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Turbulent skies have often inspired artists, particularly in the iconic swirls of Vin-19

cent van Gogh’s The Starry Night . For an extended period, debate has raged20

over whether the flow pattern in this masterpiece adheres to Kolmogorov’s theory of21

turbulence. In contrast to previous studies that examined only part of this painting,22

all and only the whirls/eddies in the painting are taken into account in this work,23

following the Richardson-Kolmogorov’s cascade picture of turbulence. Consequently,24

the luminance’s Fourier power spectrum spontaneously exhibits a characteristic −5/325

Kolmogorov-like power-law. This result suggests that van Gogh had a very careful26

observation of real flows, so that not only the sizes of whirls/eddies in The Starry27

Night but also their relative distances and intensity follow the physical law that28

governs turbulent flows. Moreover, a "−1"-like power-law persists in the spectrum29

below the scales of the smallest whirls, hinting at Batchelor-type scalar turbulence30

with a high Schmidt number. Our study thus unveils the hidden turbulence captured31

within The Starry Night .32
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I. INTRODUCTION33

Turbulent flows or flow patterns similar to turbulence are ubiquitous in nature, rang-34

ing from atmospheric and oceanic flows of planetary-scale1 to high-concentration bacteria35

suspensions at micro-scales.2,3 One common feature of these phenomena is the existence of36

abundant swirling structures, which are also well captured by many artists and become key37

elements in their paintings. Examples include The Yellow River Breaches Its Course38

attributed to 13th-century Chinese artist Yuan Ma,4,5 a series of drawings of water flows by39

Leonardo da Vinci in 1500s,1,6–9 The Great Wave off Kanagawa by Katsushika Hoku-40

sai in 1831,10–12 and The Starry Night by Vincent van Gogh in 1890,13–18 to name a few.41

Turbulence-like patterns appearing in these artworks have inspired scientists to examine how42

close these patterns are to real turbulent flows. In this regard, an interesting but unsettled43

debate is whether the swirling structures in van Gogh’s painting The Starry Night satisfy44

classical turbulence theories or not.13,15,16,19
45

To describe turbulent flows, Lewis Fry Richardson 20 advocated a phenomenological pic-46

ture in his seminal work "Weather Prediction by Numerical Process":47

big whirls have little whirls48

that feed on their velocity,49

and little whirls have lesser whirls50

and so on to viscosity.51

This cascade picture has been widely accepted for describing the kinetic energy (i.e., the52

square of velocity) in turbulent flows qualitatively, which is transferred from large-scale to53

small-scale flow structures and known as the forward energy cascade.1,4,21 Later in 1941, A.N.54

Kolmogorov proposed his famous theory of locally homogeneous and isotropic turbulence to55

quantitatively characterize the Richardson’s picture. According to Kolmogorov’s theory,56

the Fourier power spectrum of kinetic energy E(k) in fully-developed turbulence follows a57

scaling law in the so-called inertial range kL ≪ k ≪ kη as,58

E(k) ∝ ϵ2/3k−5/3, (1)59

where ϵ is the mean energy dissipation rate in units of kinetic energy per unit mass and60

unit time; the wavenumber k is the inverse of the length scale, and the subscripts L and61

η indicate the system and the Kolmogorov length scales, respectively.22 This theory, now62
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recognized as the cornerstone in the field of turbulence, is the first theory to provide a63

quantitative prediction of turbulent flows and has been widely verified both experimentally64

and numerically.1,23,24 The reader is referred to recent papers for a review of this topic.4,21
65

Note that to observe Kolmogorov’s −5/3 law, several requirements must be satisfied. An66

important requirement is that there should be a sufficient scale separation, which could be67

characterized by the Reynolds number Re = uL/ν. Here, u is the characteristic flow velocity68

and ν is the kinematic viscosity of the fluid. This general definition of the Re number is often69

interpreted as the ratio between the inertia and the viscosity forces,1,25 so the Kolmogorov’s70

−5/3 law has been treated as one of the most important features of high-Re-number flows71

dominated by inertia forces.1,24,25 Surprisingly, in recent years, turbulence-like phenomena72

have been reported for low-Re-number and even nearly-zero-Re-number flows. These flows73

include the so-called elastic turbulence,26 bacterial turbulence or mesoscale turbulence,2 and74

lithosphere deformation,27 to list a few. In these systems, despite their small Re numbers75

(in the range O(10−24) ≲ Re ≲ O(10−1)), a wide scale separation can be still observed in76

the flow patterns, and thus a turbulence-like scaling behavior emerges. These findings imply77

that even for barely-flowing systems, one may examine their turbulence-like patterns in the78

framework of turbulence theories.79
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FIG. 1. Scalar spectra Eθ(k) for different Schmidt numbers Sc reproduced from the Ref. 28. For

Sc ≫ 1, the so-called Batchelor spectrum Eθ(k) ∝ k−1 is expected to be in the range kη ≪ k ≪ kB,

where kη and kB are the Kolmogorov and the Batchelor wavenumbers, respectively. See the text

for a detailed explanation.
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For art paintings, their patterns can be treated as snapshots of flow fields. However, one80

cannot obtain the kinetic energy information from these patterns. Instead, a more suitable81

quantity to characterize their features is luminance, which is a passive scalar similar as dye82

and temperature that are transported and mixed by the flow, so its spatial distribution is83

highly correlated to the characteristics of the velocity field. Quantitatively, the behavior of a84

passive scalar θ is determined by the Schmidt number Sc = ν/κ, a ratio of the fluid viscosity85

ν to the scalar diffusivity κ.23,25 In terms of turbulent small-scale properties, the Sc number86

can also be expressed using the ratio between the Batchelor wavenumber kB = (ϵ/νκ2)1/487

of the passive scalar and the Kolmogorov wavenumber kη = (ϵ/ν3)1/4 of the velocity field:88

Sc = (kB/kη)
2. Depending on the value of the Sc number, there exist three distinct regimes89

in the Fourier power spectrum of passive scalar Eθ(k) as illustrated in Fig. 1. For Sc = O(1)90

with kB ≃ kη, a scaling behavior similar as the Kolmogorov’s −5/3 law can be expected in91

the inertial-convective subrange kL ≪ k ≪ kη, i.e.,92

Eθ(k) = COCϵθϵ
−1/3k−5/3, (2)93

where COC is the Obukhov-Corrsin constant and ϵθ is the mean scalar dissipation rate. This94

is the so-called Kolmogorov-Obukhov-Corrsin scaling (KOC for short).28–31 For the case with95

Sc ≪ 1, one still expects the −5/3 scaling, but the inertial-convective subrange is shorter96

than that in the KOC case since kB < kη.97

For the case of Sc ≫ 1, Batchelor 32 obtained the following spectrum for the scales beyond98

the inertial-convective subrange,99

Eθ(k) = CBϵθ(ν/ϵ)
1/2k−1 exp

(
−CB(k/kB)

2
)
, k ≫ kη (3)100

where CB is the Batchelor constant. This shows that if kB ≪ k (i.e., in the viscous-diffusive101

subrange), the spectrum follows a rapid exponential decay.28,33 Note that in the viscous-102

convective subrange, i.e., kη ≪ k ≪ kB, an asymptotic power-law is expected,103

Eθ(k) = CBϵθ(ν/ϵ)
1/2k−1, (4)104

Several attempts have been performed to verify the Batchelor’s −1 scaling either experimen-105

tally or numerically and the evidence has become increasingly convincing in recent years.34–43
106

However, due to the the lack of a clear scale separation, it remains challenging to observe107

both the KOC’s −5/3 scaling and the Batchelor’s −1 scaling simultaneously, which requires108
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at least 3∼4 orders of scale separation in experiments or numerical simulations to resolve109

all dynamically relevant scales.28
110

Concerning the The Starry Night examined in the present study, it was painted by111

linseed oil (high fluid viscosity) mixed with stone powder (low scalar diffusivity), implying112

a high Sc number. Therefore, one might be curious about whether the flow pattern in113

this artwork adheres to the Batchelor’s theory of scalar turbulence. Aragón et al. 13 found114

that the increment of the luminance in this painting shows a clear scale invariance, and the115

corresponding probability density functions can be reproduced using the formula obtained116

from the turbulence theory. Beattie and Kriel 15 showed that the Fourier power spectrum of117

the luminance is close to Eθ(k) ∝ k−2 rather than the Kolmogorov −5/3 scaling, which could118

be interpreted using the theory of compressible turbulence. However, Finlay 16 reported119

that the midrange wavenumber spectrum tends to obey a −1 scaling. These results seem120

to contradict each other, partially because their examined areas of the painting were not121

exactly the same, so the spectrum might be contaminated by different elements in the122

painting. Moreover, these studies considered only part of the painting and thus some whirls,123

which are crucial for characterizing the multi-scale feature of turbulence, were excluded in124

their analysis; see Fig. 2 (b).125

In this work, we revisit the controversial issue above by keeping all and only the whirls in126

The Starry Night during the analysis, following the fundamental hypothesis of Richardson-127

Kolmogorov’s cascade picture of turbulence. Both the Fourier power spectrum and the128

second-order structure function of the gray-scale luminance of the painting are analyzed.129

Their scaling behaviors are then compared with the prediction of the Batchelor theory of130

scalar turbulence. The implication of our findings will be discussed.131

II. DATA AND METHOD132

A. High Resolution Version of The Starry Night133

The Starry Night is an oil-on-canvas painting by the Dutch postimpressionist painter134

Vincent van Gogh painted in June 1889. It depicts the view from the east-facing window of135

his asylum room at Saint-Rémy-de-Provence, south of France, just before sunrise, with the136

addition of an imaginary village and flowing sky; see Fig. 2. It has been in the permanent137

6



0

0

5000

5000

10000

10000

15000

15000

20000

20000

25000

25000

x (pixel)

0

5000

10000

15000

20000

y
(p

ix
el

)

(a)

0

0

5000

5000

10000

10000

15000

15000

20000

20000

25000

25000

30000

30000

x (pixel)

0

5000

10000

15000

20000

y
(p

ix
el

)

(1)
(2)

(3)

(4)

(5)

(6)

(7)

(8)
(9)

(10)(11)(12)(13)(14)

(b)

FIG. 2. (Color online) (a) a high-resolution van Gogh’s The Starry Night obtained from

https://artsandculture.google.com with a size 92.1cm × 73.7cm and 30, 000 pixel × 23, 756 pixel.

Visually, the sky seems to be flowing with swirling eddies. (b) Gray version of the The Starry

Night , where the region studied by Finlay 16 is illustrated by a white square. The non-flow part is

masked out manually. The whirls/eddies are recognized by naked eyes.

collection of the Museum of Modern Art in New York City since 1941, acquired through138

the Lillie P. Bliss Bequest. The Starry Night , widely regarded as Vincent van Gogh’s139

magnum opus, is one of the most recognized paintings in western art and can be widely140

found in our daily life; see Fig.D.1 in the Appendix.141

Fig. 2 shows a high-resolution version of The Starry Night provided by Google142

Art Project (https://artsandculture.google.com). It has a size of 92.1cm × 73.7cm and143

30, 000 pixel× 23, 756 pixel, corresponding to a spatial resolution of 30µm/pixel. Fourteen144

eddies (including the moon) of different sizes can be recognized by naked eyes with their145

diameters in the range 4.2 cm ≲ r ≲ 27.6 cm (i.e., 1, 400 pixel ≲ r ≲ 9, 200 pixel); see Tab. I146

in the Appendix. The typical spatial scale of the brushstroke is found to be in the range147

0.09 cm ≲ r ≲ 1.5 cm (i.e., 30 pixel ≲ r ≲ 500 pixel) for the width and 1.2 cm ≲ r ≲ 6 cm148

(i.e, 400 pixel ≲ r ≲ 2, 000 pixel) for the length; see Fig.A.1 in the Appendix.149

Before making the analysis, the original image is converted from the red-green-blue scale150

to the gray-scale using the following formula,151

Y = 0.2125R + 0.7154G+ 0.0721B (5)152
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where R, G, and B represent the intensity for each color channel. The function color.rgb2gray153

from the Python scikit-image package is utilized for this transformation, which can well pre-154

serve the flow structures.44 In addition, the church, mountain, and village are masked out155

to exclude the potential influence of these non-flow-like elements; see Fig. 2 (b). The so-156

obtained gray-scale field is subsequently treated as a passive-scalar field for the following157

analysis.158

B. Methods159

1. Fourier Power Spectrum160

As mentioned in the Introduction, when the flow is turbulent, a power-law behavior is161

expected for the Fourier power spectra of both the velocity and the passive scalar advected by162

the velocity field. Classically, the Fourier power spectrum is estimated using the Fast Fourier163

Transform algorithm, with datasets with a size of the form 2p, where p is an integer. This164

algorithm also requires datasets with no missing values. However, the masked-out data in165

this work, as seen in Fig. 2 (b), have missing parts. In order to overcome these limitations, the166

Fourier power spectrum is estimated via the Wiener-Khinchine theorem here. This theorem167

states that, for the luminance θ (e.g., the gray-scale field Y defined above), its Fourier power168

spectrum Eθ(k) and the autocorrelation function ρθ(r) are a Fourier transform pair, which169

are written as,170

Eθ(k) =

∫
ρθ(r) exp(−j2πkr) dr, ρθ(r) =

∫
Eθ(k) exp(j2πkr) dk, (6)171

where j =
√
−1 is a complex unit; k = 1/r is the wavenumber and r is the distance172

between two points in the physical space. The autocorrelation function is defined as ρθ(r) =173

⟨θ′(x + r)θ′(x)⟩, in which θ′(x) = θ(x) − ⟨θ⟩ is the scalar variation in space and ⟨·⟩ means174

ensemble average. ρθ(r) can be estimated when there are missing data, and in such case an175

additional step is involved to correct the missing data effect; see detail of this algorithm in176

Ref. 45. In case of scale invariance, one expects a power-law behavior of Eθ(k) written as177

below,178

Eθ(k) ∝ k−βθ , (7)179

where βθ > 0 is the scaling exponent that can be determined experimentally or through180

theoretical considerations; for example β = 5/3 for the velocity spectrum of high Reynolds181
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number flows.1,22,46
182

2. Second-order Structure Function183

To characterize the scale invariance in the physical space, the second-order structure-184

function is often used. For luminance θ examined here, this function is written as,185

Sθ2(r) = ⟨∆rθ(x)
2⟩ ∝ rζθ(2) (8)186

where ∆rθ(x) = θ(x+r)−θ(x) is the scalar increment over a distance r; ζθ(2) is the second-187

order scaling exponent if the power-law behavior holds. A scaling relation βθ = 1 + ζθ(2)188

is expected for 1 < βθ < 3.1,46 However, as discussed by Huang et al. 47,48 , due to several189

reasons, for instance, contamination by the energetic large-scale structures (e.g., ramp-cliff190

structures in scalar turbulence31,49), ultraviolet or infrared effects, to name a few, this scaling191

relation is often violated;31,47,48 see more discussion in Ref. 46. Note that when Sc ≫ 1,192

Batchelor’s theory of scalar turbulence predicts a scaling value of βθ = 1, and the power-law193

in Eq. (8) is then violated due to the ultraviolet effect. For this situation, Batchelor’s theory194

predicts a log-law, which is written as,195

Sθ2(r) ∝ αθ ln(r) (9)196

where rB ≪ r ≪ rη and αθ is an unknown parameter. Therefore, instead of the power-law197

in Eq. (8), the log-law in Eq. (9) will be tested in the present study.198

III. RESULTS199

A. Fourier Power Spectrum200

The Fourier power spectra Eθ(k) are estimated along the horizontal (x) and vertical (y)201

directions using the algorithm described in Sec. II B 1. A bin average with 10 points per202

order of wavenumber is performed. Fig. 3 shows the thus-obtained Eθ(k), where a dual203

power-law behavior is visible. As mentioned in Sec. II A, the spatial sizes of the whirls are204

in the range 4.2 cm ≲ r ≲ 27.6 cm (i.e., 1, 400 pixel ≲ r ≲ 9, 200 pixel), we therefore attempt205

power-law fit to the data in this range, following the Richardson-Kolmogorov’s cascade206

picture of turbulence. It is found that power-law behaviors can be well determined in the207
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FIG. 3. (Color online) Experimental Fourier power spectrum Eθ(k), where the black and red

lines indicate the power-law behaviors in the ranges 6.67 × 10−2 cm−1 ≲ k ≲ 2.33 × 10−1 cm−1

(i.e., 2 × 10−4 pixel−1 ≲ k ≲ 7 × 10−4 pixel−1) and 6.67 × 10−1 cm−1 ≲ k ≲ 10 cm−1 (i.e., 2 ×

10−3 pixel−1 ≲ k ≲ 3 × 10−2 pixel−1), respectively. For clarity, the curve Eθ(ky) has been shifted

up by multiplying a factor of 10. The inset shows the compensated curves Eθ(k)k
βθC−1 using the

corresponding scaling exponents βθ and prefactors C to emphasize the power-law behaviors.

wavenumber range 6.67 × 10−2 cm−1 ≲ k ≲ 2.33 × 10−1 cm−1 (i.e., 2 × 10−4 pixel−1 ≲ k ≲208

7 × 10−4 pixel−1), corresponding to the spatial scale in the range 4.3 cm ≲ r ≲ 15 cm (i.e.,209

1, 430 pixel ≲ r ≲ 5, 000 pixel). The scaling exponents are found to be βθx = 1.67 ± 0.13210

and βθy = 1.68 ± 0.19, where the 95% fit confidence is provided by the least squares fit211

algorithm. These values agree well with the one predicted by the KOC theory, since the212

scaling range chosen here satisfies the requirement of the Richardson-Kolmogorov’s cascade213

picture of turbulence, where the whirls/eddies that cover a sufficient scale range are included214

in the analysis.1,20,22,46 This finding implies that the arrangement of the eddy-like formations215

crafted by van Gogh resembles the energy transfer mechanism in real turbulent flows.216

The second power-law behavior is observed in the wavenumber range 6.67× 10−1 cm−1 ≲217

k ≲ 10 cm−1 (i.e., 2 × 10−3 pixel−1 ≲ k ≲ 3 × 10−2 pixel−1), corresponding to the spatial218
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FIG. 4. (Color online) Experimental verification of Eq. (3), where the solid and dashed lines are

least squares fits to the data in the range 6.67 × 10−1 cm−1 ≲ k ≲ 1.33 × 102 cm−1 (i.e., 2 ×

10−3 pixel−1 ≲ k ≲ 4 × 10−1 pixel−1) for Eθ(kx) and Eθ(ky), respectively: (a) a log-log plot to

highlight the power-law behavior Eθ(k) ∼ k−1; (b) a semilog-y plot to highlight the exponential

tail Eθ(k) ∼ exp
(
− (k/kB)

2
)
. For clarity, the curve Eθ(ky) has been shifted up by a multiplying

a factor of 10.

scale in the range 0.1 cm ≲ r ≲ 1.5 cm (i.e., 33 pixel ≲ r ≲ 500 pixel). The measured scaling219

exponents are found to be βθx = 1.04 ± 0.02 and βθy = 1.13 ± 0.02, close to the Batchelor220

−1 scaling. As we discussed in the Introduction, such a scaling is expected to observe in the221

viscous-convective range of scalar turbulence.28,37,50 Notably, the wavenumber range for the222

−1 scaling is in line with that of the brushstroke width, suggesting that the diffusion and223

mixing properties associated with the painting process may result in patterns that resemble224

the diffusion and mixing observed in turbulent flows.225

To highlight the two distinct power-law behaviors, the compensated curves using the226

fitted parameters are shown in Fig. 3 as inset, where clear plateaus are observed. From227

Fig. 3, one can also observe a fast decay of Eθ(k) in the large wavenumber range, motivating228

us to check Eq. (3) predicted by Batchelor.32 To do so, the least squares fit algorithm is229

performed to the curve Eθ(k) in the range 6.67 × 10−1 cm−1 ≲ k ≲ 1.33 × 102 cm−1 (i.e.,230

2×10−3 pixel−1 ≲ k ≲ 4×10−1 pixel−1). Visually, Eq. (3) fits the data well with a Batchelor-231

like parameter kB = 67± 6 cm−1, corresponding to a spatial scale of 0.015 cm (5 pixel); see232

Fig. 4 (a). To highlight the exponential tail Eθ(k) ∼ exp
(
− (k/kB)

2), the results are re-233
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plotted in a semilog-y view; see Fig. 4 (b), which confirms the validation of Eq. (3).234

B. Second-order Structure Function235
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FIG. 5. (Color online) Experimental verification of Eq. (9) in a semilog-x plot, where the solid and

dashed lines are least squares fit to the data in the range 0.003 cm ≲ r ≲ 1.5 cm (i.e., 1 pixel ≲

r ≲ 500 pixel) for Sθ2(rx) and Sθ2(ry), respectively. For display clarity, the curve of Sθ2(ry) has

been shifted up vertically by adding a constant of 0.3. The inset shows the local slope αθ(r) =

d
(
Sθ2(r)/σ

2
θ

)
/ d ln(r), where the horizontal dash line indicates a mean value of αθ = 0.17± 0.03.

As mentioned in Sec. II B 2, the power-law behavior of the second-order structure function236

might be strongly biased due to the presence of the ultraviolet effect (e.g., the observation237

of βθ ≃ 1) in the present study. Therefore, instead of Eq. (8), the log-law in Eq. (9) is238

examined. Fig. 5 shows the estimated second-order structure functions Sθ2(r) normalized by239

the luminance variance of the examined region of the painting. A clear logarithmic law is240

evident in the range 0.003 cm ≲ r ≲ 1.5 cm (i.e., 1 pixel≲ r ≲ 500pixel), with the fitting241

slopes being 0.16±0.01 and 0.18±0.01 for the horizontal and vertical directions, respectively.242

Note that this log-law range is compatible with the range of the brushstroke width. The243
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local slope αθ(r) = d (Sθ2(r)/σ
2
θ) / d ln(r) is also estimated using a finite center difference;244

see the inset in Fig. 5. Generally speaking, αθ(rx) and αθ(ry) have the same evolution trend,245

with a mean value of αθ = 0.17 ± 0.03 in the range mentioned above. Combined with the246

findings in the Fourier power spectrum, it seems that Batchelor’s scalar turbulence theory247

is a good candidate for interpreting the present results phenomenologically.248

IV. DISCUSSIONS249

A. Turbulent Flows in Art Paintings250

Science and art often inspire each other. To what degree the complex physics of natu-251

ral flows can be captured by the patterns in artworks has attracted growing interest from252

the community of fluid dynamics. For example, using a physics-informed deep learning253

framework that is capable of encoding the Navier-Stokes equations into neural networks,254

Raissi, Yazdani, and Karniadakis 7 successfully extracted the velocity and pressure fields255

from Leonardo da Vinci’s painting of turbulent flows. Colagrossi et al. 9 reproduced the256

physics behind one of Leonardo da Vinci’s drawings (i.e., a water jet impacts on a pool257

painted in 1510-1512) by a smoothed particle hydrodynamic model, and concluded that258

Leonardo da Vinci “was able to extract essential phenomena of complex air-water flows and259

accurately describe each flow feature independently of the others, both in his drawings and260

in their accompanying notes”. In fact, Leonardo da Vinci is considered one of the pioneers261

in identifying the characteristic feature of turbulent flows, as evidenced by the multi-scale262

eddies pattern depicted in several of his artworks.5,6,8
263

Concerning The Starry Night painted by Vincent van Gogh, our results show a clear264

evidence of the −5/3 scaling law when all and only the whirls/eddies in the painting are265

included in the analysis. According to the Richardson-Kolmogorov’s cascade picture of266

turbulence, a sufficient number of eddies with a wide distribution of scales should be involved267

to observe the −5/3 scaling; see more examples in the Appendix C. Our present finding thus268

suggests that, not only the size distribution of whirls/eddies in The Starry Night but also269

their relative distance and intensity follow the physical law that governs the behaviors of270

turbulent flows. In other words, Vincent van Gogh had a very careful observation of real271

flows, and the −5/3 scaling observed here is due to this excellent mimic of real flows.272
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B. Estimation of the Reynolds and the Schmidt numbers273

As previously noted, the Richardson-Kolmogorov −5/3 scaling requires a wide range of274

scales, usually associated with high Reynolds number flows. The −5/3 scaling revealed here275

arises from the artist’s representation of real flows, as opposed to the nonlinear interactions276

between multi-scale eddies in hydrodynamic turbulence. Meanwhile, the −1 scaling could277

result from physical processes like diffusion and mixing during painting. According to the278

Batchelor’s theory of scalar turbulence, one should have a stationary flow with the Schmidt279

number Sc ≫ 1 to observe the -1 scaling.32 The former condition is automatically satisfied,280

since the flows during preparing the painting oil and the painting process are slow enough.281

The latter condition is arguably satisfied, as The Starry Night was painted by linseed282

oil (high fluid viscosity) mixed with stone powder (low scalar diffusivity). To check these283

conditions quantitatively, we estimate the Reynolds and the Schmidt numbers as follows.284

As mentioned in Sec. IIA, the length of the brushstroke is in the range 1.2 cm ≲ r ≲285

6 cm. We therefore take the median value, that is L = 3.6 cm, as the characteristic length286

scale. Assuming that the typical time scale for each brushstroke is 1 sec, then the typical287

velocity during the painting is around u ≃ 3.6 cm/s. Therefore, the Reynolds number is288

estimated to be Re = uL/νeff ≃ 19.1 ∝ O(10), where νeff ≃ 6.79× 10−5m2/s is the effective289

kinematic viscosity estimated by the Einstein relation approximately; see AppendixB for290

the estimation in detail.51
291

Note that the Reynolds number can also be expressed as the separation ratio of the292

characteristic scales in turbulent flows,23 i.e.,293

Re ∝
(
LE

ηk

)4/3

(10)294

where LE represents the size of the largest eddy and ηk is the Kolmogorov dissipation295

scale. In the present study, we can estimate the value of LE from the painting, being296

LE ≃ 27.6 cm approximately. For the value of ηk, Fig. 3 shows that the −5/3 scaling and297

the Batchelor-like scaling are observed in the spatial scale ranges 4.3 cm ≲ r ≲ 15 cm298

and 0.1 cm ≲ r ≲ 1.5 cm, respectively; so ηk should lie between 1.5 cm and 4.3 cm. Then299

the Reynolds number estimated from Eq.(10) is in the range 11.9 ≲ Re ≲ 48.6, which is300

also O(10) and consistent with the value estimated above. The Taylor microscale Reynolds301

number can be further calculated using the well-known formula Reλ =
(
20
3
Re

)1/2 23, resulting302

14



in a range 9 ≲ Reλ ≲ 18.303

As for the Schmidt number, its value can be calculated by Sc = (kB/kη)
2 = (ηk/ηB)

2. The304

Batchelor-like scale ηB has been obtained from Fig. 4, which is ηB ≃ 0.015 cm. And since305

1.5 cm ≲ ηk ≲ 4.3 cm as discussed above, the low bound of the Schmidt number is estimated306

to be Sc ≃ (1.5/0.015)2 = O(104). Alternatively, the Schmidt number can be approximated307

by using its original definition: Sc = νeff/κeff = O(1011), where νeff ≃ 6.79 × 10−5m2/s308

and κeff ≃ 3.90 × 10−16m2s are the effective kinematic viscosity and diffusivity coefficient309

estimated using the Einstein relation; refer to Appendix B for details. Both estimation310

methods yield a value of Sc ≫ 1. Therefore, the requirement for Batchelor’s theory of scalar311

turbulence is satisfied.312

C. Batchelor Scalar Turbulence313

As mentioned in the Introduction, the prediction of the Batchelor’s theory of scalar turbu-314

lence is difficult to realize not only in experiments but also in numerical simulations.28 Several315

attempts have been made to verify this theory. For example, Amarouchene and Kellay 38 ob-316

served Batchelor scaling for the thickness fluctuation of fast-flowing soap films. However, to317

fit the experiment spectrum curve, instead of Batchelor’s original proposal k−1 exp
(
− (k/kB)

2),318

an exponential tail is considered, that is, k−1 exp (−k/kB), the form proposed by Kraichnan 52
319

when the fluctuation of the strain is taken into account. Here, we can fit the experimental320

curve using Batchelor’s original proposal, since the basic assumption of his theory of scalar321

turbulence is satisfied.322

Numerically, Clay 50 has examined the asymptotic behavior of the Batchelor’s prediction323

via direct numerical simulations of isotropic turbulence at Reλ ≃ 140 with 4 ≲ Sc ≲ 512.324

It is found that with increasing the Sc number, a wider range of scales is developed in the325

scalar field, resulting in a more pronounced −1 scaling in the Fourier power spectrum Eθ(k).326

In this context, one may anticipate that the Batchelor’s −1 scaling could be attainable at a327

lower Reynolds number with a larger Schmidt number. Indeed, Yeung et al. 37 have observed328

a Batchelor-like scalar spectrum at Reλ ≃ 8 by increasing the Sc number from 64 to 1024,329

which is close to the values of Reλ and Sc numbers estimated in the present study and thus330

provides a support of our finding.331

It is important to highlight two recent notable studies of scalar turbulence.41,43 Iwano et al. 41
332
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conducted a turbulent jet experiment with a Schmidt number Sc ≃ 3, 000 and a Reynolds333

number Reλ ≃ 200. Dye concentration was measured at a fixed point using an optical334

fiber LIF (laser-induced fluorescence) probe with a spatial resolution of 2.8µm. Utiliz-335

ing Taylor’s frozen hypothesis,1,53 the observed six-order magnitude of wavenumber power336

spectra indicated the coexistence of Kolmogorov and Batchelor scalings. However, as337

He, Jin, and Yang 53 noted, the application of Taylor’s frozen hypothesis should be ap-338

proached with caution. Saito, Watanabe, and Gotoh 43 conducted a direct numerical simu-339

lation of the passive scalar under a special setup, where the passive scalar was carried by340

particles in isotropic turbulence to achieve large Schmidt numbers with a Reynolds number341

as high as Reλ ≃ 500. Their Fourier power spectra provided clear evidence of the coexistence342

of Kolmogorov −5/3 scaling and Batchelor −1 scaling over a scale range of one order of343

magnitude for each. Nonetheless, simultaneous observation of Kolmogorov’s −5/3 scaling344

and Batchelor’s −1 scaling through direct experimental measurements in the spatial domain345

remains challenging. The findings of the present study may inspire experimental approaches346

like “painting in turbulent flows” to address this issue in the future.347

V. CONCLUSION348

In summary, we show in this work that when all eddies in the painting is considered349

in the analysis, the turbulence-like statistics can be recovered for the The Starry Night ,350

with a Kolmogorov −5/3 scaling corresponding to the multi-scale eddies represented by the351

painter, and a Batchelor −1 scaling produced by the oil of the painting, corresponding to352

the viscous-convective range. In other words, Vincent van Gogh, as one of the most notable353

post-impressionist painters, had a very careful observation of turbulent flows: he was able354

to reproduce not only the size of whirls/eddies, but also their relative distance and intensity355

in his painting. Furthermore, the full Batchelor spectrum (i.e., Eq. (3)) is found for spatial356

scales below the size of the eddies. This is because during the preparation of the painting357

oil and the drawing process, the characteristic Reynolds number is low and the diffusivity is358

dominant. This is nicely confirmed by the second-order structure function which precisely359

follows the theoretical prediction, showing a log-law. This study thus reveals the hidden360

turbulence in the painting The Starry Night using both Kolmogorov’s and Batchelor’s361

theories.362
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Appendix A: Typical Spatial Scales381

The detection of the scaling range should follow the requirement of turbulence theories,382

that is, there should be enough whirling structures involved in the statistics. Here, we383

manually estimate the typical spatial scale for both visualized whirls and brush strokes.384

1. Spatial Scales of Whirls385

The spatial sizes of fourteen whirls/eddies are estimated by naked eyes. Their diameters,386

locations, and areas are listed in Tab. I. Following Richardson’s picture of turbulent energy387

cascade, the Kolmogorov −5/3 scaling is expected in the range 1, 400 pixel ≲ r ≲ 9, 200 pixel388

(i.e., 4.2 cm ≲ r ≲ 27.6 cm), corresponding to a wavenumber range 1 × 10−4 pixel−1 ≲ k ≲389

7× 10−4 pixel−1 (i.e., 3× 10−2 cm−1 ≲ k ≲ 2× 10−1 cm−1). Two distinct types of structures390

can be visually distinguished. The first type resembles an eddy with a ring-shaped pattern,391

while the other one is spiral in nature; see Fig.A.1.392

2. Spatial Scales of Brushstrokes393

The spatial scales of the brushstrokes are estimated manually with the width and394

length around 30 pixel and 500 pixel (i.e., 0.09 cm ≲ r ≲ 1.5 cm) and around 400 pixel395

and 2, 000 pixel (i.e., 1.2 cm ≲ r ≲ 6 cm), respectively. Fig.A.1 shows an example of three396

typical whirls/eddies. The Batchelor’s −1 scaling law is expected in these ranges.397
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TABLE I. Geometric properties of eddies in The Starry Night manually checked by naked eyes.

The diameters of the whirls/eddies are roughly in the range 1, 400 pixel ∼ 9, 200 pixel (i.e., 4.2 cm ∼

27.6 cm), corresponding to a scale ratio around ≃ 6.6. The Kolmogorov-like −5/3 scaling law is

expected in this range.

No. D (pixel/cm) location x (pixel) location y (pixel) area (pixel2/cm2)

1 1,500/4.5 1,268 12,987 1,767,146/15.9

2 1,900/5.7 3,926 12,320 2,835,287/25.5

3 2,200/6.6 7,015 19,662 3,801,327/34.2

4 1,700/5.1 9,721 15,973 2,269,801/20.4

5 4,100/12.3 10,549 11,114 13,202,543/118.8

6 4,800/14.4 20,998 12,857 18,095,573/162.9

7 9,200/27.6 14,625 15,861 66,476,101/598.3

8 2,600/7.8 21,070 18,235 5,309,292/47.8

9 6,300/18.9 27,113 19,718 31,172,453/280.1

10 2,800/8.4 18,180 21,795 6,157,522/55.4

11 1,400/4.2 12,279 22,129 1,539,380/13.9

12 2,000/6.0 10,230 22,759 3,141,593/28.3

13 1,500/4.5 6,762 23,074 1,767,146/15.9

14 2,800/8.4 3,076 22,722 6,157,522/55.4
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FIG. A.1. (Color online) Typical spatial scales of brushstrokes for the Nos. (5), (7) and (12) eddies

marked in Fig. 2 of the main text. The width (red line) and length (black line) are found roughly

in the range 30 pixel ≲ r ≲ 500 pixel (i.e., 0.09 cm ≲ r ≲ 1.5 cm) and 400 pixel ≲ r ≲ 2, 000 pixel

(i.e., 1.2 cm ≲ r ≲ 6 cm), respectively. The variation of the luminance in this range is thought to

be caused by the preparation of painting oil and diffusion of the solid particles.
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Appendix B: The Effective Kinematic Viscosity and Diffusivity Estimated398

From Kinematic Dynamics399

The Starry Night is an oil-on-canvas painting by Vincent van Gogh in 1889. At that400

time, the painting oil was made of stone powder and linseed oil. Using the classical knowl-401

edge of the thermal dynamics, the effective kinematic viscosity can be roughly estimated as402

follows.403

Concerning stone powder in linseed oil, we can use a model called the Einstein equation404

to estimate its effective kinematic viscosity,54 which is written as,405

µeff = µf(1 + 2.5ϕ), (B1)406

where µeff is the effective dynamic viscosity of the suspension, µf is the dynamic viscosity407

of the fluid, and ϕ is the volume fraction of the particles in the suspension. It is an empir-408

ical relationship that relates the effective viscosity of a suspension to the properties of the409

particles and the fluid. When combining the mass ratio of stone powder and linseed oil as410

1 : 1,55 the effective viscosity is then,411

µeff = µf(1 + 2.5
ρf

ρf + ρs
), (B2)412

Substituting the given dynamic viscosity of linseed oil µf = 0.055Pa · s at the room temper-413

ature, that is T = 293.15K, the density of linseed oil ρf = 0.93 g/cm3, the density of stone414

ρs = 2.5 g/cm3, we get,415

µeff = 1.68µf = 9.24× 10−2 Pa · s, (B3)416

The effective kinematic viscosity is then estimated as,417

νeff =
µeff

ρeff
≃ 6.79× 10−5m2/s, (B4)418

where the effective fluid density is calculated as ρeff ≃ 1360 kg/m3.419

It is important to note that the previously mentioned estimated Reynolds number is420

approximately O(10). Therefore, the Einstein equation condition may not hold. In this421

context, considering the order of the Reynolds number, a more precise effective kinematic422

viscosity does not alter our conclusion.423

Moreover, the diffusion coefficient of a spherical particle in a liquid can be estimated424

using the Stokes-Einstein equation,51 which is written as,425

21



κeff =
kBolT

6πµfr
. (B5)426

Here, kBol = 1.38×10−23m2kgs−2K−1 is the Boltzmann constant; T is the absolute tempera-427

ture; µf is the dynamic viscosity of the liquid; and r is the radius of the spherical particle. We428

estimate here an order of the Schmidt number; therefore, we do not consider a nonspherical429

particle or a mixture of particle sizes where more complex models may be required. Taking430

into account an average particle radius of r = 10µm and a dynamic viscosity of the linseed431

oil at room temperature, that is, µf = 0.055Pa · s, the mass diffusivity of the stone powder432

in the linseed oil can be estimated to be around κeff ≃ 3.90 × 10−16m2/s. Finally, we have433

an estimation of Schmidt number as,434

Sc =
νeff
κeff

≃ 1.74× 1011 = O(1011) (B6)435

This value is above the value of the low bound estimated from Fourier power spectrum. It is436

important to note that the above estimation assumes that the particles are small enough so437

that they do not interact with each other, which may not be the case for more concentrated438

suspensions or for particles with complex shapes.439
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Appendix C: Examination of Additional Images440

In this section, we examine two additional images, respectively, the painting Chain Pier,441

Brighton by John Constable in 1826 and Jupiter Great Red Spot by Voyage 1 on 5 March442

1979. The same analysis as for The Starry Night is performed. The Kolmogorov-like443

−5/3 power spectra are evident since the turbulence-like pattern is well maintained in these444

two images.445

1. Chain Pier, Brighton by John Constable446

(b)(a)

FIG. C.1. (a) Chain Pier, Brighton painted by John Constable in 1827, obtained from

https://www.tate.org.uk. The land and the cloud sky is separated by the red line. (b) Exper-

imental Fourier power spectrum Eθ(k) of Chain Pier, Brighton. The green and purple dashed

lines indicate power-law behaviors in the range 5 × 10−3 pixel−1 ≲ k ≲ 2.5 × 10−2 pixel−1

(i.e., 4.2 × 10−2 cm−1 ≲ k ≲ 2.1 × 10−1 cm−1) and 10−2 pixel−1 ≲ k ≲ 10−1 pixel−1 (i.e.,

8.3 × 10−2 cm−1 ≲ k ≲ 8.3 × 10−1 cm−1) for the data in the horizontal and vertical directions,

respectively. For display clarity, the curve of Eθ(ky) has been shifted up vertically by multiplying a

factor of 10. The red solid and brown dashed lines are compensated curves Eθ(k)k
5/3 to highlight

the −5/3 scaling.

John Constable (11 June 1776 to 31 March 1837) was an English landscape artist associ-447

ated with the Romantic tradition. He is primarily recognized for transforming the landscape448

painting genre. He conducted many observational studies of landscapes and clouds, aim-449
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ing to be more scientific in capturing atmospheric conditions. The impact of his physical450

effects was often evident even in the large-scale paintings he displayed in London. The451

Chain Pier, Brighton is one such painting, completed in 1826 and shown in 1827, in which452

the cloud/sky and beach/land are well separated. Unlike The Starry Night , this paint-453

ing lacks well-defined swirling patterns, but the clouds are rich of structures with different454

scales, resembling those frequently seen in the sky; see Fig. C 1 (a).455

A digital version of Chain Pier, Brighton can be accessed from https://www.tate.org.uk.456

The dimensions of the image are 183 cm × 127 cm, equivalent to 1, 536 pixel × 1, 057 pixel,457

with a spatial resolution of approximately 0.12 cm/pixel. The original image is converted458

to gray-scale and treated as a scalar field. The Fourier power spectrum Eθ(k) for both459

horizontal (x) and vertical (y) directions is then calculated after excluding the land area,460

as shown in Fig. C 1 (a). It is not surprising that the Kolmogorov-like −5/3 spectrum is461

evident in Fig. C 1 (b) for both Eθ(kx) and Eθ(ky), as Constable accurately captured the462

cloud patterns.463

2. Jupiter Great Red Spot by Voyage 1464

The Great Red Spot is a long-lasting high-pressure area in Jupiter’s atmosphere, creat-465

ing the largest anticyclonic storm in the Solar System. It is the most distinctive feature on466

Jupiter, characterized by its red-orange hue. Situated 22 degrees south of Jupiter’s equator,467

it generates wind speeds up to 432 km/h. The Jupiter’s Great Red Spot rotates counter-468

clockwise with a period of approximately 4.5 Earth days with roughly 16, 400 km in width,469

making it 1.3 times the diameter of Earth. The storm has persisted for centuries due to the470

absence of a solid planetary surface to create friction; gas eddies in the atmosphere continue471

for extended periods because there is no resistance to their angular momentum.56
472

A high-resolution image of the Great Red Spot can be found at https://www.planetary.org,473

with dimensions of 7, 400 pixel × 5, 550 pixel and a spatial resolution of approximately474

6 km/pixel. Captured by Voyager 1 on 5 March 1979, the image was taken using a green475

and violet filter mosaic with its narrow angle camera (NAC), covering the majority of the476

Great Red Spot. To highlight various details, the image’s color, contrast, and sharpness477

have been enhanced. It is the highest resolution color data available for Jupiter before the478

Juno mission. A square region with a size of 7, 300 pixel× 5, 050 pixel was cropped from the479
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(b)(a)

FIG. C.2. (a) The Great Red Spot obtained from https://www.planetary.org with a cropped size of

7, 300 pixel×5, 050 pixel. Courtesy of NASA/JPL-Caltech/Björn Jónsson. (b) Experimental Fourier

power spectrum Eθ(k), in which the green and purple dashed lines indicate power-law behaviors in

the range 4× 10−4 pixel−1 ≲ k ≲ 1.5× 10−2 pixel−1 (i.e., 6.7× 10−5 km−1 ≲ k ≲ 2.5× 10−3 km−1)

for the data in horizontal and vertical directions, respectively. For display clarity, the curve of

Eθ(ky) has been shifted vertically by multiplying a factor of 10. The red solid and brown dashed

lines are compensated curves Eθ(k)k
5/3 to highlight the −5/3 scaling.

original by excluding the black edges of original stitched photo; see Fig. C.2 (a). Visually, the480

Great Red Spot shows an ellipse-like pattern approximately with a major axis of 4, 000 pixel481

and a minor axis of 2, 000 pixel, corresponding to 24, 000 km and 12, 000 km. In addition to482

the Great Red Spot, very rich eddy-like structures can be seen, ranging in size from 50 pixel483

to 2, 000 pixel, corresponding to 300 km to 12, 000 km.484

The raw image is converted to gray-scale and considered as a scalar field. The Fourier485

power spectrum Eθ(k) for both the horizontal (x) and vertical (y) directions is depicted in486

Fig. C.2 (b). The Kolmogorov-like −5/3 spectrum is apparent in the range 4×10−4 pixel−1 ≲487

k ≲ 1.5 × 10−2 pixel−1 (i.e., 6.7 × 10−5 km−1 ≲ k ≲ 2.5 × 10−3 km−1) in both horizontal488

and vertical directions. It is important to note that this scaling range aligns well with the489

measured spatial size of the eddy-like structures; see Fig. C.2 (a). Similarly to our obser-490

vations for The Starry Night, both the spatial distribution and the relative intensity of491

these eddy-like structures adhere to the Richardson-Kolmogorov cascade picture. Here, the492

Kolmogorov-like −5/3 spectrum spontaneously emerged due to hydrodynamic interactions493

between different eddies.494
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Appendix D: The Starry Night in Everyday Life495

(e) (f)

(a) (b)

(c) (d)

FIG. D.1. (Color online) Incorporating van Gogh’s The Starry Night into everyday life. (a)

A man with a reproduction of The Starry Night during an exhibition in Pattaya, Thailand.

Photographed by X.L. on 19 February 2018. (b) A picture of The Starry Night adorns the wall

of a kindergarten in Randeng, a small town located in Fengyang County, Anhui Province, China.

Photographed by Y.H. on 7 February 2024. (c) A practice painting of The Starry Night by a

9-year-old girl, Ruoyi Xie on 2 August 2021. Photographed by X.L. in Fuzhou, Fujian Province,

China, on 16 March 2024. (d) An image of a LEGO© jigsaw puzzle depicting The Starry Night .

Photographed by Ms. Xuan Lei in Shenzhen, Guandong Province, China, on 24 March 2024. (e)

The Starry Night graces a family home in Jiuquan, Gansu Province, China. Photographed by

Ms. Xiangying Li, Jiuquan, Gansu Province, China, on 16 March 2024. (f) The Starry Night on

an advertisement board at the Pudong International Airport, Shanghai, China. Photographed by

Mr. Fulian Gan on 7 April 2024.
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The Starry Night frequently appears in our everyday lives. Several instances are illus-496

trated in Fig.D.1. For instance, Fig.D.1 (a) shows an exhibition in Pattaya, Thailand, during497

Ms. X.L.’s visit on 19 February 2018. She captured this image with her husband standing in498

front of the replicated The Starry Night. In Fig.D.1 (b), a reproduced The Starry Night499

decorates the wall of a kindergarten in Randeng, a small town in Fengyang County, Anhui500

Province, China, during Y.H.’s attendance at his niece’s wedding on 7 February 2024. The501

Starry Night is also cherished by children. For example, Fig.D.1 (c) showcases a prac-502

tice piece by a 9-year-old girl, Ms. Ruoyi Xie, on 2 August 2021. Meanwhile, Ms. Xuan503

Lei used a LEGO© jigsaw puzzle version of The Starry Night to embellish her room in504

Shenzhen, Guangdong Province, China; see Fig.D.1 (d). Several thousand kilometers from505

Shenzhen, Ms. Xiangying Li also selected a reproduced The Starry Night to beautify her506

family home in Jiuquan, Gansu Province, China; see Fig.D.1 (e). It is fascinating to ob-507

serve The Starry Night on an advertising board at the Pudong International Airport and508

Hongqiao International Airport, Shanghai, China; see Fig.D.1 (f). This advertisement pro-509

motes the artist Mr. Jesse Woolston’s exhibition in Shanghai, China since the Mid-Autumn510

Festival, 10 September 2022. Mr. Woolston created a series of stunning works inspired511

by The Starry Night and physics, which can be found at https://www.youtube.com and512

https://www.tiktok.com.513

We believe more examples can be found worldwide. We hope that the work showcased514

here will inspire the younger generation to participate in fundamental research, as sparking515

curiosity through captivating artwork is a crucial approach for advancing scientific progress.516

Finally, we would like to quote the words directly from Ref. 18:517

"We argue that although art has no systematic conventions for conveying knowl-518

edge in the way science does, the arts often play an important epistemic role in519

the production and understanding of scientific knowledge. We argue for what we520

call weak scientific cognitivism, the view that the production and distribution of521

scientific knowledge can benefit from engagement with art."522
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