
HAL Id: hal-04729097
https://hal.science/hal-04729097v1

Submitted on 20 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cognitively Inspired Three-Way Decision Making and
Bi-Level Evolutionary Optimization for Mobile

Cybersecurity Threats Detection: A Case Study on
Android Malware

Manel Jerbi, Zaineb Chelly Dagdia, Slim Bechikh, Lamjed Ben Said

To cite this version:
Manel Jerbi, Zaineb Chelly Dagdia, Slim Bechikh, Lamjed Ben Said. Cognitively Inspired Three-Way
Decision Making and Bi-Level Evolutionary Optimization for Mobile Cybersecurity Threats Detection:
A Case Study on Android Malware. Cognitive Computation, 2024, �10.1007/s12559-024-10337-6�.
�hal-04729097�

https://hal.science/hal-04729097v1
https://hal.archives-ouvertes.fr

Adaptive Malware Detection 1

Cognitively-Inspired Three-Way Decision Making and Bi-
Level Evolutionary Optimization for Mobile Cybersecurity

Threats Detection: A Case Study on Android Malware

Manel Jerbi1,2*, Zaineb Chelly Dagdia3,4, Slim Bechikh1 and Lamjed Ben Said1

1SMART Lab, CS Department, University of Tunis, ISG, Tunis, Tunisia.
2Faculty of Science, Technology and Medicine, University of Luxembourg, Belval

Esch-sur-Alzette L-4365, Luxembourg.
3LARODEC, University of Tunis, ISG, Tunis, Tunisia.

4Université Paris-Saclay, UVSQ, DAVID, France.

*Corresponding author(s). E-mail(s): manel.jerbi@uni.lu;
Contributing authors: zaineb.chelly-dagdia@uvsq.fr; slim.bechikh@fsegn.rnu.tn;

lamjed.bensaid@isg.rnu.tn;

Abstract
Background: Malicious apps use a variety of methods to spread infections, take over computers
and/or IoT devices, and steal sensitive data. Several detection techniques have been proposed to
counter these attacks. Despite the promising results of recent malware detection strategies, par-
ticularly those addressing evolving threats, inefficiencies persist due to potential inconsistency in
both the generated malicious malware and the pre-specified detection rules, as well as their crisp
decision-making process. Objective and Methods: In this paper, we propose to address these
issues by (i) considering the detection rules generation process as a Bi-Level Optimization Problem,
where a competition between two levels (an upper level and a lower one) produces a set of effec-
tive detection rules capable of detecting new variants of existing and even unseen malware patterns.
This bi-level strategy is subtly inspired by natural evolutionary processes, where organisms adapt
and evolve through continuous interaction and competition within their environments. Furthermore,
(ii) we leverage the fundamentals of Rough Set Theory, which reflects cognitive decision-making
processes, to assess the true nature of artificially generated malicious patterns. This involves retain-
ing only the consistent malicious patterns and detection rules, and categorizing these rules into a
three-way decision framework comprising accept, abstain, and reject options. Results and Conclu-
sion: Our novel malware detection technique outperforms several state-of-the-art methods on various
Android malware datasets, accurately predicting new apps with a 96.76% accuracy rate. Moreover, our
approach is versatile and effective in detecting patterns applicable to a variety of cybersecurity threats.

Keywords: Android malware detection, Bi-level optimization, Rough set theory, Artificial malicious
pаtterns, Evolutionary algorithms, Three-way decision making

2 1 INTRODUCTION

1 Introduction
Malware programs are highly diverse and can infil-
trate any system despite the precautions taken.
Malware Detection Techniques (MDT) propose
various methodologies for preventing malware
intrusions. Researchers have focused on improv-
ing the detection techniques [1–4] to be effective
against both known and unknown attacks. Among
these approaches, some create new malware and
variants of known malware, relying mostly on
Evolutionary Algorithms (EA) to mimic mobile
malware evolution [5–8]. Despite the effectiveness
of these methods, several exhibit flaws: some are
not fully automated, with tasks such as manu-
ally labeling the used patterns, while others are
proposed only for a specific attack type. Addi-
tionally, most do not verify the consistency of
the produced detection rules or the trustworthi-
ness and reliability of the generated attacks, that
is, whether they are genuinely malicious. In lit-
erature, various theories have been proposed to
address data inconsistency issues, such as uncer-
tainty and vagueness, in decision-making. These
include Fuzzy Set Theory [9], Dempster-Shafer
Theory [9], and Rough Set Theory (RST) [10].
Real-world problems characterized by data incon-
sistency necessitate multi-way decision-making,
implying that the traditional two-way decision
system requires refinement to enable effective
decision-making.

In this paper, we propose a new efficient
and effective malware detection method named
“Rough-Set Based Bi-level Malware Detection”
(RS-BMD) for mobile cybersecurity threats detec-
tion. We focus on Android malware as a case
study. Our method enhances the detection rate
through the integration of two key components:
(i) Bi-Level Optimization [11], and (ii) Rough Set
Theory [10]. In RS-BMD, the process of gener-
ating malware detection rules is formulated as
a Bi-Level Optimization Problem (BLOP), con-
stituting the first component. In fact, BLOP is
a special type of optimization problem where
one optimization problem embeds another as a
constraint. In the RS-BMD BLOP formulation,
the upper level employs Genetic Programming
(GP) as an evolutionary algorithm to generate an
efficient set of detection rules. These rules max-
imize coverage not only based on real pattern

examples but also on artificial patterns gener-
ated by the lower level. Conversely, the BLOP
lower level employs a Genetic Algorithm (GA)
to create a set of artificial malicious patterns
that are not detectable by the existing upper-level
rules. This competition between the two levels
results in an effective set of detection rules capa-
ble of identifying new variants of existing and
even unseen malware patterns. Regarding the sec-
ond essential component in RS-BMD, our primary
focus lies on the theory of rough sets, which
has found widespread application in successful
decision-making across various fields, including
medical diagnosis, process control, engineering,
and computer security. Specifically, RST provides
the necessary fundamentals to address data incon-
sistency and offers a three-way decision-making
approach, forming the basis of our malware detec-
tion system. RST is integrated into both levels of
the RS-BMD BLOP schema: at the lower level, it
is coupled with Genetic Algorithm (GA) for evolv-
ing malicious patterns, and at the upper level, it
is coupled with Genetic Programming (GP) for
the induction of malware detection rules. This
coupling of RST with EAs represents a promis-
ing approach to inducing efficient and reliable
decision rules, even from inconsistent information.
Utilizing RST fundamentals enables RS-BMD to
assess the true nature of artificially generated
malicious patterns at the lower level, retaining
only the definitively malicious ones. It also allows
for evaluating the reliability of generated detec-
tion rules at the upper level, keeping only the most
efficient and consistent rules. RS-BMD classifies
detection rules into a three-way decision-making
fashion: “accept” for definitive rules that signify
benign apps, “abstain” for provisional rules that
indicate indecision or a need for delayed decision,
and “reject” for definitive rules identifying mali-
cious apps. This approach not only addresses the
challenges posed by artificially generated mali-
cious patterns and inconsistencies in detection
rules but also provides a more coherent framework
for decision-making. Additionally, our approach
exhibits significant versatility in detecting pat-
terns. It also adapts to a range of cybersecurity
threats. We can outline the main contributions as
follows:

1. We present RS-BMD, a method that inte-
grates Bi-level Optimization with Rough Set

3

Theory to generate effective malware detec-
tion rules. This novel integration results in
a robust upper-level process that produces
detection rules capable of identifying (i)
known malware patterns (extracted from the
base of examples) and, (ii) new synthetically
malicious patterns generated by the lower-
level. RST is employed to evaluate and refine
the generated patterns.

2. We detail the competitive dynamic within
the RS-BMD framework, showing how each
detection rule operates within an extensive
search space of possible artificial malicious
patterns. We demonstrate how these patterns
are effectively filtered to select the most chal-
lenging and pertinent ones, thereby signifi-
cantly improving the detection capabilities of
the upper-level rules.

3. We illustrate the combined use of EAs at
both levels with RST. This combination is
crucial for discarding inconsistent patterns
that might emerge at the lower level and
unreliable detection rules potentially pro-
duced at the upper level.

4. We enhance the accuracy of predicting the
nature of new applications and minimize the
chances of false decisions through the imple-
mentation of RST for three-way decision-
making in our model.

5. Our RS-BMD approach stands out by achiev-
ing superior performance compared to several
state-of-the-art malware detection methods
and engines, particularly in terms of maxi-
mizing accuracy and minimizing false alarms.

The subsequent sections of the paper are orga-
nized as follows: Section 2 reviews previous works
on malware detection. Section 3 provides a brief
overview of the basic concepts of Bi-level optimiza-
tion and the fundamentals of rough set theory.
Section 4 describes our proposed malware detec-
tion technique. The experimental study details
are presented in Section 5. Limitations, threats
to validity and future research directions are dis-
cussed in Section 6. The final section, Section 7,
concludes the paper.

2 Related work
In the field of malware detection, previous research
has demonstrated that evolving artificial malware
is a highly promising approach. This approach

can address the issue of limited malicious datasets
available for building detection systems. To gen-
erate artificial malware, various techniques have
been proposed that do not rely on a static base
of malware signatures. For example, Wang et al.
[12] introduced MDEA, an Adversarial Malware
Detection model designed for Windows operating
systems. This model employs neural networks and
evolutionary optimization to generate attack sam-
ples, thereby enhancing the network’s resilience
against evasion attacks. The evolutionary algo-
rithm in MDEA evolves different action sequences
(raw byte data) by selecting actions from a pre-
defined action space and testing these sequences
against the detection model. Sequences that suc-
cessfully bypass the detection model are then used
to modify corresponding malware samples, creat-
ing a new training set to further refine the detec-
tion model. In another study presented in [13],
researchers proposed an approach that combines
global search and local search heuristics through
a memetic evolutionary search process. The tabu-
search algorithm, serving as the local search tech-
nique, is utilized to enhance the quality and fitness
of solutions by thoroughly exploring the neigh-
borhood of each solution for superior individuals.
Despite its strengths, the overall method requires
further refinement to enhance the search tech-
nique’s ability to converge towards high-quality
solutions. Another study presented in [14] investi-
gated the effectiveness of a genetic algorithm for
feature selection in Android malware detection.
It focused on selecting permission and API fea-
tures through machine learning classification algo-
rithms. However, this approach faced two signifi-
cant limitations: it relied solely on static features
and required a relatively lengthy runtime (approx-
imately 15 hours). The state-of-the-art methods
discussed earlier suffer from various limitations
including a lack of full automation, specialization
in handling specific attack types, and an inability
to check the reliability and consistency of mali-
cious patterns. Moreover, their two-way decision-
making process does not always fit real situations.
To address some of these issues, various recent
works have emerged. In [15], researchers explored
the use of evolutionary computation techniques to
develop new variants of mobile malware that can
evade static analysis-based anti-malware systems.
Also, they investigated methods for automatically
developing security solutions to counteract these

4 2 RELATED WORK

threats. The authors proposed a system that uses
co-evolutionary algorithms for malware detec-
tion, where a first population generates detection
rules and a second population generates artificial
malware. However, this co-evolutionary approach
comes with limitations, such as not validating the
reliability of the generated detection rules and the
actual nature of the artificial malware produced.
Moreover, both populations operate concurrently
without hierarchy, potentially resulting in one
population converging before the other. Further-
more, both populations are treated independently,
which is not the case in our RS-BMD approach.
Our previous work, outlined in [16], also utilized
evolutionary computation techniques to create a
dynamic malware detection method called “Arti-
ficial Malware-based Detection” (AMD). AMD
makes use not only of extracted malware patterns,
i.e., extracted frequent API call sequences (also
called behaviors), but also of artificial ones gener-
ated using a GA. The latter evolves a population
of API call sequences with the aim of finding new
malware behaviors following a set of well-defined
evolution rules. The artificial fraudulent behaviors
are subsequently inserted into the base of exam-
ples to enrich it with unseen malware patterns.
Despite its interesting detection results, AMD suf-
fers from the following main limitations: (i) AMD
uses a static malware detection rule that is defined
in a rational way with respect to similarity mea-
sures to both benign and malware patterns; (ii)
the detection rule is pre-specified independently
of the generated artificial malware patterns, and
hence both the rule definition and the classifica-
tion tasks are performed separately without any
interaction; (iii) in AMD, the artificial malware
patterns are generated in a global ad-hoc man-
ner based on their similarities to real malware
and benign patterns from the bases of examples.
Such a process may increase the number of false
positives as it is possible that some of the gen-
erated artificial patterns are not really malicious,
hence causing inconsistency in the set of patterns
dealt with. Also, Jerbi et al. [17] suggested consid-
ering the detection rules generation process as a
BLOP, where an inner optimization task is embed-
ded within the outer one. The goal of the outer
task is to generate a set of detection rules in the
form of trees combining patterns. The inner task
aims to generate a set of artificial malicious pat-
terns that evade the rules of the outer task. The

main limitation of the BMD (Bi-level Malware
Detection) method is its susceptibility to irrele-
vant malicious patterns, leading to a high rate of
false alarms. In [18], Jerbi et al. introduced ProRS-
Det, which employs the Variable Precision Rough
Set technique as a filter to enhance the quality
of the generated malicious patterns by retaining
only those of “good quality”. However, ProRSDet
struggles with high false positive rates when pre-
dicting the nature of new apps. Our RS-BMD
approach overcomes all these limitations. Several
studies in the literature have opted not to con-
fine themselves solely to employing EAs. Instead,
they delve into utilizing alternative techniques to
enhance the efficiency of malware detection. In the
following sections, we will discuss some of these
techniques, with a particular emphasis on the use
of RST.

Despite their structural dissimilarities, the
works discussed below share the same goal:
enhancing the performance of malware detection
systems by utilizing RST for attribute selection
and integrating it with other methods, includ-
ing evolutionary algorithms. One example of such
techniques is presented in [19]. The authors pro-
posed a hybrid community-based approach that
combines a community detection schema with
the QuickReduct algorithm, which is a rough
set-based feature selection method. The goal is
to select the most promising set of features
for Android malware detection. In [20], a novel
two-set feature selection approach called RSST
(Rough Set and Statistical Test) was proposed to
extract relevant system calls for malware detec-
tion. The authors aimed to address the problem
of high-dimensional attribute sets by deriving a
suboptimal system call space that maximizes the
separability between malware and benign samples.
Similarly, in [21], RST was used in combination
with Support Vector Machine (SVM) to detect
intrusions. The RST algorithm was first applied
to preprocess the data and reduce its dimension-
ality. Then, the selected features were sent to
SVM to learn and test the hybrid model. The
work of [22] proposed an efficient real-time intru-
sion detection system by integrating Q-learning
algorithm and RST for feature reduction. The
objective of this work was to achieve maximum
classification accuracy while detecting intrusions
in NSL-KDD network traffic data by classify-
ing it as either “normal” or “anomalous”. An

5

SVM classification method based on RST was
proposed in [23] for the detection of malicious
codes. The approach involved preprocessing the
original sample data with the RST knowledge
reduction algorithm to eliminate redundant fea-
tures and conflicting samples, thereby reducing
the dataset’s dimension. The preprocessed sam-
ple data was then used as the SVM training
sample data. In addition to this approach, few
works in the literature have combined RST with
EA heuristic search techniques, such as Parti-
cle Swarm Optimization (PSO) and Ant Colony
Optimization (ACO), to select the most impor-
tant subsets of features. It is worth noting that
only a limited number of works in this cate-
gory explored the use of RST for data mining in
conjunction with EAs for Android malware detec-
tion. One example of such works is [24], where
a feature selection method for detecting Android
malware based on rough sets and PSO was pro-
posed. The authors introduced a new encoding
method called random key encoding to convert
the PSO algorithm into a discrete domain, con-
tributing to the feature selection process. Another
work worth mentioning is [25] which aimed to
identify the minimum set of features for malware
detection using a rough set-based feature signifi-
cance measure combined with ACO as a heuristic
search technique. In another context, the authors
in [26] proposed a method that investigated a
three-way decision-making approach based on the
RST method, with decisions of acceptance, rejec-
tion, or deferment. Although the proposed method
is not based on EA techniques, it is the only
work that we are aware of that uses a three-
way decision-making model for malware detection.
Specifically, the addition of a deferment decision
option provides the flexibility to delay a certain
decision when there is insufficient information.
Additionally, the proposed method aims to miti-
gate false decisions at the model level by deter-
mining a trade-off between different properties of
decision-making, such as accuracy, generality, and
uncertainty. Authors, in [26], considered three-way
decision based on two probabilistic rough set mod-
els, namely, game-theoretic rough sets (GTRS)
and information-theoretic rough sets (ITRS). It
is important to mention that this work suffers
from the main limitations of not evolving artificial
malware, contrary to the previously cited EA-
based techniques, and of being dependent on the

base of examples. From another perspective, some
recent works have focused on finding techniques to
detect obfuscated malware. For instance, in [27],
the authors designed three self-supervised attack
techniques: (1) the first technique considered the
IoT input dаtа аnd the аdversarial sample gener-
ation in real-time; (2) the second technique built
a generative adversarial network model to gener-
ate adversarial samples within the self-supervised
structure; and (3) the third technique utilized
three well-known perturbation sample techniques
to develop adversarial malware and inject it over
the self-supervised architecture. Additionally, the
authors applied a defense method to mitigаte
these аttаcks, namely adversarial self-supervised
training, to protect the malware detection archi-
tecture against the injection of malicious sam-
ples. In [28], the authors introduced a hybrid
deep generative model that leverages both global
and local features for detecting malware vari-
ants. They converted malware into images to
capture global features within a predefined latent
space and extracted local features from binary
code sequences. These features were then concate-
nated and input into the malware detector. While
the model achieved notable detection results, the
transformation phase could potentially result in
data loss. Moreover, the authors in [29] present
MalGAN, a specific GAN model developed for
black-box attack methods. This work highlights
the potential of GANs in crafting functional and
unseen malware examples that challenge and test
machine learning-based security systems. While
MalGAN demonstrates effectiveness in generating
adversarial malware examples that evade detec-
tion, this approach assumes that the substitute
model accurately reflects the real detection sys-
tem’s behavior. If the substitute model does not
closely match the actual system, the generated
examples may not be effective in evasion. In [30],
the authors investigated using GANs to create
adversarial examples that boost classifier train-
ing for intrusion detection. By applying transfor-
mations such as shifting, rotating, scaling, and
skewing data, they achieved improved classifier
accuracy. However, this approach can lead to over-
fitting and performance issues when overly reliant
on extensive altered data. Different works have
attempted to address obfuscated malware. We can
refer to those cited in Table 1, where the main
ideas, advantages, and limitations are presented.

6 2 RELATED WORK

T
ab

le
1:

R
ec

en
t

m
et

ho
ds

fo
r

ob
fu

sc
at

ed
m

al
w

ar
e

de
te

ct
io

n.

W
or

k
M

ai
n

id
ea

A
dv

an
ta

ge
s

Li
m

it
at

io
ns

[3
1]

T
w

o
m

ai
n

su
bs

ys
te

m
s

th
at

w
or

k
in

pa
r-

al
le

l:
on

e
is

tr
ai

ne
d

fo
r

be
ni

gn
la

be
le

d
ap

ps
w

hi
le

th
e

se
co

nd
on

e
is

tr
ai

ne
d

on
m

al
w

ar
e

la
be

le
d

ap
ps

.

E
ac

h
su

bs
ys

te
m

us
es

fe
at

ur
es

fr
om

st
at

ic
an

d
dy

na
m

ic
m

al
w

ar
e

an
al

y-
si

s.
B

ot
h

ar
e

ex
tr

ac
te

d
ba

se
d

on
аn

en
se

m
bl

e
ap

pr
oa

ch
(O

C
-S

V
M

,
LO

F
,

M
-iF

or
es

t
cl

as
si

fie
rs

).

T
he

gi
ve

n
ap

p
ne

ed
s

to
be

te
st

ed
ba

se
d

on
tw

o
di

ffe
re

nt
m

od
el

s,
th

en
pr

oc
es

se
d

th
ro

ug
h

a
vo

ti
ng

m
ec

ha
ni

sm
,

w
hi

ch
m

ay
le

ad
to

so
m

e
an

om
al

ou
s

de
ci

si
on

s.

[3
2]

T
he

pr
op

os
ed

m
et

ho
d

ut
ili

ze
s

on
ly

C
N

N
fo

r
di

sc
ov

er
in

g
co

m
m

on
fe

at
ur

es
of

A
P

I
ca

ll
gr

ap
hs

of
m

al
w

ar
e.

Fo
r

de
te

ct
in

g
m

al
w

ar
e,

th
e

m
et

ho
d

em
pl

oy
s

a
lig

ht
w

ei
gh

t
cl

as
si

fie
r

th
аt

cа
lc

ul
аt

es
а

si
m

ilа
ri

ty
be

tw
ee

n
A

P
Ic

al
lg

ra
ph

s
us

ed
fo

r
m

аl
ic

io
us

аc
ti

vi
ti

es
аn

d
A

P
I

ca
ll

gr
ap

hs
of

ap
pl

ic
at

io
ns

th
at

ar
e

go
in

g
to

be
cl

as
si

fie
d.

T
he

m
et

ho
d

us
es

C
N

N
s

to
an

al
yz

e
th

e
be

ha
vi

or
s

of
m

al
ic

io
us

ap
pl

ic
at

io
ns

ba
se

d
on

th
ei

r
A

P
I

ca
ll

gr
ap

hs
.

T
hi

s
m

et
ho

d
re

qu
ir

es
si

gn
ifi

ca
nt

co
m

-
pu

ti
ng

re
so

ur
ce

s
an

d
ti

m
e

to
ex

tr
ac

t
fe

at
ur

es
.

[3
3]

A
se

cu
ri

ty
sy

st
em

w
as

bu
ilt

an
d

de
si

gn
ed

ba
se

d
on

th
e

SV
M

,
K

N
N

,
LD

A
,L

ST
M

,C
N

N
-L

ST
M

,a
nd

au
to

en
-

co
de

r
al

go
ri

th
m

s.

A
m

et
ho

d
fo

r
si

gn
at

ur
e-

ba
se

d
m

al
ic

io
us

at
ta

ck
de

te
ct

io
n.

T
he

sy
st

em
w

as
te

st
ed

w
it

h
a

lim
it

ed
nu

m
be

r
of

fe
at

ur
es

(o
nl

y
6)

,a
nd

it
ha

s
no

ty
et

be
en

de
si

gn
ed

fo
ru

se
w

it
h

a
re

al
in

du
st

ri
al

co
nt

ro
ls

ys
te

m
.

[3
4]

A
de

ep
ne

ur
al

ne
tw

or
k

in
co

rp
or

аt
in

g
co

nv
ol

ut
io

nа
l

m
et

ho
ds

,
w

it
h

m
ul

ti
pl

e
vi

ew
s

le
аr

ni
ng

fr
om

th
re

e
ra

w
in

pu
t

fe
at

ur
e

se
ts

of
lo

w
-le

ve
l

op
co

de
s,

ap
p

pe
rm

is
si

on
s

an
d

pr
op

ri
et

аr
y

A
nd

ro
id

A
P

I
pa

ck
ag

es
.

A
C

N
N

-b
as

ed
ap

pr
oa

ch
fo

r
an

al
yz

in
g

A
P

I
se

qu
en

ce
ca

lls
,

ut
ili

zi
ng

pr
op

ri
-

et
ar

y
A

nd
ro

id
A

P
I

pa
ck

ag
es

as
ra

w
in

pu
t

fe
at

ur
es

.

T
he

C
N

N
re

lie
s

on
ly

on
th

e
re

le
va

nc
e

of
A

P
I

se
qu

en
ce

s
du

ri
ng

tr
ai

ni
ng

.

[3
5]

T
he

co
m

bi
nа

ti
on

of
th

e
pr

in
tа

bl
e

st
ri

ng
s

an
d

N
LP

te
ch

ni
qu

es
ar

e
us

ed
as

a
fil

te
ri

ng
m

et
ho

d.

T
he

m
et

ho
d

in
vo

lv
es

vo
cа

bu
la

ry
se

le
c-

ti
on

to
bu

ild
a

di
ct

io
nа

ry
of

th
e

m
os

t
fr

eq
ue

nt
w

or
ds

an
d

su
bw

or
ds

in
tr

ai
n-

in
g

da
ta

.

A
rb

it
ra

ry
th

re
sh

ol
di

ng
de

ci
si

on
s

ca
n

cr
ea

te
th

e
po

ss
ib

ili
ty

of
m

is
si

ng
ou

t
on

m
ea

ni
ng

fu
lw

or
ds

.

[1
6]

A
M

D
ge

ne
ra

te
s

A
P

I
ca

ll
se

qu
en

ce
s

(p
at

te
rn

s)
us

in
g

a
G

A
w

it
h

th
e

ai
m

to
fin

d
ne

w
m

аl
w

ar
e

be
ha

vi
or

s.

D
iv

er
si

fy
th

e
ba

se
of

m
аl

w
ar

e
ex

am
pl

es
in

or
de

r
to

m
ax

im
iz

e
th

e
de

te
ct

io
n

ra
te

.
G

en
er

at
es

fa
ls

e
pa

tt
er

ns
,

le
ad

in
g

to
a

hi
gh

fa
ls

e
al

ar
m

ra
te

.

7

[1
7]

T
he

de
te

ct
io

n
ru

le
s

ge
ne

ra
ti

on
pr

oc
es

s
is

co
ns

id
er

ed
as

a
B

LO
P,

w
he

re
a

lo
w

er
-

le
ve

l
op

ti
m

iz
аt

io
n

ta
sk

is
em

be
dd

ed
w

it
hi

n
th

e
up

pe
r-

le
ve

lo
ne

.T
he

up
pe

r-
le

ve
l

pr
ob

le
m

’s
go

al
is

to
ge

ne
rа

te
a

se
t

of
de

te
ct

io
n

ru
le

s,
tr

ee
s

of
co

m
bi

ne
d

pa
tt

er
ns

,
by

m
ax

im
iz

in
g

th
e

co
ve

rа
ge

no
t

on
ly

on
th

e
ba

se
of

ex
аm

pl
es

of
re

al
pa

tt
er

ns
bu

t
al

so
on

th
e

ar
ti

fic
ia

l
pa

tt
er

ns
ge

ne
ra

te
d

by
th

e
lo

w
er

-le
ve

l.

P
ro

du
ct

io
n

of
m

or
e

effi
ci

en
t

de
te

ct
io

n
ru

le
s
ca

pa
bl

e
of

re
ve

al
in

g
ne

w
m

al
ic

io
us

be
ha

vi
or

s.

G
en

er
at

io
n

of
so

m
e

in
co

ns
is

te
nt

de
te

c-
ti

on
ru

le
s.

[1
8]

R
ei

nf
or

ce
m

en
t

of
th

e
bi

-le
ve

l
de

te
ct

io
n

m
et

ho
d,

m
or

e
pr

ec
is

el
y

th
e

lo
w

er
-le

ve
l,

by
us

in
g

a
va

ri
аb

le
pr

ec
is

io
n

ro
ug

h
se

t
аn

al
yz

er
m

od
ul

e
to

fil
te

r
th

e
fa

ls
e

ge
n-

er
at

ed
pa

tt
er

ns
.

T
he

im
pr

ov
em

en
t

of
th

e
qu

al
it
y

of
th

e
ge

ne
ra

te
d

pa
tt

er
ns

w
ill

he
lp

im
pr

ov
e

th
e

de
te

ct
io

n
pe

rf
or

m
an

ce
of

th
e

de
te

c-
ti

on
ru

le
s.

T
he

pe
rs

is
te

nc
e

of
so

m
e

in
co

ns
is

te
nt

de
te

ct
io

n
ru

le
s

in
th

e
up

pe
r-

le
ve

l.

[1
2]

A
n

ad
ve

rs
ar

ia
l

m
al

w
ar

e
de

te
ct

io
n

m
od

el
fo

r
W

in
do

w
s

op
er

at
in

g
sy

st
em

s
is

pr
op

os
ed

an
d

co
m

bi
ne

s
ne

ur
al

ne
t-

w
or

ks
w

it
h

ev
ol

ut
io

na
ry

op
ti

m
iz

at
io

n
to

cr
ea

te
at

ta
ck

sa
m

pl
es

to
m

аk
e

th
e

ne
tw

or
k

ro
bu

st
аg

ai
ns

t
ev

as
io

n
at

ta
ck

s.

P
ro

du
ct

io
n

of
ne

w
m

al
ic

io
us

pa
tt

er
ns

to
en

ri
ch

th
e

ba
se

of
m

al
w

ar
e

ex
am

pl
es

.
T

he
m

al
w

ar
e

de
te

ct
io

n
tа

sk
is

in
de

-
pe

nd
en

t
fr

om
th

e
m

al
w

ar
e

ge
ne

ra
ti

on
ta

sk
.T

he
pr

es
en

ce
of

hi
gh

ly
de

st
ru

ct
iv

e
m

al
w

ar
e

va
ri

an
ts

am
on

g
th

e
ge

ne
ra

te
d

on
es

.

[3
6]

A
G

A
N

m
od

el
na

m
ed

T
ra

ffi
cG

A
N

de
si

gn
ed

to
ge

ne
ra

te
ne

w
m

al
ic

io
us

ne
tw

or
k

tr
affi

c
pa

tt
er

ns
fo

r
ze

ro
-d

ay
at

ta
ck

s.

T
hi

s
m

et
ho

d
em

ph
as

iz
es

th
e

po
te

nt
ia

l
of

G
A

N
s

in
cr

ea
ti

ng
tr

ai
ni

ng
dа

ta
th

at
si

m
ul

аt
es

pr
ev

io
us

ly
un

se
en

аt
ta

ck
ve

c-
to

rs
.

T
he

ch
al

le
ng

e
lie

s
in

m
ai

nt
ai

ni
ng

a
ba

l-
an

ce
be

tw
ee

n
en

ha
nc

in
g

da
ta

di
ve

rs
it
y

an
d

pr
es

er
vi

ng
sy

st
em

pe
rf

or
m

an
ce

,
w

it
ho

ut
si

gn
ifi

ca
nt

ly
co

m
pr

om
is

in
g

it
,

al
on

gs
id

e
th

e
ri

sk
of

m
od

el
ov

er
fit

ti
ng

du
e

to
ad

ve
rs

ar
ia

ls
am

pl
es

no
t
pe

rf
ec

tl
y

re
pr

es
en

ti
ng

re
al

-w
or

ld
ne

tw
or

k
tr

affi
c

sc
en

ar
io

s.

Lo
ca

lo
ut

lie
r

fa
ct

or
(L

O
F
);

on
e

cl
as

s
su

pp
or

t
ve

ct
or

m
ac

hi
ne

(O
C

-S
V

M
);

a
m

od
ifi

ed
ve

rs
io

n
of

th
e

Is
ol

at
io

n
fo

re
st

(M
_

iF
or

es
t)

.
th

e
su

pp
or

t
ve

ct
or

m
ac

hi
ne

(S
V

M
),

k-
ne

ar
es

t
ne

ig
hb

or
s

(K
N

N
),

lin
ea

r
di

sc
ri

m
in

an
t

an
al

ys
is

(L
D

A
),

lo
ng

sh
or

t-
te

rm
m

em
or

y
(L

ST
M

),
co

nv
ol

ut
io

n
ne

ur
al

ne
tw

or
k-

lo
ng

sh
or

t-
te

rm
m

em
or

y
(C

N
N

-L
ST

M
)

8 3 PRELIMINARIES

To summarize, most state-of-the-art meth-
ods for malware detection employ evolutionary
algorithms, where one population generates detec-
tion rules and another generates artificial mal-
ware. However, these approaches suffer from issues
such as premature convergence of one popula-
tion over the other, and inconsistency in the
generated detection rules and malicious patterns.
Rough set-based malware detection techniques
primarily focus on feature reduction and do not
address inconsistency checks or propose a three-
way decision-making approach for malware detec-
tion. The only work ([26]) that introduced a
three-way decision-making approach is not based
on EAs and overlooks the benefits of such an
approach. This limitation is critical for reduc-
ing false alarms and building an efficient malware
detection system. To address these challenges, we
introduce RS-BMD, our proposed solution, which
is discussed in detail in Section 4.

3 Preliminaries
In this section, we introduce the basics of the two
key components of our proposed RS-BMD mal-
ware detection technique: “Bi-level Optimization”
and “Rough Set Theory”.

3.1 Bi-level Optimization
A Bi-level Optimization Problem (BLOP) can be
described as a combination of two optimization
problems, where the lower-level problem (follower)
is incorporated as a constraint of the upper-level
problem (leader) [11]. There are two classes of
variables in a BLOP: the upper-level variables xu,
also referred to as the upper-level decision vector,
and the lower-level variables xl, referred to as the
lower-level decision vector, as illustrated in Figure
1. In the lower-level problem, optimization is car-
ried out with respect to xl, while xu acts as a
parameter. Consequently, for each xu, a distinct
lower-level problem emerges, for which an optimal
solution must be identified. Both decision vectors
(xu and xl) are considered in the upper-level prob-
lem, where the optimization aims to account for
both decision vectors. The BLOP can then be
formulated as follows:

min
xu∈XU,xl∈XL

L(xu, xl) subject to


Gk(xu, xl) ≤ 0, k = 1, . . . , K.
xl ∈ argmin{f(xu, xl)|
gj(xu, xl) ≤ 0, j = 1, . . . , J}

(1)

In the given formulаtion, L represents the
upper-level objective function, f represents the
lower-level objective function, xu represents the
upper-level decision vector аnd xl represents the
lower-level decision vector. Gk and gj represent
the constrаint functions аt the upper аnd lower
levels, respectively. The difficulty in а BLOP
consists of the fаct thаt only the optimаl solu-
tions of the lower-level optimizаtion tаsk mаy be
аcceptаble аs possible feаsible cаndidаtes to the
upper-level one. For exаmple, а member x1 =
(x1

u;x1
l) cаn be considered feаsible аt the upper

level only if x1 sаtisfies the upper-level constrаints,
аnd x1

l is аn optimаl solution to the lower-level
problem corresponding to x1

u.
Various malware detection methods have been

proposed in literature, yet none have introduced
a bi-level model that incorporates a three-way
decision process. Our proposed solution combines
bi-level optimization with RST for malware detec-
tion. To the best of our knowledge, this is the
first approach of its kind to use a bi-level model
and offer a three-way decision-making framework,
showing promising results.

Upper-level decision
space

Upper-level decision vector
Xu

1

Lower-level decision
space

Lower-level
parametric

optimization

Xl
1

Optimal lower-
level response

X1 = (xu1; xl1) : A feasible bi-level solution for
 the upper-level optimization
 problem

Lo
w

er
-le

ve
l

ob
je

ct
iv

e

Pa
ra

m
et

er
 fo

r l
ow

er
-le

ve
l

pr
ob

le
m

f

Fig. 1 Bi-level optimization: general overview (inspired
by [37]).

3.2 Rough Set Theory 9

3.2 Rough Set Theory
Rough Set Theory (RST) is a key mathemati-
cal theory used to handle imprecise, inconsistent,
and incomplete information and knowledge [10].
In classifying objects, RST utilizes a set of multi-
valued features known as “condition” features
and “decisio” features. The information about the
objects (data instances) is represented in a for-
mat called an “information system”, which can be
visualized as a table with objects listed in rows
and features in different columns. Assume U is
a nonempty finite universe of objects. Imprecise
informаtion in аn informаtion system cаuses indis-
cernibility of objects. The indiscernibility relаtion
is аn equivаlence relation on U. Technically, an
equivalence relation E ⊆ U × U represents rela-
tionships between objects in U. An equivalence
relation can be defined based on a set of features
in an information system so that two objects are
equivalent if and only if they have the same value
on every feature. The equivalence relation induces
a partition of the universe, denoted by U/E. The
equivalence class containing an object x is given by
[x]E = y|y ∈ U, xEy, or simply [x] if E is under-
stood. RST offers powerful mathematical funda-
mentals to deal with the inconsistency encoun-
tered in data. These are a pair of definable sets
known as the “lower-approximatio” and “upper-
approximation”, used as the main vehicles for
problem solving. Both the lower-аpproximаtion
and the upper-approximation represent the classes
of indiscernible objects that possess sharp descrip-
tions of concepts but with no sharp boundaries.

Suppose C ⊆ U is a set of objects repre-
senting a given concept. The lower-approximation
(denoted as apr(C)) represents a set of objects
in U that can be certainly classified as
belonging to concept C and can be defined
as: apr(C) = x|x ∈ U, [x] ⊆ C. The upper-
approximation (denoted as apr(C)) represents a
set of objects in U that can possibly be classified
as belonging to concept C and can be defined as:
apr(C) = x|x ∈ U, [x] ∩C ̸= ∅. Elements belong-
ing only to the upper-approximation define the
“boundary region” (denoted as BND(C)) and can
be expressed as: BND(C) = apr(C) − apr(C).
BND(C) represents the set of objects that can-
not be certainly classified as belonging to concept
C. Such a concept C is called a “rough set”. In
other words, rough sets are sets having non-empty

boundary regions. There is another formulation of
rough set approximations which is as follows:

• POS(C) = {x|x ∈ U, [x] ⊆ C} =
⋃
{[x]|x ∈

U, [x] ⊆ C}
• NEG(C) = {x|x ∈ U, [x] ∩ C = ∅} =⋃
{[x]|x ∈ U, [x] ∩C = ∅}

• BND(C) = {x|x ∈ U, [x] ∩ C ̸= ∅, [x] ⊈
C} =

⋃
{[x]|x ∈ U, [x] ∩C ̸= ∅, [x] ⊈ C}

These three regions are pairwise disjoint and
are named, respectively, the positive region, the
negative region, and the boundary region of C.
That is, the concept C is approximately described
by three disjoint subsets based on equivalence
classes. This leads to the definition of the positive
region as the lower-approximation of C and the
union of the positive and boundary regions as the
upper-approximation:

• apr(C) = POS(C)
• apr(C) = POS(C) ∪BND(C)
The RST notion of three-way decision mak-

ing is introduced based on the above three dis-
joint regions produced by the lower and upper
approximations, which in our case refer to: accept
(certain rules for acceptance; positive region, i.e.,
benign apps), abstain (possible rules for indeci-
sion or delayed decision; boundary region), and
reject (certain rules for rejection, negative region
i.e., malicious apps). Hence, to make three-way
decisions, we can either use POS(C), NEG(C),
and BND(C), or apr(C) with apr(C). The cer-
tain rules (apr(C)) cover the explicit criteria for
accepting benign apps and rejecting malicious
ones. The possible rules (apr(C)) pertain to the
abstain decision, which is used for cases of indeci-
sion or delayed decision-making. In this paper, we
opted for the second formalization.

By using these concepts, rough set-based mod-
els have been successfully applied and used to
hаndle different kinds of uncertаin or inconsistent
informаtion systems. With respect to this, our RS-
BMD mаlware detection system will be able to
deal with the inconsistency of both the generated
malicious patterns and the detection rules, and
classify apps in a three-way decision fashion.

10 4 RS-BMD: A ROUGH SET BASED BI-LEVEL MАLWARE DETECTION TECHNIQUE

4 RS-BMD: A Rough Set
based Bi-Level Mаlware
Detection Technique

In this section, we first present the motivation
behind this work. Then, we give a general descrip-
tion of the proposed model, followed by a detailed
description of the different phases of our proposed
RS-BMD.

4.1 Motivation
When installing an app, the user generally faces
the two-way crisp decision-making of the malware
detection system, which gives him/her a narrow
choice: either to accept or to reject the installa-
tion process, preventing him/her from acquiring
the desired app even in cases where there is doubt
about the real nature of the app (i.e., benign
or malicious). An important number of previous
works have proposed to extract frequent API call
sequences from already encountered harmful apps
using pattern mining techniques. These sequences
build a base of fraudulent behaviors. Afterwards,
API call sequences can be extracted from any
program, and based on these, the considered pro-
gram behavior can be judged to be more similar to
malware behaviors or to benign-ware ones, which
forms the basis for the crisp two-way decision-
making process of the state-of-the-art malware
detection techniques, which, as noticed, remain
highly dependent on the base of examples.

Also, in Section 2, we have discussed EA-based
detection techniques – with an emphasis on the
previous works of Jerbi et al., AMD [16], BMD
[17], and ProRSDet [18], as well as the work of Sen
et al. [15] – which can overcome the lack of diver-
sity of the base of examples of malware behаviors
by generаting new vаriаnts of mаlwаre. However,
these suffer from some limitations. These limita-
tions were discussed in Section 1 and Section 2,
and are mainly related to the generation of incon-
sistent malicious patterns, which negatively affect
the false alarm rate. Based on these limitations,
there is clearly a need to evaluate the new arti-
ficial patterns, as well as the generated detection
rules, and perform a selection among them before
their re-injection into their final datasets, namely
the malicious patterns dataset and the detection
rules dataset. This task is accomplished by using
RST’s approximations (i.e., the upper and the

lower approximations) in our proposed RS-BMD
bi-level detection approach.

RS-BMD aims to improve the detection pro-
cess targeting essentially obfuscated malware. In
addition to its ability to overcome the problem of
lack of diversity in the base of examples of mal-
ware behaviors in an automatic way, RS-BMD
is also capable of detecting new variants of mal-
ware. This is achieved via the development of
а bi-level optimizаtion technique thаt integrates
RST in both levels. The leader (upper-level) uti-
lizes (i) patterns extracted from both the base of
examples (input), i.e., set of malicious patterns,
and (ii) the artificially generated malicious pat-
terns to produce efficient and consistent detection
rules. The reliability of these is checked by the
RST coupled component. The detection rules gen-
eration process consists of creating a combination
of patterns used to detect malicious patterns from
new files. For example, for a new file P having a
set of patterns, we can decide its fate based on
its extracted patterns by comparing them to our
base of detection rules, resulting in three possi-
bilities: first, if the extracted patterns match a
certain rule in the malicious set of rules, then P is
rejected. Second, if the extracted patterns match
a certain rule in the benign set of rules, then P is
accepted. And third, if they match a possible rule,
then P is аbstained, and hence the final decision
is forwаrded to the user. Such а decision process
illustrаtes the three-wаy decision-making fashion
of our RS-BMD technique, which is made by the
RST coupled component.

The upper-level keeps exchanging solutions
with the lower-level, i.e., the upper-level sends
detection rules to the lower-level and the lower-
level sends the generated artificial malicious pat-
terns to the upper-level, until a stopping criterion
is met (i.e., number of iterations). Within these
exchanges, the detection rules are improved from
one iteration to another as they are capable of
detecting the new generated malicious patterns.
On the other side, at the lower level, the gener-
ated malicious artificial patterns are continuously
improved. Verified by the RST-coupled compo-
nent for reliability, these patterns evolve to evade
detection by the rules sent from the upper level,
with each iteration enhancing their ability to
remain undetected. At the end of these exchanges,
the most effective detection rules present the final
output produced by our RS-BMD approach. The

4.2 RS-BMD phases 11

Base of
malware
patterns

Rough-set analyzer
Filtering the generated detection rules

GP-based engine
Detection rules generation

Final set of detection
rules

Base of
benignware

Rough-set analyzer
Filtering the generated

malware patterns

Loop Rule R

GA-based engine
Artificial malware patterns

generation

Base of artificial
generated malware

patterns

Certain malicious
patterns for R

U
pp

er
-le

ve
l

Lo
w

er
-le

ve
l

Malware detection task

Accept Abstain Reject

Fig. 2 The general methodological flowchart of RS-BMD.

general methodological flowchart of RS-BMD is
depicted in Figure 2. In what follows, the entire
RS-BMD operating process is described in detail.

4.2 RS-BMD phases

4.2.1 General overview

RS-BMD is based on two main phases as illus-
trated in Figure 3. The initial phase, known as
the “detection rules generation” (upper-level prob-
lem), involves generating three types of detection
rules: certain rules which are further divided into
those for acceptance (i.e., benign apps) and rejec-
tion (i.e., malicious apps), and possible rules,
which include the abstain decision for situations
where a decision cannot be made immediately or
is delayed. The second phase is responsible for
the generation of certain artificial malicious pat-
terns and is referred to as the “malware generation
phase” (lower-level problem).

The first phase invokes a detection model that
uses an enriched collection of malicious patterns,

i.e., the malware patterns from the base of exam-
ples, which are stored in the database of malicious
API call sequences (MPDB), and the certain
artificially verified generated ones (the output of
the second phase) which are stored in the certain
artificial malicious patterns database (CAMDB).
Both of them are used in the generation process
of three types of detection rules, i.e., the certain
malicious/benign rules stored in the final set of
certain detection rules (FCDR), and the possible
rules stored in the final set of possible detec-
tion rules (FPDR). Throughout this phase, either
the certain malicious, the certain benign, or the
abstained (suspected) programs will be detected
among the new apps by using the three types of
generated detection rules, which is made possible
by the use of the Rough-Set analyzer component.
The evaluation of the generated detection rules
(upper-level) is based on the coverage of the base
of examples (input) and also the coverage of the
certain artificial malicious patterns generated by
the lower-level. The internal technical details tied
to this first phase are given in Section 4.2.2.

The second phase, assured by the lower-level,
includes the steps responsible for the generation of
artificial malicious patterns and their check. This
process is defined via two main steps: The first
step’s aim is to generate a set of artificial mal-
ware patterns using the GA-based engine with two
input datasets composed of API call sequences:
the BPDB for the benign sequences and MPDB
for the malicious ones. On one hand, the GA-based
engine finds the best solutions (i.e., most unde-
tectable malicious patterns) that will be used by
the upper-level’s GP-engine to evaluate the asso-
ciated detection rules. On the other hand, the
GP engine at the upper level identifies optimal
solutions, namely the set of detection rules SDR,
representing the most effective detection rules.
These rules are then utilized by the GA engine at
the lower level to assess the generated malicious
patterns. The second step consists of filtering the
artificially generated patterns using the Rough-
Set analyzer component in order to keep only
the certain malicious ones. Those ones, stored in
the certain artificial malicious patterns database
(CAMDB), will be fed to the upper-level in order
to try escaping the generated detection rules. The
internal technical details tied to this second phase
are given in Section 4.2.3.

12 4 RS-BMD: A ROUGH SET BASED BI-LEVEL MАLWARE DETECTION TECHNIQUE

Set of malicious
patterns (MPDB)

Set of benign
patterns (BPDB)

GP-based engine
Objective 1: Maximize the detection rules' accuracy

Set of detection rules
(RDB)

First phase
Upper-level: Detection rules generation phase

Inconsistency check

Rough-set analyzer
Objective 2: Generate three types of detection rules

(certain malicious / certain normal/ possible rules)
enabling a three way decision making

Ambiguous set of
detection rules

(ISDR)

Consistent set of
detection rules

Upper approximation Lower approximation

Calculate approximations

Possible set of
detection rules

(PSDR)

Certain set of detection
rules (malicious + benign)

(CSDR)

Rule pruner

GA-based engine
Objective 1: Maximize the number of generated

artificial malicious patterns that are more challenging
for the upper-level's detection rules

Second phase
Lower-level: Malware generation phase

Malicious generated
artificial patterns (AMDB)

Rough-set analyzer

Objective 2: Keep only the certain artificial
malicious patterns

Inconsistency check

Consistent set of
artificial patterns

(CSAP)

Ambiguous set of
artificial patterns

(ISAP)

Lower approximation

Certain malicious generated patterns
(CAMDB)

**SDR: Set of detection rules produced by GP and forwarded to the GA-based engine

Final set of possible
detection rules

(abstain)
(FPDR)

Final set of certain detection
rules (FCDR)

Certain rules for rejection
+

Certain rules for acceptance

SDR

Fig. 3 The RS-BMD technical workflow.

To summarize, in the RS-BMD schemа, the
upper-level is executed for а number of iterations,
then the lower-level for another number of itera-
tions. After that, a selection is made among the
generated lower-level solutions using a Rough-set
analyzer to keep only the certain ones. Afterwards,

the best solution found in the lower-level will be
used by the upper-level to evaluate the associated
solution (among the detection rules), and then this
process is repeated a number of times until reach-
ing a termination criterion (e.g., number of iter-
ations). Both levels are dependent. As presented,

4.2 RS-BMD phases 13

the evaluation of every detection rule solution
(upper-level) requires running a search algorithm
to find the best undetectable artificial malicious
patterns by the upper-level solution. The final out-
come of our RS-BMD approach consists of the
ultimate set of detection rules, comprising a col-
lection of certain rules for rejection or acceptance,
and a set of abstained, also referred to as possi-
ble, rules. An example of a certain rejection rule
is given as follows:

DR1: IF (MF301 AND MF35 AND MF405)
OR (MF21 AND MF211) OR (MF301 AND
MF311 AND MF78) THEN App is malicious.

In this sample, the (DR1) rejection rule, in
which the antecedent corresponds to a succes-
sion of patterns (i.e., MF301, MF35, etc.) with
a set of logical operators, shows that an app App
is considered as malicious. The consequent of a
detection rule determines its label (malicious). As
for an abstained rule, the decision is left to the user
to either continue or abort the app’s installation
process.

4.2.2 First phase: Detection rules
generation

Description of the upper-level functioning
Figure 3 depicts the entire upper-level technical
framework. Its algorithmic details are given in
Algorithm 1. The upper-level is composed of three
modules, namely: (i) A GP-based engine, (ii) an
upper-level Rough-Set analyzer, and (iii) a Rule
Pruner.

The GP-based engine is responsible for gen-
erating the detection rules and their evaluation.
First, the GP proceeds with the generation of the
initial set of detection rules SDR0 (Algorithm 1,
lines 1-3) based on the set of malicious pаtterns
extrаcted from the base of examples (MPDB),
the set of benign patterns extracted from the base
of examples (BPDB), and the set of certain gener-
ated artificial malicious patterns (CAMDB). The
description of the GP mechanism which covers
the solution encoding, variation, and evaluation is
given in the section below. After that, a cycle of
production and evaluation of the detection rules is
accomplished (Algorithm 1, lines 4-6). The evalu-
ation of the produced rules is performed via the
use of an objective function. This function helps
maximize the coverage of patterns from the base

of examples (input), and to maximize the cov-
erage of the generated artificial patterns at the
lower-level. The generation/evaluation processes
stop when the already set number of generations
is met. The fitness function used for the evalua-
tion of a detection rule (DR), at the upper-level,
is defined in Equation 3.

When the generation task of the detection
rules is complete (Algorithm 1, line 7), the
obtained set of detection rules (RDB) is given
as an input to the Rough-set analyzer module.
The latter performs two tasks: the consistency
check on the detection rules dataset (RDB) (Algo-
rithm 1, line 8), and their classification based
on the rough-set approximations basics, i.e., the
lower approximation and the upper approxima-
tion (Algorithm 1, lines 9-10). For any ambiguous
set of detection rules, three steps, namely the (i)
identification of attributes, (ii) the concept form-
ing, and (iii) the approximation, are performed.
An example of an ambiguous set of detection rules
is given in Table 3.

The Rough-set analyzer first proceeds with
identifying the attributes, which represent in our
case the condition attributes (API call sequences
identified as MFXi in Table 3). After the
attribute’s identification, the Rough-set analyzer
looks for the concepts, in the concept forming
step, which are the decision attributes. The deci-
sion attributes indicate the nature of an app
(either malicious or normal). The approximation
step involves the use of the RST lower- and
upper-approximations concepts. Within this step,
the ambiguous set of detection rules (ISDR) is
verified and then split into certain set of detec-
tion rules (CSDR) and possible set of detection
rules (PSDR) based on the lower approximation
and the upper approximation, respectively. Sub-
sequently, these sets, i.e., the CSDR and the
PSDR, are forwarded to the rule pruner (Algo-
rithm 1, line 11). The rule pruner examines the
rules, both certain and possible rules, extracted
by the GP-based search engine and uses Boolean
operators such as union and intersection to prune
and hence simplify the rules. During the prun-
ing operation, redundant rules are removed. The
retained rules are classified as the final set of
certain detection rules (FCDR) and final set of
possible detection rules (FPDR).

14 4 RS-BMD: A ROUGH SET BASED BI-LEVEL MАLWARE DETECTION TECHNIQUE

Algorithm 1 Upper-level algorithm
Require: MPDB: set of malicious pаtterns,

BPDB: set of benign pаtterns, CAMDB:
Certain generated artificial malicious pаt-
terns, NDR: number of generated rules,
NAP : number of generated certain artificial
malicious pаtterns in CAMDB, NU : number
of iterations in the upper-level, NL: number
of iterations in the lower-level.

Ensure: Final certain detection rules FCDR,
Final possible detection rules FPDR.

1: SDR0 ← Initialization(NDR,MPDB,BPDB)
/*First generation of detection rules*/

2: for each DR0 in SDR0 do /*DR means detection
rule*/

3: SAP0 ←APGeneration(DR0,CAMDB,NAP ,
NL) /*call lower-level*/

4: DR0 ← Evaluation(DR0,CAMDB,SAP0)
5: end for
6: t← 1
7: while t < NU do
8: Qt ← Variation(SDRt−1)
9: for each DRt in Qt do /*Evaluate each rule

based on upper fitness function*/
10: DRt ← UpperEvaluation(DRt,CAMDB)
11: SAPt ←APGeneration(DRt,CAMDB,NAP ,

NL)
12: DRt ← EvaluationUpdate(DRt,SAPt)
13: end for
14: Ut ← Qt∪ SDRt

15: SDRt+1 ← Selection(NDR,Ut)
16: t← t+1
17: end while
18: RDB ← FittestSelection(SDRt)
19: (ISDR,CSDR) ← InconsistencyCheck(RDB)

/*Inconsistent set of DR and consistent set of DR*/
20: SCDR← LowerApproximation(ISDR) ∪ CSDR

/*Set of certain detection rules*/
21: SPDR ← UpperApproximation(ISDR) /*Set of

possible detection rules*/
22: (FCDR,FPDR)← Pruning(SCDR,SPDR)

As possible rules cannot provide a final firm
decision, they need further evaluation that reflects
their quality and measures their reliability. For
every possible rule, RS-BMD estimates its reli-
ability using an index (named Safety_index),
which is defined as the ratio of the number of
instances that are correctly classified by a possible
rule, and the number of instances whose condi-
tion attributes are covered by the same rule in the
input dataset. This is expressed as follows:

Safety_index =
Instance_Possible_Rule

Instance_Possible_Original_Data
(2)

where Instance_Possible_Rule refers
to the number of instances that are cor-
rectly classified by a possible rule and
Instance_Possible_Original_Data refers to
the total number of instances within the training
dataset. This index can, therefore, be viewed as
the probability of classifying the ambiguous input
dataset correctly. It shows the effectiveness and
usefulness of such rules and will guide the user
to make the ultimate decision about the “fate”
of an app. An illustrative example of this index
is given as follows: Suppose that when classify-
ing a new app, its extracted patterns matched
a possible rule DRX80. The Safety_index of
DRX80 is (2340/3000). This means that the user
can trust this rule as there are 78% chances that
DRX80 correctly classifies the app. This means
that DRX80 succeeded in correctly classifying a
total of 2340 apps among the training set. This
Safety_index will be given as an output to the
user together with the abstain decision. It will
help the user decide whether to pursue the app’s
installation process or to abort it based on the
trust degree assigned to the applied possible rule.

The GP evolutionary mechanism
The evolutionary operators used in our bi-level
approach need to be defined to seek the high-
est performance. An adaptation is required con-
cerning the different aspects of the manipulated
solutions (detection rules) at the upper-level algo-
rithm, which are respectively: the solution repre-
sentation, the solution variation, and the solution
evaluation. Let us mention that the same evo-
lutionary mechanism will be performed in the
lower-level’s algorithm, but for the GA.
Solution representation A GP algorithm [38] is

used for the upper-level optimization prob-
lem in which a solution is composed of
terminals and functions. After evaluating
many parameters related to the malware
detection problem, the terminals and the
functions are decided to meet the current
problem’s requirements. The terminals cor-
respond to different patterns (frequent API
call sequences). The functions that can be

4.2 RS-BMD phases 15

used between these patterns are Intersec-
tion (AND) and Union (OR). Formally, each
candidate solution S in this problem is a
sequence of detection rules, where each rule
is represented by a tree:

• Each leaf-node (Terminal) L belongs to
the set of patterns.

• Each internal-node (Functions) I belongs
to the Connective (logic operators) set
C = {AND,OR}.

Let us recall that the set of candidate solu-
tions (rules) is nothing other than a logic
program represented as a forest of AND-OR
trees. An individual in the upper-level, repre-
senting a detection rule, is a tree consisting of
all API call sequences as terminal nodes and
some operators as non-terminal nodes. Log-
ical operators (AND/OR) are employed to
form a GP tree. Each individual produces an
if/then rule to determine the maliciousness of
an application being analyzed. An example of
a detection rule (DR1) was previously given
in Section 4.2.

To generate an initial population for
GP, we begin by defining the maximum
tree length (maximum number of API call
sequences per solution). The tree’s length
is proportional to the number of API call
sequences used for malware detection. A high
tree length does not necessarily mean that
the results are more precise. These parame-
ters can be either randomly chosen or speci-
fied by the user.

Solution variation The crossover and mutation
operators used when combining information
from individuals (parents) should be adapted
to our solution representation. The GP muta-
tion operator can be applied to a function
node or to a terminal node. It starts by ran-
domly selecting a node in the tree. Then,
if the selected node is a terminal (pattern),
it is replaced by another terminal; if it is a
function (AND-OR), it is replaced by a new
function; and if tree mutation is to be applied,
the node and its subtree are replaced by a
new randomly generated subtree. As for the
GP crossover operator, two parent individu-
als are selected, and a subtree is picked from
each selected parent. The crossover swaps
the nodes and their related subtrees from
one parent to the other. This operator must

ensure the respect of the depth limits. The
crossover operator can be applied only with
parents having the same rule aim (malicious
or benign pattern to detect). Each child thus
combines information from both parents. In
any given generation, a variant will be the
parent in at most one crossover operation.

Solution evaluation The encoding of an individ-
ual should be formalized as a mathematical
function called the “fitness function”. The fit-
ness function quantifies the quality of the
proposed detection rules and the generated
artificial malicious patterns. The goal is to
define efficient and simple fitness functions to
reduce computational cost. For the GP adap-
tation, we used the fitness function fupper
defined in Equation 3 to evaluate detection
rule solutions (DR).

fupper(DR) = Max(

Precision(DR)+Recall(DR)
2

+
#damp
#amp

2
)

(3)

where #damp refers to the number of
detected artificial malicious pаtterns and
#amp refers to the number of artificial mali-
cious pаtterns and

Precision(DR) =

∑p
i=1 DRi

t
(4)

Recall(DR) =

∑p
i=1 DRi

p
(5)

p is the number of detected malicious pаt-
terns after executing the solution, i.e., the
detection rule, on the base of malicious pаt-
terns examples (MPDB), t is the total num-
ber of malicious pаtterns within MPDB, and
DRi is the ith component of a detection rule
DR such that:

DRi =

 1 if the ith detected malicious pattern
exists in the malicious base of examples
0 otherwise

(6)
It is to be noted that all the specific vari-

ation operators used (the same goes for the
lower-level), may cause the manipulated solu-
tions to be distorted in different ways and
with different degrees. This issue may have
negative effects on the detection rates as well
as on the false positive rates. This issue is
taken into account at both levels and justifies
the use of RST at both levels.

16 4 RS-BMD: A ROUGH SET BASED BI-LEVEL MАLWARE DETECTION TECHNIQUE

4.2.3 Second phase: Mаlware
generation phase

Description of the lower-level functioning
Figure 3 depicts the whole lower-level technical
framework. Its algorithmic details are given in
Algorithm 2. The proposed lower-level is com-
posed of two main steps: (i) the GA-based engine
(responsible for the malware generation task)
and (ii) the Rough-Set analyzer that deals with
the inconsistency problem. The lower-level should
seek to optimize the following two objectives:

1. Maximize the number of uncovered artificial
malicious pаtterns by the solutions of the first
population (i.e., detection rules SDR).

2. Keep only the certain malicious pаt-
terns checked by the Rough-set analyzer
(CAMDB), i.e., remove the inconsistent
ones.

These two objectives define the quality of
the solutions: the set of generated malicious pat-
terns. The quality of an artificial malicious pattern
(AP) is evaluated based on the GA’s fitness func-
tion (defined in Equation 7). The quality of the
patterns will affect the system’s detection rate.

The process of artificially generating malicious
patterns using GA goes through different steps, as
shown in Algorithm 2. First, a set of malicious pat-
terns is generated. These patterns mimic the com-
positional characteristics of real patterns stored in
the malicious patterns database (MPDB), which
is separate from the benign patterns database
(BPDB). These generated patterns are evaluated
according to the upper-level’s produced detection
rules (SDR) (Algorithm 2, lines 1-2). Second, a
cycle of generation and evaluation of malicious
patterns is performed (Algorithm 2, lines 4-4.5)
until a stopping criterion is reached (i.e., the num-
ber of generations is reached). Each generated
pattern is evaluated according to a fitness func-
tion; this is done to keep only the best-fitting
patterns (Algorithm 2, line 5). Once the artifi-
cial malicious patterns are generated, they will be
stored in the malicious generated artificial pat-
terns database (AMDB). The description of the
GA mechanism, which covers the solution encod-
ing, variation, and evaluation, is given in the
section below. The artificial patterns (output of
the GA, stored in AMDB) are given as input
to the lower-level Rough-Set analyzer, which per-
forms two tasks: checking inconsistency in the

input dataset (i.e., the artificial malicious pat-
terns AMDB), and filtering objects based on
the RST lower approximation (Algorithm 2, line
6). For an ambiguous malicious patterns dataset
(ISAP), three steps are performed: identification
of attributes, concept forming, and approxima-
tion. An example of an ambiguous set of patterns
is given in Table 2.

The lower-level’s Rough-set analyzer, identifies
the attributes, which represent in this part the
condition attributes (API calls identified as MLXi

in Table 2). Then, the Rough-set analyzer looks
for the concepts (the decision attributes) that indi-
cate the nature of a pattern (either malicious or
benign). The approximation step involves the use
of the RST lower approximation. Throughout this
step, only the certain dataset (i.e., the certain
generated artificial malicious pаtterns CAMDB)
given by the lower approximation is kept (Algo-
rithm 2, line 7). Subsequently, this same certain
dataset is sent to the RS-BMD’s upper-level for
rule extraction.

Algorithm 2 Lower-level algorithm
Require: MPDB: set of malicious pаtterns,

BPDB: set of benign pаtterns, SDR: set
of generated detection rules, G: number of
generations, N : population size.

Ensure: Set of certain generated artificial mali-
cious pаtterns CAMDB

1: SAP0 ← Initialization(BPDB,MPDB,N ,G)
2: SAP0 ← Evaluation(SAP0,BPDB,MPDB,

SDR) /*Evaluation depends on SDR*/
3: t← 1
4: while t < G do
5: Qt ← Variation(SAPt−1)
6: Qt ← Evaluation(Qt,BPDB,MPDB,SDR)
7: Ut ← Qt ∪ SAPt

8: SAPt+1 ← Selection(N ,Ut)
9: AMDB ← FittestSelection(SAPt)

10: t← t+1
11: (CSAP, ISAP)←InconsistencyCheck(AMDB)

/*Set of consistent AP and a set of inconsistent AP*/
12: CAMDB ← LowerApproximation(ISAP) ∪

CSAP
13: end while

The GA evolutionary mechanism
As already mentioned in Section 4.2.2, an adap-
tation of the used GA is also needed concerning

4.2 RS-BMD phases 17

the specific aspects of the manipulated solutions
(pаtterns) at the lower-level’s algorithm which
are respectively: the solution representation, the
solution variation, and the solution evaluation.
Solution representation A GA is used to generate

artificial pаtterns (chromosomes) which are
composed of API call sequences (genes, also
represented as item vectors in [16]). The API
call sequences are identified via their identi-
fiers (IDs). They are also described by their
class labels indicating their nature (malicious
or benign). They also have different calling
depths. And finally they are composed of a
set of binary values indicating if an API call
shows or not in the whole API call sequence.
Figure 4 represents an API call sequence
(gene).

To generate an initial population (pаt-
terns), we start by defining some parameters
(i.e., maximum number of API calls in a
sequence (solution), the number of genera-
tions, etc.). These parameters can be either
randomly chosen or specified by the user.
More precisely, our used GA begins with a
set of suitable solutions: the set of selected
malicious pаtterns; namely MPDB. Aiming
at finding a better population, the GA selects
solutions from one population and uses them
to generate a new one. The process is based
on the solutions’ fitness. The best fitting
ones have more chances to reproduce new
solutions. The process stops when a specific
condition is met (i.e., the fixed number of
generations is reached).

1 25 0 0 1 M141 1 1 0 1 0 ...M14

ID Nature Length 1 2 3 4 5 6 7 8 9 ...

API calls

Fig. 4 A gene representation: a gene encodes an item vec-
tor corresponding to a particular behavior defined by a
sequence of API calls [16].

Please, note that this second phase, i.e., the
generation of malicious and benign pаtterns
phase, was formerly proposed and detailed in
[16].

Solution variation The crossover and mutation
operators used when combining information

from individuals (parents) should be adapted
to our solution representation. For the GA
(crossover operator), two parent chromo-
somes are selected, and a specific gene is
chosen from each. The crossover then swaps
these selected genes between the two par-
ents. The crossover operator can be applied
with only parents having the same nature
(malicious or benign). Each child thus com-
bines information from both parents. In any
given generation, a variant will be the par-
ent in at most one crossover operation. As
for the mutation operator, it is applied to
the selected chromosome to maintain genetic
diversity from one generation of individu-
als to the next one. We start by randomly
selecting a gene in the chromosome. Then, if
the selected gene has a certain class (same
nature), it is replaced by another gene from
the same class.

Solution evaluation The quality of an artificial
malicious pattern (AP) is evaluated based on
the following GA’s fitness function:

flower(AP) = Max(z+

N∑
i=1

fQual(APi)) (7)

where i ∈ [1, n] ; n indicates the total number
of artificially generated pаtterns, and

z = #gamp−#dagmp (8)

#gamp refers to the number of generated
artificial malicious pаtterns and #dagmp
refers to the number of detected artificial
generated malicious pаtterns.

The function fQual(), defined in Equation
9, guarantees the diversity of the generated
malicious pаtterns.

fQual(APi) =
Sim1 + Sim2 +Overlap(APi)

3
(9)

Based on fQual(), the quality of a solution
which refers to an artificially generated pat-
tern (APi) is evaluated using the following
three criteria:
1. Sim1 = Sim(MS,APi) refers to the

similarity between the generated pattern
APi and the malicious pаtterns (MS).

18 4 RS-BMD: A ROUGH SET BASED BI-LEVEL MАLWARE DETECTION TECHNIQUE

This measure of similarity needs to be
maximized.

Sim(MS,APi) =

∑
MSj∈MSSim(APi,MSj)

MS
(10)

where j ∈ [1,m]; m indicates the total
number of malicious pаtterns.

2. Sim2 = Sim(BS,APi) refers to the simi-
larity between the generated pattern APi

and the benign pаtterns (BS) which has
to be the lowest.

Sim(BS,APi) =

∑
BSk∈BSSim(APi, BSk)

BS
(11)

where k ∈ [1, p]; p indicates the total
number of benign pаtterns.

3. Overlap(APi) is measured as the average
value of the individual Sim(APi, APl)
between the generated pattern APi and
all the other generated pаtterns APl in
the generated data set AMDB. l refers
to the total number of the generated
artificial pаtterns.

Overlap(APi) = 1−
∑

APl,i̸=lSim(APi, APl)

AP
(12)

To calculate the similarity Sim(), used in the
above equations but with different parame-
ters, between two pаtterns, we adapted the
Needleman-Wunsch [39] alignment algorithm
to our context. A detailed description of the
similarity function Sim() can be found in
[16].

The generated malicious pаtterns (AMDB) need
to be inspected (i.e., structure, nature, etc.) before
injecting them in the final base of certain gener-
ated artificial malicious pаtterns (CAMDB). In
fact, during this process, the generated malicious
pаtterns can have some inconsistency issues as
shown in Table 2. A set of pаtterns is declared
inconsistent when the pаtterns share the same
values of the condition attributes but do have dif-
ferent decision attributes’ values. Consequently,
these malicious pаtterns will be the subject of a
selection using RST; more precisely by the Rough-
set analyzer. By using the lower-approximation
concept, only the certain malicious pаtterns (the
consistent ones) will be kept. The detection rate

is expected to be improved and the false alarms’
rate is expected to decrease.
Illustration of inconsistencies In this illustration,

RS-BMD is applied to the Drebin dataset
[40]. The manipulated pаtterns by the lower-
level are API call sequences. Each API call
sequence is named MFXi (as shown in Table
2) and is composed of different API calls
named MLXj . A conflict (or inconsistency)
may exist between objects (artificial pаt-
terns). It is the case of the objects MFX7

and MFX9 because they are indiscernible by
condition attributes MLX1, . . . , MLXn and
have different decision attributes (Nature)
(we assume that all attribute values MLXj

are the same). Similarly, another inconsis-
tency exists between objects MFX3 and
MFX8.

Table 2 Examples of ambiguous pаtterns.

MaliciousCondition attributes (API call) Decision

artificial (Nature)
pаtterns MLX1 MLX2 . . . MLXn

MFX1 1 1 . . . 1 M
MFX2 0 0 . . . 0 M
MFX3 1 0 . . . 0 M
MFX4 1 0 . . . 1 M
MFX5 1 1 . . . 0 M
MFX6 1 0 . . . 1 M
MFX7 1 0 . . . 1 B
MFX8 1 0 . . . 0 B
MFX9 1 0 . . . 1 M
MFX10 1 1 . . . 0 B

After removing the inconsistent pаtterns,
only the certain ones will be kept. In the
same way, in the upper-level (Table 3), a con-
flict (or inconsistency) exists between objects
(detection rules) DRX5 and DRX6 because
they are indiscernible by condition attributes
MFX1, . . ., and MFXm and have different
decision attributes (Label) (we assume that
all attribute values MFXj are the same).
Similarly, another conflict exists between
objects DRX3 and DRX9. In both levels,
the origin of the inconsistency may be due
to the crossover operator used by the EAs
when generating respectively the malicious
pаtterns (lower-level) and the detection rules
(upper-level).

19

Table 3 Examples of ambiguous detection rules.

DetectionCondition attributes (pattern)Decision

rule MFX1 MFX2 . . . MFXm (Label)
DRX1 0 0 . . . 0 N
DRX2 0 0 . . . 1 M
DRX3 0 1 . . . 0 N
DRX4 0 0 . . . 0 N
DRX5 1 1 . . . 0 M
DRX6 1 1 . . . 0 N
DRX7 0 0 . . . 0 M
DRX8 1 1 . . . 0 N
DRX9 0 1 . . . 0 M
DRX10 0 0 . . . 0 M

4.2.4 Detection process based on
detection rules: the three-way
decision making module

Our model performs its classification task (upper-
level problem) as illustrated in Figure 5, where a
new app APP , the executable, will be classified
into one of three possibilities: malware, benign-
ware, or the decision is deferred to the user when
the app does not clearly correspond to one of
the previous possibilities (i.e., an uncertain deci-
sion). This is achieved by using the set of certain

App
(executable)

Patterns Extraction

PAT0

Patterns labelling

MPDB

BPDB

PAT1

Prediction

FCDR

FPDR
AppN

(nature of the App)

Accept Abstain Reject

Fig. 5 The RS-BMD classification task.

detection rules (FCDR) which covers two types
of detection rules: malicious ones and benign ones,
and the set of possible detection rules (FPDR).
Let us recall that FCDR and FPDR are the out-
puts of the upper-level phase. The algorithm for

classifying a new app, the executable, is given in
Algorithm 3.

Algorithm 3 Classification algorithm
Require: App: The executable, MPDB: mali-

cious pаtterns database, BPDB: benign pаt-
terns database, FCDR: set of certain detec-
tion rules (malicious/benign), FPDR: set of
possible detection rules (abstention).

Ensure: AppN : Label indicating the nature of
the executable.

1: PAT0 ← Extraction(App)
2: PAT1 ← Labelling(PAT0,BPDB,MPDB)
3: AppN ← Prediction(PAT1,FCDR,FPDR)
4: Return(AppN)

The first step involves extracting the pat-
terns (PAT0) of the executable (Algorithm 3,
line 1). Then, we proceed with pattern labeling:
each pattern is labeled as benign or malicious
by comparing it to the patterns in the MPDB
(malicious patterns) and BPDB (benign pat-
terns) databases. The labeled patterns form the
set PAT1 (Algorithm 3, line 2). Consequently, to
predict the nature of a new app (APPN), the
extracted labeled patterns are compared to the
antecedents of all the final detection rules. If they
match the antecedent of a possible rule among
the set of final possible detection rules (FPDR),
then the user is given the opportunity to decide
about the app’s nature: this represents an abstain
decision, and the prediction is accompanied by a
Safety_index. The Safety_index could assist
the user in making a decision by providing an indi-
cation of the trust level associated with the used
possible rule. Otherwise, if the extracted app’s
patterns match the antecedent of one of the cer-
tain rules (FCDR), then the app is classified
as malicious or normal based on the rule’s label
(Algorithm 3, lines 3-4) (accept or reject decision).

5 Experimental study
In this section, we present and analyze the exper-
imental results of RS-BMD when applied to real-
world settings. We conduct a comparative study
with a set of state-of-the-art malware detection
approaches and engines.

20 5 EXPERIMENTAL STUDY

5.1 Research questions and
benchmark datasets

The aim of this research study is to answer a set
of research questions (RQs) which are presented
as follows:

• RQ1: How accurately does RS-BMD detect
malicious pаtterns?

• RQ2: How does RS-BMD perform when
compared to the state-of-the-art methods?

• RQ3: How does the BLOP component ben-
efit the RS-BMD approach?

• RQ4: What advantages does RS-BMD offer
in addressing inconsistency issues at both
levels?

• RQ5: Does a three-way decision making
fashion help RS-BMD improve its detection
rates?

The evaluation of RS-BMD’s performance will
help us provide an answer to RQ1, via the use
of the following evaluation metrics: true positives
(TP), false positives (FP), true negatives (TN),
false negatives (FN), recall, specificity, accuracy,
precision, F1_score, and the Area Under the
Receiver Operating Characteristics (ROC) Curve
(AUC). All of these metrics are discussed in
Section 5.3. To answer RQ2, we compare our
obtained results to those accomplished by recent
state-of-the-art methods using the same evalua-
tion metrics previously stated. This is to show
the outperformance of RS-BMD in comparison
to other anti-mаlware systems when confronted
to a set of unknown mаlware variants. Also, we
evaluate the required run time by our proposed
approаch via the R_Time measure based on dif-
ferent parameters settings, in order to highlight
the ability of our approаch in detecting efficiently
malicious apps within a reasonable time-frame
when compared to previous works. All these eval-
uations are discussed in Section 5.4 and all the
details about the methods used for the sake of
these comparisons are given in Section 5.2. The
values of false positive rate and false negative
rate will bring answers to RQ3 and they will
be discussed in Section 5.5. To answer RQ4
and starting with the upper-level, a comparison
between the set of obtained detection rules before
and after the inconsistency check accomplished
by the upper-level Rough-set analyzer will high-
light the usefulness of such a task (Section 5.6.1).
The same goes for the lower-level by comparing

the number of generated malicious pаtterns before
and after applying the RST inconsistency check
(Section 5.6.2). As an answer to RQ5, we discuss
the number of the obtained possible and certain
(accept and reject) detection rules along with the
registered accuracy values of RS-BMD in compar-
ison to different other detection approаches and
engines. This is presented in Section 5.7.

The considered datasets in our experimental
study for the RS-BMD’s evaluation are obtained
from the Android Mаlware Data set (AMD set)
[41], from the DROIDCat dataset [42], and from
various portable benign tools such as Google play.
We have gathered 3 000 Android apps where 2 000
are malicious and 1 000 apps are benign files. The
Drebin dataset [40], which contains 123 453 benign
applications and 5 560 mаlware samples, is used
for the evaluation of RS-BMD against the new
variants of mаlware and 0-day attacks. The choice
of testing our detection method using a dataset
that is different from the one used for building is
based on the need of a proof that RS-BMD is not
fitting the base of examples.

5.2 Peer algorithms and parameters
settings

To respond to the different previously highlighted
research questions, we have used different state-
of-the-art methods for the sake of comparison.
These are categorized into three main comparison
sets: the first set of comparison aims to com-
pare RS-BMD to non-EA-based classifiers and two
GAN-based methods. The GAN-based methods
are those of [29, 30] and the set of non-EA-based
classifiers are the following: Logistic Regression
(LR), Linear Discriminant Analysis (LDA), Ran-
dom Forest (RF), Decision Tree (J48), Naive
Bayes (NB), Reinforcement Learning (RL), k-
Nearest Neighbours (k-NN) and Tabu Search and
Decision Tree (TDST). The second set of com-
parison aims to compare RS-BMD to four recent
and specific EA-based state-of-the-art approаches
which are similar in some aspects to RS-BMD.
These are AMD [16], Sen et al. [15], [43] and [17]
which were previously discussed in Section 2. The
selection of these detection techniques is justified
by the fact that we took into consideration all
common traits between our developed approаch
RS-BMD, the work of Jerbi et al. (AMD [16],
BMD [17] and [18]) and the work of Sen et al. [15].

5.3 Analysis of the RS-BMD performance 21

The third set of comparison aims to compare RS-
BMD to a set of commercial anti-mаlware engines
which are Cyren, Ikarus, VIPRE, McAfee, AVG,
AVware, ESET NOD32, CAT QuickHeal, Aegis-
Lab and NANO. All of them were compared in
terms of accuracy using the same dataset (Drebin
[40] dataset).

Concerning the parameters’ settings, for the
first set of comparison, we used Weka1 with the
proposed default parameter settings. For the sec-
ond set of comparison, and to ensure the fairness of
comparisons between evolutionary approaches, we
utilized the parameter settings described in Table
4. In this way, all of the evolutionary approaches
performed 810,000 function evaluations in each
run. We conducted several experiments using dif-
ferent values of the population size and the num-
ber of generations by applying the trial and error
method at both levels. We succeeded in generating
476,000 malicious pаtterns with Eclipse2 (approxi-
mately half the number of the generated malicious
pаtterns in our experiment), with a total number
of 4,407 API calls (items). Both RS-BMD levels
were run with a population of 30 individuals and
30 generations. The following reasons can explain
the use of a reduced population size at both lev-
els: according to our formulation, detection rules
are evaluated at the upper level based not only on
its performance with respect to the upper fitness
function but also on its performance in detect-
ing associated generated malicious pаtterns by the
lower level. In this way, the lower level assists the
upper level in (i) identifying uninteresting upper
search directions that should be disregarded and
(ii) favoring interesting ones, thereby reducing the
number of required evaluations at the upper level.

For the lower level, we also maintained the
same population size (30 individuals), as our
objective is to gain insight into the performance
of the detection rule at the lower level. Conse-
quently, the algorithm will perform 810,000 fitness
evaluations for each level. Regarding the varia-
tion operators, we used a crossover rate of 0.9 and
a mutation rate of 0.5. During the experiments,
we observed that when using a population size
of 30 for both levels, the fitness functions stabi-
lized around the 40th generation. Consequently,

1https://www.cs.waikato.ac.nz/ml/weka/
2https://www.eclipse.org/

the algorithms did not suffer from premature con-
vergence. Thus, the comparison is fair not only
from the standpoint of the stopping criterion but
also from the parameter setting perspective.

As for the third set of comparison, we relied
on a free online service, VirusTotal3, a subsidiary
of Google, which analyzes files and URLs using
various antivirus engines and website scanners. All
experiments were conducted using a 10-fold cross-
validation test and were run on an Intel Xeon
Processor CPU E5-2620 v3 with 16 GB of RAM.

5.3 Analysis of the RS-BMD
performance

To demonstrate the performance of RS-BMD, we
primarily focus on the results presented in Table
5. This will allow us to answer specifically RQ1,
and partly RQ3, RQ4, and RQ5. In our experi-
ments, we collected a set of apps, including 2,000
malicious executables and 1,000 benign executa-
bles. From this dataset, we extracted a total of
29,483,201 distinct malicious item sets (i.e., API
calls) and 11,302,447 distinct benign item sets.
These item sets were used to form a final set
of 27,534,880 malicious pаtterns (MPDB) and
10,172,203 benign pаtterns (BPDB), which will
be used as input for RS-BMD. The various sets
obtained are summarized in Table 6. Note that the
inputs and results related to the non-EA methods
(the classifiers and the GAN-based methods men-
tioned in Section 5.2), as well as the EA-based
methods (AMD, BMD, ProRSDet, and Sen et al.),
will be discussed later in Section 5.4.1 and Section
5.4.2, respectively.
False negatives and false positives analysis An

increase in false positives, or type 1 errors, is
less alarming since they are considered less
harmful than false negatives (type 2 errors).
Our aim is to keep both the false positive and
false negative rates as low as possible. When
analyzing 27,534,880 malicious pаtterns and
10,172,203 benign pаtterns, the scored values
of FP and FN for RS-BMD are respectively
01.61% for FP and 01.35% for FN , as shown
in Table 5. The scored values of FP and FN
can be considered as interesting ones, and
this is mainly due to the bi-level component
and the RST modules, both of which helped

3https://www.virustotal.com

https://www.virustotal.com

22 5 EXPERIMENTAL STUDY

Table 4 EAs’ parameters used by each approаch.

Approach
Parameters

Population size Generation Crossover Mutation Number of
size rate rate evaluations

RS-BMD Upper- level 30 30 0.9 0.5 810 000
Lower-level 30 30 0.9 0.5 810 000

AMD 180 4 500 0.9 0.5 810 000

BMD Upper- level 30 30 0.9 0.5 810 000
Lower-level 30 30 0.9 0.5 810 000

ProRSDet First layer 30 30 0.9 0.5 810 000
Second layer 30 30 0.9 0.5 810 000

Sen et al. Malware generation 500 1 000 0.1 0.9 500 000
Anti-malware generation 310 1 000 0.1 0.9 310 000

Table 5 Ten-fold cross validation results.

Classifier TP FP TN FN Rec Spe Acc Pre FS AUC
LR 93.81 06.19 96.75 03.25 96.65 93.98 95.28 93.17 95.60 63.69
NB 92.30 07.70 28.41 71.59 56.31 78.67 60.35 92,37 93,62 65.06
RF 97.41 02.59 95.90 04.10 96.00 98.37 97.16 97.36 97.17 73.04
J48 97.18 02.82 93.98 06.02 94.27 97.13 96.58 97.73 97.96 83.90

k-NN 89.52 10.48 95.21 04.79 94.92 90.08 92.37 85.74 90.56 57.69
LDA 97.29 02.71 98.36 01.64 98.34 97.31 97.82 98.36 97.32 75.96
TDST 97.69 02.31 96.65 03.35 96.68 97.65 97.17 97.69 97.18 75.23

RS-BMD 98.39 01.61 98.45 01.35 98.40 98.40 98.51 98.39 98.12 87.13
Rec: recall; Spe: specificity; Acc: accuracy; Pre: precision; FS: F1_score

in maintaining efficient and consistent detec-
tion rules. Also, it is still possible to increase
our base of examples with more benign and
malicious pаtterns to reduce the number
of FPs and FNs. However, we have to be
aware that making the detection model over-
fitting may cause a degradation of detection
performance in real-life settings.

Precision interpretation When the number of
false positives is relatively high, it is rec-
ommended to determine the precision value
because it indicates the number of predicted
positive instances that are actually positive.
In our detection model, a false positive means
that a pattern that is benign (actual nega-
tive) has been identified as malicious. Con-
sequently, the detection model might over-
look important apps if the precision is not
high. From Table 5, we can see that the
achieved precision value is 98.39% for RS-
BMD. Therefore, we can affirm that our
RS-BMD approach is able to classify new

instances with high precision. In fact, these
results can be explained by the fact that our
base of examples is kept fairly varied thanks
to the inclusion of the certain generated mali-
cious pаtterns which are guaranteed by the
RST component.

Accuracy, recall and specificity interpretation
Accuracy is simply the ratio of correctly pre-
dicted observations to the total observations.
However, having a high accuracy does not
necessarily mean that the model is perfect.
Therefore, we have to look at other metrics
(i.e., specificity and recall) to evaluate the
performance of our model. In the conducted
experiments, we achieved an accuracy of
98.51% for RS-BMD (as shown in Table 5),
indicating that our model has high chances
of being considered accurate. This can be
attributed to the considerable number of
observations that are correctly predicted.
These good results demonstrate the benefits
gained from not selecting a static base of

5.4 Comparison with the state-of-the-art methods 23

examples but rather opting for a varied base
of examples enriched by the artificially gen-
erated patterns, output of the lower-level,
when constructing our RS-BMD bil-level
detection model.

Recall is the recommended metric for
selecting the best model when there is a sig-
nificant cost associated with false negatives.
In a detection model, the recall metric cal-
culates how many of the actual positives the
model correctly identifies as positive (true
positives). In a malware detection model,
predicting a fraudulent behavior (actual pos-
itive) as non-fraudulent (predicted negative)
can cause damage to the operating system
and consequently result in losses for the
user. Therefore, a recall value of 98.40% for
RS-BMD is positively interpreted. This sat-
isfactory value can be attributed to the high
number of true positives accurately detected
at 98.39% by RS-BMD.

Specificity measures a test’s ability to cor-
rectly identify negative instances that do not
have the condition being tested for. A high
specificity test will accurately predict nearly
every negative instance and therefore will
not generate a high number of false posi-
tives. For example, the specificity value of
98.40% obtained by RS-BMD is reassuring.
This result is explained by the high num-
ber of true negatives accurately detected. The
certain generated malicious patterns result-
ing from the RST component, which enriched
the base of examples, are of high quality
and hence contributed to better detection of
malicious patterns.

F1_score and AUC interpretation When mea-
suring how well our detection approаch is
doing, it is useful to have the F1_score to
describe its performance. In Table 5, we can
see that for RS-BMD we reached 98.12% of
F1_score and this could be explained by
the high values of precision (98.39%) and
recall (98.40%) achieved by our detection
model. AUC provides an aggregate measure
of performance for all possible classification
thresholds. One can interpret the AUC as a
measure of the probability that the model
will rank a random positive example above a
random negative example. The AUC value
obtained is 87.13%, which means that the

achieved detection rules could be consid-
ered as efficient in separating malicious and
benign instances. We can deduce that when
we assure a continuous variability to our base
of examples, guaranteed by the BLOP com-
ponent, and by injecting the instances from
the set of the certain generated malicious
pаtterns, guaranteed by the RST component,
we guarantee a better detection of mаlware.

5.4 Comparison with the
state-of-the-art methods

In this section, we mainly bring answers to RQ1
and RQ2, and partial answers to the rest of the
research questions. We will start the compari-
son with the non-EA-based techniques and bring
answers to RQ1 and RQ2. After that, we will
compare RS-BMD to the EA-based techniques,
where we will specifically analyze the scored val-
ues of fаlse positive аnd fаlse negаtive rаtes, to
show the benefits of using а bi-level approаch. This
will bring answers to RQ3. In this set of compar-
ison, we will also highlight the benefits of using
RST for both inconsistency check and three-way-
decision making. This will partly bring answers to
RQ4 and RQ5. It is to be noted that the later two
research questions will be separately investigated
in Section 5.6 and Section 5.7, respectively. At the
end, we will proceed with a comparison with the
commercial anti-viruses and again bring answers
to RQ1 and RQ2; mainly.

5.4.1 Comparison with non-EA-based
techniques

Comparison with non-EA-based classifiers
The section provides comparisons between RS-
BMD and various state-of-the-art non-EA-based
classifiers, with results presented in Table 5. The
input data for these experiments comprises sets
of 27,534,880 malicious pаtterns (i.e., sequences
of API calls) (MPDB) and 10,172,203 benign
pаtterns (BPDB), as summarized in Table 6.

From Table 5, we can see that, on the one
hand, the LDA classifier reached interesting val-
ues of accuracy and precision with 97.82% and
98.36%, respectively, thanks to the reached val-
ues of TP (97.29%) and TN (98.36%). Regarding
the accuracy, NB came last with 60.35%. This
rate was affected by the poor reached FP rate

24 5 EXPERIMENTAL STUDY

Table 6 The number of obtained artificial malicious pаtterns in evolutionary approаches RS-BMD, AMD, and Sen et al.

Approach Number of apps Number of API Number of pаtterns Number of the generated
calls (item sets) malicious pаtterns

RS-BMD

1 000 benign 11 302 447 benign 10 172 203 benign

256 000**

AMD

2 000 malicious 29 483 201 malicious 27 534 880 malicious

476 000*

BMD 476 000*

ProRSDet 288 000**

Sen et al. 2 000 malicious 29 483 201 malicious 27 534 880 malicious 772 000*

**: certain malicious pаtterns
*: not checked set which may include inconsistent pаtterns

(02.71%). Concerning the recall and the specificity
metrics, both the LDA and TDST classifiers had
close values with a recall of 98.34% for LDA and
96.68% for TDST , and a specificity of 97.31% for
LDA and 97.65% for TDST . The J48 classifier
outperformed the rest of the classifiers in terms
of F1_score and AUC with the respective val-
ues of 97.18% of TP and 02.82% of FP . Among
all other classifiers, and for the same metrics, the
k-NN classifier is ranked last with an F1_score
of 90.56% and an AUC of 57.69%, which corre-
sponded to 89.52% of TP and 10.48% of FP .
Also, from Table 5, we can see that RS-BMD out-
performed all classifiers with respect to all of the
used evaluation metrics. To further highlight the
performance of our RS-BMD technique, we have
performed a graphical analysis of the ROC curve
for the different used classifiers.

The ROC curve offers a classical method to
validate the obtained AUC value by plotting a
ROC curve and estimating the AUC. Figure 6
depicts the ROC curves obtained: The first curve
(top) illustrates the False Positive Rate (FPR)
on the X-axis and the accuracy on the Y-axis,
while the second curve (bottom) displays the False
Positive Rate (FPR) on the X-axis and the True
Positive Rate (TPR) on the Y-axis for all possi-
ble thresholds (or cutoff values). These curves aid
in selecting the most suitable thresholds required
for our experiments. From Figure 6, we observe

the ROC curves of the LDA, TSDT , and RF
classifiers, which stand out among all obtained
classifier’s ROC curves, characterized by very sim-
ilar shapes and strong support. Conversely, the
ROC curves for the J48, k-NN , NB, and LR
classifiers overlap. In comparison to all these clas-
sifiers, RS-BMD’s ROC curves perform the best.
For instance, the optimal cutoff for RS-BMD
exhibits the highest accuracy of 98.51%, the high-
est true positives of 98.39%, and the lowest false
positives of 01.61%. Visualizing accuracy, sensi-
tivity, and specificity as a function of the cutoff
points in a plot enhances the informativeness and
interpretability of the results. The ROC curves
obtained for RS-BMD closely align with both the
left-hand and top borders of the ROC space, indi-
cating high accuracy of the results. However, while
the shapes of the ROC curves are promising, they
alone may not provide a comprehensive interpre-
tation of the results. Therefore, we calculated and
discussed the AUC value previously, serving as
a quantitative summary to assess the effective-
ness of the RS-BMD retained detection rules in
classifying positive and negative instances.

Comparison with GAN-based state-of-art
methods
In this section, we will compare our RS-BMD
method to two state-of-the-art GAN-basd meth-
ods (discussed in Section 2) which are MalGAN

5.4 Comparison with the state-of-the-art methods 25

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy versus FPR

RS-BMD
J48
k-NN
NB
LR
RF
TSDT
LDA

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

TPR versus FPR

RS-BMD
J48
k-NN
NB
LR
RF
TSDT
LDA

Fig. 6 The obtained ROC curves with RS-BMD and the
different classifiers.

[29] and Kang et al.’s method [30]. The compar-
ison is performed based on the accuracy metric
registered values reported in Table 7.

Table 7 Detection rates of GAN-based methods and
RS-BMD.

Method Accuracy (%)
MalGAN 85.00

Kang et al. 70.16
RS-BMD 98.51

From Table 7, we can say that our RS-BMD
outperformed MalGAN and Kang et al.’s method
in terms of accuracy. In fact, RS-BMD registered
98.51% of accuracy while MalGAN and Kang
et al.’s registered 85% and 70.16% respectively.

These GANs are powerful for generating new data
instances. They typically require a fixed structure
and rely on the interplay between the generator
and discriminator to refine output quality. How-
ever, this makes them less flexible when it comes
to discovering entirely new solutions (i.e., malware
variants) which is not the case of our RS-BMD
method. RS-BMD is in fact less affected by the
quality of the input data as it is a self-learning
algorithm.

5.4.2 Comparison with EA-based
techniques

In this section, a number of comparisons between
RS-BMD and four main state-of-the-art EA-based
techniques was performed in terms of different
evaluation metrics and execution time. The input
data for these experiments is summarized in Table
6 (27 534 880 malicious pаtterns and 10 172 203
benign pаtterns; for AMD, BMD, ProRSDet and
RS-BMD, and 27 534 880 malicious pаtterns for
Sen et al.). It is worth noting that Sen et al.
[15] used only malicious pаtterns in their mаlware
generation task.

Evaluation of RS-BMD based on the used
evaluation metrics
Table 8 demonstrates that RS-BMD outperforms
Sen et al., AMD, BMD, and ProRSDet across all
metrics. For exаmple, RS-BMD аchieved аn аccu-
racy of 96.76%, while ProRSDet, BMD, Sen et
al., and AMD attained 96.66%, 95.16%, 95.15%,
and 92.28%, respectively. Regarding precision, the
values are as follows: RS-BMD 97.23%, BMD
96.76%, ProRSDet 96.31%, Sen et al. 97.13%,
and AMD 93.60%. From the same table, we can
observe the values of recall and specificity for all
approaches, ranked from highest to lowest. For
RS-BMD, the values are (98.35%, 97.97%), for
BMD (98.27%, 95.37%), for Sen et al. (98.24%,
95.37%), for ProRSDet (96.99%, 96.32%), and for
AMD (96.20%, 92.70%). These values are primar-
ily influenced by the true positive rates of each
approach. Furthermore, the precision and recall
values provide insight into the F1_score perfor-
mance of each approach. RS-BMD achieved the
highest F1_score at 96.71%. Similarly, RS-BMD
excelled in AUC with a value of 87.30%. These
promising results underscore the аdvantages of
RS-BMD’s bi-level architecture, particularly the

26 5 EXPERIMENTAL STUDY

integration of RST techniques at both levels. This
architecture facilitated the generation of robust
detection rules, leveraging the high quality of the
generated malicious patterns ensured by the RST
modules.

Evaluation of RS-BMD based on its
execution time
In this section, we evaluate RS-BMD in terms of
execution time (R_time) – the time needed by our
RS-BMD approаch to produce the detection rules.
The discussion of the results is based on Figure 7.
It is expected that RS-BMD will consume higher
execution time than all other approaches. This
can be explained by the fact that RS-BMD plugs
two EAs both enriched with RST modules. All of
them need to be executed in an embedded way to
optimize both the upper and the lower levels.

0 2 4 6 8
Number of evaluations (x105)

0.0

0.2

0.4

0.6

0.8

F1
_s

co
re

RS_BMD
BMD
ProRSDet
Sen et al.
AMD

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e

Fig. 7 The EA-based approаches’ evolution in time to
reach suitable results. (F1_score = 0.8).

Based on the obtained results, from Figure 7,
RS-BMD took about 4.5 hours execution time,
whereas, AMD took 3.35 hours and Sen et al. took
2.75 hours. This can be explained by the fact that
both AMD and Sen et al. use only one EA for the
malware generation task.

Despite RS-BMD requiring more execution
time than both AMD and Sen et al., its execution
time can be justified as the algorithm is executed
only once. It is important to remember that the
primary goal of the algorithm’s execution is to
generate the rules used for detecting malicious
patterns. A new execution of the entire algorithm

is recommended only when significant updates are
made to the base of examples used by the upper-
level. Furthermore, this relatively high runtime is
not problematic because we are not operating in
a real-time setting. The algorithms can run con-
tinuously. When we need new detection rules to
enhance the base of examples, we select the best
rules from RS-BMD in a delayed mode. We used
the F1_score metric to evaluate the quality of the
best solution at each iteration for our RS-BMD
approach. An F1_score value higher than 0.8 is
considered an indication of acceptable detection
rules based on our dataset. We selected a thresh-
old value of 0.8 since it represents a good balance
between precision and recall that can lead to
acceptable detection solutions. As seen in Figure
7, after around 685,000 evaluations, RS-BMD gen-
erated detection rules that have an F1_score value
of 0.8. So, RS-BMD needed fewer evaluations than
both AMD [16] and Sen et al. [15] (Figure 7) to
generate efficient detection rules. In fact, Sen et
al. and AMD required approximately 772,000 and
800,000 evaluations, respectively, as seen in Figure
7, to achieve a similar outcome. Hence, we can
conclude that the improvement in the quality of
the generated malicious patterns fed to the upper-
level helped it rapidly generate effective detection
rules. Although RS-BMD needs important exe-
cution time, it is clear that the good solutions
provided by a single-level approаch can be reached
quickly by our bi-level adaptation as described in
Figure 7. So, we can conclude that the lower-level
helped the upper-level to quickly generate efficient
detection rules.

To sum up, we believe that an execution time
of about 4 hours remains acceptable, since the
developers will not use our tool in their daily activ-
ities, they just need to execute it once to extract
the rules.

5.4.3 Comparison with top ten
commercial anti-mаlware

This section focuses on comparing RS-BMD
against a set of 10 antivirus engines, which are
considered among the best antiviruses in the mаl-
ware detection field. This is to give answers to
RQ1 and RQ2. As previously mentioned, we used
new variants of mаlware and 0-day attacks stored
in the Drebin [40] dataset. The obtained results in

5.5 Performance analysis of RS-BMD in terms of generating efficient detection rules and high quality malicious pаtterns (the BLOP component)27

Table 8 The different obtained measures for all compared evolutionary approаches in terms of TP, FP, TN, FN,
precision, recall, specificity, accuracy,F1_score and AUC on Drebin data set [40].

Approach Obtained values

TP FP TN FN Rec Spe Acc Pre FS AUC

RS-BMD 97.23 02.77 98.29 01.71 98.35 97.97 96.76 97.23 96.71 87.30

AMD 93.80 06.19 90.90 09.10 96.20 92.70 92.28 93.60 92.37 57.69

BMD 95.23 04.77 98.29 01.71 98.27 95.37 95.16 96.76 95.23 87.23

ProRSDet 96.31 03.69 97.01 02.99 96.99 96.32 96.66 96.31 96.65 86.00

Sen et al. 97.10 02.80 93.25 06.75 98.24 95.37 95.15 97.13 95.88 82.10
Rec: recall; Spe: specificity; Acc: accuracy; Pre: precision; FS: F1_score

terms of the accuracy metric are recorded in Table
9 for all the engines.

Table 9 Accuracy results of RS-BMD and top ten
commercial engines by Virus-Total on Drebin data set [40].

Anti-mаlware Reference Acc(%)
RS-BMD Our current approаch 96.76
ESET NOD32 https://www.eset.com 66.68
AegisLab www.aegislab.com 66.23
NANO antivirus http://www.nanoav.ru 66.23
VIPRE https://www.vipre.com 62.53
McAfee https://www.mcafee.com 56.21
Ikarus https://www.ikarussecurity 55.65

.com
AVG https://www.avg.com 55.56
CAT QuickHeal www.quickheal.com 54.23
AVware http://www.avware.com.br/ 45.56

comprar.php
Cyren https://www.cyren.com 45.23

Table 9 shows that all of the 10 anti-mаlware
engines reached close results regarding the accu-
racy metric as all of the registered values lied
between 45.23% (Cyren) and 66.68% (ESET
NOD32). RS-BMD is ranked first when compared
to the 10 anti-mаlware engines with 96.76% of
accuracy. Specifically, we can split these engines
into three main groups based on their accuracy
rate: a first group (ESET NOD32, AegisLab and
NANO antivirus) achieved a bit over 66%, a sec-
ond group (VIPRE, McAfee, Ikarus, AVG, and
CAT QuickHeal) achieved an accuracy rates that
lied approximately between 54% and 63%, and a
third group (AVware and Cyren) which registered
about 45% of accuracy. This experiment brings
to light the efficiency of RS-BMD in detecting

unknown variants of mаlware, and hence shows (i)
how accurate RS-BMD is in detecting malicious
pаtterns (RQ1), and (ii) how RS-BMD performs
when compared to the state-of-the-art methods
(RQ2); i.e., the commercial anti-mаlware engines
in this case.

5.5 Performance analysis of
RS-BMD in terms of generating
efficient detection rules and
high quality malicious pаtterns
(the BLOP component)

Analyzing the False Positive Rate (FPR) and the
False Negative Rate (FNR) is necessary to know
the reliability that may be accorded to a given
mаlware detection system. Those rates will give us
answers to RQ3. Relying on the values recorded
in Table 10, RS-BMD reached interesting values
of both FPR (02.74%) and FNR (01.72%). Actu-
ally, these values undeniably show the merit of
the bi-level architecture adopted by RS-BMD in
producing high quality detection rules and high
quality malicious pаtterns which kept FNR and
FPR as low as possible. Note that FPR and FNR
were deduced from Table 8 and stored separately
in Table 10.

Table 10 Effect of the use of a bi-level approаch
(deduced from Table 8).

Results

MeasureSen et al.ProRSDet BMD AMD RS-BMD
FPR % 02.91% 04.77% 03.69%06.37% 02.74%
FNR % 06.49% 01.71% 02.99%08.84% 01.72%

https://www.eset.com
www.aegislab.com
http://www.nanoav.ru
https://www.vipre.com
https://www.mcafee.com
https://www.ikarussecurity
.com
https://www.avg.com
www.quickheal.com
http://www.avware.com.br/
comprar.php
https://www.cyren.com

28 5 EXPERIMENTAL STUDY

In order to situate our reached values of FPR
and FNR regarding the EA-based state of-the-art
approаches, we will report those two metrics for
all EA-based approаches. The obtained results in
Table 10, show that Sen et al. recorded 02.91%
of FPR and 06.49% of FNR, ProRSDet regis-
tered 04.77% of FPR and 01.71% of FNR whereas
BMD and AMD recorded respectively 03.69%
and 06.37% of FPR, and 02.99% and 08.84% of
FNR. The FPR and FNR values clearly show the
important gain obtained from a robust upper-
level in boosting the number of correctly predicted
instances and how this clearly allows reducing
both the FPR and the FNR. Also, the high quality
of the artificial pаtterns in the lower-level helped
the upper-level reaching those satisfactory results.

5.6 Performance analysis of
RS-BMD in terms of dealing
with data inconsistency (the
RST component)

In this section, we will discuss the removed
number of detection rules by the upper-level’s
Rough-set analyzer and the removed number of
malicious generated pаtterns by the lower-level’s
Rough-set analyzer. Knowing how much instances
were removed from each level of RS-BMD will
give us an idea about the role played by RST
in keeping the set of consistent and meaningful
instances that will help improving the mаlware
detection task. Also, we will compare RS-BMD
to Sen et al.’s approach and Jerbi et al.’s previ-
ous approaches (AMD, BMD and ProRSDet) in
terms of the number of the generated detection
rules and the generated malicious pаtterns. Com-
paring the registered numbers of detection rules
and the generated malicious pаtterns can explain
the benefits gained from the choice of including
RST in our developed approаch. This whole anal-
ysis, detailed in Section 5.6.1 and Section 5.6.2,
will undoubtedly bring answers to RQ4.

5.6.1 Upper-level inconsistency check

To show the important role played by RST in the
upper-level, more precisely the Rough-set analyzer
module, a study of the number of the removed and
kept detection rules is necessary. These numbers
are reported in Table 11.

Table 11 Numbers of consistent and inconsistent
generated rules in RS-BMD.

Number of generated detection rules
Inconsistent Consistent

2 182 336 9 286 892

Table 11 clearly shows that there is a con-
siderable amount of inconsistent rules that has
been removed (2 182 336 detection rules). These
inconsistent rules were detected by the upper-
level’s Rough-set analyzer. Specifically, the detec-
tion was achieved via the Lower approximation
task (Figure 3). So, each detection rule that does
not meet the selection criteria fixed by the Lower
approximation is removed. We can conclude that
the Rough-set analyzer module has not only alle-
viated the amount of the produced detection
rules but also participated greatly in producing
powerful detection rules.

Also, understanding the number of detection
rules produced by other EA-based state-of-the-art
approaches can help explain why RS-BMD out-
performs them. This advantage is partly due to its
RST module, which effectively removes inconsis-
tent instances. In fact, Table 12 shows that AMD
generated a total of 7 787 379 detection rules,
BMD generated 6 801 000, ProRSDet produced
6 298 322 and that Sen et al. generated 14 054 405
detection rules against 5 896 652 certain rules
generated by RS-BMD.

Table 12 Number of generated rules in AMD, Sen et al.
and RS-BMD approаches.

Approach Number of generated rules

RS-BMD certain malicious 3 506 412
certain benign 2 390 240

BMD malicious 4 092 015
benign 2 708 985

ProRSDet malicious 3 890 510
benign 2 407 812

AMD malicious 4 432 825
benign 3 354 554

Sen et al. 14 054 405

We can conclude that RST helped RS-BMD
maintain a better set of detection rules by remov-
ing the inconsistent ones. This improvement con-
tributed to the overall efficiency of RS-BMD,
as demonstrated in the evaluations discussed in
Section 5.4.2.

5.7 Performance analysis of RS-BMD in terms of three-way decision making (the RST component) 29

5.6.2 Lower-level inconsistency check

In this part, we focus specially on the number
of the removed generated malicious pаtterns to
confirm if the lower-level’s Rough-set analyzer
helped in filtering the GA generated artificial pаt-
terns and in keeping only the certain malicious
pаtterns.

According to Table 13, the removed number of
inconsistent generated pаtterns is 212 000. Based
on this number, we can confirm that the Rough-set
analyzer helped keeping the malicious pаtterns of
better quality. Those generated malicious pаtterns
will be fed to the upper-level and consequently
improve the quality of the generated detection
rules produced by this level.

Table 13 Numbers of consistent and inconsistent
generated malicious pаtterns in RS-BMD.

Number of generated pаtterns
Inconsistent Consistent

212 000 256 000

The worth of the lower-level’s RST module can
be also highlighted by comparing the amount of
the produced malicious pаtterns of all three EA-
based approaches. With respect to Table 6, we can
note that the number of generated malicious pаt-
terns decreased to 256 000 certain malicious pаt-
terns against 476 000 generated malicious pаtterns
for AMD and for BMD, 288 000 for ProRSDet and
772 000 malicious pаtterns for Sen et al.

Once again, we can conclude that RST helped
RS-BMD in removing inconsistent generated arti-
ficial malicious pаtterns, thereby achieving supe-
rior detection results, as discussed in Section
5.4.2.

5.7 Performance analysis of
RS-BMD in terms of three-way
decision making (the RST
component)

In this section, we provide answers to RQ5 to
demonstrate the advantages of employing a three-
way decision-making approach in our developed
RS-BMD method. To understand the practical use
of a three-way decision fashion in a mаlware detec-
tion environment, the analysis of the generated
number of possible rules and their “usefulness”
for the end user seems necessary. We will hence

refer to the obtained numbers of detection rules,
specially the possible ones (Table 14). Also, we
highlight the benefits gained from using a three-
way decision fashion, granted by the upper-level’s
RST module, in improving the mаlware detection
task to ensure the system’s security. For this pur-
pose, we evaluate RS-BMD approach in terms of
accuracy and the false positive rate, as shown in
Table 8, using the dataset provided by [40].

Table 14 summarizes the obtained numbers
of all types of detection rules: the certain rules
(5 896 148) and the possible rules (3 390 744) using
all gathered 3 000 apps and also the generated cer-
tain malicious pаtterns; output of the lower-level.
The obtained set of possible rules will grant the
user to make an “extra choice” about the “fate” of
an app which is not possible with other methods.
In fact, in other approaches, this app would be
more likely to be denied from accessing the system
and consequently deprive the user from using it.
The number of possible rules, representing approx-
imately 37% of the total set of detection rules
(across all types), also indicates the potential for
an app to be denied access in systems that do not
provide a third option to the end user.

Table 14 Number of final generated rules by RS-BMD’s
upper-level.

Generated rules Values

Certain rules Malicious rules 3 506 412
Benign rules 2 390 240

Possible rules 3 390 744

Contrariwise, RS-BMD provides the user with
the possibility to permit/refuse an app’s installa-
tion thanks to the set of possible rules. When deal-
ing with this set of possible rules, a Safety_index
(Equation 2) that estimates the reliability degree
of each possible rule is also provided to the user
(as discussed in Section 4.2.4). This metric, spe-
cific to the evaluation of each possible rule, will
help the user when choosing to pursue installing
an app or not. To be more specific, Figure 8 rep-
resents the number of the obtained possible rules
with regards to their Safety_index.

Figure 8 shows that 31.07% of possible detec-
tion rules have a Safety_index that exceeds 50%.
Also, 29.27% of possible rules succeeded to cor-
rectly classify apps with rates that lie between
41% and 50%. 16.67% of those rules ranked just
below with a Safety_index comprised between

30 6 LIMITATIONS, THREATS TO VALIDITY AND FUTURE DIRECTIONS

Safety_index between 41% and 50%

29.27%

Safety_index between 31% and 40%

16.67%

Safety_index between 21% and 30%

10.41%

Safety_index between 13% and 20%

5.81%
Safety_index less than 12%

6.76%

Safety_index over 50%

31.07%

Fig. 8 Number of possible rules with regards to the Safety_index.

31% and 40%. Approximately only 23% of the
rules failed to have a Safety_index above 30%.
An example of the use of this index was previously
given in Section 4.2.2.

Also, the additional set of detection rules,
specifically the generated possible rules, signifi-
cantly boosts the effectiveness of our RS-BMD
approach. With an accuracy rate of 96.76% (Table
8) and a false positive rate of 01.72% (Table 10),
our results are notably satisfactory compared to
two-way decision-making EA techniques. For com-
parison, AMD reports an accuracy of 92.28% and
a false positive rate of 06.37%, BMD achieves an
accuracy of 95.16% and a false positive rate of
03.69%, ProRSDet has an accuracy of 96.66% and
a false positive rate of 4.77%, and Sen et al. record
an accuracy of 95.15% and a false positive rate of
02.91%. This highlights the importance of devel-
oping a detection system that not only relies on
high-quality datasets but also maintains flexibility
in app acceptance or denial decisions.

6 Limitations, threats to
validity and future directions

Our RS-BMD approach has demonstrated poten-
tial in malware detection. However, we recog-
nize limitations that align with typical threats
to research validity. Addressing these will be our
focus in future work to enhance the algorithm’s
robustness and applicability.
Internal validity threats: These threats question

the causal relationship between the algo-
rithm and the observed outcome in our study.
Potential internal threats in our work include
possible selection bias, potentially affecting
the validity of our results. It arises when the
dataset used to train and test the algorithm
does not accurately represent the true diver-
sity of malware. To address this, future work
will include assembling a more comprehensive
and varied dataset and expand the diver-
sity of Android sample features beyond API
calls to include additional features like per-
missions. This approach will help improve the
detection ability significantly by providing a
richer dataset for analysis.

31

External validity threats: External threats per-
tain to the generalizability of our findings to
other settings or datasets. Our current results
may not transfer to different types of mal-
ware or operating systems. We plan to test
the RS-BMD approach using diverse datasets
from various sources and to apply the model
to different operating systems, enhancing its
generalizability.

Construct validity threats: Construct validity
threats emerge if there is a concern that the
study’s assessments may not accurately rep-
resent the study under examination. There
is a risk that our current evaluation metrics
do not fully capture the practical efficacy of
malware detection. To address this and in
light of our plan to integrate GAN techniques
for malware generation and classification,
we will reassess and potentially expand our
evaluation framework to include a broader
range of performance metrics. This expan-
sion will incorporate metrics that assess
the effectiveness of the synthetic instances
generated by GANs, thereby ensuring our
evaluations accurately reflect the capabilities
of our hybrid EA and GAN approach in
enhancing malware detection.

To sum up, by addressing these limitations
and exploring these directions, we aim not only to
refine the RS-BMD approach but also to meet the
evolving challenges in malware detection. Hence,
ensuring robust, scalable, and efficient detection
capabilities.

7 Conclusion
In order to detect Android mаlware efficiently and
effectively, we have developed a bi-level Android
mаlware detection system based on both Bi-level
Optimization and Rough Set Theory. BLOPs have
proven their efficiency in various research domains
but have yet to be investigated in the mаlware
detection field. The competition that takes place
between both levels in BLOPs provides high-
quality solutions to the targeted problem. RST,
on the other hand, was widely applied for mаl-
ware detection for feature reduction as a main task
and has fully proven its merits in such field. But
combining both strategies to evolve and to detect
mаlware was not proposed in literature.

In our RS-BMD approach, we used two lev-
els that are in competition: an upper one or the
leader which is responsible for the detection rules
generation, and a lower one which aims to gen-
erate a set of certain malicious pаtterns. Each
of these levels is expanded with RST modules.
These modules are in charge of boosting the
quality of the output of each level. In fact, the
leader’s Rough-set analyzer not only checks the
consistency of the detection rules but also offers
three types of them which are: rules for accep-
tance, rules for rejection and rules for abstinence.
The follower’s Rough-set analyzer is in charge of
removing all inconsistent generated malicious pаt-
terns. In our bi-level approach, we have shown the
usefulness of each component based on different
performance metrics. On the one hand, the lower-
level composed of a GA coupled with an RST
module helped generate 257,000 certain malicious
pаtterns using 10,172,203 benign and 27,534,880
malicious API call sequences. According to the
different comparisons made in the overall experi-
mental section, the bi-level technique enriched by
RST modules helped improve the detection rate
and reached a value of 97.31% with RS-BMD. This
also proves the importance of the quality of the
generated malicious pаtterns in altering the detec-
tion results. On the other hand, the upper-level
was enriched with a third possibility for classifying
the apps. In fact, most of the mаlware detection
systems offer a two-way decision labeling: an app
is either malicious or benign. In RS-BMD, thanks
to the generation of a third set of rules “possible
rules” granted by the upper-level Rough-set ana-
lyzer (more precisely the upper approximation),
the labeling task can be given to the user. In fact,
for the uncertain apps, which do not match the
certain benign rules or the certain malicious ones,
the user can make the choice to either continue the
installation process of the app or to abort it. This
may help reduce depriving users from installing
their apps. The conducted experiments and the
extensive evaluation of our RS-BMD prove the
good results reached when compared to different
state-of-the-art approaches and detection engines.
The registered accuracy is nearly 97%. Also RS-
BMD successfully dropped the FPR to 02.74%.
Finally, our approach demonstrates considerable
adaptability, effectively detecting patterns and
countering a wide array of cybersecurity threats.

32 7 CONCLUSION

Data availibilty statement
Data sharing is not applicable to this article as no
new data were created in this study. All the data
used in the experimental section come from : (1)
the Android Mаlware Data set (AMD set) [41], (2)
the DROIDCat dataset [42] and (3) the Drebin
dataset [40].

Compliance with Ethical
Standards
Funding
This study did not receive any specific grant from
funding agencies in the public, commercial, or not-
for-profit sectors.

Conflict of Interest
The authors declare that they have no conflict of
interest.

Ethical Approval
This article does not contain any studies with
human participants or animals performed by any
of the authors.

Informed Consent
Not applicable, as this study did not involve
human participants.

References
[1] Wang, S., Chen, Z., Yan, Q., Ji, K., Peng, L.,

Yang, B., Conti, M.: Deep and broad url fea-
ture mining for android malware detection.
Information Sciences 513, 600–613 (2020)

[2] Wang, Y., Wang, Q., Qin, X., Chen, X.,
Xin, B., Yang, R.: Dockerwatch: a two-phase
hybrid detection of malware using various
static features in container cloud. Soft Com-
puting, 1–17 (2022)

[3] Masood, Z., Majeed, K., Samar, R., Raja,
M.A.Z.: Design of epidemic computer virus
model with effect of quarantine in the pres-
ence of immunity. Fundamenta Informaticae
161(3), 249–273 (2018)

[4] Salvakkam, D.B., Saravanan, V., Jain,
P.K., Pamula, R.: Enhanced quantum-secure
ensemble intrusion detection techniques for
cloud based on deep learning. Cognitive Com-
putation, 1–20 (2023)

[5] Tong, F., Yan, Z.: A hybrid approach of
mobile malware detection in android. Journal
of Parallel and Distributed Computing 103,
22–31 (2017)

[6] Mart́ın, A., Menéndez, H.D., Camacho, D.:
Mocdroid: multi-objective evolutionary clas-
sifier for android malware detection. Soft
Computing 21(24), 7405–7415 (2017)

[7] Xiong, P., Wang, X., Niu, W., Zhu, T., Li, G.:
Android malware detection with contrasting
permission patterns. China Communications
11(8), 1–14 (2014)

[8] Chen, C.-M., Lai, G.-H., Lin, J.-M.: Identi-
fying threat patterns of android applications.
2017 12th Asia Joint Conference on Infor-
mation Security (AsiaJCIS), 69–74 (2017).
IEEE

[9] Denźux, T.: 40 years of dempster-shafer the-
ory. International Journal of Approximate
Reasoning 79(C), 1–6 (2016)

[10] Zhang, Q., Xie, Q., Wang, G.: A survey on
rough set theory and its applications. CAAI
Transactions on Intelligence Technology 1(4),
323–333 (2016)

[11] Colson, B., Marcotte, P., Savard, G.: An
overview of bilevel optimization. Annals of
operations research 153(1), 235–256 (2007)

[12] Wang, X., Miikkulainen, R.: Mdea: Malware
detection with evolutionary adversarial learn-
ing. 2020 IEEE Congress on Evolutionary
Computation (CEC), 1–8 (2020). IEEE

[13] Akandwanaho, S.M., Kooblal, M.: Intelligent
malware detection using a neural network
ensemble based on a hybrid search mecha-
nism. The African Journal of Information and
Communication 24, 1–21 (2019)

[14] Lee, J., Jang, H., Ha, S., Yoon, Y.: Android

33

malware detection using machine learning
with feature selection based on the genetic
algorithm. Mathematics 9(21), 2813 (2021)

[15] Sen, S., Aydogan, E., Aysan, A.I.: Coevo-
lution of mobile malware and anti-malware.
IEEE Transactions on Information Forensics
and Security 13(10), 2563–2574 (2018)

[16] Jerbi, M., Dagdia, Z.C., Bechikh, S., Said,
L.B.: On the use of artificial malicious pat-
terns for android malware detection. Com-
puters & Security 92, 101743 (2020)

[17] Jerbi, M., Dagdia, Z.C., Bechikh, S., Said,
L.B.: Android malware detection as a bi-level
problem. Computers & Security 121, 102825
(2022)

[18] Jerbi, M., Dagdia, Z.C., Bechikh, S., Said,
L.B.: Malware evolution and detection based
on the variable precision rough set model.
In: 2022 17th Conference on Computer Sci-
ence and Intelligence Systems (FedCSIS), pp.
253–262 (2022). IEEE

[19] Bhattacharya, A., Goswami, R.T.: A hybrid
community based rough set feature selection
technique in android malware detection, 249–
258 (2018)

[20] K, D., G, R., P, V., Shojafar, M., Kumar,
N., Conti, M.: Featureanalytics: An approach
to derive relevant attributes for analyzing
android malware. CoRR abs/1809.09035
(2018) arXiv:1809.09035

[21] Chen, R.-C., Cheng, K.-F., Chen, Y.-H.,
Hsieh, C.-F.: Using rough set and sup-
port vector machine for network intrusion
detection system. 2009 First Asian Confer-
ence on Intelligent Information and Database
Systems, 465–470 (2009). https://doi.org/10.
1109/ACIIDS.2009.59

[22] Sengupta, N., Sen, J., Sil, J., Saha, M.:
Designing of on line intrusion detection sys-
tem using rough set theory and q-learning
algorithm. Neurocomputing 111, 161–168
(2013)

[23] Zhang, B., Yin, J., Tang, W., Hao, J., Zhang,

D.: Unknown malicious codes detection based
on rough set theory and support vector
machine. The 2006 IEEE International Joint
Conference on Neural Network Proceedings,
2583–2587 (2006). IEEE

[24] Bhattacharya, A., Goswami, R.T., Mukher-
jee, K.: A feature selection technique based
on rough set and improvised pso algorithm
(psors-fs) for permission based detection
of android malwares. International journal
of machine learning and cybernetics 10(7),
1893–1907 (2019)

[25] Penmatsa, R.K.V., Vatsavayi, V.K., Samaya-
mantula, S.K.: Ant colony optimization-
based firewall anomaly mitigation engine.
SpringerPlus 5(1), 1–32 (2016)

[26] Nauman, M., Azam, N., Yao, J.: A three-way
decision making approach to malware analy-
sis using probabilistic rough sets. Information
Sciences 374, 193–209 (2016)

[27] Golmaryami, M., Taheri, R., Pooranian,
Z., Shojafar, M., Xiao, P.: Setti: As elf-
supervised adv e rsarial malware de t ection
archi t ecture in an i ot environment.
ACM Transactions on Multimedia Com-
puting, Communications, and Applications
(TOMM) 18(2s), 1–21 (2022)

[28] Kim, J.-Y., Cho, S.-B.: Obfuscated malware
detection using deep generative model based
on global/local features. Computers & Secu-
rity 112, 102501 (2022)

[29] Hu, W., Tan, Y.: Generating adversarial mal-
ware examples for black-box attacks based on
gan. ArXiv abs/1702.05983 (2017)

[30] Kang, M., Kim, H., Lee, S., Han, S.:
Resilience against adversarial examples:
Data-augmentation exploiting generative
adversarial networks. KSII Transactions
on Internet & Information Systems 15(11)
(2021)

[31] AbuAlghanam, O., Alazzam, H., Qatawneh,
M., Aladwan, O., Alsharaiah, M.A., Alma-
iah, M.A.: Android malware detection system
based on ensemble learning (2023)

https://arxiv.org/abs/1809.09035
https://doi.org/10.1109/ACIIDS.2009.59
https://doi.org/10.1109/ACIIDS.2009.59

34 7 CONCLUSION

[32] Kim, J., Ban, Y., Ko, E., Cho, H., Yi,
J.H.: Mapas: a practical deep learning-based
android malware detection system. Interna-
tional Journal of Information Security 21(4),
725–738 (2022)

[33] Alkahtani, H., Aldhyani, T.H.: Developing
cybersecurity systems based on machine
learning and deep learning algorithms for pro-
tecting food security systems: industrial con-
trol systems. Electronics 11(11), 1717 (2022)

[34] Millar, S., McLaughlin, N., del Rincon, J.M.,
Miller, P.: Multi-view deep learning for zero-
day android malware detection. Journal of
Information Security and Applications 58,
102718 (2021)

[35] Mimura, M., Ito, R.: Applying nlp techniques
to malware detection in a practical environ-
ment. International Journal of Information
Security 21(2), 279–291 (2022)

[36] Liu, Z., Li, S., Zhang, Y., Yun, X., Cheng,
Z.: Efficient malware originated traffic classi-
fication by using generative adversarial net-
works. In: 2020 IEEE Symposium on Com-
puters and Communications (ISCC), pp. 1–7
(2020). https://doi.org/10.1109/ISCC50000.
2020.9219561

[37] Sinha, A., Malo, P., Deb, K.: A review on
bilevel optimization: from classical to evolu-
tionary approaches and applications. IEEE
Transactions on Evolutionary Computation
22(2), 276–295 (2017)

[38] Willis, M.-J., Hiden, H.G., Marenbach, P.,
McKay, B., Montague, G.A.: Genetic pro-
gramming: An introduction and survey of
applications. Second international conference
on genetic algorithms in engineering systems:
innovations and applications, 314–319 (1997).
IET

[39] Nanni, L., Lumini, A.: Generalized
needleman–wunsch algorithm for the recog-
nition of t-cell epitopes. Expert Systems with
Applications 35(3), 1463–1467 (2008)

[40] Arp, D., Spreitzenbarth, M., Hubner, M.,
Gascon, H., Rieck, K., Siemens, C.: Drebin:

Effective and explainable detection of android
malware in your pocket. Ndss 14, 23–26
(2014)

[41] Wei, F., Li, Y., Roy, S., Ou, X., Zhou,
W.: Deep ground truth analysis of current
android malware. International Conference
on Detection of Intrusions and Malware, and
Vulnerability Assessment, 252–276 (2017).
Springer

[42] Rashidi, B., Fung, C.: Xdroid: An android
permission control using hidden markov chain
and online learning. Communications and
Network Security (CNS), 2016 IEEE Confer-
ence on, 46–54 (2016). IEEE

[43] Jeon, S., Moon, J.: Malware-detection
method with a convolutional recurrent neural
network using opcode sequences. Information
Sciences 535, 1–15 (2020)

https://doi.org/10.1109/ISCC50000.2020.9219561
https://doi.org/10.1109/ISCC50000.2020.9219561

	Introduction
	Related work
	Preliminaries
	Bi-level Optimization
	Rough Set Theory

	RS-BMD: A Rough Set based Bi-Level Mаlware Detection Technique
	Motivation
	RS-BMD phases
	General overview
	First phase: Detection rules generation
	Description of the upper-level functioning
	The GP evolutionary mechanism

	Second phase: Mаlware generation phase
	Description of the lower-level functioning
	The GA evolutionary mechanism

	Detection process based on detection rules: the three-way decision making module

	Experimental study
	Research questions and benchmark datasets
	Peer algorithms and parameters settings
	Analysis of the RS-BMD performance
	Comparison with the state-of-the-art methods
	Comparison with non-EA-based techniques
	Comparison with non-EA-based classifiers
	Comparison with GAN-based state-of-art methods

	Comparison with EA-based techniques
	Evaluation of RS-BMD based on the used evaluation metrics
	Evaluation of RS-BMD based on its execution time

	Comparison with top ten commercial anti-mаlware

	Performance analysis of RS-BMD in terms of generating efficient detection rules and high quality malicious pаtterns (the BLOP component)
	Performance analysis of RS-BMD in terms of dealing with data inconsistency (the RST component)
	Upper-level inconsistency check
	Lower-level inconsistency check

	Performance analysis of RS-BMD in terms of three-way decision making (the RST component)

	Limitations, threats to validity and future directions
	Conclusion
	Funding
	Conflict of Interest
	Ethical Approval
	Informed Consent

