, cnt ip - 1)))) = true

Listing 10. Goal to prove when ip is equal to ip’

That case is proven by using the goal shown in Listing 10,



which is equivalent to:

ca.ready(i) ∧ ca.free(ca.nstg(i)) ⇒
cb.ready(i) ∧ cb.free(cb.nstg(i))

This resembles the update enable property, but allows cor-
recting a contradiction that can arise in the presence of stages
that are able to host multiple instructions. Given a state ca,
with instructions h and i such that:

ca.stg(h) = ca.stg(i)
ca.nstg(h) = ca.nstg(i)
ca.ready(h) ∧ ¬ca.ready(i)
ca.free(ca.nstg(h))

it is possible to construct cb such that:{
cb.stg(h) = ca.nstg(h)
¬cb.ready(h)

which means that ¬cb.free(cb.nstg(i)). Changing the defi-
nition of the update enable property to assume ca.ready(i)
alongside ca.free(i) removes this contradiction. Additionally,
it is generally possible to demonstrate that ca.ready(i) ⇒
cb.ready(i), meaning that if an instruction progress is ready
in ca, it remains ready in cb.

The proof of this property is detailed in Section V as it is
pipeline-specific.

Previous subsections all together allow to define a general
approach for implementing our pipeline model in Coq. So far,
no pipeline-specific mechanisms were used for the proofs.

V. PIPELINE-SPECIFIC PROOFS

We illustrate the pipeline-specific portion of the proof
using the MINOTAuR core. Like the SIC, this processor was
previously proven to be free of timing anomalies, using pen
and paper proofs. We choose this processor to showcase our
Coq proof, as it is more recent and a bit more complex than
the SIC. A model of the core is presented in Figure 2. It is
based on the CVA6 RISC-V core [8], which is a 6 stages
issue-in-order core that comprises various advanced features.
The execution unit is composed of several functional units
(ALU, CSR unit, integer multiplication and division units and
a Load/Store Unit with separate Load and Store stages) that
can operate in parallel. As a consequence, a scoreboard is
present to deal with dependencies between instructions and
a reorder buffer tackles exception-related issues. Using these
components, instructions are reordered and committed in the
program order (when they exit the CO stage). To improve the
average-case performance, the core features instruction queues
and a store buffer. Finally, three branch predictors (a Branch
History Table, a Branch Target Buffer and a Return Address
Stack) support speculative execution.

A. Pipeline-specific model instantiation

We do not display the complete model of the core here
as it is not an original contribution of this paper. However,
since the pipeline-specific parts of our proofs deal with the
ready and free predicates, we detail their formal definition

PC

CO

IF ID IS ALU

MUL1

CSR

DIV

LSU

MUL2

LU

SU

ST

Scoreboard

Store buffer

Fig. 2. Model of the MINOTAuR core adapted from [5]

in Figure 3 for illustration purposes. In the ready predicate,
the first term states that a speculative instruction is ready to
be flushed when a mispredicted branch is resolved. In all
other cases, the instruction must have its counter equal to
0. Additionally, three terms model how instructions can be
blocked in the pipeline. First, instructions can be blocked in
the PC computation (PC) stage in order to prevent conflicts on
the memory bus that would make the pipeline non-monotonic.
Second, instructions can be blocked in the issue (IS) stage if
an unresolved dependency exists with another instruction or
if a CSR instruction is pending and the current instruction
is not a memory instruction. Also, to prevent conflicts on the
shared result bus between the division and multiplication units
(which would make the pipeline non-monotonic), correspond-
ing instructions are stalled in the issue stage as long as a
division is being processed. Finally, load, store and atomic
instructions are stalled in the LSU when an atomic instruction
is pending, and loads are also stalled as long as the store buffer
is not empty to prevent conflicts on the memory bus that would
jeopardize the monotonicity of the pipeline.

We have encoded this model in Coq following the approach
described in Section IV. We now describe the philosophy
behind the pipeline-specific proof of our variant of the update
enable property that we left unspecified at the end of the
previous section.

We need to prove that for ca ⊑ cb, ca(i) = cb(i):

ca.ready(i) ∧ ca.free(ca.nstg(i)) ⇒
cb.ready(i) ∧ cb.free(cb.nstg(i))

To do so, we start by proving two lemmas that respectively
state that: ca.ready(i) ⇒ cb.ready(i) and that ca.ready(i) ∧
ca.free(ca.nstg(i)) ⇒ cb.free(cb.nstg(i)). Then the proof
proceeds straightforwardly by applying the lemmas.

Lemma 4. Ready remains. ∀i ∈ I, ca.ready(i) ⇒
cb.ready(i)

Proof. Depending on the considered stage and type of in-
struction, ready evaluates the pending, dep and isnext

predicates (in inverted logic for the first 2). It must then be



c.ready(i) := (pwrong(i) ∧ c.flush(i)) ∨ (c.cnt(i) = 0 ∧ c.isnext(c.stg(i), i))

∧ (c.stg(i) = PC ⇒ ¬c.pending(i, branch) ∧ (ichit(i)

∨ (¬c.pending(i, load) ∧ ¬c.pending(i, store) ∧ ¬c.pending(i, atomic))))

∧ (c.stg(i) = IS ⇒ (opc(i) /∈ {load , store, atomic} ⇒ ¬c.pending(i, csr))
∧ (opc(i) ∈ {mul , div} ⇒ ¬c.pending(i, div))
∧ (∀j < i . (depRaW (i, j) ⇒ (lstg(opc(j)), 0) ⊑P c(j) ∧ (opc(j) = csr ⇒ c.stg(j) ⊐S CO))

∧ (depWaW (i, j) ⇒ c.stg(j) ⊐S CO ∨ (c.isnext(CO, j) ∧ opc(j) ̸= csr))))

∧ (c.stg(i) = LSU ⇒ (opc(i) ∈ {store, atomic} ∧ ¬c.pending(i, atomic))

∨ (opc(i) = load ∧ (¬c.pending(i, store) ∧ ¬c.pending(i, atomic))))

c.free(s) := s ∈ {ALU, MUL1, CSR, MUL2, CO, post}
∨ (s ∈ {IF, IS, LSU, SU} ∧ c.slot(s))

∨ (s ∈ {PC, ID, DIV, LU, ST} ∧ ((¬∃j . c.stg(j) = s) ∨ (∃j . c.stg(j) = s ∧ c.ready(j) ∧ c.free(c.nstg(j)))))

∨ (∃i . c.stg(i) = s ∧ pwrong(i) ∧ ¬c.pending(i, branch))

Fig. 3. Definition of the ready and free predicates of the MINOTAuR core.

shown that the valuation of these predicates is the same in cb
and in ca, in all cases where ca.ready(i) is true. In Coq, this
is done on a case by case basis.

For pending, the Coq goal amounts to: forall opcode

i i’, pending opcode i ca = false -> pending

opcode i’ cb = false. The proof is based on the fact
that ca.ready(i) is true if pending is false. We thus have
to prove that pending is false in cb when it is false in ca.
The proof works by contraposition. If there exists a pending
instruction j (depending on the case, j can be a branch, a
load, a store, an atomic or a csr) in cb, then as ca ⊑ cb, j is
also pending in ca and thus i is not ready in ca.

For dep, we proceed with the same philosophy: an unre-
solved dependency (RaW hazard) for instruction i in cb means
that an instruction j has not yet been entirely processed. Since
ca ⊑ cb, j cannot be entirely processed in ca either. Thus if i
is not ready in cb because of an unresolved dependency, it is
not ready in ca either. Other hazards (WaW hazards) are dealt
with in the same fashion.

Finally, for isnext it must be shown that forall stg i

i’, isnext stg i ca = true -> isnext stg i’ cb

= true.
If ca.isnext(ca.stg(i), i) then all older instructions j < i

are already in a more advanced stage in ca: ca.stg(i) ⊑S
ca.stg(j). Since ca(j) ⊑P cb(j), we have ca.stg(j) ⊑S
cb.stg(j), so by transitivity, ca.stg(i) ⊏S cb.stg(j). Now,
the main assumption here is that ca(i) = cb(i) so the proof
concludes that cb.stg(i) ⊏S cb.stg(j).

As ready is a conjunction of isnext, pending and other
dependencies and hazard checks, it is possible to conclude
that forall i, ready i ca = true -> ready i cb =

true. The exact nature of the condition can vary depending
on the stage of i, requiring a case-by-case proof. Using the
Coq proof assistant ensures that no case is forgotten.

Lemma 5. Free remains. ∀i ∈ I, ca.ready(i) ∧
ca.free(ca.nstg(i)) ⇒ cb.free(cb.nstg(i))

Proof. If ca.free(s) is true, it means that one of the following
statements is true:

• the stage hosts fewer instructions than its maximal ca-
pacity;

• the stage hosts as much instructions that it can, but one
of them is ready, and its next stage is also free.

Most stages (PC, ID, ...) have a capacity of one instruction.
For those stages, proving the lemma is equivalent to showing
that both following statements are true:

(∄j . ca.stg(j) = ca.nstg(i)) ⇒
(∃j . cb.stg(j) = cb.nstg(i) ∧ cb.ready(j) ∧

cb.free(cb.nstg(j))) ∨
(∄j . cb.stg(j) = cb.nstg(i))

(1)

(∃j . ca.stg(j) = ca.nstg(i) ∧ ca.ready(j) ∧
ca.free(ca.nstg(j))) ⇒

(∃j . cb.stg(j) = cb.nstg(i) ∧ cb.ready(j) ∧
cb.free(cb.nstg(j))) ∨

(∄j . cb.stg(j) = cb.nstg(i))

(2)

To prove Statement 1, it is demonstrated that if ∄j .
ca.stg(j) = ca.nstg(i), then ∄j . cb.stg(j) = cb.nstg(i). This
can be shown by contraposition: if ∃j . cb.stg(j) = cb.nstg(i),
then, by construction, ca.stg(j) = ca.stg(i) ∨ ca.stg(j) =
ca.nstg(i). In the former case, i cannot be ready because it
is not the next instruction in the stage, or cannot be in its
stage because there would be two instructions in a single stage,
depending on the structure of the pipeline. It can be concluded
that ca.stg(j) = cb.stg(j).

For Statement 2, there are two cases: one where ca(j) =
cb(j), one where ca(j) ⊏P cb(j). In the latter case, as j
left the stage, there cannot be another instruction k, otherwise
ca.stg(k) = cb.stg(k) = ca.stg(j) (as shown earlier), meaning
that there would be two instructions in the stage, which
is not possible. Hence, cb.free(cb.nstg(i)) is true, because
cb.nstg(i) is empty. This proof relies on the trace validity
hypothesis, in which it is considered that a stage cannot host
more instructions that its capacity. When ca(j) = cb(j), the
instruction is still ready, as proven in Lemma 4.



This argument is extended in the case of stages capable
of handling multiple instructions. The number of instructions
hosted by a stage in ca is higher or equal than in cb. Otherwise,
an instruction would have overtaken i. This is not possible
because of the consistency property.

The last part of the proof relies on the demonstration that
the property that is being demonstrated for ca.stg(i), was
demonstrated for each stage reachable from that stage.

To bring the proof to completion, we chose to prove it, one
lemma for each stage, starting from the first one that is not
always free. The proofs can be simplified by using a custom
tactic.

B. Impact of speculative execution on the proof

To accommodate the model of MINOTAuR to speculative
execution, new predicates were added to know if an instruction
is mispredicted (pwrong(i)), and if it should be flushed in the
next cycle (c.flush(i)).

Some predicates defined earlier are modified to have the
following properties:

pwrong(i) ∧ c.flush(i) ⇒

 c.ready(i)
c.free(c.stg(i))
c.nstg(i) = post

This has an impact on the proofs. On the update enable
property, it must be shown that:

• an instruction that is ready in ca because it is flushed
is also ready in cb, i.e. ca.flush(i) ⇒ cb.ready(i). This
impacts Lemma 4;

• a stage that is free in ca because one of its instruc-
tions is flushed is also free in cb, i.e. ca.flush(i) ⇒
cb.free(cb.stg(i)). This affects Lemma 5.

We detail the impact on both lemmas later in this section, but
we must first introduce how the flush function is handled.

The flush function is similar to pending: the latter checks
if there is an instruction of a certain opcode older than i up to
a certain stage, while the former checks if there is a control
flow instruction that is not mispredicted up until the ALU. It
is therefore possible to abstract the pending function so that
it tests if a boolean function taking an instruction is satisfied
by any instruction between i and a specific stage, as shown
on Listing 11.

Definition abstract_pending cond stg i c :=
existsb (fun i’ ⇒ (idx i’ <? idx i) && cond i’ &&

progress_ltb (snd i’) (stg, 0)) c.

Definition pending opcm := abstract_pending
(fun i’ ⇒ opcode_beq (opc i’) opcm) (lstg opcm).

Definition spec := abstract_pending
(fun i’ ⇒ negb (pwrong (fst i’)) &&

opcode_beq (opc i’) Branch) ALU.

Definition flush i c :=
negb (spec i c).

Listing 11. Goal to prove when i is not equal to i’

Next, it is possible to show the following property, using a
strategy similar to the one described in Lemma 4:

forall cond stg i i’,
abstract_pending cond stg i ca = false ->
abstract_pending cond stg i’ cb = false

With this abstract flush function, we can now proceed with
the modifications to the proofs of Lemma 4 and 5.

1) Changes on Lemma 4: It is now necessary to take two
cases into account:

• when pwrong(i)∧cb.flush(i), then cb.ready(i), indepen-
dently on the valuation of ca.ready(i);

• when i is not flushed in ca and cb, the rest of Lemma 4
is left unchanged.

A similar argument can also be made for Lemmas 2 and 3:
when pwrong(i) ∧ cb.flush(i), then cycle(cb)(i) = (post , 0),
which is the highest progress possible: cycle(ca)(i) ⊑P
cycle(cb)(i).

2) Changes on Lemma 5: Since ∀c, c.flush(i) ⇒
c.free(c.stg(i)), it follows that if ∀i, (∃j . ca.stg(j) =
ca.nstg(i)∧ pwrong(j)∧ ca.flush(j)) ⇒ ca.free(ca.nstg(i)).
Two cases are possible:

• if ca.stg(j) = cb.stg(j), as ca.flush(j) ⇒ cb.flush(j), it
follows that cb.free(cb.stg(j));

• if ca.stg(j) ⊏S cb.stg(j), then there is no instruction in
cb.nstg(i) in cb, hence cb.free(cb.nstg(i)).

These changes, once implemented in lemmas
unmoved_is_monotonic and moved_is_monotonic,
allow to prove the monotonicity of the modelled pipeline.
The main theorem, is_monotonic, use both lemmas after
enumerating the two possible configurations for ip and ip’.

VI. RELATED WORK

Timing predictability is a fundamental property for the
verification and validation of critical systems. With regard to
execution time analysis of applications running on multicore
processors, the community agrees on the relevance of favoring
execution cores that are free of timing anomalies [9], [10]: they
allow adopting a compositional approach [11] and considering
individual thread execution times to build up the overall
execution time of the application.

In [12], the monotonicity of the pipeline’s behaviour is
shown to be a sufficient condition to prevent timing anomalies.
As already mentioned, the same authors have designed a
monotonic processor pipeline (named SIC), provided a formal
model of it and used this formal model to prove monotonicity
by hand [2]. This work was taken up in [4], whose authors
propose their own monotonic processor (MINOTAuR) and
prove its monotonicity using the same framework. Their pen-
and-paper proofs are long and difficult to read, which gave us
the idea of using the Coq proof assistant.

Formal methods can help in verifying properties on hard-
ware architectures. In [13], the Coq proof assistant is used
to assess the correctness of the implementation of complex
instructions through microprograms. Kami [14], a Coq library,



enables the specification and verification of multicore architec-
tures with coherent cache memories. In [15], the specification
in Haskell of a RISC-V processors is interfaced with several
tools, among which Coq to verify functional properties. A
Coq-based framework to design and verify memory controllers
is proposed in [16]. In [17], the TriCore architecture is
modelled with UCLID5; model checking and SMT-solving are
used to detect the possible occurence of timing anomalies.
This approach differs from ours: it searches for situations
in which a timing anomaly could be observed in a non-
predictable processor, while we instead prove the absence of
timing anomalies for a processor that has been designed to
prevent them. In [3], the monotonicity and compositionality
of the SIC processor mentioned above are shown using an
SMT formulation. However, the authors report non-scalable
solving times.

VII. CONCLUSION

We propose a strategy to prove the monotonicity of pro-
cessor pipelines using the Coq proof assistant. Our strategy
comprises a pipeline-independent portion that can be used as
is for any in-order pipeline, and a pipeline-dependent part that
instantiates the model of a particular pipeline and enumerates
cases on this particular instance. In order to demonstrate the
validity of our approach, we model the MINOTAuR core in
the Coq language and perform the pipeline-dependent proofs
on this model. As MINOTAuR features advanced and complex
execution mechanisms (instruction queues, parallel functional
units, scoreboard, speculative execution), being able to prove
its monotonicity demonstrates the versatility of our approach
for in-order pipelines. In the future, we plan to work on
two complementary directions: (i) automating the pipeline-
dependent portions of the proofs as much as possible, for
example by automatically generating parts of the Coq model
and proofs, and (ii) working on an even more general pipeline
model to obtain a completely pipeline-independent proof, then
each particular pipeline must only be proven to respect the
assumptions of the general model.
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