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A B S T R A C T   

Over the past decades, the design of evaporators has experienced improvement due to accruing experimental and 
numerical research on flow boiling. For micro-finned geometries that are deemed promising in augmentation of 
thermal performance, several empirical models have been developed. Recently, to attain higher accuracies in 
modeling, authors also resorted to Artificial Intelligence (AI) techniques while encouraging their further in
vestigations. In this case, a database comprised of 1358 experimental heat transfer coefficients (HTC) and fric
tional pressure drops per unit length (FPD) has been considered for a holistic assessment of flow boiling modeling 
methods. The wide range of geometric features within the database, which includes tubes with outside diameters 
from 3 mm to 7 mm, helps to acquire a more reliable evaluation of the models, since the flow boiling mechanism 
is strongly dependent on the geometric parameters.After evaluating three empirical models for the HTC, it was 
confirmed that, depending on the diameter, the flow boiling mechanism undergoes alterations pertinent to a 
balance between convective and nucleate boiling, and the models must be modified to account for these con
ditions.The mean average deviation (MAD) for the models was recorded to be 11.7 %, 22.2 %, and 21.5 % for 
Diani et al., Mehendale, and Tang and Li, respectively. Higher accuracies were obtained after modification of the 
empirical models, of which the most accurate one provides a MAD of 10.13 %. Moreover, by the implementation 
of a novel approach, for the first time, a power function correlation has been established among dimensionless 
parameters for a machine learning-powered model. The MAD of 10.9 % and 15.8 % was reported for the Nusselt 
number and the two-phase multiplier respectively. Artificial Neural Network (ANN) was also considered for 
modeling, and MADs of 4.6 % and 4.2 % were recorded for the Nusselt number and two-phase multiplier, 
respectively.   

1. Introduction 

In the current period, industrial and domestic units experience a rise 
of exigency regarding the installation of heat exchangers as a result of 
national and regional attempts to encourage the replacement of fossil 
fuel gas boilers. In the European zone, a novel study [1] suggests that 
member states have already implemented their national-level mandates 
regarding the phase-out of gas boilers, and similar legislations are to be 
expected by the EU for a clear establishment of objectives on a regional 
level. Another attempt [2] regarding the prediction of the potential 
market for heat pumps in the EU zone, estimates the cumulative heat 
capacity to be 23 GW in EU-28 while stating a growing potential for heat 
pump suppliers to be expected soon. 

Considering such projections, the proper design of heat exchangers 
for flow boiling becomes a salient aspect in the future of heating systems. 
Fortunately, pertinent to the ubiquitous configuration of horizontal 
smooth tubes, scientific endeavors regarding flow boiling experienced 
growth in the last two decades as many empirical and numerical models 
were developed and suggested for the estimation of heat transfer coef
ficient (HTC) and frictional pressure drops (FPD), two imperative vari
ables deemed decisive in sizing of heat exchangers. Some examples of 
such models are present in studies of [3–7]. Empirical models are 
inherently confined within their range of applicability and are mainly 
dependent on the testing conditions. One of the features that has a 
considerable impact on the modeling process is the tube geometry. In 
the context of smooth tubes, one study by Mahmoud and Karayiannis [8] 
perfectly captures the dependency of empirical models on geometrical 
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parameters. Juxtaposing their experimental results to 21 empirical 
models developed for macro and micro-sized tubes, they reported large 
variability in recorded mean absolute deviations (MADs) among the 
models. In addition to empirical models, recently machine and deep 
learning (ML and DL) methods are also utilized to construct models for 
the prediction of flow boiling inside tubes. These models are usually 
capable of superb predictions of HTC and FPD in the 10 % MAD range as 
the results demonstrated by [9,10]. However, difficulty in their imple
mentation could be considered as a drawback compared with empirical 
modeling. 

Alongside conventional tubes with smooth surfaces, finned struc
tures are commonly used in industrial and domestic applications as well. 
While such tubes are available in various sizes, micro sizes are more 
prevalent as they possess a high heat transfer area-to-volume ratio while 
allowing lower refrigerant charges. Similar to conventional tubes, 
research is accruing regarding micro-finned tubes as well, as several 
examples can be found in open literature whose experimental campaigns 
are considerably diverse, including diverse test sections, refrigerants, 
and operating conditions. Chiou et al. [11] conducted experiments on 
the evaporation of R-22 and R-124 for mass fluxes of 100–400 kg m− 2 

s− 1 and heat fluxes 5–20 kW m− 2 inside a micro-finned tube of 8.96 mm 
inner diameter (ID) and recorded enhanced heat transfer coefficient by 
the magnitude of 1.5–3 times higher than a smooth tube of similar ge
ometry. Similarly, for an 8.96 mm ID tube, Jiang et al. [12] tested four 
refrigerants (R22, R134a, R407C, and R410A) for mass fluxes and heat 
fluxes of 50, 250, and 450 kg m− 2 s− 1 and 5, 12.5 and 20 kW m− 2, 
respectively, and concluded several aspects to wit: the average of heat 

transfer coefficients is higher by a factor that is in the range of 1.69–1.86 
compared to that of the smooth tube, and frictional pressure drops 
higher by 1.4. Another study [12] concentrates on an immiscible 
mixture of oil and refrigerant HFO-1234yf during boiling, inside a 
micro-finned tube of 7 mm outer diameter (OD), and states a more 
robust effect of the oil on HTC at lower saturation pressures. In smaller 
tube scales, Diani et al. [13] carried out an experimental campaign on a 
tube of 3.4 mm ID (at the fin tip) during flow boiling of R1234ze(E). In 
addition to measuring experimental data for HTC and FPD, the authors 
also suggested two novel correlations for their prediction that could 
suitably perform for micro-finned tubes. Yun et al. [14] throughout 
garnering experimental data from the open literature and implementa
tion of non-dimensional expressions affecting the heat transfer phe
nomena inside micro-finned tubes, constructed an empirical model that 
is posited to be suitable for a variety of geometries, testing conditions, 
and refrigerant types. In a more holistic analysis of empirical models, 
Tang et al. [15] collected 2221 data points covering an expanded range 
of operating conditions (mass fluxes between 47 and 835 kg m− 2 s− 1, 
heat fluxes between 3.9–85.2 kW m− 2, and tube diameters (at fin root) 
between 2.64–11.98 mm), assessed the accuracy of six promising models 
and proved that the model of Mehendale [16] with MAD of 25 % is the 
most accurate. 

Artificial intelligence has been also employed in predictions of HTC 
inside micro-finned tubes and noticing the downside of such method
ology regarding the lack of an explicit form of a correlation, Lin et al. 
[17] attempted to construct a correlation predicated on neural network 
architecture. Although this correlation is not comparable to the 

Nomenclauture 

Latin symbols 
AR aspect ratio (-) 
Bo Boiling number (-) 
c specific heat (J kg− 1 K− 1) 
Co confinement number (-) 
D diameter (m) 
f friction factor (-) 
FPD frictional pressure drop (Pa) 
Fr Froude number (-) 
g gravity (m s− 2) 
G mass velocity (kg m− 2 s− 1) 
h fin height (m) 
hLV latent heat of vaporization (J kg− 1) 
HF heat flux (W m− 2) 
HTC heat transfer coefficient (W m− 2 K− 1) 
i uncertainty 
ID inner diameter at fin tip (m) 
J superficial velocity (m s− 1) 
L length (m) 
M, MM molar mass (kg kmol− 1) 
ṁ˙ mass flow rate (kg s− 1) 
N, ng number of fins (-) 
Nu Nusselt number (-) 
OD outer diameter (mm) 
P pressure (Pa) 
Pr Prandtl number (-) 
q heat flow rate (W) 
r bubble radius (m) 
Re Reynolds number (-) 
Rx area enhancement ratio (-) 
T temperature ( ◦C) 
U mean velocity (m s− 1) 
We Weber number (-) 

x vapor quality (-) 
X Martinelli parameter (-) 

Subscripts 
crit critical 
exp experimental 
g gas phase 
i at the fin tip 
L liquid phase 
LO liquid only 
nb nucleate boiling 
onb onset of nucleate boiling 
p at constant pressure 
pred predicted 
r at the fin root 
red reduced 
sat saturation 
t turbulent 
v vapor phase 

Greek symbols 
α apex angle (◦) 
β helix angle (◦) 
δ liquid film thickness (m) 
ε void fraction (-) 
λ thermal conductivity (W m− 1 K− 1) 
μ dynamic viscosity (Pa s) 
σ surface tension (N m− 1) 
Φ2 two-phase multiplier (-) 

Abbreviations 
ANN artificial neural network 
HT heat transfer 
MAD mean absolute deviation 
MRD mean relative deviation  
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empirical one in terms of simplicity of expression, it provides valuable 
insight into new deep learning models and their applications. Qiu et al. 
[18], collecting 2787 FPD data points, evaluated the accuracy of the 
machine learning algorithms and, while varying the input feature sets, 
concluded that most of the implemented algorithms recorded remark
able accuracies on the order of ten percent. The work of Chen et al. [19] 
is noteworthy as they conducted similar assessments on HTC as well. In 
general, with regard to micro-finned tubes, the literature is rich in 
experimental data with various operating conditions, data that are often 
used to evaluate the accuracy of predictive models. However, the 
empirical predictive models are rather unsatisfactory, particularly for 
tubes with smaller diameters, whose flow evaporation mechanism has 
often been reported to experience discrepancies in various experimental 
works [20–23,13]. Regarding predictive methods, ML and DL models 
while thoroughly covered in the context of flow condensation, are scarce 
regarding boiling. Furthermore, despite the impressive precision of such 
models that are commonly experienced in previous works, the incon
venience stemming from either the absence of an expression or the 
presence of an excessively complex one in models remains an unresolved 
aspect. 

To respond to such shortcomings, in the following work, by 
garnering 1358 experimental data points for micro finned tubes having 
outer diameters (OD) of 3, 4, 5, and 7 mm from the Laboratory of Heat 
Transfer in MicroGeometries at the University of Padova, three empir
ical, two machine learning non-convex optimizations and two artificial 
neural network models were assessed and following contributions were 
made:  

1. The empirical correlations of HTC were improved to account for the 
effect of fin geometry in small micro finned tubes.  

2. With the help of a differential evolution optimization algorithm, for 
the first time, an explicit formula was derived for the prediction of 
HTC and FPD.  

3. The non-convex optimization possesses an imperative potential by 
which the magnitude and interrelations between the input features 
and the outcome can be defined on an a priori basis, assisting in 
directing the optimization process in the right path that leads to the 
discovery of actual underlying thermo-physical phenomena.  

4. Two models with outstanding accuracies were provided by artificial 
neural networks for the prediction of HTC and FPD.  

5. The machine and deep learning models are further trustworthy as a 
result of a more improved learning process that is achieved by 
feeding a homogenous database in which experimental uncertainties 
are similar, methods of HTC evaluation are identical, and the same 
experimental facility is utilized for the tests. 

It is worth noting that all experimental tests were mostly performed 
with low global warming potential (GWP) refrigerants for which high 
demand is expected as regulations [24] are already in place regarding 
the decommissioning of currently deployed ones. 

2. Modelling 

2.1. Database 

1358 measured heat transfer coefficients (relative to flow inside the 
horizontal tube) and frictional pressure drop per unit length values were 
imported from references that can be found in Table 1, alongside 
experimental conditions and their experimental uncertainty that is 
evaluated based on the method of Kline and McClintock [25]. Every 
single datum is an averaged value considering vapor quality differences 
(inlet-outlet of test section) between 0.03 (low heat flux and high mass 
flux) and 0.4 (high heat flux and low mass flux). The definition of HF 
(heat flux), G mass flux is given by Eqs. (1) and 2. 

HF = q̇/(πDLHT) (1) 

Table 1 
Composition of database. HF is expressed in [kW m–2], G in [kg m–2 s–1].  

Database Operating 
Conditions 

Experimental 
Uncertainty 
(mean) 

Refrigerants Geometry* 

Liu et al. 
[26] 

HF=10–50  

G=50–400  

Tsat=30 ◦C 
x = 0.1–0.99 

iHF=±2.2 % 
iHTC=±4.1 % 
ix=±0.028 
iFPD=5.2 % 

R515B 
R1234ze(E) 

7 mm OD 
6.14 mm 
ID 
N = 50 
h = 0.18 
mm 
β=18◦

α=42◦

AR=0.02 

Fig. A2 & 
[27] 

HF=10–60  

G=100–600  

Tsat=30–40 ◦C 

iHF=±3.2 % 
iHTC=±4.8 % 
ix=±0.027 
iFPD=4.5 % 

R515B 
R1234ze(E) 

5 mm OD 
4.28 mm 
ID 
n = 54 
h = 0.15 
mm 
β=30◦

α=12◦

AR=0.035 
Diani and 

Rossetto 
[28] 

HF=10–50  

G=150–800  

Tsat=20 ◦C 
x = 0.1–0.99 

iHTC=±3.7 % 
ix=±0.028 

R513A 4 mm OD 
3.4 mm ID 
n = 40 
h = 0.12 
mm 
β=18◦

α=43◦

AR=0.035 
Diani et al. 

[21] 
HF=10–50  

G=190–940  

Tsat=30 ◦C 
x = 0.1–0.99 

iHTC=±3.7 % 
ix=±0.026 

R1234yf 4 mm OD 
3.4 mm ID 
n = 40 
h = 0.12 
mm 
β=18◦

α=43◦

AR=0.035 
Diani et al. 

[13] 
HF=10–50  

G=190–940  

Tsat=30 ◦C 
x = 0.2–0.99 

iHTC=±2.7 % 
ix=±0.032 

R1234ze(E) 4 mm OD 
3.4 mm ID 
n = 40 
h = 0.12 
mm 
β=18◦

α=43◦

AR=0.035 
Diani et al. 

[21] 
HF=10–50  

G=190–755  

Tsat=30 ◦C 
x = 0.2–0.99 

iHTC=±2.5 % R134a 4 mm OD 
3.4 mm ID 
n = 40 
h = 0.12 
mm 
β=18◦

α=43◦

AR=0.035 
Diani et al. 

[20] 
HF=10–50  

G=375–940  

Tsat=30 ◦C 
x = 0.2–0.95 

iHTC=±1.8 % 
ix=±0.027 

R1234yf 3 mm OD 
2.4 mm ID 
n = 40 
h = 0.12 
mm 
β=7◦

α=42◦

AR=0.05 
Diani et al. 

[22] 
HF=10–50  

G=375–940  

Tsat=30 ◦C 
x = 0.2–0.95 

iHTC=±2.3 % 
ix=±0.024 

R1234ze(E) 3 mm OD 
2.4 mm ID 
n = 40 
h = 0.12 
mm 
β=7◦

α=42◦

AR=0.05 
Diani et al. 

[29] 
HF=12–60  

G=360–940  

Tsat=30 ◦C 
x = 0.2–0.95 

iHTC=±2.3 % 
ix=±0.024 

R134a 3 mm OD 
2.4 mm ID 
n = 40 
h = 0.12 
mm 
β=7◦

(continued on next page) 
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q̇˙ as the heat flow rate, D as the diameter that is evaluated based on the 
distance between the fin tips, and LHT as the heat transfer length. 

G = 4ṁ
/(

πD2) (2)  

ṁ˙ as the mass flow rate. 
As can be seen, a selection of pure HFOs and azeotropic mixtures of 

HFOs/HFCs with considerably low values of GWP are present in the 
experimental dataset. The experimental campaigns were all conducted 
at the Laboratory of Heat Transfer in MicroGeometries at the University 
of Padova. To provide a clear presentation of geometrical parameters 
namely helix angle (β), apex angle (α), fin height (h), and number of fins 
per tube circumference (n), Fig. 1 is given. The dimensionless numbers 
associated with each data point are evaluated and implemented for the 
construction of empirical and ML and DL models. The definition of such 
dimensionless numbers can be found in Table 2. 

One consideration to which attention should be given in the assess
ment of Table 2, is regarding pressure gradients that have not been 
completely reported in all published sources, and therefore further in
formation regarding the evaluation of the frictional pressure gradient 
component is given in Table A1. Moreover, it is important to note that, 
due to high experimental uncertainty, experimental points with satu
ration and wall temperature differences below 0.7 K have been ruled out 
from consideration in predictive models. The same applies to frictional 
pressure drop per unit length measurements with corresponding two- 
phase multiplier below 3 due to inherent difficulty in evaluating low 
values of pressure drop by differential pressure transducers at a 
reasonably high accuracy. Since the models developed and tested are 

adequate for conditions where the dry-out phenomenon does not take 
place, data points after dry-out are also excluded from the database. 

Fig. 2 is provided to further indicate the number of data points in 
each subcategory. As depicted, the data are evenly distributed between 
the type of geometries and refrigerants while reduced pressure points 
are mainly concentrated on the value of 0.16. 

2.2. Empirical models and flow boiling mechanism 

Flow vaporization inside tubes is commonly posited to depend on 
nucleate boiling and vaporization in two-phase forced convection; the 
sum of the two components gives the overall heat transfer coefficient. 
This assumption is a predicate for the formulation of many correlations 
[14–17,31–33]. Nucleate boiling refers to the formation of vapor bub
bles and their expansion in the vicinity of the heat transfer surface while 
vaporization in two-phase forced convection happens when heat is 
transported by forced convection in the film from the wall to the 
liquid-vapor interface where evaporation takes place. One of the first 
attempts to model this mechanism was the correlation by Chen [34], 
using the equation of Forster and Zuber [35] for nucleate boiling. 
Several predictive models published later were mostly based on the 
same assumption of the summation of two components. For instance, 
Wellsandt et al. [32] in pursuit of defining a heat transfer model for 
herringbone finned tubes, proposed a modification to the convective 
boiling component to include area enlargement and turbulence inducive 
effect of fins. The focus of the current work is helical micro-finned tubes 
whose geometrical orientation results in significantly particular heat 
transfer and even frictional pressure drop mechanism compared to that 
of herringbone [32,36]. Several authors attempted to empirically 
modify the two aforementioned components. Hereby three HTC models 
that were centered over micro-finned tubes are considered for analysis. 
It should be acknowledged that all models considered in the current 
work apply to pre-dry-out regions. 

Tang and Li [15] compiled 2221 data points covering a vast variety 
of operating conditions, geometries, and refrigerants. The database 
included mass fluxes in the range of 47–835 kg m− 2 s− 1, heat fluxes 
between 3.9–85.2 kW m− 2, and tube diameters (based on fin root) from 
2.6 to 11.98 mm. There is a considerably wide range of reduced pres
sures (0.05–0.61) in the dataset, which could be interpreted as a valu
able advantage that helps to extend the predictive applicability of the 
model, since studies have recurrently shown reduced pressure’s impact 
on nucleate boiling [37,38]. Essentially, the model is a modification of 
Cavallini et al. [33] as two alterations are imposed on convective and 
nucleate boiling expressions. The most noticeable aspect of the new 
correlation is where authors contend that as the tube diameter becomes 

Table 1 (continued ) 

Database Operating 
Conditions 

Experimental 
Uncertainty 
(mean) 

Refrigerants Geometry* 

α=42◦

AR=0.05 
Diani et al. 

[30] 
HF=12–60  

G=200–800  

Tsat=20 ◦C 
x = 0.1–0.99 

iHTC=±2.3 % 
ix=±0.024 

R513A 3 mm OD 
2.4 mm ID 
n = 40 
h = 0.12 
mm 
β=7◦

α=42◦

AR=0.05  

* AR = ID/h.

Fig. 1. Pictorial representation of geometrical features.  

Table 2 
Dimensionless parameters.  

Parameter Expression 

Boiling number, Bo HF/(G ⋅hLV)

Bond number, Bond (g⋅ρL⋅h⋅π⋅D)/(8⋅σ⋅n)
Confinement number, Co ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅σ

g(ρL − ρv)

√

/D 

Martinelli parameter, Xtt ( 1 − x
x

)0.9(ρv
ρL

)0.5(μL
μv

)0.1 

Liquid Reynolds number, ReL G⋅(1 − x)⋅D/μL 
Vapor Reynolds number, Reg G⋅x⋅D/μv 
Liquid Prandtl number, PrL cp,L⋅μL/λL 

Vapor Prandtl number, Prv cp,v⋅μv/λV 

Liquid Weber number, WeLs ρL⋅U2
Ls⋅D/σ 

Vapor Weber number, Wevs ρv⋅U2
vs⋅D/σ 

Liquid Froude number, FrL G2⋅(1 − x)2/(ρ2
L ⋅g⋅D)

Vapor Froude number, Frv G2⋅x2/ (ρ2
v ⋅g⋅D)

Area enhancement, Rx (2h⋅ng⋅
(
1 − sin

( α
2

))

π⋅D⋅cos
( α
2

)
+ 1

)

/cos(β)

Dimensionless gas velocity, JG G⋅x/(g⋅D⋅ρv(ρL − ρv))
0.5  
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smaller, the presence of nucleate boiling components becomes diminu
tive to the degree of becoming negligible. Such postulation stems from 
the more robust nucleate suppression effect of tubes with smaller inner 
diameters as a result of a larger surface-to-volume ratio which results in 
significantly more predominant shear-stress force, mainly enhancing 
convective rather than nucleate boiling type. In evaluating the experi
mental results, the authors chose a threshold of 8 mm to consider this 
effect. 

Diani et al. [13] developed their model on flow boiling experiments 
conducted on R1234ze(E) inside a micro-finned tube having an inner 
diameter of 3.4 mm. Their model similarly is a further improvement of 
Cavallini et al. [33] and advised to be applied to a tube of 3.4 mm ID 
between mass fluxes of 100–940 kg m− 2 s− 1. Compared to the above
mentioned model [15], the nucleate boiling expression is rather atten
uated, and different considerations are made for convective boiling. 

Mehendale [16] by analyzing 2622 datapoints from a diverse back
ground including pure and mixtures of HydroFluoroOlefins (HFOs) and 
HydroFluoroCarbons (HFCs), and CO2, implemented a novel approach 
for the construction of an empirical model of the HTC. Such method is 
rather particularly exclusive as it does not follow the frequently adopted 
physical hypothesis of summation of nucleate and two-phase forced 
convection vaporization and possesses a rather influential mathematical 
aspect. In this case, the author argues that all dimensionless parameters 
that include physical, thermophysical features that are attested to 

impact the two-phase heat transfer coefficient inside micro-finned tubes 
by the literature, can all be considered to have a power function relation 
with the Nusselt number. Subsequently, the author proceeds to under
score 11 dimensionless parameters out of 38, as the most impactful ones 
with which a power function correlation with the Nusselt number is 
defined throughout the fitting process with the help of the database. The 
method by which the 11 parameters are identified is predicated on 
multitudinous steps in which the parameters with the lowest sum of 
errors are derived one by one. 

The equations of enumerated models are provided in Table 3. 

2.3. Model improvement considerations 

As evident in the models presented in the last section, boiling inside 
helical micro-finned tubes has been posited to possess unique charac
teristics compared to smooth tubes. While models are strictly empiri
cally built, flow boiling mechanisms were considered in the 
modification and adaptation of the general models. Knowledge of flow 
patterns greatly assists in the development of accurate models as the 
prevailing flow pattern is ultimately the decisive factor in heat transfer 
mechanisms. One study by [39] dedicated to flow visualization of 
evaporation inside helical micro-finned tubes, sheds light on the effect of 
fins. As visualizations attested, the helical grooves, in which the liquid 
phase flows due to surface tension forces, allow a more even distribution 

Fig. 2. Subcategorization of data points.  
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of liquid thickness along the circumference, facilitating the transition to 
annular flow patterns compared to smooth surfaces. Harboring a place 
for nucleation is also another function of finned surfaces that have been 
observed [40]. Lastly, the increase in heat transfer area is another aspect 

that directly contributes to the augmentation effect. Overall, finned 
surfaces bilaterally affect nucleate and convective boiling, however, it 
must be noted that the performance of the micro-finned tube is highly a 
function of operating conditions. For instance, in works of [40–43], it 

Table 3 
Correlations under consideration.  

Model Correlation 

Tang and Li [15] h = hnb + hcb 

hcb = (λL / Dr)Nucv.p⋅R1.62
x (Bond⋅Frv)

t
(0.01 / Dr)

0.16
(100 / G)0.17 

if G < 500 kg m− 2 s− 1, t = − 0.1  
if G > 500 kg m− 2 s− 1, t = − 0.18 
Nucv.p = [(1 − x) + 2.63x(ρL/ρv)

0.5
]
0.8

(0.023 Re0.8
Lo Pr1/3

L )

hnb = 55P0.12
red ( − log10 Pred)

− 0.55M− 0.5HF0.67
eq S 

if Dr ≥ 8 mm, HFeq = HF 
if Dr < 8 mm and HF > HFonb, HFeq = HF − HFonb 

if Dr < 8 mm and HF < HFonb, HFeq = 0 

HFonb =
2σ⋅Tsat ⋅hcb

rcrit ⋅ρv⋅hLV 

rcrit = 0.38 ⋅ 10− 6 

S = 1.36X0.36
tt 

Diani et al. [13] h = hnb + hcb 

hcb = 1.465 HTCLO [1 + 1.128 x0.8170(ρL / ρv)
0.3685

(μL / μv)
0.2363

(1 − μv / μL)
2.144Pr− 0.1

L ]Rx
2.14(Bond⋅Fr)− 0.15

(100 / G)0.36 

HTCLO = 0.023 (λL / Di)Re0.8
Lo Pr1/3

L 
hnb = 0.473 HTCCooper S 
S = 1.36X0.36

tt 

HTCCooper = 55P0.12
red ( − log10 Pred)

− 0.55MM− 0.5HF0.67 

Mehendale [16] NuMehendale = 0.03771(π1.459
34 ) (π− 1.139

35 ) (π0.6214
1 ) (π0.2249

26 ) (π0.2253
7 ) (π− 0.1209

15 ) (π− 0.6149
24 ) (π− 0.04878

21 ) (π1.661
6 ) (π− 0.04224

8 ) (π0.1121
33 )

π34 =
HF⋅Dr

hLV⋅μL 

π35 =
HF

(h1.5
LV ) (ρL − ρg)

π1 =
(2h⋅n)
(π Dr)

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

cos2(β)
+ tan2

(α
2

)
√

− tan
( α
2

))
+ 1 

π24 =
ρg⋅σ⋅Dr

μ2
v 

π26 =
Dr⋅G2⋅x2

ρv⋅σ 

π7 =
1 − x

x 

π21 =
G2 ⋅Dr

ρL⋅σ 

π6 =
ρL − ρg

ρl 

π8 =
MM

2.016 

π33 =
9.81(ρL − ρg)⋅h⋅Dr

σ⋅n 
if ReL < 2300 
π15 = 4.364 
if ReL > 2300 

A =
(

2.457⋅log
( ReL

7

)0.9)16 

B =
(37530

ReL

)16 

fL = 8
(( 8

ReL

)12
+

1
(A + B)1.5

)
1
12 

π15 =
(fL/8)⋅(ReL − 1000) PrL

(
1 + 12.7

(fL
8

)0.5
(PrL2/3 − 1)

)

*HF = q/(π⋅D⋅L)

Fig. 3. Possible conditions present during the interaction between two-phase flow and fins.  
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has been argued that if liquid thickness becomes relatively smaller than 
fin height (as depicted in Fig. 3-a), the augmentation effect of 
micro-finned is attenuated and, if the liquid thickness is relatively higher 
than fin height (depicted in Fig. 3-c), the turbulence inducing effect of 
fins is diminished, rendering augmentation effects degraded. The au
thors further argue that the optimum design of a micro-finned tube 
should be such that the fin height and liquid thickness are comparable 
(depicted in Fig. 3-b) for most operating conditions. Having set forth 
these results regarding the influence of the fins, some caution must be 
taken in generalizing assumptions, since the mechanism of heat transfer 
within tubes is also highly dependent on diameter, as can be seen in the 
work of Kandlikar [44], in which the relative robustness of the various 

forces involved in two-phase flow was analyzed. 
Overall, considering all the abovementioned aspects, the following 

dimensionless numbers are monitored within the database, in search of 
possible interrelations that could assist with the improvement of the 
models. 

i. Confinement number (Co) which is commonly adopted by liter
ary works (i.e. [44,45]) to analyze the effect of tube diameter has 
been considered.  

ii. Boiling number Bo, which is widely utilized in the studies of 
boiling, could give insight into whether convective or nucleate 
boiling is the dominant mechanism.  

iii. Weber number based on superficial vapor velocity Wevs, which 
evaluates the magnitude of shear stress forces.  

iv. The ratio of liquid thickness to fin height (F) clarifies whether the 
fins are pre-dried, flooded, or under optimum conditions where 
the augmentation effect is the highest. Liquid thickness is calcu
lated according to the method of Axelsson and Rouhani [46]. 

F = h/δL (3)  

δL = D (1 − ε)/4 (4)     

2.4. Differential evolution modeling 

Heat transfer coefficient and pressure drop have been commonly 
associated with the Nusselt number and two-phase multiplier as follows: 

Nu = HTC⋅Di/λL (6)  

∅2
Lo = FPD

/
2⋅fLo⋅G2⋅L

Di⋅ρL
(7)  

where fLo is the friction factor that is either evaluated with the help of 
the Moody chart. 

In this case, the learning process is devised in a way that the rela
tionship between the two dimensionless numbers (Nu, ∅2

Lo) and the 
features are found. Such features are dimensionless numbers frequently 
implemented in flow boiling research over the course of the last two 
decades. The definition of these parameters was given in the afore
mentioned equations. 

The explicit formula representing the relationship between the 
output (Nu – ∅2

Lo) and the features are given in the form of a power 
function. For both outputs, this power function is in the following form:  

with p1, p2, …, p14 the coefficients to optimize such that Nupred is related 
meaningfully with the input features (respectively p1’, p2’, …, p14’ for 
∅2

Lopred
). We could directly optimize these coefficients to find a relation

ship. On the other hand, it is also possible to use prior knowledge to 
confine the coefficients (p1, p2, …, p14 and p1’, p2’, …, p14’) to be opti
mized regarding a specific range of values, to confine them to be solely 
positive or negative, as they are power factors. 

Such definitions can be found in Table 4 for both HTC and FPD an
alyses. By assessing Table 4, it can be grasped that several features, 
whose relation to the corresponding output is not firmly established, are 
set to be decided by the machine learning model without limitation. 
Several other features are set to have either negative or positive power 
functions which are based upon multiple empirical evidence. 

When those initial constraints were set, we used a Differential Evo
lution algorithm [47] to optimize this non-convex problem and find the 
optimal coefficients. 80 % of datapoints are reserved for the learning 
process and the remaining 20 % for testing. 

The first step is to define a cost function that will be minimized by the 
algorithm. 

For the sake of brevity, let P = (p1, p2,…, p14) ∈ R14 be the vector of 
features associated with Nusselt number. Let n be the number of samples 
(i.e. the number of experimental observations). A specific sample 
(experimental observation) will be noted Nuexpi associated with its 

features (Xtt,i, Rel,i, Reg,i, WeLs,i, etc.…) with i ∈ [1,n]. We define our cost 
function c in the following way: 

c(P) =
1
n
∑n

i=1

⃒
⃒Nupredi − Nuexpi

⃒
⃒ (10)  

with Nupredi defined on Eq. (8) and Nuexpi being the experimental 
observation associated. In other words, for each Nuexpi obtained exper
imentally, we compare it with the prediction from our power function 
parametrized by the coefficients p1,p2,…,p14, namely Nupredi . In the end, 
we mean all those comparisons to get the final cost associated with the 
current states of the parameter. 

When the cost function c has been properly defined, we aim to 

ε = (x / ρv)

[

(1+0.12 (1 − x))
(

x
ρv

+
(1 − x)

ρL

)

+
1.18(1 − x) (g⋅σ(ρL − ρv))

0.25

G ρ0.5
L

]

(5)   

Nupred = Rp1
x ⋅Xp2

tt ⋅Rep3
g ⋅Rep4

L ⋅Prp5
L ⋅Prp6

v ⋅Wep7
Ls ⋅Wep8

Vs⋅Frp9
L ⋅Frp10

v ⋅Jp11
G ⋅Bop12 ⋅Bondp13 ⋅Pp14

red (8)  

∅2
Lopred

= Rpʹ
1

x ⋅Xpʹ
2

tt ⋅Repʹ
3

g ⋅Repʹ
4

L ⋅Prpʹ
5

L ⋅Prpʹ
6

v ⋅Wepʹ
7

Ls ⋅Wepʹ
8

Vs⋅Frpʹ
9

L ⋅Frpʹ
10

v ⋅Jpʹ
11

G ⋅Bopʹ
12 ⋅Bondpʹ

13 ⋅ Ppʹ
14

red (9)   
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minimize it. In other words, we want to find the vector Pmin ∈ R14 for 
which c is the lowest so that the machine learning model will be as close 
as possible to the reality given by the experimental samples. To do so, we 
proceed as follows: 

This algorithm first generates random vectors P1, P2, …, P20 ∈ R14 

that could be potential solutions to our optimization problems (of 
course, in the beginning, they are far away from the optimal Pmin). Those 
20 vectors will be called our “agents” and all together, they form our 
“population”. After that, the way to find the best feature vector Pmin is 
described below in Algorithm 1. 

A similar procedure is undertaken for the two-phase multiplier and 
the results of both cases are given in Section 3.2. 

2.5. Artificial neural network modeling 

In the previous part, we correlated experimental features to the 
Nusselt number and the two-phase multiplier thanks to a physically 
meaningful power function. Nonetheless, it is possible to obtain better 
predictions through the help of Artificial Neural Networks (ANN). It is 
possible to get a nonlinear relationship between the desired output (in 
our case Nusselt number for example) and the input features (in our case 
Xtt, ReL, Reg, WeLs, etc.…). This non-linear relationship is a function of 
the input features. However, this function is too complex to be explicitly 
given. Therefore, we call fθ the function associated with the ANN, with θ 
the vectors containing the parameters of the ANN to optimize (as for the 

machine learning model, this is an optimization problem). 
Let n be the number of samples (i.e. the number of experimental 

observations). A specific sample (experimental observation) will be 
noted Nuexpi associated with its features (Xtt,i, ReL,i, Reg,i, WeLs,i, …) 
with i ∈ [1, n]. This means in this case, Nupredi = fθ(Xtt,i, ReL,i, Reg,i, 
WeLs,i, …). 

Similar to the Differential Evolution model, we need to define a cost 
function to minimize. We define our cost function c in the following way: 

c(θ) =
1
n
∑n

i=1

(
Nupredi − Nuexpi

)2 (11)  

c(θ) =
1
n
∑n

i=1

(
fθ
(
Xtt,i,ReL,i,Reg,i, WeLs,i,…

)
− Nuexpi

)2 (12) 

After this cost function has been defined, the neural network (asso
ciated with the function fθ) can be built. We opted for a fully connected 
feedforward neural network with 3 hidden layers, and ReLu [48] as an 
activation function. This is commonly called a Multilayer Perceptron 
(MLP). Each hidden layer has 256 neurons. The overview of the archi
tecture can be found in Fig. 4. As said before, θ is the vector of param
eters. The total number of parameters for this ANN is 135,681, which 
explains why it is not possible to give the explicit function. 

Algorithm 1 
Constrained Differential Evolution applied to our data.  

1. Randomly generate 20 vectors P1,P2,…, P20 € R14 (Our populations of Vectors with random coefficients inside) 
2. Set(F = 0.7)(Mutation coefficient) 
3. Set(C = 0.9)(Crossover coefficient) 
4. Set(Niter = 1000)(Number of iterations of the procedure) 
5. while(Niter ∕= 0): 
a. For each(Pi) in (P1,P2,…,P20) do 
i. Let (Pi ∈ R14) be the current candidate 
ii. Set (y ← (0,0,…, 0) ∈ R14) be the concurrent candidate of (Pi) 
iii. Pick randomly three agents (a, b, c) in the population of agents (P1, P2, …, P20)(Differents from (Pi)) 
iv. For (j) in range [1,14]): 
− (r ∼ U(0, 1)) (Generate a random real number between 0 and 1) 

− If (r < C): 
− (y[j] = a[j] + F ⋅ (b[j]-c[j])(In that case, proceed to the mutation) 

Else 
− (y[j] = Pi[j])(Otherwise, no mutation) 
v. If (c(y) < c(Pi))(If the mutated candidate is better than the original one): 
− (Pi ← y)(We substitute it in our population) 
b. (Niter ← Niter − 1) 
6. (Pmin = mini Pi, Ɐi ∈ [1, 20])(At the end of every mutation, we pick the best candidate over the 20)  

Fig. 4. Multilayer perceptron architecture.  

Table 4 
Relations between features and the corresponding output.  

Features Associated 
Coefficient 
(HTC) 

Associated 
Coefficient 
(FPD) 

Coefficient 
sign (HTC) 

Coefficient 
sign (FPD) 

Rx p1 p1
ʹ + +

Xtt p2 p2
ʹ – – 

Rev p3 p3
ʹ +/- +

ReL p4 p4
ʹ +/- +

PrL p5 p5
ʹ + +

Prv p6 p6
ʹ +/- +

WeLs p7 p7
ʹ +/- +

Wevs p8 p8
ʹ + +

FrL p9 p9
ʹ + +/- 

Frv p10 p10
ʹ + +/- 

Jg p11 p11
ʹ + +

Bo p12 p12
ʹ +/- 0 

Bond p13 p13
ʹ +/- – 

Pred p14 p14
ʹ +/- –  
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More precisely, in Fig. 4, there are three layers. The input layer takes 
the 14 features of the experiment features (Xtt,i, ReL,i, Reg,i, WeLs,i, etc. 
…). Then those features go through the hidden layers which are the core 
of the neural network. Each layer has m = 256 neurons. 

More precisely, a neuron works as follows: 

αj
i = ReLU

(
∑256

k=1
θj

ik⋅αj− 1
k + θ

ʹ j
i

)

(13)  

where, 
αj

i is the output of neuron i in later j 
ReLU is the Rectified Linear Unit activation function 
θj

ik is the weight of the connection between neuron i in layer j and 
neuron k in later j-1 

αj− 1
k is the output of neuron k in the previous layer (j-1) 

θ
ʹ j
i is the bias term for neuron i in layer j 

Such that all together weights θj
ik and biases θ

ʹ j
i makes our parameter 

vector θ that we aim to optimize. 
The same procedure is then applied to the two-phase multiplier and 

the results of both cases are given in Section 3.2. 
Similar to the machine learning model 80 % of datapoints were used 

as the learning set and the remaining 20 % as the testing set. 

Fig. 5. Experimental and predicted values for heat transfer coefficient by Diani et al. [13], Mehendale [16], and Tang and Li [15].  

Table 5 
Accuracy of models.  

Model Mean Absolute Deviation 
(MAD)* 

Mean Relative Deviation 
(MRD)** 

Diani et al. [13] 11.66 % 0.13 % 
Mehendale [16] 22.21 % 4.59 % 
Tang and Li [15] 21.54 % − 10.72 %  

* MAD =
[∑n

i=1

⃒
⃒
⃒
HTCmodel − HTCexp

HTCexp

⃒
⃒
⃒
⃒

]

/n.

** MRD =
[∑n

i=1
(HTCmodel − HTCexp)

HTCexp

]

/n.
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3. Results 

3.1. Empirical models for HTC 

The deviation of data points predicted by the three models is 
depicted in Fig. 5. The model of Diani et al. [13] demonstrates the 
highest accuracy, followed by the model of Mehendale [16]. A common 
trait between the models is relatively attenuated accuracies at high 
values of heat transfer coefficient. The mean absolute deviation and 
mean relative deviation of the models are given in Table 5. The only 
model that underestimates the heat transfer coefficients on average is 
the one of Tang and Li [15]. Such underestimations are mostly associ
ated with lower values of the heat transfer coefficient. Since the pre
dictive accuracy of the models can be a function of tube geometry, Fig. 6 
shows the MRD as a function of tube diameter. As is evident, by 
consensus, all models underestimate the HTC for the 5 mm and 3 mm 
outer diameter pipe, while overestimating the HTC for the 4 mm outer 
diameter pipe. It can be contended that peculiar characteristics of the 5 
mm OD tube, such as the relatively high helix angle could contribute to 
such unanimous underestimations. Also the model of Tang and Li [15] 
underestimates the HTC for the largest diameter. 

3.2. Proposed empirical models 

As demonstrated in the last section, the predictive ability of the 
models worsens or improves for tubes of various sizes. 

It was discovered that the model of Tang and Li [15] essentially 
underestimates the nucleate boiling element for the tube of 7 mm OD. 
Their hypothesis which imposed a reduction of nucleate boiling inside 
tubes with diameters lower than 8 mm OD due to suppression effects, is 
revealed to be fairly erroneous. Nucleate boiling is still comparable to 
convective boiling inside the tube of 7 mm OD and excluding the 
nucleate boiling component led to excessive underestimations, thus 
their model has been modified to impose limitations on nucleate boiling 
for diameters smaller than 5 mm OD. Furthermore, in the proposed new 
model, nucleated boiling is assumed to be zero for these tubes. Moni
toring the ratio of liquid thickness to fin height, previously defined as 
(F), led to important results, as the model generally overestimates the 
heat transfer coefficient for values of F less than 0.8, an aspect that was 

previously thought to cause the phenomenon of pre-dryout, which was 
not considered in the construction of empirical models. 

The model of Mehendale [16] mostly overestimates the heat transfer 
coefficients at high heat flux values, exclusively those higher than 30 kW 
m− 2. Moreover, since the model was built on a database that shared a 
limited amount of data for the inner diameters below 3 mm., it un
derestimates HTC at most operating conditions. After running multiple 
fitting attempts while concentrating on the alteration of coefficients 
regarding π34 and π35 as they are both associated with boiling numbers, 
a new model was proposed with an improved accuracy. 

The model of Diani et al. [13], whose prediction is far superior to that 
of the previous two cases, has also undergone modifications. For the 
tube of 7 mm OD at low boiling numbers, which implies a relatively 
higher convective component during boiling, the model mostly un
derestimates the HTC. For low values of (F), which has been previously 
mentioned, the model similarly demonstrates overestimations. 

A common aspect that emerged from the analysis of the models 
concerns the existence of a threshold delimiting the heat transfer 
mechanism that is particular. It has been previously argued that the 
boiling mechanism experiences discrepancies from macro to micro 
sizing for smooth tubes. The authors [49] in the literature review stated 
that the threshold between macro and micro has seen several proposals 
based on the confinement effect. In the current analysis, it has been 
discovered that once the confinement number reaches the value of 0.3 
(almost entirely the data points of 3 mm OD) most models suffer from 
underestimations, as under such conditions the confinement effect alters 
the boiling mechanism where convective boiling component is deemed 
to be higher and more robust compared to the nucleate component, that 
has been suppressed. Almost all models can be ameliorated by intensi
fying the convective component at such conditions. The expressions of 
new models can be found in Table 6. Moreover, the deviation of the data 
points is provided in Fig. 7. The resulting accuracy of the modified 
models is given in the contents of Table 7. 

In addition, Fig. 8 is provided to assess the accuracy of the models 
following the proposed changes. As can be seen, the models of Diani 
et al. [13] and Mehendale [16], demonstrate remarkably low MRD for 
tubes of 3, 4, and 7 mm OD. Another aspect present in the figure is that 
the model of Tang and Li [15] does not experience large un
derestimations after including the nucleate boiling component in the 
tube of 7 mm OD. It is evident that predictions for the tube of 5 mm OD 
are still experiencing high MRD, the reason for which could be traced to 
peculiar geometrical characteristics such as high fin density, and helix 
angle, compared to other cases. It is quite clear that, regardless of at
tempts at improvement, an empirical model is inherently confined to a 
specific operating condition in which it must be implemented. For this 
reason, artificial intelligence models will be explored in the next section 
to see if such limitations are solvable. 

3.3. Differential evolution for HTC and FPD 

Concluding the machine learning method, two models with explicit 
formulas were given (Eq. (14) and (15)). The accuracy of the models on 
the test set is depicted in Fig. 9. To assess the reliance of the model on 
tube geometry, data points are identified with their geometric charac
teristic. From what is evident in the figures, regarding the Nusselt 
number correlation, the model estimates the values mostly within a ±
20 % range of deviation. In addition, one aspect of high importance 
concerning ML is the fact that, as opposed to most empirical models, the 
ML model although influenced, does not severely suffer from higher 
deviations at high values of Nusselt number that correspond to higher 
values of HTC. These large deviations at high HTC values are 

Fig. 6. Mean relative deviations of models for the subcategory of geometry.  
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Table 6 
Newly proposed models.  

Model Correlation 

Tang and Li [15] modified if F < 0.8 
h = 0.95(hnb + hcb)

if F ≥ 0.8 
h = hnb + hcb 

hcb = (λ / Dr)Nucv.pRx
1.62(Bond⋅Frv)

t
(0.01 / Dr)

0.16
(100 / G)0.17 

if G < 500 kg m− 2 s− 1, t = − 0.1 
if G > 500 kg m− 2 s− 1, t = − 0.18 
Nucv.p = [(1 − x) + 2.63x(ρL/ρv)

0.5
]
0.8

(0.023 Re0.795
Lo Pr1/3

L )

hnb = 55P0.12
red (− log10 Pred)

− 0.55M− 0.5HF0.67
eq ⋅S 

if Dr > 5 mm, HFeq = HF 
if Dr ≤ 5 mm, HFeq = 0 

HFonb =
2σ⋅Tsat ⋅hcb

rcrit ⋅ρv⋅hLV 

rcrit = 0.38 ⋅ 10− 6 

S = 1.36X0.36
tt 

Diani et al. [13] modified if F < 0.8 
h = 0.95(hnb + hcb)

if F ≥ 0.8 
h = hnb + hcb 

hcb = 1.465 HTCLO [1 + 1.128 x0.8170(ρL / ρv)
0.3685

(μL / μv)
0.2363

(1 − μv / μL)
2.144Pr− 0.1

L ]Rx
2.14(Bond⋅Fr)− 0.15

(90 / G)0.36 

if Co ≥ 0.3 
HTCLO = 0.0265 (λL / Di)Re0.8

Lo Pr1/3
L 

if Co < 0.15 & Bo ≤ 0.0006 
HTCLO = 0.027 (λL / Di)Re0.8

Lo Pr1/3
L 

0.15 ≤ Co < 0.3 
HTCLO = 0.023 (λL / Di)Re0.8

Lo Pr1/3
L 

hnb = 0.478 HTCCooper ⋅ S 
S = 1.36X0.36

tt 

HTCCooper = 55P0.12
red ( − log10 Pred)

− 0.55M− 0.5HF0.67 

Mehendale [16] modified  
if Co ≥ 0.3 
NuMehendale = 0.03771(π1.355

34 ) (π− 1.149
35 ) (π0.6214

1 ) (π0.2249
26 ) (π0.2253

7 ) (π− 0.1209
15 ) (π− 0.6149

24 ) (π− 0.035
21 ) (π1.661

6 ) (π− 0.04224
8 ) (π0.1121

33 )

if Co < 0.3 
NuMehendale = 0.03771(π1.355

34 )(π− 1.149
35 ) (π0.6214

1 ) (π0.2249
26 ) (π0.2253

7 ) (π− 0.1209
15 ) (π− 0.6149

24 ) (π− 0.075
21 ) (π1.661

6 ) (π− 0.04224
8 ) (π0.1121

33 )

π34 =
HF⋅Dr

hLV⋅μL 

π35 =
HF

h1.5
LV (ρL − ρg)

π1 =
(2h⋅n)
(π ⋅Dr)

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

cos2(β)
+ tan2

(α
2

)
√

− tan
( α
2

))
+ 1 

π24 =
ρg⋅σ⋅Dr

μ2
v 

π21 =
G2 ⋅Dr

ρL⋅σ 

π26 =
Dr⋅G2⋅x2

ρv⋅σ 

π7 =
1 − x

x 
π6 =

ρL − ρg

ρL 

π8 =
MM

2.016 

π33 =
9.81⋅(ρL − ρg)⋅h⋅Dr

σ⋅n 
if ReL < 2300 
π15 = 4.364 
if ReL > 2300 

A =
(

2.457⋅log
( ReL

7

)0.9)16 

B =
(37530

ReL

)16 

fL = 8
(( 8

ReL

)12
+

1
(A + B)1.5

)
1
12 

π15 =
(fL/8)⋅ (ReL − 1000) PrL

(
1 + 12.7

(fL
8

)0.5
(PrL2/3 − 1)

)
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reoccurring within the literature regarding empirical modeling of HTC. 
For high vapor quality and high mass flux, the linearity of the rela
tionship between vapor quality and HTC terminates and this model is 
capable to account for such occurrence. Hereby the ML model, contrary 
to the empirical models provides high accuracy even for high values of 
HTC. Moreover, in contrast to empirical models, ML models do not 
exhibit MAD variability with various diameters, as can be seen from the 
test set in Fig. 9.   

Regarding the two-phase multiplier model, it can be said that there is 
a general tendency to overestimate for most values of frictional pressure 
drop per unit length. It could also be stated that the model is not 
necessarily superior to existing empirical models in open literature, as 
the model of [13] presents better accuracies, thus questioning ML 
models and the prevalence of claims regarding its superiority over 
empirical methods, as it may not always be the case. Lastly, the MAD on 
the testing set for the Nusselt number and the two-phase multiplier is 
10.9 % and 15.8 % respectively. 

3.4. Artificial neural network for HTC and FPD 

The deviations of predictions made by the ANN model are depicted 
in Fig. 10. The MAD recorded for the Nusselt number, and the two-phase 
multiplier are 4.6 % and 4.2 % respectively. In consideration of Fig. 9, it 
can be seen that the predictions do not experience variability in the 
deviations recorded regardless of the value of the Nusselt number and 

Fig. 7. Experimental and predicted values for heat transfer coefficient by improved Diani et al. [13], Mehendale [16], and Tang and Li [15] models.  

Table 7 
Accuracy of improved models.  

Model Mean Absolute Deviation 
(MAD) 

Mean Relative Deviation 
(MRD) 

Diani et al. [13] 10.13 % 0.70 % 
Mehendale [16] 15.24 % − 2.94 % 
Tang and Li [15] 19.22 % − 2.96 %  

Nu = R1.6859
x ⋅X− 0.0923

tt ⋅Re− 0.6191
v ⋅Re1.3197

L ⋅Pr0.8813
L ⋅Pr0.0727

v ⋅We− 0.8181
Ls ⋅We0.2936

Vs ⋅Fr0.1864
L ⋅Fr0.0561

v ⋅J0.0695
G ⋅Bo0.0720⋅Bond0.4033⋅P0.4627

red (14)  

∅2
Lo = R0.3256

x ⋅X− 0.4992
tt ⋅Re0.0054

v ⋅Re0.0075
L ⋅Pr0.9228

L ⋅Pr0.0380
v ⋅We0.0008

Ls ⋅We0.0011
Vs ⋅Fr0.1398

L ⋅Fr− 0.7128
v ⋅J1.1073

G ⋅Bond0.0026⋅P− 1.4885
red (15)   
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the two-phase multiplier. As discussed in the previous section regarding 
the usual inaccuracy of models for high HTC values, higher HTC values 
here are even more excellently predicted compared to the ML model. 
The two-phase multiplier model is by far more accurate than the 
empirical and ML models. It is of high importance to recognize the 
interaction between features and outputs to shed light on the flow 
boiling mechanism. The ANN model predicts the HTC and FPD for all 
tube diameters with almost identical accuracy. However, as discussed, 
the black-box nature of ANN remains an impediment to the attainment 
of explicit correlations. 

4. Discussions 

It is rather evident that each modeling tool has its own merits and 
demerits. The empirical models offer fairly accurate predictions. How
ever, they remain highly susceptible to error under various testing 

conditions. It was corroborated that geometry plays an indispensable 
role in the flow boiling heat transfer mechanism and thus it highly im
pacts the accuracy of models. Therefore, it becomes salient to distin
guish a boundary condition in which the mechanism undergoes 
alterations. In a comparative analysis of the database, it was found that 
models require such boundary conditions to be set based on the 
confinement effect. Such effect was found to be quite fairly identifiable 
by expression of dimensionless confinement number (Co) whose utili
zation greatly assists in improving the accuracy of the predictions for 
those models based on summation of nucleate and convective boiling 
mechanisms as well as the ones built by power functions such as [16]. As 
previously hypothesized, the suppression effect causes the nucleate 
boiling component to become smaller compared to the convective 
component and according to the current assessment, the confinement 
number of 0.3 perfectly captures such phenomena. Most models should 
undergo modifications if the objective is to predict the heat transfer 

Fig. 8. Mean relative deviations of proposed models for the subcategory of geometry.  

Fig. 9. Experimental and predicted values for Nusselt number and two-phase multiplier by ML model on 20 % of the database as a function of tube geometry.  
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coefficient inside micro-finned tubes with confinement numbers close to 
the aforementioned threshold. 

Artificial intelligence models, that are becoming widespread as 
multiple research papers are published [18,50–54], often fail at 
providing an expression that can be adopted without problems in real 
applications. Often such models require a large database on which the 
learning process must conclude before a novel model is built. Further
more, such models offer little to no insight into the interrelations be
tween features and the output. In the current paper, however, such 
aspect was resolved as the novel optimization methodology provided a 
correlation between features and the output in the form of a power 
function. Enforcing pre-established conditions (direct or inverse relation 
of features with the output) on the machine learning model not only led 
to higher accuracies but also resulted in the discovery of the degree of 
interactions between the features and the output. 

As given, artificial neural network models offered exceptional ac
curacies despite their black-box nature in which the interrelations be
tween features and output are opaque. This paper and many other 
examples of the application of ANN models in the field of heat transfer 
unanimously suggest superb accuracy in the adoption of such modeling 
methods. 

Considering the recorded accuracies, it is suggested that the 
improved model of Diani et al. [13] for HTC and two machine and deep 
learning models for both HTC and FPD can be implemented for flow 
boiling inside micro-finned tubes with an applicability range of 3 to 7 
mm OD, prior to the onset of dryout. 

5. Conclusions 

Compiling a flow boiling database comprised of four OD sizes of 
micro-finned tubes allowed a holistic assessment of flow boiling 
modeling. With the aid of such database, accuracies of three empirical 
models, Tang and Li [15], Diani et al. [13], and Mehendale [16], were 
evaluated. Aside from empirical modeling, machine and deep learning 
modeling methods were adopted and the following findings were 
reported:  

1. It has been ascertained that the accuracy of the model of Tang and Li 
[15] and Mehendale [16] is highly dependent on tube diameter, 
where the former model results in the largest deviations for the 
smallest diameter of 3 mm OD (aspect ratio of 0.05). The same de
pendency on geometrical features, in a less pronounced way, applies 

to the model of Diani et al. [13] as well. MAD of the aforementioned 
models on the database was recorded to be 11.66 %, 22.21 %, and 
21.54 % for Diani et al. [13], Mehendale [16], and Tang and Li [15] 
respectively.  

2. To extend the applicability of empirical models to micro-finned tubes 
possessing a diameter of 3 mm OD, the empirical models should be 
modified to account for a more robust convective boiling component 
and an attenuated element of nucleate boiling due to the high sup
pression effect as a result of higher shear stress forces. Modifications 
are imposed for a confinement number of 0.3 or higher. Furthermore, 
monitoring aspects such as liquid thickness to fin height ratio and 
dimensionless parameters of boiling number and Weber number 
were deemed effective in the procedure of improvement of the 
models. The highest attainable accuracy by an empirical model by 
such modification was recorded to be 10.1 %.  

3. For the first time in the context of flow boiling inside micro-finned 
tubes, the interplay between features and output was revealed in a 
machine learning model in the form of a power function correlation 
between dimensionless inputs and corresponding Nusselt number 
and two-phase multiplier. The recorded MADs on the testing set were 
10.9 % and 15.8 % for HTC and FPD respectively.  

4. A similar process was also adopted for Nusselt number and two- 
phase multiplier values by Artificial Neural Network by which su
perb accuracies were recorded. The MAD on the testing set was 
recorded to be 4.58 % and 4.15 % respectively. 

Regarding the estimation of the heat transfer coefficient, even 
through improvement attempts, empirical models fail to provide uni
form accuracy as variation in MAD is experienced for different tube 
diameters (especially that of 5 mm OD). Such aspect is not particularly 
surprising as the dependency of the accuracy of empirical models on test 
sections is experienced throughout the open literature. However, from 
the attained results of ML and DL modeling methods, it has been noticed 
that such dependency on tube geometry is attenuated, leading to the 
realization of the superiority of such modeling method over classical 
empirical modeling. 
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ANNEX 

Table A1 

Table A1 
Evaluation of frictional pressure drop per unit of length.  

Steps Evaluation 

Overall measured pressure gradient 
(

dP
dZ

)

total 

measured by differential pressure transducer 

Calculation of acceleration component* 
(

dP
dZ

)

a 

G2 d
dZ

[
x2

αρv
+

(1 − x)2

(1 − α)ρL

]

Frictional pressure gradient 
(

dP
dZ

)

f  

(
dP
dZ

)

total
−

(
dP
dZ

)

a   

* Void fraction calculated by the model of Rouhani and Axelsson [46]. 

Fig. A2

Fig. A2. HTC as a function of mass flux G [kg m− 2 s− 1] and vapor quality (R1234ze(E) inside 5 mm OD microfin tube).  
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[49] C.B. Tibiriçá, G. Ribatski, Flow boiling in micro-scale channels – Synthesized 
literature review, Internat. J.Refrige. 36 (2013) 301–324, https://doi.org/ 
10.1016/j.ijrefrig.2012.11.019. 

[50] L. Zhou, D. Garg, Y. Qiu, S.M. Kim, I. Mudawar, C.R. Kharangate, Machine learning 
algorithms to predict flow condensation heat transfer coefficient in mini/micro- 
channel utilizing universal data, Int. J. Heat. Mass Transf. 162 (2020) 120351, 
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120351. 

[51] Y. Qiu, D. Garg, L. Zhou, C.R. Kharangate, S.M. Kim, I. Mudawar, An artificial 
neural network model to predict mini/micro-channels saturated flow boiling heat 
transfer coefficient based on universal consolidated data, Int. J. Heat. Mass Transf. 
149 (2020) 119211, https://doi.org/10.1016/j.ijheatmasstransfer.2019.119211. 

[52] M.T. Hughes, B.M. Fronk, S. Garimella, Universal condensation heat transfer and 
pressure drop model and the role of machine learning techniques to improve 
predictive capabilities, Int. J. Heat. Mass Transf. 179 (2021) 121712, https://doi. 
org/10.1016/j.ijheatmasstransfer.2021.121712. 

[53] I. Mudawar, S.J. Darges, V.S. Devahdhanush, Prediction technique for flow boiling 
heat transfer and critical heat flux in both microgravity and Earth gravity via 
artificial neural networks (ANNs), Int. J. Heat. Mass Transf. 220 (2024) 124998, 
https://doi.org/10.1016/j.ijheatmasstransfer.2023.124998. 

[54] E. Efatinasab, N. Irannezhad, M. Rampazzo, et al., Machine and deep learning 
driven models for the design of heat exchangers with micro-finned tubes, Energy AI 
16 (2024) 100370, https://doi.org/10.1016/j.egyai.2024.100370. 

N. Irannezhad et al.                                                                                                                                                                                                                            

https://doi.org/10.1016/j.applthermaleng.2010.10.031
https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.024
https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.024
https://doi.org/10.1016/j.ijrefrig.2014.07.018
https://doi.org/10.1016/j.ijrefrig.2014.07.018
https://doi.org/10.1016/S0017-9310(01)00321-0
https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.066
https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.066
https://doi.org/10.1016/j.ijrefrig.2017.11.017
https://doi.org/10.1016/j.ijrefrig.2017.11.017
https://doi.org/10.1016/j.egyai.2022.100151
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121712
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121712
https://doi.org/10.1016/j.enganabound.2023.03.016
https://doi.org/10.1016/j.enganabound.2023.03.016
https://doi.org/10.1080/01457632.2016.1189260
https://doi.org/10.1080/01457632.2016.1189260
https://doi.org/10.1016/j.expthermflusci.2015.03.019
https://doi.org/10.1016/j.expthermflusci.2015.03.019
https://doi.org/10.1016/j.ijrefrig.2016.06.014
https://doi.org/10.1016/j.applthermaleng.2011.07.026
https://doi.org/10.1016/j.applthermaleng.2011.07.026
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0024
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0024
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0024
https://cir.nii.ac.jp/crid/1572261549103675008.bib?lang=en
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0026
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0026
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0026
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0027
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0027
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0027
https://doi.org/10.1016/j.ijrefrig.2019.07.023
https://doi.org/10.1016/j.ijrefrig.2019.07.023
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0029
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0029
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0029
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0029
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120351
https://doi.org/10.1016/0017-9310(86)90205-X
https://doi.org/10.1016/0017-9310(86)90205-X
https://doi.org/10.1016/j.ijrefrig.2005.01.009
https://doi.org/10.1016/j.ijrefrig.2005.01.009
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0033
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0033
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0033
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0034
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0034
https://doi.org/10.1002/aic.690010425
https://doi.org/10.1016/S0140-7007(99)00037-7
https://doi.org/10.1016/S0017-9310(99)00379-8
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120351
https://doi.org/10.1016/j.ijheatmasstransfer.2019.119211
https://doi.org/10.1016/j.ijheatmasstransfer.2019.119211
https://doi.org/10.1016/j.ijthermalsci.2017.11.019
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0041
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0041
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0041
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0042
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0042
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0042
https://doi.org/10.3390/app14010373
https://doi.org/10.3390/app14010373
https://doi.org/10.1016/j.ijthermalsci.2009.12.016
https://doi.org/10.1016/j.ijthermalsci.2009.12.016
https://doi.org/10.1016/j.icheatmasstransfer.2023.106997
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0046
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0046
https://doi.org/10.1023/A:1008202821328
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0048
http://refhub.elsevier.com/S0017-9310(24)00633-1/sbref0048
https://doi.org/10.1016/j.ijrefrig.2012.11.019
https://doi.org/10.1016/j.ijrefrig.2012.11.019
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120351
https://doi.org/10.1016/j.ijheatmasstransfer.2019.119211
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121712
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121712
https://doi.org/10.1016/j.ijheatmasstransfer.2023.124998
https://doi.org/10.1016/j.egyai.2024.100370

	Comprehensive study of flow boiling modeling inside helical micro-finned tubes: Empirical, non-convex optimization and deep ...
	1 Introduction
	2 Modelling
	2.1 Database
	2.2 Empirical models and flow boiling mechanism
	2.3 Model improvement considerations
	2.4 Differential evolution modeling
	2.5 Artificial neural network modeling

	3 Results
	3.1 Empirical models for HTC
	3.2 Proposed empirical models
	3.3 Differential evolution for HTC and FPD
	3.4 Artificial neural network for HTC and FPD

	4 Discussions
	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	ANNEX
	References


