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Abstract—Assessing the quality of 360-degree images based
on individual regions presents a challenging task. The lack of
ground truth opinion scores (MOS) for specific regions makes it
difficult to evaluate image quality accurately. Existing datasets
only provide MOS for entire 360-degree images, which limits
the granularity of assessment. To overcome this challenge, we
propose a novel framework that employs adaptive patch labeling
techniques. We leverage a set of 2D-IQA methods to generate
quality score distributions for each patch in the 360-degree
images. These distributions, combined with the available MOS,
serve as labels for individual patches, providing a more compre-
hensive characterization of patch quality. Furthermore, we use
these labels to adaptively select and refine deep neural features.
By selectively choosing label-specific features, we enhance the
accuracy and effectiveness of patch-based 360-degree image
quality assessment. This approach allows us to focus on the most
relevant and informative features for each patch, resulting in
improved assessment performance. The experimental results on
two benchmark datasets demonstrate that adaptive patch labeling
and feature selection achieve accurate and reliable performances,
thus advancing the field of 360-degree image quality assessment.

Index Terms—360-degree, Image quality assessment, Con-
volutional neural networks, Adaptive Patch labeling, Feature
selection, Multi-regression.

I. INTRODUCTION

The use of immersive media has become tremendously
popular in recent years. Several reasons are behind such
growth, particularly the development of more accessible and
affordable immersive technologies [1f], such as head-mounted
displays (HMDs). As technology continues to improve, more
people have the opportunity to engage with immersive content.
A popular and widely accessible form of immersive content is
360-degree imagery. The proliferation of such content imaging
technology has significantly expanded the possibilities of im-
mersive visual experiences. However, the challenges surround-
ing its acquisition and processing inflict a loss of visual quality,
particularly in compression and transmission. To determine a
reliable and appreciable quality of experience (QoE), image
quality assessment (IQA) can be used to account for visual
quality requirements. Nevertheless, accurately assessing the
quality of 360-degree images poses unique challenges due to
their panoramic nature and distorted projection.

IQA for 360-degree images refers to the process of eval-
vating and quantifying their perceived quality. Due to the

This work is funded by the Nouvelle Aquitaine regional Council under
projects SIMOREVA360 2018-1R50112 and PERCEIVE.

unique characteristics of such images, including their spherical
projection and immersive viewing experience, appropriate IQA
techniques are required to accurately assess their quality. These
techniques should take into account factors such as geometric
distortions, image artifacts, viewing behaviors, and overall
visual fidelity. One way to achieve this is through subjective
assessment, which involves human observers rating the quality
of 360-degree images based on their visual perception. This
approach provides reliable quality evaluations, although it can
be time-consuming and costly. In addition, it is still a unique
process to build datasets and collect data for training, eval-
uating, and benchmarking objective IQA models [2f]. These
models aim to automatically assess image quality without
relying on the opinions collected from human observers, with
the goal of mimicking their visual perception. To achieve
reliable accuracy, the IQA model for 360-degree images is
designed to consider the unique characteristics of the spherical
projection and the specific challenges associated with it.

In the literature, 360-degree IQA models, particularly deep
neural-based ones, use viewports or patches [3]-[10]], since
360-degree images have high resolution (4k+). This implies
that the quality evaluation is carried out on particular portions
rather than the complete image. However, available datasets for
360-degree IQA provide ground truth labels, i.e. mean opinion
scores (MOS), per entire image [11f], [12]. Given this, IQA
solutions require labeling regions, particularly patch-based
ones where each patch is seen as separate content. Although
it appears quite straightforward as a process for various image
processing tasks such as classification, detection, etc., it is
quite challenging for IQA. Since the MOS represents the
global quality of 360-degree images, patch labels should rep-
resent the local quality. In existing methods [4]], [5], [7]], patch
quality is directly inherited from the corresponding image,
generating redundancy among quality labels and assigning the
same MOS for all patches. This may be problematic since
local quality is not always consistent with global quality due
to the high diversity of content within the 360 degrees and
the intricate interactions between content and distortions [[13]].
Moreover, some processing, such as compression, may create
impairments that are inequally distributed over the sphere.
Consequently, the use of MOS as labels for sampled patches
is somewhat questionable. Finding a way to label the patches
that cope with the above drawbacks is important to reaching
reliable results.



Given that deep learning is used in the majority of cur-
rent attempts for 360-degree IQA, input images are encoded
into latent spaces, resulting in deep neural features that are
regressed to quality scores. These features are obtained using
backbones, usually pre-trained convnets such as ResNets [|14].
The features’ encoding is an entrusted task, where the resulting
features are used as they are to derive the quality scores. Still,
the resulting features may contain some noise and irrelevant
information, particularly since the backbones used are trained
for other tasks. Refining these features, by selecting the
most prominent ones according to quality labels, would boost
robustness. This is overlooked in existing approaches for IQA
in general, and 360-degree in particular.

In this paper, we explore efficient ways to train patch-based
360-degree IQA models, with a focus on local quality labeling
and label-specific feature selection. A framework is designed
to leverage deep neural network feature selection and adaptive
patch labeling (APL). First, we introduce the concept of APL
by exploiting the rich state-of-the-art 2D IQA. This technique
involves dividing the 360-degree image into local patches and
assigning quality labels as a quality distribution to each patch
based on its content. Several no-reference 2D IQA models
are used to generate a quality distribution for each patch. By
employing APL, we address the inherent variability in image
quality across different regions of the panoramic scene. Then,
a feature selection is performed on encoded features obtained
using the ResNet-50 model. The selection is conducted using
mFILS [15], an algorithm that adaptively select and refine
the most useful feature sets from encoded features by means
of convenets. To evaluate the proposed study, we collect two
datasets of 360-degree images encompassing various visual
content and quality levels. The proposed study strives to
enhance the accuracy and effectiveness of IQA models for
evaluating the quality of 360-degree content.

II. PROPOSED STUDY

The proposed study focuses on exploring efficient methods
for training patch-based 360-degree IQA models. The key
objectives include local quality labeling and label-specific
feature selection to improve the accuracy.

A. Adaptive patch labeling (APL)

We employed a set of m 2D-IQA models to serve as virtual
observers, simulating the process of subjective experiments
where observers provide their opinion scores. The selected
2D-IQA models, as listed in Table [} represent a diverse range
of state-of-the-art approaches commonly used in the field,
ranging from traditional to deep-learning-based approaches.
By processing patches extracted from 360-degree content
as 2D images, we leverage the extensive knowledge and
advancements in 2D-IQA, allowing us to generate quality
score distributions at patch-level. This approach enables us
to capture the variability and nuances in image quality within
the 360-degree scene, providing a more comprehensive and
accurate representation of the patch quality.

TABLE I: 2D-IQA models for estimation of the quality score
distributions at patch level.

Type Model

Traditional ~NIQE, PIQUE, BRISQUE, BIQAA [16], BLIINDS [17],
CPBD [18]], FADE [19]

Deep DB-CNN [13]], MUSIQ [20], TRES [21], NIMA [22], PaQ-

learning 2-PiQ [23]

The structure of the proposed adaptive patch labeling (APL)
framework is illustrated in Fig. [I] The framework involves the
application of m 2D-IQA models to evaluate and label each
patch P;. This process generates a quality score distribution
(QS D), consisting of m individual scores. The steps involved
in this process can be described as follows:

e Sampling n patches from each 360-degree image I. In
this study, we specifically focused on extracting patches
from the Equirectangular projection (ERP) content of the
image. This choice was made to mitigate the introduction
of any sampling biases that could potentially arise from
alternative patch sampling methods.

« Application of 2D-IQA models, where each P; is fed into
m 2D-IQA models, which individually assess and label
the quality of the patch. Each 2D-IQA model produces a
quality score for F;, resulting in m individual scores.

« Combining the generated labels to form QSD. This
distribution captures the variability in quality provided
by different 2D-IQA models for the given patch P;.
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Fig. 1: Patch sampling and labeling using the adaptive patch
labeling (APL).

By employing the APL, we can capture multiple perspec-
tives on the quality of each patch within the 360-degree image
by objectively generating the (QSDs. In contrast, MOS is
obtained through subjective evaluations by human observers,
where each has explored the scene and based his opinion on
the perceived quality. This means that each portion of the scene
may contribute to the observer’s judgment. Combining QSDs
with MOS allows for a more comprehensive and accurate rep-
resentation of patch quality. Therefore, the label Y; associated
with P; is obtained as:

Y; = {MOSr,norm(QSD;)}, (D

where norm(.) is a normalization function employed to stan-
dardize the elements constituting ).5 D; onto a uniform scale.



B. Features selection

Feature selection plays a crucial role in developing accurate
IQA models by identifying and retaining the most relevant
features. We believe that incorporating adaptive feature se-
lection techniques, specifically designed for refining encoded
features from deep neural networks, can significantly enhance
the accuracy of IQA models. The process of feature selection
involves choosing a subset of features that are highly discrim-
inative and have a significant impact on quality prediction.
In our approach, we consider label-specific feature selection
algorithms, which are particularly effective in scenarios where
each label correlates with the encoded features. We have used
and adapted a generic framework, mFILS [15]], which allows
the tri-selection of features, instances, and labels. mFILS
adaptively selects and refines the most useful feature sets
from the encoded features, eliminating potential noise and
irrelevant information that may hinder the accuracy of the
IQA model. This process is illustrated in Fig. [2| As we are
only interested in feature selection in our context, we have
adapted the mFILS framework for the feature selection task
while taking into consideration the latent semantics of the
multi-label information.

Let X€ RE*P be a set of features representing a dataset
content, and Y € RE*™ their corresponding labels. Here, X
is generated using the ResNet-50 [14] and Y are obtained by
means of the previously describe APL framework. In order to
select the best features, we have to minimize the following

proble
min [XW = V[T + A W], @

where ) is a regularization hyper-parameter, W € RP** with
k << m and m = m + 1, represents the feature coefficient
matrix and V€ RE** is a low-dimensional latent semantics
matrix, which can be obtained by the decomposition of the
label space Y by (3).

. 2
v Y — VBI|; 3)

Once W is learned, the D features can be sorted and selected
according to the /5 ;-norm of the D rows of W.
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Fig. 2: Illustration of features selection according to the
assigned labels using the mFILS [[15] framework.

Y|. || and || . ||2,1 are Frobenius and £2,1 norms respectively.

C. Multi-regression training

In order to estimate a distribution, a multi-regression train-
ing strategy is required. This allows the model to learn a
combined representation of global and local quality by regress-
ing the feature representation X; to Y;. Therefore, features
are fed into a regression block, which consists of two fully
connected layers. A first FC layer with 512 neurons followed
by a Rectified Linear Unit (ReLU) activation function, and a
second one with two m + 1 neurons, where m represents the
elements on QSDs. The architecture of the training strategy
is visualized in Fig. [3] showcasing the regression block.

During training, the regression block is optimized to mini-
mize a loss criterion across the multi-outputs. The L1 loss is
used in this study.

FC (m+1) +

o
FC (512) + ReLU near

Fig. 3: Structure of the used regression block. For each X
associated with P;, multiple outputs are generated, including
predicted MOS and QSD.

D. Quality scores pooling

In a patch-based model for IQA, a quality score pooling
stage is essential to derive a single representative score for the
entire image. In our approach, we adopt a double-stage pooling
process to handle the predicted distributions for each patch.
Firstly, the scores composing the patch pQSD are pooled
together using a pooling function f(.). This pooling operation
combines the individual scores within the pQ.SD to generate
a single score representation. Secondly, the resulting pooled
scores from the pQ S D are added to the predicted pM OS. This
addition takes into account both the aggregated patch-level
quality scores and the overall perception of quality captured by
the pM OS. Finally, a second pooling operation is performed
on the combined scores to obtain the final quality score for
the entire image I. This second pooling consolidates the
information from the pQSD and pMOS into a single score
that represents the overall quality of the image, as illustrated
in Fig. By using this double-stage pooling process, we
effectively combine the patch-level quality information with
the global perception captured by the pM OS, enabling us to
derive a comprehensive and representative quality score for
the 360-degree image.This is achieved as follows:

pMOS; = f(pMOS; + (o x f(pQSD;))) 4)

For this study, we use three pooling strategies, including
average (Avg), Percentile (Perc.) and agreement-based pooling
(AP) [24]. Percentile pooling emphasizes the lowest quality



scores among the set of scores based on a threshold k&, known
as the k—th percentile. Here, K is set to 75%. AP implements
the outlier rejection paradigm, where scores falling outside an
agreement range are discarded, considering only scores that
agree and depict less variability.

pMOS; + (o x f(pQSD;))

¥, (I LT LT T moses+ o051
o LTI pwos. o svasi
S —)

pMOS

pMOS;
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Fig. 4: Quality scores pooling: from local to global quality

III. EXPERIMENTAL RESULTS

Datasets: Two benchmark 360-degree IQA datasets, including
OIQA [25] and CVIQ [3|] are used to validate the per-
formances. OIQA includes 320 distorted 360-degree images
derived from 16 pristine ones. It covers four distortions,
including JPEG compression (JPEG), JPEG 2000 compression
(JP2K), Gaussian blur (BLUR), and Gaussian white noise
(WN). Each distortion type is applied at five different levels of
distortion. CVIQ focuses only on compression-related distor-
tion, generated by JPEG, H.264/AVC (AVC) and H.265/HEVC
(HEVC). These compressions are applied to 16 360-degree
images with eleven levels each.

Implementation Details: The validation of the proposed
study is conducted on a computer equipped with 32GB of
RAM and an Nvidia Quadro T2000 MAX-Q 4GB GPU. A
4-fold cross-validation is used within each of the selected
datasets. Each fold is trained for 100 epochs. We split the
datasets into 80%/20% for training and testing, respectively.
To ensure complete separation of the training and testing sets,
the distorted samples associated with the same pristine image
are allocated to the same set.

Evaluation Criteria: Three recommended evaluation metrics
are used, including the Pearson linear correlation coefficient
(PLCC) to evaluate accuracy, the Spearman rank-order corre-
lation coefficient (SRCC) for monotonicity, and the root mean
squared error (RMSE) to evaluate prediction errors.

A. Performance evaluation

Table [T summarizes the performances on OIQA and CVIQ
of the considered strategies (see Table [[I)) using three pooling
techniques, namely average pooling (Avg), percentile pooling
(Perc.), and agreement-based pooling (AP). These pooling
techniques aggregate and summarize the predictions in dif-
ferent ways. The choice of pooling technique can influence
the models’ overall performance and their ability to capture
specific aspects of image quality.

The first observation that emerges is that the performance
of the models varies across different versions and pooling
strategies. Specifically, when evaluating on the OIQA dataset,
versions 4 and 5 exhibit higher PLCC/SRCC values compared
to the other versions. It is worth mentioning that these versions

TABLE II: Labels for the considered training strategies with
respect to the scores pooling methods.

Version ‘ training ‘ Scores pooling ‘ Feature selection
\ MOS QSD \ pMOS  pQSD \

1 v v

2 v v v

3 v v v v

4 v v v v

5 v v v v v

utilize feature selection, which contributes to a stronger linear
correlation with the quality regression task. Additionally, the
feature selection process is conducted based on the quality
labels assigned to each patch, using the APL framework. This
approach enables the selection and refinement of encoded fea-
tures, focusing only on those that contribute to more accurate
predictions. A notable improvement of up to 2.5% can be
observed with versions 4 and 5 compared to the other versions,
independently of the used pooling strategy. By incorporating
quality labels and feature selection, the PLCC/SRCC values
significantly increased from 0.9468/0.9406 (when considering
only the MOS for model training) to 0.9599/0.9549.

TABLE III: Performance evaluation on OIQA and CVIQ. The
median over 4-fold is provided and the best performances are
highlighted as Avg, Perc., and

Version ‘ Pooling ‘ oA ‘ CVIQ
| | PLCC SRCC RMSE | PLCC SRCC RMSE
Avg 0.9468 0.9288 0.0469 | 0.9531 0.9392 0.0419
1 Perc. | 0.9421 0.9278 0.0488 | 0.9482 0.9301 0.0439
AP 0.9550 0.9453 0.0422 | 0.9541 0.9408 0.0415
Avg 0.9444 0.9336 0.0474 | 0.9653 0.9559 0.0361
2 Perc. | 0.9382 0.9228 0.0496 | 0.9626 0.9518 0.0375
AP 0.9447 09318 0.0472
Avg 0.9429 09315 0.0477 | 0.9639 0.9537 0.0368
3 Perc. | 0.9421 09330 0.0478 | 0.9609 0.9472 0.0383
AP 0.9461 0.9362 0.0464 | 0.9634 0.9510 0.0371
Avg 0.9576 0.9534 0.0412]0.9542 0.9289 0.0415
4 Perc. | 0.9543 0.9499 0.0427 | 0.9506 0.9261 0.0432
AP 0.9597 0.9535 0.0402 | 0.9549 0.9321 0.0412
Avg 0.9599 0.9549 0.0401 | 0.9540 0.9285 0.0416
5 Perc. | 0.9596 0.9539 0.0403 | 0.9532 0.9270 0.0420
AP 0.9548 0.9312 0.0413

On the same dataset, it is clear that versions 2 and 3
demonstrate a decrease in performance compared to version
1, irrespective of the pooling strategy employed. Surprisingly,
this decline in performance is observed even when using the
generated quality labels to train a multi-regression model. The
primary objective of using a quality distribution as labels is to
enhance the representativeness of the patch quality. However,
the evaluation on OIQA reveals that the performances slightly
dropped, indicating that the use of quality labels alone is not
sufficient. It is only when combined with feature selection
and refinement that the performances showed improvement.
Furthermore, it is worth noting that pooling together the



predicted MOS and QSD in version 5 of the model resulted in
further improved accuracy compared to considering only the
predicted MOS in version 4. This suggests that incorporating
the additional information provided by the QSD enhances
the models’ ability to accurately assess image quality. By
combining both the inherited quality (MOS) and the assigned
one (QSD), version 5 achieves outperformed the others.
Regrading the evaluation on CVIQ, it is observed that using
only the MOS as the basis for training and evaluation yielded
the poorest performance. However, the best performance was
achieved with version 2 of the model, followed by version
3. This indicates that the generated quality labels contribute
to enhancing the accuracy of the IQA model compared to
relying solely on the MOS. This observation aligns with the
challenges associated with using MOS as the sole metric
for labeling individual patches. The introduction of quality
labels, derived from the generated quality distribution, ad-
dresses the limitations of relying solely on MOS and provides
more nuanced and detailed information about image quality.
By incorporating these quality labels into the training and
evaluation process, versions 2 and 3 demonstrate improved
performance, highlighting the importance of leveraging quality
labels to accurately assess image quality of 360-degree images.
However, it is worth noting that the adopting feature selection
on CVIQ led to a slightly worse performance compared to
using 100% of the encoded features. This implies that in the
specific case of the CVIQ dataset, the feature selection did
not provide significant improvements in the model’s accuracy.
While feature selection is generally considered a valuable
technique for reducing dimensionality and enhancing model
performance, its effectiveness can vary depending on the
dataset and the specific characteristics of the features being
selected. In the case of CVIQ, it appears that using the full
set of encoded features without selection yielded better results
than employing a feature selection process. This observation
suggests that the encoded features obtained from ResNet-
50 encompass essential information for accurately assessing
image quality. Hence, the additional step of feature selection
did not provide substantial benefits in this particular context.
Through the analysis of the pooling strategies’ impact on
the achieved performances, it is evident that the AP strategy
demonstrates the highest overall performance. The unique
characteristic of AP is its consideration of the distance between
each score and the median. This approach proves to be
particularly effective in improving the accuracy of the IQA
model’s performance. Furthermore, the use of AP also captures
the variability among predicted scores. A lower variability
indicates a higher level of agreement among the scores. This
aligns with the processing of human opinions, where the
objective is to consider only opinions that agree according
to specific criteria in order to establish consistent judgments.

B. Ablation study

To further investigate the significance and impact of feature
selection rates and the « parameter on the model’s perfor-
mance, an ablation study was conducted. The purpose of this

Version 3 Version 5
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Fig. 5: Effect of the parameter o on the performance of the
scores pooling.

study is to analyze and assess the effects of varying these
factors on the overall performance of the model. This section
presents the findings of the ablation study, providing valuable
insights into each component.

Fig. 3] illustrates the accuracy (PLCC) and monotonicity
(SRCC) performances of the Avg pooling strategy on the
OIQA dataset, considering different values of « within the
range of {0.1,0.2, ..., 1}, as described in Sec. The results
demonstrate that for version 3 of the model, the best perfor-
mances are achieved with the lowest value of «, specifically
a = 0.1. For version 5, the best performances are observed
with o values within the range of {0.2,0.3}. These findings
indicate that the optimal value of « varies depending on
the specific version of the model, underscoring the impor-
tance of selecting appropriate values for o to maximize the
performance of the IQA model. Furthermore, an interesting
observation from these results is that increasing the value of o
leads to a decrease in performance for version 3 of the model.
This finding suggests that the use of the pQSD does not
contribute to the accuracy of the predictions for this particular
version. It indicates that the information provided by pQSD
may not be as crucial or influential in improving accuracy or
monotonicity. In contrast to version 3, an improvement can be
observed for version 5 of the model when using « values up
to 0.3. This highlights the effectiveness of incorporating the
predicted pM OS along with QSDs in the feature selection
process. By leveraging pMOS and QS Ds, the model is able
to select and refine the most suitable features for the multi-
regression task, resulting in improved performance.

To evaluate the effectiveness of feature selection on the
OIQA dataset, we further investigated the impact of the
selection rate on the model’s performance. In this analysis,
we varied the percentage rate of feature selection from 90%
down to 30%, and the corresponding results are depicted in
Fig.[6] This figure provides insights into how the selection rate
affects the accuracy of the model’s predictions. By examining
the performance trends across different selection rates, we can
gain a deeper understanding of the optimal feature selection
rate that maximizes the model’s performance. As it can be
seen, the results demonstrate a consistent trend where the
PLCC/SRCC values tend to increase as the feature selection
rate decreases, regardless of the evaluation strategy employed.
Whether using only pM OS (version 4) or incorporating both



pMOS and a x pQSD (version 5), the performance metrics
exhibit an upward trend with lower feature selection rates. This
indicates that a lower percentage of retained features leads to
a better overall performance. Therefore, selecting a lower rate
of features during feature selection proves to be more effective
in improving the overall performances.

0.96
0.95

0.94

PLCC

—_ —s
% 80 70 60 50 40 30 9 80 70 60 50 40 30
Feature rates (%) Feature rates (%)

— =5

Fig. 6: Effect of feature rate selection on the performance of
versions 4 and 5 on OIQA.

The best performances are achieved when selecting 50% of
the encoded features, which corresponds to half the amount of
features that need to be regressed to quality scores. Aprox. 5%
and 4% gain compared to using 90% of features are achieved
in terms of PLCC and SRCC, respectively. This finding
suggests that a careful and efficient feature selection process
can significantly improve the accuracy of the IQA model’s
predictions. By retaining a reduced but representative subset
of features, the model can effectively capture the essential
information necessary for accurate quality score regression.

IV. CONCLUSIONS

In conclusion, the findings of this study highlight the
importance of local quality labeling and label-specific feature
selection in training patch-based 360-degree IQA models. By
leveraging deep neural network feature selection and adaptive
patch labeling techniques, the model can effectively address
the inherent variability in image quality across different re-
gions of 360-degree scenes. The evaluation on both the OIQA
and CVIQ datasets revealed that using generated quality labels,
such as quality score distributions, enhances the accuracy of
the IQA models compared to relying solely on MOS. This
demonstrates the value of considering agreed opinions and
capturing the variability among predicted scores, similar to
how human opinions are processed in psychophysical studies.
Furthermore, the results showed that feature selection plays a
crucial role in improving the performance of the IQA models.
The analysis of different feature selection rates indicated that
selecting a lower rate of features leads to better overall perfor-
mance, achieving higher PLCC and SRCC values. The optimal
feature selection rate was found to be 50%, representing half
the amount of features that need to be regressed to quality
scores. Overall, these findings contribute to the development
of efficient patch-based 360-degree IQA models and provide
insights into the impact of pooling strategies, feature selection,
and the utilization of quality labels on the performances. This
knowledge can guide future research and improve the accuracy
and reliability of IQA models for 360-degree images.
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