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Abstract: LiDAR sensors are now a main component 
in perception systems of vehicles. With the 
advancements in technology of ADAS and 
autonomous vehicle systems that rely on LiDAR 
sensors, it is necessary to thoroughly test and validate 
these systems before deployment into the real world. 
Among the method is via the use simulation that 
allows the system to traverse millions, if not billions, 
of kilometres with thorough testing and validation 
including scenarios that cover a larger scope of 
situations and cases. However, despite the accuracy 
of LiDAR for mapping the environment and estimating 
precise distances, it is known to be affected by 
adverse weather conditions, thus reducing the 
operational design domain of vehicles equipped with 
this type of sensor. This paper aims to introduce a 
methodology of acquiring real world data, and through 
data analysing and processing be able to create and 
improve the current LiDAR models in simulation by 
implementing the effects of perturbation, whether it be 
hardware or weather caused.  
 
Keywords: LiDAR, Fog, Weather Perturbations, 
AD/ADAS, Simulation 
 

1. Introduction 
 

LiDAR (Laser Imaging Detection And Ranging) is 
more and more commonly on autonomous vehicles 
used in the perception systems. However, even 
though lidars are capable of providing detailed 
information about the environment, diverse weather 
perturbations such as rain, snow and fog introduce a 
significant functional limitation to its usage. In the 
cases where the target object has a high reflectivity, 
this issue is mitigated (Trautmann, Blechschmidt et 
Friedrich). Due to the variety in results of the feedback 
information depending on weather and environmental 
factors, it is necessary that the nuances and 
complexity of the technology are taken into account 
during the modelling and validation of the recognition 
algorithm as well as the AD/ADAS systems using 
LiDAR.   
 
In order to be able to ensure reliable validation of the 
autonomous system, it is necessary to drive billions of 
kilometres, time consuming and expensive. (Kalra et 
Paddock). Simulation based testing is considered an 
efficient method to validate the ADAS functionalities, 

where the number of tested scenarios can increase 
exponentially as the combination of parameters 
increase.  This allows the validation of the system in 
a wide range of situations that are easily reproduce 
and repeated (Duy Son, Awatsu et Jubrechts ).  
 
However, current LiDAR sensors are limited in terms 
of technology and representativeness. Ray Tracing 
models exist however the perturbation models are not 
well implemented enough to produce realistic results 
in disturb weather conditions such as rain, snow and 
fog. Under Project CVH (Tool-Based Chain for the 
Validation and Homologation of Automated and 
Connected Vehicles) it aims to resolve issues on 
sensor models and their behaviours when confronted 
with weather perturbations. Most sensor models 
currently in existence are modelled as perfect sensor 
and thus do not account error and disturbances due 
to environmental factors.  
 
This paper proposed a model that has been 
developed, used and implemented in AVSimulations’ 
SCANeR Studio software, with the use of a specific 
semi-rotative LiDAR. 
 

2. Overview of LiDAR sensor modelling 
 

A LiDAR sensor measures the distance of the 
different points in the environment. In automotive 
systems, LiDAR is used to plot a 3D Cartography by 
sending Lasers in several directions and calculating 
the distances of each point. The output is a 3D point 
cloud representing the environment around the 
vehicle.  
 
2.1 Types of lidars 
Different technologies are used depending on the 
system and usage, however all LiDARs depend on 
having a laser ray emitter directing the device towards 
different directions and an emitter to receive the 
reflected rays from the environment. The delay 
between the emitting ray and the received ray is used 
to calculate the distance based on the time of flight of 
the ray. In the automotive industry, three main types 
of LiDARs are commonly used: 
 
Rotative LiDAR: A motor is used to mechanically 
rotate the laser emission beam to scan with a specific 
pattern in every direction 
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Semi-rotative LiDAR: Electro-mechanical parts 
(such as mirrors or MEMS) are used to scan the 
environment in different directions. Usually, the field 
of view of this LiDAR is restricted to specific angles. 
Solid-state LiDAR: A laser beam is sent with specific 
phases and patterns to broadcast rays in each 
direction.  
 
2.2 Perturbations 
Numerous noise factors can impact the performance 
of a LiDAR sensor.  (Chan, Dhadyalla et Donzella) 
propose a list of 16 factors, organized into five 
categories. These factors may involve interactions 
with other systems (such as coexistence with other 
LiDARs or malicious attacks) and the gradual 
degradation of electronic or mechanical components 
over time, among others. Adverse weather 
conditions, particularly rain, snow, and fog, have a 
significant impact on the resulting point clouds. 
Airborne particles, such as snowflakes or raindrops, 
can affect the propagation of LiDAR signals in the 
atmosphere due to phenomena like absorption, 
reflection, and scattering.  
 
Similarly, dry and wet surfaces interact differently with 
incoming LiDAR rays. Consequently, under adverse 
weather conditions such as rain, snow, or fog, LiDAR 
point clouds are affected in terms of the number of 
detected points, their intensity, and the appearance of 
noisy points (Zhang, Ang et Rus) 
 
Several research groups have examined the effects 
of adverse weather on LiDAR sensors. (Filgueira, 
Gonzales-Jorge et Lagüela) conducted outdoor 
experiments with a 360°, 16-layer LiDAR, 
successfully collecting data under varying rain 
intensities. By analysing segmented portions of point 
clouds, they concluded that rainy conditions result in 
a reduction in the number of detected points and 
attenuation of the returning signal. (Kutila, Pyykönen 
et Holzhüter) gathered data in a controlled 
environment that simulated artificial rain and fog, 
specifically comparing two different wavelengths 
(905nm and 1550nm). They observed a slight 
decrease in LiDAR signal intensity in the presence of 
rain and a significant reduction in the presence of 
dense fog, with visibility less than 40 meters.  
 
As a result, the operation of perception systems using 
LiDAR sensors in intelligent vehicles is impaired by 
adverse weather conditions. Therefore, it is crucial to 
replicate these effects in simulation models to make 
virtual tests more realistic and reliable. 
 
Many authors have proposed models addressing 
noise factors related to airborne particles in the 
atmosphere. (Goodin, Carruth et Doude) introduced a 
mathematical model that incorporates noise into 
range measurements and reduces point intensity 

based on the scattering coefficient and rainfall rate. 
(Byeon et Yoon) took a microscopic approach, 
incorporating raindrop characteristics specific to 
different regions, such as size and shape, into their 
model. . (Espineira, Robinson et Groenewald) 
developed a LiDAR model using a ray-casting method 
in Unreal Engine, simulating backscattering effects 
from rain by adding false positive points to the point 
cloud. 

 

Figure 1: A simplified view of why perturbation affect 
LiDAR sensor 

 
2.3 Sensor outputs 
LiDAR sensor outputs can be divided into two layers: 
 
The first layer consists of raw data, represented as a 
three-dimensional point cloud. Regardless of the 
LiDAR technology used, the sensor produces a 3D 
point cloud of the environment. For each specific 
direction of a laser ray, one or more points (in the case 
of multi-echo) are added to the point cloud. The 
sensor’s receivers measure the attenuation of the ray 
between its emission and reception, resulting in an 
intensity value for each point in the cloud. This 
intensity is influenced by factors such as the target 
material’s reflectivity, the incident angle of the ray, the 
distance, and more. This intensity data provides 
additional information that helps the software 
recognize and classify objects in the environment. 
  

The second layer, which is optional, involves a 

detection software layer available in some LiDARs for 

object detection and classification. Modelling 

perturbations in simulation can also be applied to this 

second layer, focusing on the detection and 

classification outputs. 

 
2.4 Simulation Tools 
In order to be able to acquire realistic data, we must 
ensure that all aspects of the Simulation is reflective 
of real life data and properties. This is dependent on 
three main factors: The environment, the actors and 
the sensor model. 
 
The environment refers to the surrounding conditions 
in where we can find the vehicle driving. The 
environment must contain objects and materials that 
reflect the scenario being tested. In the case of 
simulation with a LiDAR sensor, the material of the 
environments must be defined since LiDAR data is 
heavily based on the reflected ray due to the material 
of the object. Another factor that is important while 
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modelling the environment is how these objects are 
modelled. 
 
The actors in the scenario refer to the vehicle and/or 
surrounding cars and pedestrians. These must also 
be well described, including their geometry, materials, 
and behaviour (how the acters move around in the 
environment). 
 

3. LiDAR Sensor Fog Modelling in Simulation 
 
The proposed methodology presented is based on 
existing simulation frameworks and adding upon 
current sensor model to consider the missing aspects 
that ensure greater realism, perturbations caused by 
weather disturbances. The data used to construct the 
new sensor model is obtained by capturing real data 
measurements with a physical LiDAR, obtained at at 
the CEREMA Laboratory. 
 
3.1 Real Measurements 
The initial goal of collecting real data that would fit the 
needs of the project: placing the physical LiDAR 
sensor in a perturbated environment that was 
physically descriptive for measurements and having 
its equivalence in simulation. It is also necessary to 
have the physical environment in a non-perturbated 
state/scenario.   
 
Platform of simulation of degraded climatic 
conditions 
The first series of data acquisition was executed at 
the CEREMA Laboratory. The simulation equipment 
used is referenced within the CEREMA laboratory. 
This simulation equipment used is referenced within 
the LABEX ImobS3 "innovative mobility: intelligent 
and sustainable solutions" among the regional 
platform "PAVIN B-P", Auvergne platform for 
intelligent vehicles Fog - Rain.  
 
The site consisted of a tarmac track thirty meters in 
length, fitted and equipped with various weather 
systems (artificial vision systems, transmissometers, 
rain and fog generators, photometers, granulometers, 
radiometers, video photocolorimeters, 
spectropluviometers) under a roofed dome to be able 
to carry out experiments day and night. 
 
The different objects within the CEREMA Laboratory 
allows for the testing of different shapes, forms and 
materials, enabling the measurements of the 
photometric characteristics of the studied objects, 
namely luminance and colorimetry.  
 
In the case of the project, the CEREMA Laboratory 
allows the generation of controllable meteorological 
disturbances which can be physically describes. 
Physical description allows us to understand the 

nature of the current weather perturbation and its 
replication in other scenarios. 
 
The LiDAR is positioned in such a way to replicate its 
position on a car and data was acquired during the 
generation of various weather perturbations. 
 
Fog Characterization 
In the meterorology domain, fog density is quantified 
using a value of meterological visibility defined by the 
International Commission on Illumination (CIE) 
(Commission.) as the distance beyong which a black 
object of an appropraite dimensian is visibile with a 
specific contrast limit. 
 
The change between the different fog visibility is 
considered to be slow enough to be pseudo-static 
perturbation. For each visibility, the data generated by 
the LiDAR is in the form of a PCD file (point cloud file), 
where we can associate ech PCD file to a visibility. 
 
Generation of Scenarios 
The nature of the properties of the CEREMA Platform 
allows us to generate multiple scenarios, anticipated 
in advanced to be able to extract data and create our 
model. The scenarios consisted of placing objects at 
different positions and orientations from the LiDAR as 
well as the generation of different levels of rain and 
fog as well as no perturbations. 

 

Figure 2: Combination of statistical scenarios 

Within the CEREMA platform are sensors that enable 
to measure in real time the exact fog density giving 
the meterological visibility distance. During the 
scenario which lasted between 10 to 30 minutes, the 
fog density gradually changed from 10m of visibility 
and ended at 1000m of visibility. 
 
3.2 Data Extraction 
For each point cloud generated, there is a precise 
number of points (or a variation of this number of 
points in the case of multi-echo systems). By 
understand the nature of these points, we are able to 
distinguish the points generated due to the fog and 
the points that belong to the physical environment 
(target). Points generated to real targets will be 
referred to as hard targets in the following chapters, 
and the fog points caused by the backpropagation 
effect will be referred to as soft points. 
 
Data is extracted from the point cloud by first 
extracting the rays and further slicing the rays to 
understand how the fog behaves within the system. 
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Ray Extraction 
A sub point cloud of the main point cloud is extracted 
in clusters. Each ray (noted R) is examined and the 
number of points within each ray is extracted. The 
reasoning behind having a ray selection is to ensure 
that the two distinct point being extracted do not stem 
from the same ray (except in the case of multi 
echoes). Any rays belonging to hard targets are not 
accounted for and ignored. 
 
Ray Slicing 
After extracting the points, the rays are then divided 
in multiple segments. The density of each segment is 
then calculated, referring to a distance from the 
LiDAR. This allows us to create a model of density of 
points, characterizing the backpropagation effects in 
function of distance from the LiDAR. 

 

Figure 3: Example of measured point cloud with the 
selected rays oriented towards the target car 

  
For each ray (noted 𝑖 in a direction defined by an 

elevation angle 𝜃𝑖 and an azimuthal angle 𝜑𝑖), zero to 
three echoes can be detected at different ranges or 
distance from the LiDAR, also containing the intensity 
of each echo:  

𝑒𝑐ℎ𝑜𝑒𝑠(𝜃𝑖  , 𝜑𝑖) = {

𝑒𝑐ℎ𝑜1(𝜃𝑖  , 𝜑𝑖)

𝑒𝑐ℎ𝑜2(𝜃𝑖  , 𝜑𝑖)

𝑒𝑐ℎ𝑜3(𝜃𝑖  , 𝜑𝑖)
                                  [1] 

 
With each 𝑒𝑐ℎ𝑜1(𝜃𝑖  , 𝜑𝑖) being the first echo or the 

nearest distance corresponding to the laser (𝜃𝑖  , 𝜑𝑖) 
and each 𝑒𝑐ℎ𝑜3(𝜃𝑖  , 𝜑𝑖) being the third echo or the 

farthest distance corresponding to the laser (𝜃𝑖  , 𝜑𝑖). 

 

Density Repartition Representation  

For each point cloud, and each selected rays R, a 
cumulative distribution function can be defined as the 
following: 

∀𝑗 ∈ {1,2,3}, 𝐹𝑗(𝑥) =
1

|𝑅|
∑ [𝑒𝑐ℎ𝑜𝑗(𝜃𝑖  , 𝜑𝑖) < 𝑥]𝑖𝜖𝑅           [2] 

For each given visibility, 3 cumulative distributions 
can be computed each referring to either the first, 
second or third echo 

 
Plane Slicing 
A similar approach to the ray slicing was done in order 
to observe the behaviour of the soft points along the 
azimuthal axis of the LiDAR. A series of rays through 
the azimuthal range (Figure 4 in red) on a fixed polar 
range were broadcasted and the density of each ray 
for each echo was calculated.  
 

 

Figure 4: Example of the measured azimuthal rays 

For each ray (noted k in a direction defined by a fixed 
elevation angle, and an azimuthal angle 𝜑𝑘 ), zero to 
three echoes can be detected and their density 
along each ray is calculated.  

𝑃𝑙𝑎𝑛𝑒 𝑒𝑐ℎ𝑜𝑒𝑠(𝜃𝑘 , 𝜑𝑘) = {

𝑃𝑙𝑎𝑛𝑒 𝑒𝑐ℎ𝑜1(𝜑𝑘)

𝑃𝑙𝑎𝑛𝑒 𝑒𝑐ℎ𝑜2(𝜑𝑘)

𝑃𝑙𝑎𝑛𝑒 𝑒𝑐ℎ𝑜3(𝜑𝑘)
               [3] 

 
With the distribution function defined as the following  

∀𝑗 ∈ {1,2,3}, 𝐹𝑙(𝑥) =
1

|𝑅|∗𝐹𝑙𝑚𝑎𝑥

∑ [𝑃𝑙𝑎𝑛𝑒 𝑒𝑐ℎ𝑜𝑗(𝜑𝑘) < 𝑥] [𝟒]𝑖𝜖𝑅        

 
4. Perturbated Lidar Model Construction 

 
Following the analysis of real-world data, the aim of 

the study is to develop a model that simulates the fog 

backpropagation phenomenon (soft target). 

 

4.1 The LASERMETER model 

The simulation tool used is AVSimulation’s SCANeR 

Studio software, which operates on a modular 

architecture, with each module handling a specific 

task within the simulation (e.g., vehicle dynamics, 

traffic management, pedestrians, sensors, etc.). One 

of these modules, LASERMETER, is responsible for 

the LiDAR modelling, utilizing ray tracing. The ray 

tracing pattern is configured based on the LiDAR's 

laser emission patterns, which can be adjusted within 

the model. 

 

The current version of the LASERMETER model 

represents a perfect sensor of the LiDAR output, 

unaffected by environmental anomalies. Any target 

within the field of view of the simulated laser beam is 
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detected, regardless of weather conditions. The 

objective of this study is to enhance the existing 

LiDAR model by incorporating these environmental 

disturbances, as demonstrated in the following proof 

of concept, which implements fog effects in the 

simulation. 

 

4.2 Perturbation generation 
The improvement of the LASERMETER model is 
achieved through a plugin that acts as an additional 
layer on the existing model. This involves adjusting 
the generated point cloud to simulate the effects of 
fog disturbances. 
 
Step 1: Obtaining LASERMETER output: The 

output consists of a point cloud, with each laser beam 

generating one, two, or three points. The coordinates 

of these points are produced relative to the sensor 

frame. 

 

Step 2: Introducing precision noise: The distance 

for each point can be modified by applying an error 

based on a probability distribution. A simple approach 

is to use Gaussian error to introduce a percentage of 

uncertainty in the distance estimation. 

 

Step 3: Introducing soft targets (backpropagation 

points): The backpropagation effect occurs when 

points are generated between the LiDAR and the 

target. This effect can be simulated by generating 

points for each laser beam. The position of the 

backpropagation points is determined based on a 

probability distribution. If the randomly generated 

position is beyond the target object, no modification is 

made. However, if the position falls between the 

LiDAR and the object, the new point is assigned to the 

laser beam, and the original target point is removed. 

 
The different steps are illustrated in figure 9 

 

Figure 5: Different steps from the LASERMETER 
output (1) to add precision noise (2) and then 

backpropagation due to fog (3) 

 
Distribution of backpropagation 
The third step (Step 3) outlined in the previous section 

must be parameterized using a probability 

distribution. This is because the occurrence of 

backpropagation is determined by a selected position, 

extracted from the real fog data. 

 

 

Figure 6: Mean cumulative distribution function for 
each echo and a fog visibility of 100m 

 

 

Figure 7: Distribution function for each echo along 
each azimuthal angle for a fog visibility of 100m 

  
Using the cumulative distribution functions 
The results from CEREMA measurements have 

demonstrated that the soft target, representing fog 

backpropagation, can vary in complexity based on 

positions and multi-echoes, influenced by fog density. 

This complexity allows us to define a probability 

distribution based on the density data obtained from 

these metrics. By using this density distribution as a 

probability law, a new method for generating soft 

targets can be established. 

 

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑒𝑐ℎ𝑜 𝑗,  𝑃(𝑋 > 𝑥)  =  𝐹𝑗(𝑥) ∗ 𝐹𝑙(𝜑)             [5] 

 

The intensities of the soft target points follow the 

same probability law and are derived from the mean 

intensity function. In addition to positioning the soft 

target points based on multi-echoes, the intensities of 

the generated points are scaled to align with the real-

world data used in the simulation, ensuring accuracy. 
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Figure 8: Mean intensity functions for each echo and 

a fog visibility of 20m 

 

5. Simulation with the perturbation 
 
Simulated scenario 
To compare simulated data with real data, the 

CEREMA Pavin platform was recreated to run an 

equivalent scenario in SCANeR Studio. Additionally, 

the appropriate parameters were selected to 

configure the simulated sensor in alignment with the 

specifications outlined in the LiDAR's datasheet. 

 

Figure 9: The simulated environment in SCANeR 
Studio 

Perturbation model construction 
A module in SCANeR is utilized to integrate the 

previously generated perturbation model into the 

point cloud produced by the LASERMETER model. 

This is done via SCANeR Studio’s communication 

bus, referred to as the "Network." The modified point 

cloud is then published as PCD files, maintaining the 

same format as the LiDAR’s original point cloud 

outputs. 

 

6. Results 
 
In order to compare the results of our model two types 
of analysis was conducted. First a qualitative analysis 
was carried out to visually observe the results 
between the real data acquired at CEREMA 
compared to the simulated data. The second  
 
 

6.1 Qualitative analysis 
The presented methodology consists of three 

components to generate the noisy point cloud: the 

collected data and the method used to analyse 

density, the simulation environment featuring the 

virtual LiDAR and the virtual CEREMA Pavin 

Platform, and the noise model based on a defined 

probability distribution. 

Merging these three components results in a scaled 

noise model based on the collected data. The 

resulting output is displayed in the figure below. 

  

Figure 10: Comparaison via visualisation of the 
LiDAR points, left being the real data acquisiton and 

right being the simulation data 

Both presented point clouds show a noticeable 

similarity, with the inclusion of the fog model adding 

significant realism. However, further improvements 

can be made by addressing the isotropy of the model. 

 

6.2 Quantitative analysis 
A more quantitative approach can be utilized to 

compare the generated point clouds. The purpose of 

such metrics is threefold: to ensure a visually 

coherent point cloud, to achieve precision in object 

representation, and to maintain similarity between 

point clouds for software detection. An initial analysis 

has been introduced, focusing on evaluation the point 

cloud density.  

 

This metric is designed to analyse the entire point 

cloud by dividing it into voxels along the x,y,z axis, 

with each voxel containing the voxel of the LiDAR 

point found in the contained surface area. (as shown 

in Figure 11).  

 

By comparing the densities between the real and 

simulated point clouds, the difference can be 

calculated. The metric is established using two 

formulas that count the number of points𝑁𝑖,𝑟𝑒𝑎𝑙 or 

𝑁𝑖,𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑  , in each voxel 𝑖 . The Global Difference 

Metric [6] allows a global view on the difference 

between the two compared files, while the Voxel 

Difference Metric [7] allows a more refined view on 

how each individual Voxel compares to one another. 
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𝑮𝒍𝒐𝒃𝒂𝒍 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝑴𝒆𝒕𝒓𝒊𝒄:   
 

∑ (|𝑵𝒊,𝒓𝒆𝒂𝒍 − 𝑵𝒊,𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒆𝒅|)𝒊

∑ (𝑵𝒊,𝒓𝒆𝒂𝒍)𝒊

                                                [𝟔] 

 
𝑽𝒐𝒙𝒆𝒍 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝑴𝒆𝒕𝒓𝒊𝒄 : 

 
𝟏

𝑵𝒃_𝒗𝒐𝒙𝒆𝒍𝒔
∑

|𝑵𝒊,𝒓𝒆𝒂𝒍 − 𝑵𝒊,𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒆𝒅|

𝑵𝒊,𝒓𝒆𝒂𝒍
𝒊

                           [𝟕] 

 

 

Figure 11: Representation of the comparison metric 

The metrics were calculated for several of the 

generated point clouds, resulting in the following 

table. 

 

 Without model With fog model 

Fog  Metric1 Metric2 Metric1 Metric2 

20m 194% 147% 4% 6% 

50m 118% 84% 76% 43% 

100m 101% 46% 68% 40% 

Table 1: Obtained metrics for different level of fog 
 

The calculated metrics vary depending on the formula 

used and can be enhanced by considering factors 

such as intensities and the grid cell size. The results 

indicate that the noise model reduces the discrepancy 

between the virtual and real data. 

 

The Localised Difference Metric [8] focuses on a 

specific, unique box corresponding to an object in the 

environment. This box is used to analyse the point 

cloud data associated with that particular object, 

isolating it for more detailed examination. In the figure, 

the selected box surrounds the object, allowing for 

precise comparison between the real and simulated 

point clouds. By examining the density and 

distribution of points within this box, we can determine 

how accurately the simulation captures the object's 

characteristics in the virtual environment. This 

method enables targeted analysis, ensuring that the 

object in the environment is well-represented in the 

simulation.  

The formula is: 

 

𝑚𝑒𝑡𝑟𝑖𝑐3 =  
|𝑁𝑟𝑒𝑎𝑙 − 𝑁𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑|

𝑁𝑟𝑒𝑎𝑙

                                      [8] 

 

a.   b.   c.   

Figure 12: Visual representation of the Localised 
difference metric and object being studied. (a.) being 

the object in PCD format, (b) being the simulated 
instance of the object and (c) being the real physical 

object. 

Fog 
Visibility  

Without fog 

noise model 

With fog noise 

model 

20m 3033% 55.5% 

50m 95.83% 2% 

100m 83.3% 28% 

Table 2: Localised Difference Metric (comparison 
with CEREMA data 

The calculated metrics show significant variation 

depending on whether the fog noise model is applied. 

As the table demonstrates, without the fog noise 

model, the discrepancies between the virtual and real 

data are considerably higher, particularly at 20m 

visibility. The inclusion of the fog noise model 

drastically reduces these discrepancies across all 

visibility ranges, indicating that the model improves 

the realism of the simulation. Further refinements, 

such as adjusting for intensities and grid cell sizes, 

could enhance the accuracy of the metrics even more, 

leading to a closer match between virtual and real 

data. 

 

7. Discussion 

 

Future improvements 
The model presented in this paper provides 

simulation users with an initial representation of 

degraded fog measurements, while leaving space for 

further improvements. 
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Dynamic study 
The data collected so far pertains to static scenarios 

with fixed targets and a stationary vehicle. However, 

weather perturbations (especially fog) can vary 

significantly when the vehicle is in motion, and 

dynamic studies would provide a more realistic 

representation of such scenarios. 

 

Metrics of comparison 
The comparison of point clouds needs to be 

enhanced using additional metrics and applied to 

other point clouds. Furthermore, comparing the 

results with scenarios acquired outside the CEREMA 

platform would allow for a more comprehensive 

validation of the modelling methodology. 

 

8. Conclusion 
 

This paper presents a methodology for integrating 

adverse weather conditions into a simulated LiDAR 

sensor model, designed for the validation and 

homologation of autonomous vehicles. The approach 

involves collecting and recording real-world LiDAR 

data under various adverse weather conditions, which 

is then used to generate a perturbation model. This 

model is applied to the ideal sensor model, resulting 

in a more realistic sensor for testing purposes. It is 

crucial that the collected data accurately reflects the 

weather conditions to correctly simulate the 

appropriate perturbations. This method can be 

extended to simulate different types of weather 

disturbances and is applicable not only to LiDAR 

sensors but also to cameras, radar, and even 

ultrasonic sensors. Additionally, it is less resource-

intensive compared to other physics-based sensor 

models and can be implemented for real-time 

simulations. 
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