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Abstract—The verification of a time-critical system requires
precise analysis of execution times, which makes assumptions
on the system’s behavior, especially when it is poorly docu-
mented. One of those assumptions, when the system features
a GPU accelerator, relates to the policy that each Streaming
Multiprocessor (SM) follows to schedule warps. We argue that
the literature overlooks the lack of synchronization between the
instruction fetch and instruction issue schedulers, while this is
likely to make the behavior of existing GPUs unpredictable. We
propose to coordinate the action of the fetch and issue stages in
GPU pipelines in order to enable reliable static timing analysis.
We implement our approach in Vortex, a RISC-V-based open-
source GPU. We report experiments that show that it makes
warp scheduling predictable with little performance costs.

Index Terms—RISC V, GPU, real time, timing predictability,
warp scheduling

I. INTRODUCTION

The considerable computing power of GPUs makes them
prime candidates for the deployment of increasingly complex
applications in the field of embedded systems, particularly
autonomous vehicles. The most time-critical tasks, however,
are subject to a verification process to ensure that deadlines
are always met. Among other things, this process evaluates the
worst-case execution and response times (WCET/WCRT) of
critical software tasks.

Measurement-based methods can hardly offer execution
time guarantees as soon as the analyzed system (hardware and
software) is so complex that we cannot be sure of covering
all possible scenarios. This is why static analysis techniques
are preferred whenever possible. Such techniques have been
widely studied for standard processors (CPUs) [1], but much
less so for GPUs, which feature a very specific execution
model (SIMT model, i.e. execution of a set of threads –
a warp – in lockstep mode) that requires specific analyses.
In recent work [2], an approach to represent the code of
GPU programs in a form comparable to a control-flow graph,
taking possible branch divergence within a warp into account,
has been proposed. The aim was to support the analysis of
the execution time of a warp executed in isolation. In this
paper, we focus on the analysis of how several active warps
are scheduled and how this impacts the execution time of
the program. Our goal is to ensure that warp scheduling is
predictable for static timing analysis.

Off-the-shelf GPUs are extremely poorly documented (even
less so than standard processors). As a consequence it is very

difficult to figure out the details of their microarchitecture
and of their scheduling strategies. In this paper, we consider
an open-source GPU architecture based on the RISC-V ISA:
Vortex [3]. This allows us to consider hardware solutions,
implement them and evaluate their impact on performance.

The paper is organized as follows. Section II is devoted to
warp scheduling: general principles are outlined and the state
of the art in this field is reviewed. In Section III, we pose
the problem: what makes warp scheduling unpredictable for
static analysis? Section IV introduces our proposed solution.
Its implementation in Vortex and experimental evaluation are
presented respectively in Sections V and VI. Section VII
concludes the paper.

II. OVERVIEW OF GPUS AND WARP SCHEDULING

A. Background on GPUs

We first give an overview of how a GPU works. On the
hardware side, a GPU is composed of a large number of
Streaming Multiprocessors (SM), as illustrated in Figure 1.
Each SM is capable of handling a large number of threads and
executing one (or more) group(s) of threads in lockstep mode,
thus implementing the SIMT (Single Instruction Multiple
Threads) execution model. Such a group of threads is called
a warp and is typically composed of 32 threads.

On the software side, an application is initially executed
on the CPU and invokes kernels, that is functions that are
to be run on the GPU. To favor concurrency, kernels can be
launched in streams. Each kernel is to be executed by a very
large number of threads, organized into blocks or workgroups.
Each block is assigned to a given SM and its threads share the
resources provided by that SM (functional units and internal
shared memory).

B. Warp scheduling strategies

A complete analysis of scheduling mechanisms imple-
mented in Nvidia GPUs is provided in [4]. It highlights the
presence of a hierarchy of schedulers that determine the order
in which the following elements are executed: streams, kernels,
blocks and warps. In this paper, we focus on the scheduling
of warps.

Various white papers published by Nvidia (e.g. [5]) show
one or more warp schedulers in each SM. As far as we know,
whether the schedulers share the same warp queue or have
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Fig. 1. Generic architecture of an Nvidia GPU

separate queues is not documented. In this paper, we restrict
ourselves to a single warp scheduler per SM.

Several papers discuss the policy followed by the warp
scheduler: some introduce new policies and analyze their per-
formance [6]–[13]; others apply a retroengineering approach to
identify the policy implemented in off-the-shelves GPUs [4],
[14], [15].

Before examining the various scheduling policies consid-
ered in the literature, we point out that papers do not have
all the same view: some of them consider warp scheduling
in the fetch stage [7], others in the issue stage [9], [10]. We
argue that both stages need a scheduler to select the next warp
to process, raising the question of the synhronization between
the two schedulers.

The terminology used to name scheduling policies is not
always consistent among different papers. Here we specify
our own conventions. Different warp selection algorithms can
be implemented in a scheduler:

- Round-Robin: warps are selected in a fixed order.
- Oldest-First: the oldest ready warp is selected.
- Icount: the warp with the fewest number of fetched but

not yet issued instructions is selected. The underlying
objective is to favor fast executing warps [6], [16].

Orthogonally to these algorithms, we distinguish four main
categories of policies:

- Strict: if the warp selected by the algorithm at a given
cycle is not ready, the stage is idle during that cycle. One
possible reason why a warp is not ready in the fetch stage
is that it is waiting for a branch to be resolved. In the
issue stage, a warp is not ready if e.g. its operands are
not available. A new warp is selected at each cycle.

- Loose: if the selected warp is not ready, its turn is skipped
and the next warp (according to the algorithm) is selected.
A new warp is selected at each cycle.

- Greedy: unlike the previous two categories, the warp
selected at a given cycle remains selected until it is
stalled [8]. A warp might be stalled in the fetch stage
when it triggers a cache miss, or in the issue stage when
it executes a long latency operation.

- Adaptative: the greediness of the scheduler is dictated by
external considerations such as the relative progress of
different warps [6].

According to [4], Nvidia’s Maxwell, Pascal, Volta and
Turing architectures use the Loose Round Robin (LRR), which
refers to Greedy then Loose Round Robin (GTLRR) in our
classification: the selected warp runs until it is blocked by a
long-latency operation; control is then passed to the next warp,
in round-robin order; if a warp is not ready to execute, its
turn is simply skipped. Other work [13] assumes a Greedy
Then Oldest (GTO) policy [8] (Greedy then Loose Oldest
or GTLO in our terminology) whereby a warp that becomes
stalled transfers control to the oldest ready warp.

III. PREDICTABILITY OF WARP SCHEDULING

The advent of GPUs in embedded systems is extending to
mission-critical systems. Timing predictability is therefore a
key issue in the perspective of certification.

A. Static timing analysis of a GPU-executed kernel

In its simplest form, a kernel is executed by a set of
thread blocks, each organized into warps (groups of threads
executing in lockstep). Determining the execution time of a
kernel therefore requires calculating: (i) the execution time
of a warp in isolation; (ii) the makespan of the execution of
all warps assigned to the same SM, taking into account the
scheduling policy; (iii) conflicts between accesses to the shared
memory (intra-SM); (iv) interference in the global memory
between warps executing on different SMs. Very little work
has been published on these topics, and much remains to
be done. The approach proposed in this paper is intended
to facilitate the computation of component (ii). The other
components are outside the scope of this paper.

We assume that component (i) can be computed, although
we know that work is still in progress. First, the executable
program has to be decoded, which is already a challenge
when the instruction set is closed [17]. Next, all possible
execution paths must be identified, which is akin to building
a CFG for a CPU program [2], [18], [19]. This enables
identifying branches and their direction associated with each
path. A precise hardware model must be established to specify
instruction execution times in functional units [20] and an
analysis of cache behavior can be used to determine the latency
of each access (hit or miss) [21]. Although we are not aware
of any comprehensive tool for determining the execution time
of a warp in isolation, we consider that existing work argues
in favor of its feasibility in the short term (for documented
GPUs) and we focus instead on warp scheduling.
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Fig. 2. Example of uncoordinated fetch and issue policies with a LRR issue

B. Analyzing the interleaving of warps in an SM

A few papers examine how warps are scheduled within an
SM [22], [23]. The focus is on the issue, assuming a Loose
Round Robin (LRR) warp scheduling policy – in [23] the
scheduling is additionally greedy. The two papers derive the
makespan of a set of warps executing the same kernel and
mapped to the same SM. In [22] simplifying assumptions are
done on the executed code (considering only two types of
instructions: calculation or memory access) and an integer
linear program (ILP) formulation is built to compute the
schedule of warps. In [23], the makespan is derived based
on equations that express the scheduling model and on timing
estimations provided by a static analyzer.

We underline that both papers assume that the selected
warp is always ready (its instruction queue is not empty),
disregarding, this way, the fetch policy. In this paper, our point
is that this assumption is not always valid.

In practice, fetched and decoded instructions are stored in
the instruction queue of the warp they belong to. A warp
cannot be eligible for issue if its queue is empty. In this case,
the scheduler may select another warp (Loose strategy). This
means that the effective scheduling of warps at issue is not
completely dictated by the intended policy but also depends on
the pace at which instructions are fetched. This depends in turn
on the fetch scheduling policy but also on other factors such as
the instruction cache behavior and the memory latency. This is
not an issue from a functional perspective. However, when it
comes to accurately predicting the actual order of execution of
the various warps in a block to derive the execution time of the
application, this becomes problematic because the scheduling
policy is not respected when a warp runs out of fetched instruc-
tions. Such a situation is illustrated in Figure 2. Three warps
are depicted in two configurations, with a GTLRR scheduler
at the issue stage. The execution of each warp is modeled
as a sequence of execution cycles (in yellow) in which the
warp issues an instruction and of idle cycles (in white) in
which the warp is not ready to issue because it is waiting
for the result of a long latency operation (e.g. a memory
load). At the top, it is assumed that instructions are always
available when a warp is selected by the warp scheduler at the
issue stage. Consequently, the schedule rigorously follows the
GTLRR policy. On the contrary, at the bottom, it is assumed
that the third warp has no available instruction in its queue
at cycle 15, forcing the GTLRR scheduler to schedule the
first warp instead. This results in a different schedule with a
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Fig. 3. Pipeline of a generic GPU

significant impact on the execution time.
In section VI, we present measurement results that show that

this phenomenon is not anecdotal. For our baseline GPU, the
fraction of cycles during which the issue scheduling policy
is not strictly respected because the warp that was initially
selected has no ready instruction ranges from 0.10% to 81.12%
depending on the benchmark and the scheduling policies.

In this paper, we propose a way to coordinate fetch and
issue schedulers to ensure that warps are actually executed in
the intended order. This will contribute to make static analysis
of thread block execution times possible.

IV. COORDINATING INSTRUCTION FETCH AND ISSUE

A. Pipeline model

Figure 3 shows the front end of a generic GPU’s pipeline,
inspired from [24]. The first stage requests one instruction
per cycle to the instruction cache. Instruction requests are
pipelined and have a latency of tF cycles in case of a cache
hit. The second stage decodes one instruction per cycle, and
inserts it into the instruction queue of the warp it belongs to.
In the issue stage, one instruction is selected for execution
among the heads of the instruction queues. An instruction is
said to be ready for execution when its operands are available
(data dependencies are resolved) and the required functional
unit is free.

Modern GPUs do not implement branch prediction: there
are generally very few branches in GPU code and the cost
of a branch predictor is not justified, since the control can
easily switch to another warp while waiting for a branch to be
resolved. However, given that a branch must reach the decode
stage to be identified as such (and possibility suspend the
instruction fetch for the warp), it seems reasonable to assume
a basic scheme that continues to load instructions in sequence
when a branch is decoded and simply invalidates them in the
queue if the branch is resolved as taken. This amounts to a
static not-taken branch predictor.

B. Coordinated warp scheduling

In order to guarantee that the intended issue scheduling
policy is strictly applied, i.e. that warps are issued in the
expected order, it must be enforced that the selected warp is
never short of instructions in its instruction queue. Our solution
to achieve this is threefold: (i) using instruction queues of
appropriate length, (ii) building a common scheduler for the
fetch and issue stages, (iii) inserting NOPs whenever needed
to avoid instruction shortage.



1) Capacity of the instruction queues: First of all, it is
necessary to ensure that the instruction queue capacity is
sufficient to hide the latency of loading an instruction from
the cache. We assume a pipelined cache where an instruction
can be requested each cycle and becomes available after tF
cycles. If the duration of the decode stage is one cycle, that
means that the first instruction of a warp can be ready only
tF+1 cycles after the warp has been selected by the scheduler.
If we want to ensure that the warp can execute an instruction
as soon as it is selected, we need an instruction queue of
capacity tF +1, initialized with as many NOPs. Those NOPs
can be taken into account at analysis time. Later, each time
the warp is selected, one instruction is popped of the queue to
be executed (if ready) and a new instruction is fetched. This
way, the instruction queue of a warp always contains the same
number of instructions. Note that whether the head instruction
is ready or not can be anticipated by static analysis.

2) A unique warp scheduler: Since we want instructions
of a warp to be fetched at the same pace as they are
issued (so that inputs and outputs to/from a warp instruction
queue are balanced), it seems natural to consider the same
warp scheduling policy in both stages. However, having two
identical but separate schedulers would not be enough to reach
our goal: the selection of a warp in the issue stage depends not
only on the scheduling policy, but also on which instructions
are ready (with available operands and a free functional unit).
For this reason, the warp selected for execution may not be
the first one dictated by the policy, but one of the following
warps. To ensure that the same decision is taken in the fetch
stage, it is desirable to implement a unique warp scheduler
that is shared by the fetch and issue stages.

3) Compensating breaks in the instruction flow: There are
two reasons why the fetch stage would not be able to sustain
the pace imposed by the common warp scheduler: (i) when
a request to the instruction cache results in a cache miss; (ii)
when the instruction flow contains a taken branch.

In case of a cache miss, the instruction fetch must be
suspended for the warp, meaning that the warp is not scheduled
anymore until the cache miss is resolved. It is thus necessary
to notify the cache miss to the warp scheduler. However, (i)
the warp still issues an instruction in the current cycle and (ii)
when the corresponding cache block is loaded, the warp has
to fetch the instruction again. To compensate for the not-yet-
fetched instruction, a NOP is inserted in the warp instruction
queue. As mentioned before, part of the static analysis process
consists in characterizing the cache behaviour for the kernel
code. It is then possible to anticipate cache misses and the
resulting deviations from the warp scheduling policy, as well
as additional instruction fetch latencies. The NOP that replaces
the not-yet-fetched instruction ensures that the warp does
not lack a ready instruction when scheduled again later. As
explained above, we assume static branch prediction where
instructions are fetched in sequence until a branch is executed
and resolved as taken: the instructions fetched along the wrong
path must be flushed and the instruction fetch must resume
from the branch target address. In order to keep the warp

instruction queue fed with instructions, our solution replaces
flushed instructions with NOPs instead of simply removing
them from the queue. Again, static analysis is able to anticipate
branch mispredictions and to predict the number of inserted
NOPs.

V. EXAMPLE IMPLEMENTATION

In this section, we report how we have implemented our
approach towards timing-predictable GPUs in a forked version
of the open-source Vortex [3].

A. Vortex: an open-source RISC-V-based GPU

Long considered unrealistic, designing your own processor
is now a real possibility, thanks in particular to the success
of the RISC-V ecosystem. The open-source GPU named
Vortex [3] is part of this movement, and offers interesting
prospects compared to the closed, poorly documented devices
from Nvidia. Vortex supports an extended version of the stan-
dard RISC-V ISA. It includes six new instructions that enable
SIMT (Single Instruction Multiple Threads) execution for up
to 1024 threads on 64 cores and control synchronizations. Its
Verilog model can be synthesized on an FPGA.

B. Our baseline GPU: a variant of Vortex

To get closer to the pipeline model presented above, we
have produced a variant of Vortex (v2) and made the following
modifications:

• In the original version of Vortex (v2), a new instruction
for a warp cannot be fetched until the previous instruction
has been decoded (no branch prediction). While this
naturally favors timing predictability, it also limits per-
formance when combined to a 4-cycle instruction cache
hit latency and a limited number of warps (32). We
have implemented static (not-taken) branch prediction to
allow fetching one instruction per cycle, possibly several
cycles in a row for the same warp. In case of a taken
branch, instructions fetched on the wrong path are simply
discarded.

• We have modified the instruction cache so that it is now
able to signal a cache miss one cycle after a request
has been submitted. This is needed to implement our
approach.

• Additional warp scheduling policies have been imple-
mented in both the fetch and issue stages. In the original
Vortex GPU, warps are scheduled by a Fixed-Priority
policy in the fetch stage and by a LRR (Loose Round-
Robin) policy in the issue stage. We have added the
(Loose Round Robin), GTLO (Greedy Then Loose Oldest)
and GTLRR (Greedy Then Loose Round Robin) policies
to both stages.

All the experimental results labeled baseline have been
collected for this variant of Vortex.



TABLE I
BENCHMARKS

Name Function Source #instr

blackscholes Black-Scholes formula NVIDIA SDK 192,052
hotspot physics simulation Rodinia 17,554

hotspot3D physics simulation Rodinia 39,971
kmeans k-means clustering Rodinia 164,077

psort parallel sorting Vortex 492,237
sgemm matrix multiplication Vortex 1,728

C. Implementing our approach

We have applied the recommendations given in Section IV
to our baseline device to produce the SWaS (Synchronized
Warp Scheduling) variant. Given the latencies of the fetch
(with cache hit) and decode stage (resp. 3 and 1 cycles), we
have set the lengths of the instructions queues to 4. At start-up,
instructions queues are filled with NOP instructions.

We have merged the two warp selection functions into a
single scheduler used synchronously by the fetch and issue
stages: at each cycle, a warp is selected and (i) the head
instruction of its instruction queue is issued while (ii) a new
instruction is requested to the cache for this warp. In case of a
cache miss, a NOP is sent to the decode stage and the warp is
temporarily suspended: this is made possible by notifying the
scheduler when the miss occurs as well as when it is resolved.

Finally, we have modified the way branch mispredictions
(in case of a taken branch) are handled, so as to replace
any flushed instruction by a NOP, avoiding this way to create
bubbles in the instruction queue.

In the following section, we report experiments that validate
our approach by highlighting that the scheduler behaves in a
way that static timing analysis can anticipate. We also examine
the impact on performance of SWaS variant compared to
baseline GPU.

VI. EXPERIMENTAL EVALUATION

A. Evaluation methodology

1) Benchmarks: We use six benchmarks from different
suites: Rodinia [25], the NVIDIA SDK and a collection
embedded in the Vortex project. They are listed in Table I.
Each kernel is executed by 32 warps of 32 threads. They
all perform floating-point computations, which have long
latencies: 4 cycles for fmadd, fmul and fadd, 5 cycles for
fcvt and 16 cycles for fsqrt and fdiv.

2) Experimental setup: All benchmarks are run on an RTL
simulator of Vortex1 built with Verilator2. Vortex is configured
to include a single SM with enough resources to run at most
32 warps of 32 threads concurrently. The DRAM is emulated
using ramulator3 [26]. OpenCL kernels are compiled to exe-
cutable code to be run by a single so-called workgroup and
this code is dispatched onto the GPU by a custom launcher.

1https://github.com/vortexgpgpu
2https://veripool.org/verilator/
3https://github.com/CMU-SAFARI/ramulator

This launcher uses custom RISC-V CSRs (Control and Status
Registers) to register basic metrics such as the number of
cycles needed to run the kernel or the number of committed
instructions (the list of metrics is given in Section VI-A5).

3) Scheduling policy configurations: Nine configurations
of scheduling policies are considered or our baseline GPU –
three variations (GTLRR, GTLO and LRR) in the fetch stage
combined to the same three variations in the issue stage.

Whatever the fetch scheduling policy, a warp is considered
not fetch-ready either when its previous request resulted in a
cache miss or when its instruction buffer is full. Whenever the
selected warp is not fetch-ready, its turn is skipped and the next
warp (in the sense of the scheduling policy) is selected. In the
issue stage, a warp is said not issue-ready when the operands
of the instruction at the head of the instruction buffer are not
yet available (data dependency) or the instruction buffer is
empty.

The simplest policy in the fetch (resp. issue) stage is LRR:
it fetches (resp. issues) one instruction for another warp at
each cycle. Greedy policies, GTLRR and GTLO, keep instead
the same warp as long as it is fetch- (resp. issue-)ready.
With GTLRR, the next warp is determined with a round-
robin algorithm (as for LRR), while GTLO gives priority to
the oldest warp (warp 0, then warp 1, etc. since warps are
numbered in the same order as they are activated).

4) Scheduling errors in the baseline GPU: To evaluate
the predictability of warp scheduling, we want to measure
the number of discrepancies between the intended and ef-
fective (observed) warp scheduling policies. For this pur-
pose, we augment the design of the GPU with two oracle
warp schedulers at issue stage: osched1 and osched2.
The first one, osched1, considers that instruction buffers
always contain ready instructions: it is used to simulate the
intended scheduling policy. Any discrepancy in the selected
warp when using osched1 instead of the implemented warp
scheduler means that the policy is not strictly respected and is
accounted for (at each cycle). For greedy scheduling policies,
osched1 is synchronized with the implemented scheduler
after a discrepancy has been observed: this way, this discrep-
ancy is accounted for only once. Discrepancies are due to
three reasons: (i) cache misses – due to their long latency,
they prevent the instruction buffer to be fed for a while, (ii)
mispredicted branches – the instruction buffer is flushed out
after a branch is found mispredicted, and (iii) absence of
synchronisation between the fetch and issue warp schedulers.
Since situations (i) and (ii) can be anticipated at analysis time,
only situations (iii) are to be considered as deviations of the
scheduling policy. To identify them, we use osched2 that
considers that the selected warp always has a ready instruction
in its buffer except if it has experienced a cache miss less
than (1 + cache miss latency + cache hit latency) cycles
ago or a taken (then mispredicted) branch less than (1 +
cache hit latency) cycle ago (the scheduler keeps track of this
information thanks to internal signals).

5) Metrics: We define here the metrics collected during
experiments (only during the execution of the OpenCL kernel,
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i.e. we ignore the prologue code):
• cycles: duration (in cycles) of the kernel execution, that is

the number of cycles during which at least one thread is
still executing the kernel. Since warps are launched one
at a time with a few-cycle-gap between two warps, cycles
is a few cycles longer than the execution time of a single
warp.

• committed: number of instructions committed by any
thread that executes the kernel. This number is given as
#instr in Table I. It does not include the NOPs inserted
with our approach.

• IPC: number of instructions committed per cycle.
IPC = committed/cycles

• discrepancies: number of scheduling discrepancies, i.e.
number of cycles during which the intended issue warp
scheduling policy is not respected (discrepancy with
osched1). This number is for the whole set of warps.

• errors: number of scheduling errors, i.e. number of cycles
during which the intended issue warp scheduling policy
is not respected, excluding predictable situations such
as cache misses and branch mispredictions (discrepancy
with osched2). This number is for the whole set of
warps.

• error rate: percentage of cycles for which an error is
observed.

error rate = errors/cycles

B. Experimental results

1) Behaviour of our baseline GPU: The performance (IPC)
of our baseline GPU is plotted in Figure 4. Each bar stands
for a configuration of fetch-issue scheduling policies. The
theoretical upper bound on the IPC is 32: it would be reached
if an instruction was committed at each cycle by one of the
warps, that is by 32 threads. In practice, it ranges from 1.07
to 21.62 over our set of benchmarks.

The high IPC for psort can be explained as follows. Each
thread compares one element of the array to be sorted to every
other element, in a loop. Within one iteration, all threads in
the same warp access the same element and are then served
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Fig. 5. Scheduling error rate in the baseline GPU

by a single memory access. The same happens for kmeans
where threads in the same warp consider the same cluster
at a time as a possible target for their point. For hotspot
and sgemm, memory accesses cannot be coalesced, which
adversely affects performance. These remarks are confirmed
by the measured average latency of memory loads: it is
significantly shorter for kmeans and psort than for the other
programs. For instance, with the LRR-GTLRR configuration,
the average latency is respectively 18 and 37 cycles for these
two applications and ranges from 68 to 98 cycles for the other
ones. The low IPC for blackscholes is related to (non
pipelined) divisions that have a 16-cycle latency

On a more general note, this poor performance is also
partly due to the fact that we make a restricted use of the
Vortex architecture: because we want to put the focus on
warp scheduling, and avoid interference from other levels
of scheduling, we use a single core and we run a single
workgroup (equivalent to a block in Cuda). With such a
configuration, papers about the original Vortex (e.g. [3]) report
similar IPC.

The impact of the scheduling policy configuration on the
IPC is globally not significant. However, the diagram shows
that the combinations for which the fetch policy is GTLO
(green bars) result in a twice lower IPC for psort. This can
be explained by the large number of branch mispredictions
with greedy fetch policies (and particularly for GTLO): since
several instructions are fetched for the same warp in a row,
this does not give enough time for a branch to reach the
execution stage before the next instruction is fetched. Taken
loop branches are then often mispredicted.

Over the set of configurations, LRR-GTLRR and LRR-
GTLO are those that globally produce the highest IPCs.

Figure 5 displays the scheduling error rate, that is the
fraction of cycles during which a divergence between the the-
oretical and effective scheduling decisions has been observed.
For some benchmarks, such as psort and kmeans, the
error rate is significant and the schedule of warps considered
by static analysis is expected to differ significantly from the
runtime behavior. However, the low error rate for the other
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Fig. 7. Comparison between baseline and SWaS with GTLO
issue/synchronized scheduling policy

benchmarks should not be underestimated. Indeed, any error
is likely to invalidate the results of static analysis, which
therefore cannot be guaranteed. For hotspot3D, that seems
to exhibit the lowest rate, the raw number of errors ranges
from 764 to 3,037, depending on the scheduling configuration,
which is obviously far from being null. Interestingly, the
benchmarks that face the highest error rates are those that
show the highest IPC: because they execute instructions fast,
they are more likely to empty their instruction buffer before
it is refilled by instruction fetch. Conversely, the agility of the
scheduler that selects another warp whenever an instruction
buffer is empty contributes to increasing the IPC.

2) Behaviour of the SWaS variant: With the SWaS variant,
that implements synchronized fetch/issue warp scheduling, no
scheduling error is observed during the execution of the bench-
marks, whatever the scheduling policy. Instruction buffers are
always 100% full (sometimes with NOPs).

Figures 6 to 8 depict the ratio between the IPCs of the
SWaS variant and that of the baseline GPU: a value lower
than 1 indicates a loss of performance with SWaS. The three
diagrams consider the same issue scheduling policy (which
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Fig. 8. Comparison between baseline and SWaS with LRR issue/synchronized
scheduling policy

is also the fetch policy in SWaS, since it implements a single
scheduler) for both variants. Bars correspond to different fetch
policies in the baseline GPU.

Variations on the IPC between the two variants are due
to two opposing phenomena. On the one hand, the synchro-
nization of fetch and issue makes kernel execution smoother,
since instructions are fetched at the same pace as they are
executed. This is likely to increase the IPC. On the other
hand, NOPs that are inserted in buffers to hide breaks in the
instruction fetch consume execution resources and bandwidth,
which lower the IPC since NOPs are not accounted for as
committed instructions.

For all the benchmarks but psort, the impact on perfor-
mance seems reasonable: the IPC is either slightly degraded or
improved in the SWaS variant. This is not the case for psort,
for which the performance cost is more significant for certain
configurations: down to -63.0% for the GTLO issue policy
combined to the LRR fetch policy in the baseline variant. This
is because the main loop is too short (18 instructions) to hide
the impact of the 4 NOPs added for the branch taken at each
iteration.

The key point here is that the aim of our approach is
not to improve IPC, but to make scheduling predictable.
This objective is achieved, since no errors are detected: the
scheduler behaves exactly as defined by the implemented
policy. Contingent performance loss should then be seen as the
price to pay to enable precise and safe static timing analysis.

In Table II, we compare the IPC of the two GPU variants
with their best scheduling configuration. As pointed out earlier,
the baseline GPU reaches highest IPC values with the LRR-
GTLRR configuration (very close to the other combinations
with LRR as fetch policy). For the SWaS variant, GTLRR
leads to the best results. The largest performance degradation
(-34%) is observed for psort. The number of errors with
the baseline variant is significant (165,011) which underlines
the necessity to address the predictability of warp scheduling.
Note that synchronizing scheduling shows positive side effects
on the IPC of other benchmarks.



TABLE II
COMPARISON BETWEEN SWAS GTLRR AND BASELINE LRR-GTLRR

Benchmark IPC SWaS/baseline # errors

blackscholes 1.02 16,657
hotspot 0.92 3,147

hotspot3D 1.00 1,662
kmeans 1.01 23,643

psort 0.66 165,011
sgemm 1.08 403

VII. CONCLUSION AND FUTURE WORK

Accurate static timing analysis requires both full knowledge
of the hardware platform on which the system is deployed
and predictable execution mechanisms. Precise information on
the hardware is difficult to collect when using commercial
CPUs and GPUs. Open hardware gives access to all the details
(even if the effort involved in digging the Verilog code is
considerable) and is an asset for better analysis of execution
times. The use of Vortex, a RISC-V-based GPU, for the work
presented in this paper has been of valuable support.

CPUs and GPUs often feature mechanisms in which the
behavior is not fully predictable. This is particularly true for
mechanisms that exploit the dynamic state of the system to
achieve better performance. In a GPU, the warp scheduler is
usually work-conserving: when the selected warp is not ready
for execution, it selects another warp. As a result, the way
warps are scheduled differs from what the scheduling policy
dictates. This is very difficult, if not impossible, to predict at
analysis time because this would require analysing the whole
system (i.e. all warps) together and this is usually not tractable.

In this paper, we propose an elegant approach to make
warp scheduling predictable, that is to ensure that the warp
scheduler behaves exactly as expected from the scheduling
policy. It consists of a unique synchronized warp scheduler
with artificial filling of instructions buffers to avoid stalls.
This way, it is possible to derive offline the makespan of
the execution of all the warps/threads that execute a kernel.
This approach is implemented as a variant of Vortex (SWaS).
Experiments show that the approach is reliable: the scheduling
policy is strictly respected. Interestingly, the cost in terms of
performance is low.

This work can be considered a proof of concept and the
approach could be applied in future COTS GPUs if timing
predictability is a concern. As future work we plan to in-
vestigate complementary and alternative architectural solutions
to improve timing predictability beyond warp scheduling. We
will also consider multiple SM and multiple schedulers per
SM.
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