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ABSTRACT

Existing dynamic saliency prediction models face challenges like in-
efficient spatio-temporal feature integration, ineffective multi-scale
feature extraction, and lacking domain adaptation because of huge
pre-trained backbone networks. In this paper, we propose a two
pathway architecture with effective feature integration of spatial
and temporal domains at multiple scales for video saliency pre-
diction. Frame and optical flow pathways extract features from
video frame and optical flow maps, respectively using a series of
cross-concatenated multi-scale residual (CMR) blocks. We name
this network as two-pathway CMRNet (TP-CMRNet). Every CMR
block follows a feature fusion and attention module for merging fea-
tures from two pathways and guiding the network to weigh salient
regions, respectively. A bi-directional LSTM module is used for
learning the task by looking at previous and next video frames. We
build a simple decoder for feature reconstruction into the final at-
tention map. TP-CMRNet is comprehensively evaluated using three
benchmark datasets: DHF1K, Hollywood-2, and UCF sports. We
observe that our model performs at par with other deep dynamic
models. In particular, we outperform all the other models with a
lesser number of model parameters and lower inference time.

Index Terms— Video saliency, two-pathway network, optical
flow features, model parameters, inference time.

1. INTRODUCTION
Visual saliency prediction computes intra-frame saliency along with
inter-frame motion and temporal information [1]. Unlike image
analysis, video analysis has more challenges since motion and tem-
poral information affect the attention of viewers [2]. Although the
temporal domain brings rich motion information, complex motion
patterns from the background, inconsistent movements among dif-
ferent foreground patterns, and camera motions make video saliency
prediction more difficult [1]. Hence, it is important to effectively
integrate features from multiple domains and scales which has been
a long-time problem for dynamic saliency prediction. Traditional
dynamic models [3, 4] are extensions of static models by just incor-
porating motion features. A multi-stream model with appearance,
motion, and objectness together was proposed by Jiang et al. [5].
Recently, Wang et al. [6] used a CNN-LSTM network incorporated
with supervised static attention mechanism for dynamic saliency
prediction and achieved promising results. Two-stream network
was first proposed in [7] for video action recognition, and in many
spatio-temporal tasks [8]. Attention mechanisms allow the network
focus on important aspects and have shown great successes in com-
puter vision [9]. To summarize, we differ with previous works in
two ways: (1) prior multi-stream models failed to extract multi-scale
features within the operating blocks of the stream but generated fea-
tures at different resolutions using max-pooling operations, and (2)

prior models used huge pre-trained networks which suffer domain
adaptation and did not extract features specific to video saliency.

In this work, we address the above issues with a deep network
that handles inefficient feature integration of spatial and temporal
domains at multiple scales. We propose to build a two-pathway
network that extracts features from video frames and optical flow
maps, and merge them using dense residual cross connections. In
frame (FP) and optical flow (OFP) pathways, we employ an efficient
feature extractor working at multiple scales by sharing information
among them. We proposed this in [10] and use it here for effec-
tive global and local contextual information extraction. The pro-
posed video saliency network is named as Two-Pathway CMRNet
(TP-CMRNet) (Fig. 1) since it has cross-concatenated multi-scale
residual (CMR) block as the building block. A feature fusion mod-
ule follows every CMR block in FP that merges with corresponding
features from OFP. Then, for a better learning, we propose to use an
attention module to focus on salient regions. A bi-directional LSTM
(BD-LSTM) [11] module is used which provides information back
and forth about the sequence. As a whole, following are the major
contributions from our work: (1) Two-pathway network for extract-
ing multi-scale spatio-temporal features from video frames and op-
tical flow information, (2) CMR block for efficient global and local
contextual feature extraction, and (3) End-to-end trainable dynamic
saliency model with less number of parameters and lower inference
time than the existing models.

2. PROPOSED METHODOLOGY

Fig. 1 shows an overview of the proposed TP-CMRNet architecture
based on CMR block [10]. We employ CMR blocks in both the path-
ways to extract multi-scale global and local contextual features with
local residual learning. We also employ dense residual connections
[12] between two pathways for comprehensive feature integration.
To ensure that small movements are not discarded during feature en-
coding, we perform feature fusion [13]. Attention module helps the
network learn to weigh the salient regions and aids in efficient task
learning [14]. A BD-LSTM module allows the network learn both
backward and forward information about the sequence [11]. We use
a simple auto-encoder, before up-sampling the features, for efficient
information transfer into the decoder. Then, we use a couple of con-
volution and sigmoid layers followed by up-sampling layer which
together act as a decoder. We do not use any deconvolution layers in
decoder since CMR block delivers denser features [15].

2.1. Frame and optical flow pathways

For a group of frames {V t}Tt=1, and the corresponding optical flow
maps {F t}Tt=1, FP considers one input frame V t and computes the
frame features at different scales. However, OFP considers a group



of optical flow maps {F t, F t+1, ..., F t+S} from next S consecutive
video frames and generate dynamic features as shown in Fig. 1.

Fig. 1. Our proposed architecture and attention module.

2.1.1. Cross-concatenated multi-scale residual (CMR) block

CMR block [10] extracts efficient global and local contextual multi-
scale features using inter-scale information sharing process. It con-
catenates features from multiple scales followed by a local residual
learning process for better efficiency [16]. Two features at different
scales, T1 and F1 undergo the above process and are passed again
onto convolution layers at next level (Fig. 2). Then, the features T2

and F2 are processed and passed onto a 1×1×32 convolution layer
to reduce the number of parameters [16]. Now, the local residual
learning computes element wise multiplication of the original fea-
ture with the one resulting after 1 × 1 × 32 layer. Down-sampling
operations were used in prior works to reduce computations but it re-
sults in low spatial resolutions. However, removing down-sampling
operations results in reduced receptive field size. In order to trade-off
between the computations and feature spatial resolution, we consider
only two scales in CMR block [17].

We try to tightly incorporate the feature fusion among the two
pathways using dense residual cross connections [12] between their
corresponding features. Considering that FP tends to dominate OFP
during training [2], we fuse the corresponding features Ff and Fo,
respectively as:

Ff ← Ff + Ff ⊙ Fo (1)
where ⊙ represents the Hadamard product. This helps in potentially
preserving the frame features though the corresponding optical flow
features are infinitesimally small. It is similar to information ex-
change across various scales in our CMR block (Fig. 2).

2.1.2. Attention module [18]

The attention mechanism instructs the network to focus on certain
salient features of the input at multiple scales. We adapt an atten-

tion module from [18] for learning the multi-scale fused features
more powerfully. This module is embedded into FP hierarchically
for enhancing multi-scale spatio-temporal salient features. Fig.
1 demonstrates the attention module learning an attention mask
A ∈ [0, 1]W×H to softly weigh the spatio-temporal salient feature
STF ∈ RW×H×C obtained after a feature fusion module in the
frame pathway. A normalized mask is obtained by applying a soft-
max operation for highlighting the prominence of various regions in
the feature. In the same way, we obtain attention masks at different
scales throughout FP with highlighted multi-scale important regions.
The feature fusion after softmax layer handles the cases when the at-
tention module has not been well trained with selectiveness. Hence,
the following identity mapping over feature STF after attention
module is given as:

(STF )c ← (STF )c +A⊙ (STF )c (2)

where c = 1..C represents channels in STF . Eq. 2 also shows
a residual structure for effective learning by avoiding new drastic
changes into the original feature. This is also used as the feature
fusion module in Fig. 1 for merging information from frame and
optical flow pathways.

Fig. 2. (a) Auto-encoder & decoder, (b) CMR block [10].

2.1.3. Bi-directional LSTM, auto-encoder, and decoder

In order to temporally model the sequential data from video frames,
we employ a bi-directional LSTM (BD-LSTM) [11]. It allows the
network to have both the backward and forward information about
the sequence at every time step. From Fig. 1, we see that feature
shape is 28×28×32 after the BD-LSTM module. Now, we propose
to use a simple auto-encoder while we reduce the feature dimensions
as shown in Fig. 2. Since, we aim to obtain a single channel saliency
map at the end, abruptly reducing the number of feature channels re-
sults in information loss [19]. A simple auto-encoder helps in form-
ing a smooth information flow from high dimensional features to low
dimensional ones. In order to build the final saliency map, we use
a simple decoder with a series of convolution and sigmoid activa-
tions. Then, we use a bi-cubic up-sampling layer to make the output
resolution similar to the input for reduced computational cost.



2.1.4. Loss function

We build a loss function with four evaluation metrics measuring the
quality of the computed saliency map ensuring the network learns
saliency effectively. It is given as:

L(S,B,C) = LKL(S,C) + ω1LCC(S,C)

+ ω2LNSS(S,B) + ω3LSIM (S,C) (3)

where S, B, and C represent the predicted saliency map, ground
truth (GT) binary fixation map, and continuous GT saliency map,
respectively. LKL, LCC , LNSS , and LSIM represent the loss terms
derived from KL divergence [20], linear correlation coefficient [21],
normalized scanpath saliency (NSS) [21], and similarity (SIM) [20]
metrics, respectively. Similar to [18], we choose ω1, ω2, and ω3 as
0.2, 0.1, and 0.1, respectively.

3. EXPERIMENTAL EVALUATION

3.1. Datasets

In this work, we use the following three available benchmark video
saliency datasets:

• DHF1K [22] includes 1000 videos with varied motion pat-
terns and diverse contents of 7 main categories. The videos
are split into 600, 100, and 300 for training, validation, and
testing, respectively along with the gaze data of 17 observers.

• Hollywood-2 [23] includes 1707 videos performing 12 dif-
ferent activities. The videos are split into 823 for training,
and 884 for testing along with the gaze data of 19 observers.

• UCF Sports [24] includes 150 videos performing 9 different
sport actions with 103 videos for training, and 47 for testing.

3.2. Implementation details

We implement our network using Keras with Tensorflow back-end.
Our network is trained from scratch and do not use any transfer
learning. We use Adam optimizer [25] with an initial learning rate of
10−4 which is scaled down by a factor of 0.1 after every two epochs.
We choose a video batch size of 1 and a frame batch size of 5 which
means a group of 5 frames are taken from a single video as a training
data batch. As a pre-processing step, we generate optical flow maps
using Flownet 2.0 [26] before training. We consider the training data
of all the three datasets as a whole for our training. We feed a group
of consecutive optical flow maps to OFP when a video frame is fed
to FP. We consider the following evaluation metrics for evaluating
the model performance: AUC Judd (AUC-J) [21], shuffled AUC (s-
AUC) [21], similarity (SIM), linear correlation coefficient (CC), and
normalized scanpath saliency (NSS).

3.3. Model ablation analysis

Varied number of consecutive optical flow maps: Table 1 shows
our ablation analysis results on the test sets of three benchmark
datasets. Ablation results on UCF test-set ensures the robustness
and effectiveness of our TP-CMRNet since sports videos contain
abrupt motions and scene changes. Now, during this particular abla-
tion study, our model is incorporated with feature fusion, attention,
and BD-LSTM modules. By varying the number of optical flow
maps, we find that there is a considerable performance improvement
until 9 consecutive maps and it is not the case after that.
Feature fusion module: We evaluate our model performance by
eliminating the feature fusion modules after every CMR block in FP.

From the previous analysis, we decide to feed 9 consecutive flow
maps into OFP for ablation analysis hereafter. We find a significant
performance deterioration without feature fusion. This is because it
tightly packs the spatial and temporal features from two pathways
and helps even in detecting very small movements in videos.
Attention module: We study our model performance by eliminating
the attention modules after every CMR block in FP, shown in Fig. 1.
The performance is seen to be much better with attention module
since it drives the network to learn weights corresponding to salient
regions more prominently.
Replacing BD-LSTM with Conv. LSTM: We find that BD-LSTM
efficiently learns to predict saliency by observing the information
flow from both directions, as shown in Table. 1. At the end, we
evaluate our model performance incorporating all the best possible
results from the ablation studies and find its optimal performance.

Fig. 3. Qualitative comparison with the SOTA models.

3.4. Comparison with state-of-the-art (SOTA) models

Comprehensive comparison: Table 3 shows that TP-CMRNet is
lighter than every other model by at least 5.1 times. TASED-Net is
found to be the next lighter model with 25 million parameters, while
ours has 4.9 million. Our model takes an average inference time of
0.041 sec for predicting saliency map which is faster than other mod-
els by at least 1.8 times. This happens since our model does not use
any part of the existing heavy deep architectures. In contrast, all the



Table 1. Model ablation analysis on test sets of UCF sports, DHF1K, and Hollywood-2 datasets.
Dataset→

Model ↓
UCF sports test set DHF1K test set Hollywood-2 test set

AUC-J ↑ SIM ↑ s-AUC ↑ CC ↑ NSS ↑ AUC-J ↑ SIM ↑ s-AUC ↑ CC ↑ NSS ↑ AUC-J ↑ SIM ↑ s-AUC ↑ CC ↑ NSS ↑
Impact of choosing varied number of consecutive optical flow maps

3 0.861 0.474 0.727 0.557 2.920 0.862 0.318 0.666 0.423 2.462 0.878 0.505 0.740 0.621 3.248
5 0.872 0.488 0.738 0.568 2.941 0.873 0.332 0.677 0.434 2.483 0.889 0.519 0.751 0.632 3.269
7 0.883 0.499 0.749 0.579 2.962 0.884 0.343 0.686 0.445 2.504 0.900 0.530 0.764 0.643 3.290
9 0.892 0.503 0.755 0.586 2.970 0.892 0.347 0.692 0.452 2.512 0.908 0.533 0.770 0.650 3.298
11 0.894 0.503 0.758 0.580 2.968 0.892 0.349 0.695 0.448 2.510 0.907 0.531 0.767 0.653 3.295

Impact of feature fusion module
w/o feature fusion 0.878 0.493 0.738 0.568 2.948 0.843 0.311 0.625 0.410 2.440 0.859 0.497 0.703 0.608 3.226

Impact of attention module
w/o attention module 0.860 0.480 0.713 0.556 2.923 0.861 0.324 0.650 0.422 2.465 0.877 0.510 0.728 0.620 3.251

Impact of Conv. LSTM (in place of Bi-directional Conv. LSTM)
with Conv. LSTM 0.873 0.484 0.721 0.560 2.930 0.874 0.328 0.658 0.426 2.472 0.89 0.514 0.736 0.624 3.258

Our Model
9 flow maps +

feature fusion +
attention module +

BD-LSTM

0.892 0.503 0.755 0.586 2.970 0.892 0.347 0.692 0.452 2.512 0.908 0.533 0.770 0.650 3.298

Table 2. Quantitative comparison of our model with the SOTA deep video saliency models.
Dataset→
Method ↓

DHF1K Hollywood-2 UCF Sports
AUC-J ↑ SIM ↑ s-AUC↑ CC↑ NSS AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑ AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑

SALICON [27] 0.857 0.232 0.590 0.327 1.901 0.856 0.321 0.711 0.425 2.013 0.848 0.304 0.738 0.375 1.838
OM-CNN [28] 0.856 0.256 0.583 0.344 1.911 0.887 0.356 0.693 0.446 2.313 0.870 0.321 0.691 0.405 2.089
ACL-Net [6] 0.890 0.315 0.601 0.434 2.354 0.913 0.542 0.757 0.623 3.086 0.905 0.496 0.767 0.603 3.200

TASED-Net [29] 0.895 0.361 0.712 0.470 2.558 0.918 0.507 0.768 0.646 3.302 0.899 0.469 0.752 0.582 2.920
STRA-Net [18] 0.895 0.355 0.663 0.458 2.667 0.923 0.536 0.774 0.662 3.478 0.914 0.535 0.790 0.645 3.472

TP-CMRNet (Ours) 0.892 0.347 0.692 0.452 2.512 0.908 0.533 0.770 0.650 3.298 0.892 0.503 0.755 0.586 2.970

other models in Table 3 use either a portion or the whole architecture
from networks like AlexNet, ResNet50, and GoogleNet. Hence, our
model outperforms all the other deep visual saliency models in terms
of parameters and inference time.

Table 3. Comprehensive comparison with the SOTA deep dynamic
saliency models

Model # parameters
(× 106)

Avg. inference time
(per video frame, in sec)

SALICON [27] ∼206 0.88
OM-CNN [28] ∼80 0.13
ACL-Net [6] ∼140 0.19

TASED-Net [29] ∼25 0.21
STRA Net [18] ∼46 0.074

TP-CMRNet (Ours) 4.9 0.041

Quantitative comparison: The quantitative evaluation of TP-
CMRNet (Table 2) highlights the best and second best values of
a metric in bold and underlined forms, respectively. We find that
our model performs at par with others but may not outperform. On
average, our model varies by 3%, 3.8%, 2.8%, 3.8%, and 4% when
compared with the best. This margin is considerably smaller since
our motive is to make it lighter and faster.
Qualitative comparison: Fig. 3 shows a few qualitative results
from three data sets where we provide two video frames of a clip for
demonstration. Though there are varying scales and backgrounds in
DHF1K videos, our network predicts the saliency at par with SOTA
models. We attribute this to the efficient multi-scale feature extract-
ing CMR block and dense residual connection. From Hollywood-2
results, our model even keeps a track of smaller scene objects just
like STRA-Net, whereas others track both moving and salient ob-
jects. This happens since the attention mask weighs features distin-
guishing salient regions more prominently. Even for UCF sports

videos, we observe a comparably good performance though they
contain abrupt motion and diverse content. As a whole, on three
benchmark datasets, we witness a promising performance of our
lighter and faster TP-CMRNet which stands alone without any huge
pre-trained networks.

4. CONCLUSION

In this work, we propose TP-CMRNet, a two-pathway deep model
that efficiently integrates spatial and temporal domain features with
effective multi-scale feature extracting CMR block using dense
residual cross connections. Features from frame and optical flow
pathways are tightly integrated using feature fusion and the at-
tention module guides the network towards learning the salient
region information. A BD-LSTM module after two pathways helps
TP-CMRNet have both the forward and backward sequence infor-
mation for better performance. A simple auto-encoder is used, to
avoid abrupt reduction in feature dimensions and smooth informa-
tion flow. A decoder with a series of convolution with sigmoid
activation and a bi-cubic up-sampling layer reconstructs the final
prediction map. TP-CMRNet is trained on training sets of DHF1K,
Hollywood-2, and UCF sports datasets and evaluated on their test
sets. TP-CMRNet performs comparatively better than a few SOTA
models but may not outperform the best. However, TP-CMRNet
excels in terms of parameters and inference time by outperforming
all the relevant deep dynamic models.
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[20] Tilke Judd, Frédo Durand, and Antonio Torralba, “A bench-
mark of computational models of saliency to predict human
fixations,” 2012.

[21] Marcella Cornia, Lorenzo Baraldi, Giuseppe Serra, and Rita
Cucchiara, “Predicting human eye fixations via an lstm-based
saliency attentive model,” IEEE TIP, vol. 27, no. 10, pp. 5142–
5154, 2018.

[22] Wenguan Wang, Jianbing Shen, Jianwen Xie, Ming-Ming
Cheng, Haibin Ling, and Ali Borji, “Revisiting video saliency
prediction in the deep learning era,” IEEE transactions on pat-
tern analysis and machine intelligence, vol. 43, no. 1, pp. 220–
237, 2019.

[23] Heng Wang and Cordelia Schmid, “Action recognition with
improved trajectories,” in Proceedings of the IEEE interna-
tional conference on computer vision, 2013, pp. 3551–3558.

[24] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah,
“Ucf101: A dataset of 101 human actions classes from videos
in the wild,” arXiv preprint arXiv:1212.0402, 2012.

[25] Diederik P Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” arXiv preprint arXiv:1412.6980,
2014.

[26] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,
Alexey Dosovitskiy, and Thomas Brox, “Flownet 2.0: Evolu-
tion of optical flow estimation with deep networks,” in Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, 2017, pp. 2462–2470.

[27] Xun Huang, Chengyao Shen, Xavier Boix, and Qi Zhao, “Sal-
icon: Reducing the semantic gap in saliency prediction by
adapting deep neural networks,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 262–
270.

[28] Lai Jiang, Mai Xu, and Zulin Wang, “Predicting video saliency
with object-to-motion cnn and two-layer convolutional lstm,”
arXiv preprint arXiv:1709.06316, 2017.

[29] Kyle Min and Jason J Corso, “Tased-net: Temporally-
aggregating spatial encoder-decoder network for video
saliency detection,” in Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 2019, pp. 2394–2403.


