
HAL Id: hal-04729077
https://hal.science/hal-04729077v1

Submitted on 10 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of Rayleigh-Bénard convection using latent
Dirichlet allocation

Bérengère Podvin, L. Soucasse, F. Yvon

To cite this version:
Bérengère Podvin, L. Soucasse, F. Yvon. Analysis of Rayleigh-Bénard convection using latent Dirichlet
allocation. Physical Review Fluids, 2024, 9 (6), pp.063502. �10.1103/PhysRevFluids.9.063502�. �hal-
04729077�

https://hal.science/hal-04729077v1
https://hal.archives-ouvertes.fr


, ,1

On the analysis of Rayleigh-Bénard convection using Latent Dirichlet2

Allocation3

B. Podvin and L. Soucasse4
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Abstract8

We apply a probabilistic clustering method, Latent Dirichlet Allocation (LDA), to characterize the large-9

scale dynamics of Rayleigh-Bénard convection. The method, introduced in Frihat et al. [1], is applied to a10

collection of snapshots in the vertical mid-planes of a cubic cell for Rayleigh numbers in the range [106, 108].11

For the convective heat flux, temperature and kinetic energy, the decomposition identifies latent factors, called12

motifs, which consist of connex regions of fluid. Each snapshot is modelled with a sparse combination of13

motifs, the coefficients of which are called the weights. The spatial extent of the motifs varies across the cell14

and with the Rayleigh number. We show that the method is able to provide a compact representation of the15

heat flux and displays good generative properties. At all Rayleigh numbers the dominant heat flux motifs16

consist of elongated structures located mostly within the vertical boundary layers, at a quarter of the cavity17

height. Their weights depend on the orientation of the large-scale circulation. A simple model relating the18

conditionally averaged weight of the motifs to the relative strength of the corner rolls and of the large-scale19

circulation, is found to predict well the average large-scale circulation reorientation rate. Application of20

LDA to the temperature fluctuations shows that temperature motifs are well correlated with heat flux motifs21

in space as well as in time, and to some lesser extent with kinetic energy motifs. The abrupt decrease of22

the reorientation rate observed at 108 is associated with a strong concentration of plumes impinging onto23

the corners of the cell, which decrease the temperature difference within the corner structures. It is also24

associated with a reinforcement of the longitudinal wind through formation and entrainment of new plumes.25

I. INTRODUCTION26

Rayleigh-Bénard convection, in which a fluid is heated from below and cooled from above,27

represents an idealized configuration to study thermal convection phenomena. These characterize28

a variety of applications ranging from industrial processes such as heat exchangers to geophysical29

flows in the atmosphere or the ocean. A central question is to determine how the heat transfer30

depends on nondimensional parameters such as the Prandtl number 𝑃𝑟 = 𝜈/𝜅 where 𝜈 is the31

kinematic viscosity and 𝜅 the thermal diffusivity, and the Rayleigh number32

𝑅𝑎 =
𝑔𝛽Δ𝑇𝐻3

𝜈𝜅
, (1)33

where 𝑔 is the gravity, 𝛽 is the thermal expansion coefficient, Δ𝑇 the temperature difference and 𝐻34

the cell dimension. The Grossmann and Lohse [2] theory constitutes a unified approach to address35

this question. It is based on a local description of the physics: the contributions from the bulk36
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averaged thermal and kinetic dissipation rate are split into two subsets, one corresponding to the37

boundary layers, and one corresponding to the bulk. This theory was further refined in Grossmann38

and Lohse [3], where the thermal dissipation rate was split into a contribution from the plumes39

and a contribution from the turbulent background. Through the action of buoyancy, the thermal40

boundary layers generate plumes which create a large-scale circulation, as evidenced by Xi et al. [4],41

also called ”wind” [5]. The distribution of temperature fluctuations depends on plume clustering42

effects [6], but it is also affected by interactions with turbulent fluctuations in the bulk, resulting in43

fragmentation [7].44

Shang et al. [8] showed that plume-dominated regions were located near the sidewalls and45

the conducting surfaces and that thermal plumes carry most of the convective heat flux, which46

contributes to the production of both kinetic and thermal fluctuations. The morphology of plumes47

and its effect on the heat transfer have been given careful attention. The plumes have a sheet-48

like structure near the boundary layer and progressively become mushroom-like as they move49

into the bulk region [9]. Shishkina and Wagner [10] found that very high values of the local50

heat flux were observed in regions where the sheet-like plumes merged, constituting ”stems” for51

the mushroom-like plumes developing in the bulk. The relative contributions of the plumes and52

turbulent background vary with the Rayleigh number: Emran and Schumacher [11] have shown53

that the fraction of plume-dominated regions decreases with the Rayleigh number, while that of54

background-dominated regions increases.55

The identification of local coherent structures such as plumes is therefore an essential step for56

the understanding of thermal convection flows. Several definitions have been used: some of the57

first criteria were based on the skewness of the temperature derivative [12] or the temperature dif-58

ference [13]. Ching et al. [14] have proposed to use simultaneous measurements of the temperature59

and the velocity to define the velocity of the plumes using conditional averaging. Following Huang60

et al. [15], van der Poel et al. [16] identified plumes from both a temperature anomaly and an excess61

of convective heat flux. Zhou et al. [17] relied on cliff-ramp-like structures in the temperature62

signals to determine the spatial characteristics of plumes. Emran and Schumacher [11] and Vishnu63

et al. [18] separated the plume from the background regions based on a threshold on the convective64

heat flux. Shevkar et al. [19] have recently proposed a dynamic criterion based on the 2D velocity65

divergence to separate plumes from boundary layers.66

As pointed out by Chilla and Schumacher [20], this multiplicity of criteria illustrates the difficulty67

of identifying coherent structures in a consistent and objective manner, which is a long-running68
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question in various types of turbulent flows. To this end, Proper Orthogonal Decomposition69

(POD) [21] has proven a useful tool to analyze large-scale fluctuations in Rayleigh-Bénard convec-70

tion. It has been used in particular to study reorientations of the large-scale circulation [22–26].71

Through spectral decomposition of the autocorrelation tensor, POD provides a basis of spatial72

modes, also called empirical modes, since they originate from the data. The modes are energet-73

ically optimal to reconstruct the fluctuations. The POD modes typically have a global support,74

which is well suited to capture the large-scale organization of the flow. However, this can make75

physical interpretation difficult as there is no straightforward connection between a mode and a lo-76

cal coherent structure as a local structure is represented with a superposition of many POD modes,77

a situation also observed in Fourier analysis. Soucasse et al. [27] have used POD to study the dy-78

namics of the large-scale circulation for Rayleigh numbers in the range [106, 108]. They found that79

although the reorientation rate varied with the Rayleigh number, the dominant structures remained80

similar across that range, albeit with some variations in their energy. A new dissipation-based POD81

decomposition, proposed by Olesen et al. [28] and applied to Rayleigh-Bénard convection [29],82

highlighted the importance of boundary layers for the dynamics, which points to the need for local83

descriptions.84

As an alternative, Frihat et al. [1] have recently adapted a probabilistic method that can extract85

localized latent factors in turbulent flow measurements. This method, Latent Dirichlet Allocation86

or LDA [30, 31], was originally developed in the context of natural language processing, where87

it aims to extract topics from a collection of documents. In this framework, documents are88

represented by a non-ordered set of words taken from a fixed vocabulary. A word count matrix can89

be built for the collection, where each column corresponds to a document, each line corresponds90

to a vocabulary word and the matrix entry represents the number of times the word appears in the91

document. LDA provides a probabilistic decomposition of the word count matrix, based on latent92

factors called topics. Topics are defined by two distributions: the distribution of topics within each93

document (each document is associated with a mixture of topics, the coefficients of the mixture94

sum up to one) and the distribution of vocabulary words with each topic (each topic is represented95

by a combination of words, the coefficients of which also sum up to one).96

The method has been adapted for turbulent flows as follows: we consider a collection of97

snapshots of a scalar field discretized into cells. The equivalent of a document is therefore a98

snapshot, and the cells (or snapshot pixels) constitute the vocabulary. The digitized values of the99

scalar field over the cells in a snapshot are gathered into a vector which is formally analogous to100
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a column of the word count matrix. The ”topics” produced by the decomposition, called motifs,101

correspond to fixed (in the Eulerian sense), spatially coherent regions of the flow. The method was102

found to be well suited for the representation of intermittent data (Frihat et al. [1], Fery et al. [32]).103

It was succesfully applied to the analysis of the turbulent Reynolds stress in wall turbulence [1].104

Moreoever, the method provides a local description that is insensitive to the existence of global105

symmetries. It proved a useful tool to identify synoptic objects in weather data [32].106

In this paper, we apply this method to the analysis of fluctuations in a cubic Rayleigh-Bénard107

cell in the range of Rayleigh number [106, 108]. The goal is to track the local signature of108

the large-scale dynamics of the flow, and to determine whether changes can be identified as the109

Rayleigh number increases. To this end, the technique is applied to 2D snapshots extracted from110

3D numerical simulations of Raleigh-Bénard convection in a cubic cell in the range of Rayleigh111

number [106, 108]. The numerical configuration and the data set are described in Sec. II. We first112

present the method for the convective heat flux, using a comparison with POD to highlight the113

similarities and differences of the approach. POD and LDA are respectively presented in Sec. III114

and IV. We examine in Sec. V how LDA compares with POD and the extent to which it is able115

to capture the general features of the heat flux. The characteristics of heat flux motifs and their116

connection with the reorientations of the large-scale circulation are discussed in Sec. VI. The117

analysis is then extended to temperature fluctuations and to the kinetic energy in Sec.-VII. in order118

to provide further insight into the physics. A conclusion is given in Sec. VIII.119

II. NUMERICAL SETTING120

A. Set-up121

Numerical setup and associated datasets are the same as used in Soucasse et al. [26, 27]. The122

configuration studied is a cubic Rayleigh-Bénard cell filled with air, with isothermal horizontal123

walls and adiabatic side walls. The air is assumed to be transparent and thermal radiation effects are124

disregarded. Direct numerical simulations have been performed at various values of the Rayleigh125

number. The Prandtl number is set to 0.707. All physical quantities are made dimensionless using126

the cell size 𝐻, the reference time 𝐻2/(𝜅
√
𝑅𝑎) and the reduced temperature 𝜃 = (𝑇 − 𝑇0)/Δ𝑇 , 𝑇0127

being the mean temperature between hot and cold walls. Spatial coordinates are denoted 𝑥, 𝑦, 𝑧 (𝑧128

being the vertical direction) and the origin is placed at a bottom corner of the cube.129
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𝑅𝑎 (𝑁𝑥 , 𝑁𝑦 , 𝑁𝑧) 𝑁𝑆 Δ𝑡 𝛿𝐵𝐿

106 (81,81,81) 1000 10 0.056

3 106 (81,81,81) 1000 10 0.042

107 (81,81,81) 1000 10 0.0297

108 (161,161,161) 1000 5 0.0167

TABLE I. Characteristics of the datasets at various Rayleigh numbers: spatial resolution 𝑁𝑥 , 𝑁𝑦 , 𝑁𝑧 in

each direction of space, number of snapshot 𝑁𝑆 , snapshot sampling period Δ𝑡 and thermal boundary layer

thickness 𝛿𝐵𝐿 .

Navier–Stokes equations under Boussinesq approximation are solved using a Chebyshev collo-130

cation method [33, 34]. Computations are made parallel using domain decomposition along the131

vertical direction. Time integration is performed through a second-order semi-implicit scheme.132

The velocity divergence-free condition is enforced using a projection method. Numerical param-133

eters are given in Table I for the four considered Rayleigh numbers 𝑅𝑎 = {106; 3 106; 107; 108}.134

We have checked that the number of collocation points is sufficient to accurately discretize the135

boundary layers according to the criterion proposed by Shishkina et al. [35]. Details on the vali-136

dation of the numerical method and of the discretisation can be found in Ref. [36]. A number of137

1000 snapshots have been extracted from the simulations for each Rayleigh number at a sampling138

period of 10 (at 𝑅𝑎 = {106; 3 106; 107}) or 5 (at 𝑅𝑎 = 108), in dimensionless time units. It is139

worth noting that the time separation between the snapshots is sufficient to describe the evolution140

of the large-scale circulation but is not suited for a fine description of the plume emission or of the141

reorientation process. For each Rayleigh number, a dataset satisfying the statistical symmetries of142

the flow was then constructed from these 1000 snapshots, as will be described in the next section.143

B. Construction of the data set144

At each Rayleigh number, the data set consisted of a collection of 𝑁𝑆 = 1000 snapshots 𝑞(𝑥, 𝑡𝑚),145

𝑚 = 1, . . . 𝑁𝑆. Results will be presented first for the convective heat flux 𝑞 = Φ = 𝑤𝜃, then for146

the temperature fluctuations 𝑞 = 𝜃′ = 𝜃 − ⟨𝜃⟩ (⟨𝜃⟩ being the time-averaged temperature) and for147

the kinetic energy 𝑞 = 𝑘 = 1
2 (𝑢

2 + 𝑣2 + 𝑤2), 𝑢, 𝑣 and 𝑤 being the velocity components. We note148

that due to the velocity reference scale, the non-dimensional heat flux varies like 𝑁𝑢𝑅𝑎−1/2. As149

in Soucasse et al. [26], the data set was first enriched by making use of the statistical symmetries150
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of the flow [37]. In the cubic Rayleigh-Bénard cell, four quasi-stable states are available for the151

flow for this Rayleigh number range: the large-scale circulation settles in one of the two diagonal152

planes of the cube with clockwise or counterclockwise motion. The evolution of the large-scale153

circulation can be tracked through that of the 𝑥 and 𝑦 components of the angular momentum of154

the cell 𝐿 =
∫
(𝑥 − 𝑥0) × 𝑢𝑑𝑥 with respect to the cell center 𝑥0. As Fig. 1 shows at 𝑅𝑎 = 107, the155

angular momentum along each horizontal direction oscillates near a quasi-steady position for long156

periods of times - several hundreds of convective time scales, before experiencing a rapid switch157

(O(10) convective time scales) to the opposite value, which corresponds to a reorientation. On158

each plane we can define an indicator function 𝐼, which takes the value 𝑠𝑔𝑛(𝐿)1 where 𝐿 is the159

angular momentum component normal to the plane.160

Reorientations from one state to another occur during the time sequence but each state is not161

necessarily equally visited. In order to counteract this bias, we have built enlarged snapshot sets,162

obtained by the action of the symmetry group of the problem on the original snapshot sets. The163

symmetries are based on four independent symmetries 𝑆𝑥 , 𝑆𝑦, 𝑆𝑧 and 𝑆𝑑 with respect to the planes164

𝑥 = 0.5, 𝑦 = 0.5, 𝑧 = 0.5 and 𝑥 = 𝑦. This generates a group of 16 symmetries for the cube, which165

should lead to a 16-fold in the number of snapshots. However, since we will exclusively consider166

the vertical mid-planes 𝑥 = 0.5 and 𝑦 = 0.5, which are invariant planes for respectively 𝑆𝑥 and 𝑆𝑦,167

the increase is reduced. The data set aggregates 1000 snapshots on each of the planes 𝑥 = 0.5 and168

𝑦 = 0.5, each of which undergoes a vertical flip, a horizontal flip and a combination of the two,169

yielding a total of 𝑁𝑆 = 8000 snapshots.170

The LDA technique requires transforming the data into a non-negative, integer field. The signal171

defined on a grid of �̃�𝐶 cells was digitized using a rescaling factor 𝑠. If the field was not of constant172

sign (temperature, heat flux), positive and negative values were split onto two distinct grids, leading173

to a field defined on 𝑁𝐶 = 2�̃�𝐶 cells. For the heat flux, this gives174

𝑞(𝑥
𝑗
) = 𝑞(𝑥

𝑗
, 𝑡𝑚) = Max

[
Int[𝑠 𝑤(𝑥

𝑗
, 𝑡𝑚)𝜃 (𝑥 𝑗

, 𝑡𝑚), 0
]
, (2)175

𝑞(𝑥
𝑗+�̃�𝐶

) = 𝑞(𝑥
𝑗+�̃�𝐶

, 𝑡𝑚) = −Max
[
−Int[𝑠 𝑤(𝑥

𝑗
, 𝑡𝑚)𝜃 (𝑥 𝑗

, 𝑡𝑚), 0
]
, (3)176

where 𝑠 > 0, 𝑚 ∈ [1, 𝑁𝑆] and 𝑗 ∈ [1, �̃�𝐶] and 𝑥
𝑗

represents the 𝑗 th cell location on the mid-planes177

𝑥 = 0.5 or 𝑦 = 0.5. We note that throughout the paper, the total field will directly be represented178

on the physical grid of size �̃�𝐶 from the renormalized difference [𝑞(𝑥
𝑗
, 𝑡𝑚) − 𝑞(𝑥

𝑗+�̃�𝐶
, 𝑡𝑚)]/𝑠. It179

is worth noting that the temperature variance (always positive) could be used to lighten the LDA180

analysis on the temperature field. Yet, we chose to work on the signed temperature fluctuation in181
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order to discriminate between leaving and impinging thermal patterns near the horizontal walls as182

it is often done in plume detection [13, 16].183

III. POD ANALYSIS184

A. Method185

Proper Orthogonal Decomposition (POD) [38] makes it possible to write a collection of 𝑁𝑆186

spatial fields 𝑞(𝑥
𝑗
, 𝑡𝑚) defined on 𝑁𝐶 grid points, as a superposition of spatial modes 𝜑𝑛 (𝑥), the187

amplitude of which varies in time:188

𝑞(𝑥
𝑗
, 𝑡𝑚) =

𝑁𝑆∑︁
𝑛=1

√︁
𝜆𝑛𝑎𝑛 (𝑡𝑚)𝜑𝑛 (𝑥 𝑗

), (4)189

with 𝑚 ∈ [1, 𝑁𝑆] and 𝑗 ∈ [1, 𝑁𝐶]. The spatial modes 𝜑𝑛 (𝑥) are orthonormal:190

𝑁𝐶∑︁
𝑗=1

𝜑𝑛 (𝑥 𝑗
)𝜑𝑚 (𝑥 𝑗

) = 𝛿𝑛𝑚 . (5)191

The amplitudes 𝑎𝑛 (𝑡𝑚) are normalized eigenvectors of the eigenvalue problem192

𝐶𝑚𝑝𝑎𝑛 (𝑡𝑝) = 𝜆𝑛𝑎𝑛 (𝑡𝑚), (6)193

where 𝐶 is the temporal autocorrelation matrix194

𝐶𝑚𝑝 =
1
𝑁𝑆

𝑁𝐶∑︁
𝑗=1

𝑞(𝑥
𝑗
, 𝑡𝑚)𝑞(𝑥 𝑗

, 𝑡𝑝). (7)195

The eigenvalues 𝜆𝑛, such that 𝜆1 > 𝜆2 > 𝜆3 > . . ., represent the respective contribution of the196

modes to the total variance. If we consider the 𝑝 most energetic modes, the reconstruction based197

on 𝑝 modes minimizes the 𝐿2-norm error between the set of snapshots and the projection of the198

set of snapshots onto a basis of size 𝑝.199

B. Application to the convective heat flux200

POD is applied to the digitized heat flux signal 𝑞 = Φ defined in equations (2) and (3). The first201

three POD modes and POD coefficients are shown in Fig. 2 for 𝑅𝑎 = 107, where black vertical202

and horizontal lines indicate the thickness of the boundary layers. We checked that the first mode203
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corresponds to the mean flow. The mode is most important in a region close to the wall, with204

a maximum within the vertical boundary layer at a height of about 𝑧 ∼ 0.1. The second mode205

corresponds to a dissymmetry between the vertical sides and is most important at mid-height in the206

region outside the boundary layers. The third mode is both antisymmetric in the vertical and in the207

horizontal direction. It is maximum at the edge of the vertical boundary layers, at a vertical distance208

of about 0.25 from the horizontal surfaces. The pattern it is associated with corresponds to a more209

intense flux along a diagonal (bottom of one side and top of the opposite side) and a less intense210

flux along the opposite diagonal. As evidenced by application of a moving average performed over211

200 convective time units (about 4 times the recirculation time 𝑇𝑐, as was determined in Soucasse212

et al. [26]), the evolution of the amplitude at large time scales matches that of the horizontal angular213

momentum components 𝐿𝑥 and 𝐿𝑦 (compare with Fig. 1), unlike the two dominant modes. This214

mode therefore appears to be the signature of the large-scale circulation, where the flux is more215

intense in the lower corner of the cell as hot plumes rise on one side and in the upper corner of the216

opposite side of the cell as cold plumes go down.217

IV. LATENT DIRICHLET ALLOCATION218

A. Principles219

We briefly review the principles of Latent Dirichlet Allocation and refer the reader to Frihat220

et al. [1] for more details. LDA is an inference approach to identify latent factors in a collection of221

observed data, which relies on Dirichlet distributions as priors.222

We first recall the definition of a Dirichlet distribution 𝜗, which is a multivariate probability223

distribution over the space of multinomial distributions. It is parameterized by a vector of positive-224

valued parameters 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑁 ) as follows225

𝑝(𝜗1, ..., 𝜗𝑁 ;𝛼1, ..., 𝛼𝑁 ) =
1

𝐵(𝛼)

𝑁∏
𝑛=1

𝜗𝛼𝑛−1
𝑛 , (8)226

where 𝐵 is a normalizing factor, which can be expressed in terms of the Gamma function Γ:227

𝐵(𝛼) =
∏𝑁

𝑛=1 Γ(𝛼𝑛)
Γ(∑𝑁

𝑛=1 𝛼𝑛)
. (9)228

The components {𝛼𝑛, 𝑛 = 1 . . . 𝑁} of 𝛼 control the sparsity of the distribution: values of 𝛼𝑛 larger229

than unity correspond to evenly dense distributions, while values lower than unity correspond to230

sparse distributions.231
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As mentioned above, the data to which LDA is applied consists of a collection of non-negative,232

integer fields that are defined in equations (2) and (3). For each snapshot 𝑚, the integer value233

𝑞𝑚 (𝑥 𝑗
) measured at cell 𝑗 is interpreted as an integer count of the cell 𝑗 . The key is to interpret234

this integer count as the number of times cell 𝑗 appears in the composition of snapshot 𝑚. The idea235

is to construct a model for the probability 𝑝(𝑞𝑚, 𝑥 𝑗
) of observing the cell 𝑥

𝑗
in the snapshot 𝑞𝑚,236

which is directly proportional to 𝑞(𝑥
𝑗
). The model is based on the hypothesis that each snapshot of237

the collection {𝑞𝑚, 𝑚 = 1, . . . , 𝑁𝑆} consists of a mixture of 𝑁𝑇 latent factors {𝑧𝑛, 𝑛 = 1, . . . , 𝑁𝑇 }238

called motifs, 𝑁𝑇 being a user-defined parameter analogous to a number of clusters. The probability239

𝑝(𝑞𝑚, 𝑥 𝑗
) therefore writes240

𝑝(𝑞𝑚, 𝑥 𝑗
) = 𝑝(𝑞𝑚)

∑︁
𝑛

𝑝(𝑧𝑛 |𝑞𝑚)𝑝(𝑥 𝑗
|𝑧𝑛), (10)241

where:242

• 𝑝(𝑞𝑚) is the probability of observing the snapshot 𝑞𝑚 in the collection,243

• 𝑝(𝑧𝑛 |𝑞𝑚) is the conditional probability of observing motif 𝑧𝑛 given the presence of snapshot244

𝑞𝑚,245

• 𝑝(𝑥
𝑗
|𝑧𝑛) is the conditional probability of observing cell 𝑥

𝑗
given the latent factor 𝑧𝑛.246

A formal analogy with POD and equation (4) can be seen by using the Bayes rule and rewriting247

𝑝(𝑞𝑚, 𝑥 𝑗
) as248

𝑝(𝑞𝑚, 𝑥 𝑗
) =

∑︁
𝑛

𝑝(𝑧𝑛)𝑝(𝑞𝑚 |𝑧𝑛)𝑝(𝑥 𝑗
|𝑧𝑛), (11)249

where250

• 𝑝(𝑧𝑛) is the equivalent of the rms contribution
√
𝜆𝑛,251

• 𝑝(𝑥
𝑗
|𝑧𝑛) is the equivalent of the POD spatial mode 𝜑𝑛 (𝑥 𝑗

),252

• 𝑝(𝑞𝑚 |𝑧𝑛) is the equivalent of the temporal amplitude 𝑎𝑛 (𝑡𝑚).253

We emphasize that unlike POD, all quantities in the LDA model are probabilities and therefore254

non-negative.255

Latent Dirichlet allocation is therefore based on the following representation:256
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1. Each motif 𝑧𝑛 is associated with a multinomial distribution 𝜓𝑛 over the grid cells so that the257

probability to observe the 𝑗 th grid cell located at 𝑥
𝑗

given the motif 𝑛 is 𝑝(𝑥
𝑗
|𝑧𝑛) = 𝜓𝑛 (𝑥 𝑗 ).258

The distribution 𝜓𝑛 is modelled with a Dirichlet prior parameterized with an 𝑁𝐶-dimensional259

vector 𝜂. Low values of 𝜂𝑙 mean that the motif is distributed over a small number of cells.260

2. Each snapshot 𝑞𝑚 is associated with a distribution 𝑏𝑛 over the motifs such that the probability261

that motif 𝑛 is present in snapshot 𝑚 will be denoted 𝑝(𝑞𝑚 |𝑧𝑛) = 𝑏𝑛 (𝑡𝑚). This distribution262

is modelled with a 𝑁𝑇 -dimensional Dirichlet distribution of parameter 𝛼. The magnitude of263

𝛼 characterizes the sparsity of the distribution. Low values of 𝛼𝑛 mean that relatively few264

motifs are observed in each snapshot.265

B. Implementation266

The snapshot–motif distribution 𝑏𝑛 and the motif-cell distribution 𝜓𝑛 are determined from the267

observed snapshots 𝑞(𝑥) and constitute 𝑁𝑇 and 𝑁𝐶-dimensional categorical distributions. Finding268

the distributions 𝑏𝑛 and 𝜓𝑛 that are most compatible with the observations constitutes an inference269

problem. The problem can be solved either with a Markov chain Monte-Carlo (known as MCMC)270

algorithm such as Gibbs sampling [30], or by a variational approach [31], which aims to minimize271

the Kullback–Leibler divergence between the true posterior and its variational approximation. In272

both cases, the computational complexity of the problem of the order of 𝑁𝐶 × 𝑁𝑆 × 𝑁𝑇 .273

The solution a priori depends on the number of motifs 𝑁𝑇 as well as on the values of the Dirichlet274

parameters 𝛼 and 𝜂. Special attention was therefore given to establish the robustness of the results275

reported here. Non-informative default values were used for the Dirichlet parameters i.e. the prior276

distributions were taken with symmetric parameters equal to ∀𝑛, 𝛼𝑛 = 1/𝑁𝑇 and ∀ 𝑗 , 𝜂 𝑗 = 1/𝑁𝑇 .277

Practical implementation was performed in Python using gensim [39]. No significant change was278

observed in the results when the value of the quantization 𝑠 was high enough (however it had to279

be kept reasonably low in order to limit the computational time). Although multiple tests were280

carried out for varying values of 𝑠 ∈ [40, 600], all results reported in this paper were obtained with281

𝑠 = 600 for the heat flux. Values of 𝑠 = 40 and 𝑠 = 50 were respectively used for the temperature282

fluctuations and for the kinetic energy. Analyses were also performed for varying numbers of283

motifs 𝑁𝑇 , ranging from 50 to 400.284
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C. LDA as a generative process285

The standard generative process performed by LDA with 𝑁𝑇 motifs is the following.286

(𝑖) For each motif 𝑛, a 𝑁𝐶-dimensional cell–motif distribution 𝜓𝑛 is drawn from the Dirichlet287

distribution of parameter 𝜂.288

(𝑖𝑖) To generate snapshot 𝑚:289

(𝑎) a 𝑁𝑇 -dimensional snapshot–motif distribution 𝑏𝑛 is drawn according to a Dirichlet290

distribution parameterized by 𝛼291

(𝑏) a total integer count 𝑞𝑇 (𝑡𝑚) is drawn. This number corresponds to the total number of292

cell integer counts associated with snapshot 𝑚 i.e.
∑

𝑗 𝑞(𝑥 𝑗
, 𝑡𝑚). 𝑞𝑇 (𝑡𝑚) is typically293

sampled from a Poisson distribution that matches the statistics of the original database.294

(𝑐) for each 𝑖 = 1, . . . , 𝑞𝑇 (𝑡𝑚):295

∗ a motif 𝑛 is selected from 𝑏𝑛 (𝑡𝑚) (since it represents the probability that motif 𝑛 is296

present in the snapshot 𝑚)297

∗ once this motif 𝑛 is chosen, a cell 𝑗 is selected from 𝜓𝑛 (𝑥 𝑗
) (since it represents the298

probability that cell 𝑗 is present in motif 𝑛)299

The snapshot 𝑚 then represents the set of 𝑞𝑇 cells 𝑗 that have been drawn and can be reorganized300

as a list of 𝑁𝐶 cells with integer counts 𝑞(𝑥
𝑗
, 𝑡𝑚). Figure 3 (top) illustrates the LDA generative301

process on a 4 × 3 grid for three topics.302

In fluid mechanics applications ([1, 32]), sampling from the motif-cell distribution (step c))303

can be replaced with a faster step, where the contribution of each motif 𝑛 to snapshot 𝑚 is304

directly obtained from the motif-cell distribution 𝜓𝑛 and the distribution 𝑏𝑛 (𝑡𝑚) and expressed as305

𝑞𝑇 (𝑡𝑚)𝑏𝑛 (𝑡𝑚)𝜓𝑛 (𝑥 𝑗
). The reconstructed field is then the sum of the motif contributions. This306

matrix-like form of the reconstruction is summarized in the bottom part of Fig. 3.307

D. Interpretation and evaluation criteria308

By construction, the decomposition identifies fixed regions of space over which the intensity of309

the scalar field is likely to be important at the same time. The connection between temperature310

motifs and plumes should be examined with caution since plumes are Lagrangian structures311
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travelling and possibly changing in shape and orientation through the shell. LDA motifs only aim312

to detect the Eulerian signature of structures.313

Each motif 𝑛 can be characterized in space through the motif-cell distribution 𝜓𝑛 (which314

integrates to 1 over the cells) and which will sometimes referred to as the motif in the absence of315

ambiguity. Each distribution has a maximum value 𝜓𝑚𝑎𝑥
𝑛 and a maximum location 𝑥𝑚𝑎𝑥

𝑛
such that316

𝜓𝑛 (𝑥𝑚𝑎𝑥
𝑛

) = 𝜓𝑚𝑎𝑥 . One can also define a characteristic area Σ𝑛 using317

Σ𝑛 =

∫
Ω

1{𝜓𝑛≥𝜓𝑚𝑎𝑥
𝑛 /𝑒}𝑑Ω, (12)318

where Ω represents the plane of analysis and the factor 1/𝑒 ∼ 0.606 is an arbitrary factor chosen319

by analogy with a Gaussian distribution. If 𝜓𝑛 were a Gaussian of standard deviation 𝜎, this320

value would delimit an area of size 2𝜋𝜎2 . Other choices could be made such as the full width at321

half-maximum corresponding to a factor of 1/2. Moderate changes in the choice of the factor did322

not affect the trends reported below. Characteristic dimensions 𝑙𝑖 for the motif 𝑛 in the direction 𝑖323

can also be defined using 𝑙𝑛
𝑖
=

[∫
𝜓𝑛 (𝑥𝑛,𝑖 − 𝑥𝑚𝑎𝑥

𝑛,𝑖
)2𝑑𝑥𝑖

]1/2
. Each motif can also be characterized in324

time through the snapshot-motif distribution 𝑏𝑛, that will be called the motif weight throughout the325

paper. The motifs can be ordered by their time-averaged weight, also called prevalence, defined as326

⟨𝑏𝑛⟩ = 1
𝑁𝑆

∑𝑁𝑆

𝑚=1 𝑏𝑛 (𝑡𝑚) where ⟨·⟩ represents a time average.327

LDA decompositions were carried out independently for the heat flux Φ = 𝑤𝜃, temperature328

fluctuations 𝜃′ and the total kinetic energy 𝑘 = 1
2 (𝑢

2 + 𝑣2 + 𝑤2). To differentiate between these329

quantities, the motif topics and weights will be denoted respectively as 𝜓Φ
𝑛 , 𝜓𝜃

𝑛 and 𝜓𝑘
𝑛 and 𝑏Φ𝑛 ,330

𝑏𝜃𝑛 and 𝑏𝑘𝑛 . A useful tool for comparing the motifs associated with two different quantities is to331

compute the correlation coefficient matrix between the corresponding motif weights (for instance332

if we compare the heat flux and the temperature motifs, each (𝑛, 𝑛′) entry of the matrix will333

correspond to the correlation coefficient between 𝑏Φ𝑛 and 𝑏𝜃
𝑛′)).334

As noted above, a reconstruction of the field can be obtained by using the inferred motif-cell335

distribution and snapshot-motif distribution to provide what we will call the LDA-Reconstructed336

field, defined as337

𝑞𝑅 (𝑥 𝑗
, 𝑡𝑚) =

𝑁𝑇∑︁
𝑛=1

𝑞𝑇 (𝑡𝑚)𝑏𝑞𝑛 (𝑡𝑚)𝜓𝑞
𝑛 (𝑥 𝑗

). (13)338

This equation can be compared to equation (11) for a probabilistic interpretation and to equation (4)339

for an analogy with POD. To evaluate the relevance of the decomposition, one can compute for340

each snapshot 𝑚 the instantaneous spatial correlation coefficient 𝐶𝑚 between a given field 𝑞 and341
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its reconstruction 𝑞𝑅 defined as342

𝐶𝑚 (𝑞, 𝑞𝑅) =
∫
(𝑞(𝑥, 𝑡𝑚)𝑞𝑅 (𝑥, 𝑡𝑚)𝑑𝑥(∫

𝑞2(𝑥, 𝑡𝑚)𝑑𝑥
∫
𝑞2
𝑅
(𝑥, 𝑡𝑚)𝑑𝑥

)1/2 , (14)343

where 𝑞 represents the fluctuation 𝑞(𝑥, 𝑡𝑚) = 𝑞(𝑥, 𝑡𝑚) − 1/|Ω|
∫
Ω
𝑞(𝑥, 𝑡𝑚)𝑑𝑥 A global measure of344

the reconstruction is then given by ⟨𝐶⟩ = 1
𝑁𝑆

∑𝑁𝑆

𝑚=1 𝐶𝑚, the average value of 𝐶 over all snapshots.345

V. EVALUATION OF LDA FOR RECONSTRUCTION AND GENERATION OF THE HEAT346

FLUX347

A. Reconstruction348

We first evaluate to which extent the LDA decomposition provides an adequate reconstruction349

of the heat flux Φ. Figure 4 (left) shows how the instantaneous value of the correlation coefficient350

𝐶𝑚 (Φ,Φ𝑅) depends on the discrete integral of the field 𝑞𝑇 (𝑡𝑚) =
∑

𝑗 Φ(𝑥
𝑗
, 𝑡𝑚). The Rayleigh351

considered is 𝑅𝑎 = 107 and the number of topics is 𝑁𝑇 = 100, but the same trend was observed352

for all other Rayleigh numbers as well as all other values of 𝑁𝑇 . Lower values of the correlation353

were associated with lower values of the total integrated heat flux, which illustrates that the LDA354

representation is suited to capture extreme events.355

Figure 4 (right) presents the mean correlation coefficient ⟨𝐶𝑚 (Φ,Φ𝑅)⟩ for different number356

of motifs and different Rayleigh numbers on the vertical planes. Unsurprisingly, the correlation357

increases with the number of topics. It also decreases with the Rayleigh number, which is consistent358

with an increase in the complexity of the flow. However, the minimum value for the lower number of359

topics and the highest Rayleigh number was 0.8, which shows the relevance of the decomposition.360

Figure 5 compares an original snapshot at 𝑅𝑎 = 107 (based on the digitized signal) with different361

reconstructions: i) the LDA-reconstruction based on 𝑁𝑇 = 100 motifs; ii) the reconstruction limited362

to the 20 most prevalent topics (for this particular snapshot); iii) the POD-based reconstruction363

based on the first 20 modes. By construction, POD provides the best approximation of the field for364

a given number of modes. Since the distribution of the heat flux is intermittent in space and time,365

only a limited number of motifs is necessary to reconstruct the flow. We note that little difference366

was observed between the full LDA reconstruction and the reconstruction limited to the 20 most367

prevalent motifs, which highlights the intermittent nature of the field. The relative error between368

the original and the reconstructed field is 29% for the full LDA reconstruction, 34% when the 20369
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most prevalent modes are retained in the reconstruction. In contrast, limiting the POD to 20 global370

modes slightly lowers the quality of the reconstruction, with a global error of 38%. It should be371

noted that the 20 dominant POD modes correspond to an average over all snapshots, while the 20372

most prevalent LDA modes are selected for that specific snapshot. On average, the reconstructed373

field based on keeping the 20 most prevalent motifs differed by less than 10% from the full 100-374

mode reconstruction and the average correlation coefficient𝐶 = ⟨𝐶𝑚 (Φ,Φ𝑅)⟩ decreased from 0.89375

to 0.83. This shows that LDA can provide a compact representation of the local heat flux that376

compares reasonably well with POD.377

B. Generation378

The ability to generate statistically relevant synthetic fields is of interest for a number of appli-379

cations, such as accelerating computations or developing multi-physics models. As a generative380

model, LDA makes it possible to produce such a set of fields, the statistics of which can be381

compared with those of the original fields used to extract the motifs, as well as with those of the382

corresponding LDA-Reconstructed fields. It would also be useful to compare the generated LDA383

data set with one generated using POD. To this end, we generated two sets of 4000 new fields using384

both LDA and POD, following the procedure described in Sec. IV C and illustrated in Fig. 3. The385

same number 𝑁𝑇 = 100 of POD modes and LDA motifs were used to generate the datasets. The386

plane in which the data is generated is assumed to be the 𝑦 = 0.5 plane. The different fields to be387

compared are therefore the following:388

1. the original (digitized) field Φ defined in Sec. II B with equations (2) and (3)389

2. the LDA-Reconstructed field (LDA-R) as defined in equation (13)390

3. the LDA-Generated field (LDA-G): as described in Sec. IV C, the field is constructed by391

sampling weights �̃�𝑛 (𝑡𝑚) from snapshot-motif distributions and then reconstructing392

Φ𝐿𝐷𝐴−𝐺 (𝑥
𝑗
, 𝑡𝑚) = Φ𝑇 (𝑡𝑚)

𝑁𝑇∑︁
𝑛=1

�̃�Φ𝑛 (𝑡𝑚)𝜓Φ
𝑛 (𝑥 𝑗

), (15)393

where Φ𝑇 represents the 𝐿1 spatial norm of the heat flux. For the snapshots of the original394

database, Φ𝑇 (𝑡𝑚) =
∑

𝑗 |Φ(𝑥
𝑗
, 𝑡𝑚) |. For the synthetic fields, Φ𝑇 is modelled as a random395

variable obtained by sampling a Poisson distribution with the same mean and variance as396

the original database.397
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4. the POD-Generated field (POD-G): the field is constructed by independently sampling 𝑁𝑇398

POD mode amplitudes �̃�𝑛 from the POD amplitudes of the original database399

Φ𝑃𝑂𝐷−𝐺 (𝑥
𝑗
, 𝑡𝑚) =

𝑁𝑇∑︁
𝑛=1

√︁
𝜆𝑛�̃�𝑛 (𝑡𝑚)𝜑𝑛 (𝑥 𝑗

). (16)400

The time-averaged fields corresponding to the different databases are compared in Fig. 6. A401

good agreement is observed for all datasets, with global errors of 4%, 8% and 3% for respectively402

the LDA-reconstructed, the LDA-generated and the POD-generated datasets. Although it provides403

the lowest error (as could be expected), the POD-generated data set overestimates negative values404

in the core of the cell.405

For a given location (𝑦0, 𝑧0), we defined spatial autocorrelation functions in the horizontal and406

vertical directions as:407

𝑅𝑦 (𝑦, 𝑦0, 𝑧0) =
⟨Φ(𝑦, 𝑧0, 𝑡)Φ(𝑦0, 𝑧0, 𝑡)⟩

⟨Φ(𝑦0, 𝑧0, 𝑡)2⟩
, (17)408

409

𝑅𝑧 (𝑧, 𝑦0, 𝑧0) =
⟨Φ(𝑦0, 𝑧, 𝑡)Φ(𝑦0, 𝑧0, 𝑡)⟩

⟨Φ(𝑦0, 𝑧0, 𝑡)2⟩
. (18)410

The autocorrelation functions are displayed in Fig. VIII for the selected locations indicated in411

Fig. 6, which correspond to regions of high heat flux. We can see that that in all cases, the flux412

remains correlated over much longer vertical extents than in the horizontal direction. Both the413

LDA-reconstructed and the POD-generated autocorrelations approximate the original data well -414

again, by construction, POD-based fields are optimal to reconstruct second-order statistics. The415

LDA-generated autocorrelation is not as close to the original one, but still manages to capture the416

characteristic spatial scale over which the fields are correlated.417

One-point pdfs of the flux Φ are represented in Fig. 8 for the same selected locations (again,418

indicated in Fig. 6). POD-generated fields tend to overpredict lower values and underpredict higher419

values, which means that they do not capture well the intermittent features of the heat flux. The420

LDA-generated fields display a better agreement with the original fields and are in particular able421

to reproduce the exponential tails of the distributions.422
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VI. HEAT FLUX MOTIFS423

A. Spatial organization424

We now describe the spatial organization of the motifs through the motif-cell distribution 𝜓𝑛.425

The general trends reported below held for all values of 𝑁𝑇 considered, which ranged from 50 to426

400. For all Rayleigh numbers, most LDA motifs were found to be associated with a positive flux427

(i.e were associated with the first �̃� cells in the decomposition). A few negative (counter-gradient)428

motifs were also identified, but their average weight was generally very small (at most 10% of429

that of the dominant motif). We therefore chose to focus only on the motifs making a positive430

contribution to the heat flux. Figure 9 (left) displays these motifs for three different Rayleigh431

numbers for 𝑁𝑇 = 100. The case 𝑅𝑎 = 3 106 was omitted as it did not show significant differences432

with the case 𝑅𝑎 = 106. The motif-cell distribution is materialized by a black line corresponding433

to the iso-probability contour of 0.606 𝜓𝑚𝑎𝑥
𝑛 , which can be compared with the average value of the434

heat flux at this location. For all Rayleigh numbers, the motifs are clustered in the regions of high435

heat flux, close to the vertical walls. Within the vertical boundary layers, motifs are elongated in436

shape. Outside the vertical boundary layers, the motifs are more isotropic and tend to increase in437

shape as one moves away from the walls. Outside the horizontal boundary layers, the motif-cell438

distributions are elongated in the direction of the wind, with a horizontal orientation in the center439

of the cell, and a gradual vertical shift closer to the walls. Large motifs are found in the bulk at440

𝑅𝑎 = 106 and 𝑅𝑎 = 107 (it was also the case at 𝑅𝑎 = 3 106). In contrast, fewer, smaller motifs441

are found in the bulk at 𝑅𝑎 = 108 in the central region 𝑥/𝑦 ∈ [0.2, 0.8], signalling a loss of spatial442

coherence in the bulk at this Rayleigh number.443

In general, the motif size seems to decrease with the Rayleigh number. This is confirmed by444

Fig. 10, which represents the average motif area as a function of their distance from the vertical445

walls. In order to avoid the influence of the horizontal plates, we only considered the motifs446

located at a vertical distance larger than 0.07 from the horizontal walls (i.e. outside the horizontal447

boundary layer). The size of the symbols shown in the picture is proportional to the fraction of448

motifs over which the average was performed. Results were relatively robust with respect to the449

number of topics 𝑁𝑇 , although some dependence on 𝑁𝑇 is observed in the center of the cell. Within450

the boundary layer, the motif area grows roughly quadratically (a power law fit yielded exponents451

in the range 1.6 − 2 at all Rayleigh numbers) which means that the characteristic motif size of452
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the motif essentially grows like the wall distance. We note that a similar scaling was found for453

turbulent eddies in pressure-gradient driven turbulence such as channel flow [1]. Further away454

from the vertical wall, after a short plateau at the edge of the boundary layer, a slower increase455

in the motif size was observed with a rate that increased with the Rayleigh number, so that the456

motif area was about the same (on the order of 0.02) for all Rayleigh numbers in the center of the457

cell. This suggests the presence of a double scaling for the motifs: one based on the boundary458

layer thickness, and one based on the cell size. The decrease in size with the Rayleigh number459

appears consistent with a dependence on the boundary layer thickness but also with an increase of460

the fragmentation by the bulk turbulent fluctuations, in agreement with the literature [7, 16]. The461

difference observed at the highest Rayleigh number also signals that the flow is still evolving and462

has not reached an asymptotic state.463

B. Dominant motifs464

1. Spatial description465

Owing to the symmetry of the database (see Sec. II B), the motifs in the vertical plane (𝑥, 𝑧)466

(resp. (𝑦, 𝑧)) should approximate the symmetry 𝑆𝑥 : 𝑥 → 1 − 𝑥 (resp. 𝑆𝑦 : 𝑦 → 1 − 𝑦), and467

𝑆𝑧 : 𝑧 → 1 − 𝑧 (complete symmetry cannot be expected owing to the stochastic nature of the468

decomposition).469

To help interpret the heat flux motifs, we compare them with LDA motifs corresponding to470

temperature fluctuations. The eight most prevalent heat motifs are represented in Fig. 11 (green471

lines). The prevalence of each motif is indicated at the top of each plot. Most motifs have similar472

sizes and are located close to the side walls at about a similar height, except for motifs 4 and473

6, which have a smaller extent and are located closer to the horizontal wall. The same value of474

𝑁𝑇 = 100 was used for both heat flux and temperature.475

For a heat flux motif 𝑛 with weight 𝑏Φ𝑛 , we identified the temperature motif 𝑗 that maximized the476

correlation coefficient between the heat flux and the temperature motif weights 𝐶 (𝑏Φ𝑛 , 𝑏𝜃𝑛′). The477

maximal value of this coefficient, denoted 𝑐, is represented on each plot and is generally very high478

(about 0.7), especially in view of the intermittent nature of the weights. The best correlated heat479

flux and temperature motifs are close to each other in space, with a larger spread for temperature480

motifs. In all cases, flux motifs in the lower (resp. higher) portion of the side walls correspond to481
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positive (resp. negative) fluctuations. Dominant heat flux motifs can be therefore interpreted as482

the wall imprint of hot plumes rising in the boundary layer (resp. cold plumes descending in the483

boundary layer). The same observations were made at all other Rayleigh numbers.484

Four of these dominant motifs at 𝑅𝑎 = 107 are represented in Fig. 12 (left) for 𝑁𝑇 = 100. As485

noted above, they consist of elongated structures lying mostly in the boundary layer, and located at486

a vertical distance of about 0.25 from the horizontal walls. Although the positions and sizes of the487

four identified motifs may slightly vary from one to the other, their features are generally similar488

and a characteristic motif can be obtained from taking the average over all four motifs. Figure 12489

(right) represents this characteristic motif for the various Rayleigh numbers. We can see that the490

dominant motifs are always located mostly within the boundary layer, with a maximum at a height491

of about 0.25. Their characteristic width 𝑙𝑦 was found to decrease as 𝑅𝑎−0.23±0.04, which matches492

the scaling of the boundary layer thickness.493

2. Temporal dynamics494

The evolution of the snapshot-motif distribution, or motif weight, is represented in Fig. 13 for495

𝑅𝑎 = 107. We can see that the behavior of the motif weight depends on the sign of the global496

momentum represented in Fig. 1. When a moving average of 𝑇 𝑓 = 200 time units, corresponding497

to 4 recirculation times 𝑇𝑐, was applied, two quasi-stationary states 𝑏+ and 𝑏− could be identified in498

each plane (they are materialized by the dashed horizontal black lines indicated in Fig. 13). The two499

states appear to correspond to the sign of the angular momentum component i.e. the orientation of500

the large-scale circulation 𝐼. Streamlines of the flow conditionally averaged on the higher weight501

value of 𝑏Φ1 are represented in Fig. 14 (left). They indicate that for the higher characteristic value502

of the weight, 𝑏+, the motif is associated with the large-scale circulation while it is associated with503

the corner vortex on the opposite side for the lower weight value, 𝑏−, as summarized in Fig. 14504

(right).505

This indicates that information about the large-scale reorientation can be extracted from local506

measurements. Two states, 𝐼+ and 𝐼−, respectively corresponding to the large-scale circulation and507

corner vortex can be defined from the weight of the dominant motif 𝑏Φ1 using508

𝐼+ = {𝑚 |⟨𝑏Φ1 (𝑡𝑚)⟩𝑇 𝑓
> ⟨𝑏Φ1 ⟩} and 𝐼− = {𝑚 |⟨𝑏Φ1 (𝑡𝑚)⟩𝑇 𝑓

< ⟨𝑏Φ1 ⟩}, (19)509

where ⟨·⟩𝑇 𝑓
represents the moving average over 𝑇 𝑓 . The average weights conditioned on 𝐼+ and 𝐼−510
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are respectively 𝑏+ and 𝑏−.511

Figure 15 displays the histogram of the weight of the dominant motif 𝑏Φ1 (motifs 2 to 4 displayed512

similar features). At all Rayleigh numbers, the total distribution is characterized by two distinct513

lobes, which correspond to the absence and the presence of the motif in the snapshot. The relative514

importance of the lobes therefore provides an indirect measure of the motif intermittency, which515

can be related to plume emission. The ratio of motif presence to motif absence was about 0.5-0.6516

in the range of Rayleigh numbers considered and no significant variation was observed with the517

Rayleigh number.518

However, further insights can be obtained by examining the respective contributions of the 𝐼+519

and 𝐼− states to the distribution of 𝑏Φ1 , which are also represented in Fig. 15. For all Rayleigh520

numbers, 𝐼+ states contribute more to the higher-value lobe than 𝐼− states, while 𝐼− contributes521

more to the lower-value lobe. This shows that the rate of buoyancy production is less intense in the522

corner rolls than in the large-scale circulation, or equivalently that plumes are emitted at a lower523

frequency in the corner rolls than in the large-scale circulation. Moreover, the relative contributions524

of the 𝐼+ and the 𝐼− states vary non-monotonically with the Rayleigh number. In the higher-value525

lobe, the relative contribution of 𝐼− appears to increase relatively to 𝐼+ with more high values of526

𝐼− at 𝑅𝑎 = 3 106, while 𝐼− represents more low values at 𝑅𝑎 = 108. In the lower-value lobe, the527

contribution of 𝐼+ is least at 𝑅𝑎 = 3 106 and largest at 𝑅𝑎 = 108. These observations suggest that528

both the intensity of the large-scale circulation and that of the corner roll appear to change with the529

Rayleigh number, in agreement with the findings of Vishnu et al. [40].530

3. A model for the reorientation time scale531

A simple model can be made to link these observations with the dynamics of reorientations. The532

conditionally averaged weight of the dominant motif in the region close to the wall 𝑏± represents533

the rate of buoyancy production, which can be linked to the emission rate of plumes and can be534

modelled as a Poisson point process. This means that the time separating two plume ejections 𝑇±535

follows an exponential distribution with mean 1/𝑏±, where + and − respectively characterize the536

large-scale circulation (𝐼+) and the corner vortex (𝐼−) states. 𝑏± therefore represents the parameter537

of the exponential distribution. A reorientation can be associated with the event where the corner538

vortex becomes stronger than the large-scale circulation state, i.e. the time separating two emissions539

in the corner vortex state becomes smaller than that separating two emissions in the large-scale540

circulation state. This event can occur independently in either one of the two horizontal directions541
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𝑥 or 𝑦.542

One can show that the probability 𝑝 that this event occurs at any given time is given by543

𝑝 = 𝑝(𝑇− > 𝑇+) =
𝑏−

𝑏+ + 𝑏−
. (20)544

Owing to the memoryless nature of the exponential distribution, this holds for the time separating545

an arbitrary number of emissions, in particular over a characteristic time 𝑇𝑠 sufficiently long to546

reverse the circulation in that direction. 𝑇𝑠 should be on the order of the recirculation time 𝑇𝑐 so547

that we have 𝑇𝑠 = 𝛽𝑇𝑐 with 𝛽 = 𝑂 (1). If 𝑓𝑐 is the recirculation frequency, one would then expect548

the frequency between reorientations 𝑓𝑟 to depend on 𝑝 and 𝑓𝑐 following549

𝑓𝑟 = 2𝑝𝛽−1 𝑓𝑐, (21)550

where the factor 2 comes from the fact that a reorientation can occur in each direction. Figure 16551

(right) compares for different Rayleigh numbers the probability 𝑝 with the ratio of the frequency552

between reorientations and the recirculation frequency estimated in Ref. [27]. We see that a553

very good agreement is obtained between the variations of the average reorientation rate and the554

measure of the relative intensity of the large-scale circulation and corner vortices. We note that555

the largest discrepancy is observed for the highest Rayleigh number, for which the reorientation556

rate is very low and therefore cannot be determined with good precision from the DNS. The value557

of 𝛽 used in the figure was determined empirically and was found to be 5.6, which makes 𝑇𝑠 close558

to the filtering time scale 𝑇 𝑓 = 4𝑇𝑐. This suggests that an estimate for the reorientation rate can559

be obtained by comparing directly the average weight of the motif associated with the large-scale560

circulation with that of its counterpart in the corner structure. This could be of particular interest561

in cases where the observation time is smaller than the expected reorientation time, a situation that562

is often encountered in (but not limited to) numerical simulations at higher Rayleigh numbers, as563

the simulation time increases and the reorientation frequency decreases.564

VII. TEMPERATURE AND VELOCITY MOTIFS565

In this section we try to understand the physics associated with the lower reorientation rate566

observed as the Rayleigh number increases. For this we turn to temperature and velocity fluctua-567

tions, to which we independently applied LDA. Although these are not intermittent quantities, and568

therefore might not be considered a priori appropriate for LDA application, Table II shows that the569

temperature and kinetic energy fields are relatively well reconstructed.570
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< 𝐶 (𝑞, 𝑞𝑅) > 𝑁𝑇 𝑅𝑎 = 106 𝑅𝑎 = 3 106 𝑅𝑎 = 107 Ra=108

< 𝐶 (𝜃, 𝜃𝑅) > 100 0.90 0.86 0.84 0.66

< 𝐶 (𝜃, 𝜃𝑅) > 400 0.94 0.92 0.90 0.78

< 𝐶 (𝑘, 𝑘𝑅) > 100 0.91 0.88 0.85 0.78

< 𝐶 (𝑘, 𝑘𝑅) > 400 0.94 0.92 0.89 0.82

< 𝐶 (Φ,Φ𝑅) > 100 0.96 0.93 0.89 0.84

< 𝐶 (Φ,Φ𝑅) > 400 0.98 0.96 0.95 0.89

TABLE II. Average correlation coefficient between the original and the reconstructed field for the tempera-

ture, kinetic energy and heat flux.

A. Temperature fluctuations571

Figure 17 shows the temperature motifs at three different Rayleigh numbers, along with the572

variance of the fluctuations, for 𝑁𝑇 = 100. As mentioned above, some symmetry is expected but573

not perfectly enforced, due to the statistical character of the method. As for heat flux motifs there574

is a clear difference between the boundary layers and the bulk, as well as a strong decrease of575

motifs in the central part of the cell at 𝑅𝑎 = 108. We can see that temperature fluctuations are576

also important close to the horizontal walls. The bottom row of Fig. 17 shows a close-up of the577

lower part of the cell. The maximum of the motif spatial distribution is located at the edge of the578

boundary layer. The height of the motifs scale with the boundary layer height in the center of the579

cell, with negative motifs shorter and wider than positive ones in the bottom layer. Analogous580

observations can be made for the top wall, by swapping the role of cold and hot fluctuations.581

Figure 18 represents the first four dominant motifs for the temperature at 𝑅𝑎 = 106 (similar582

observations can be made at 𝑅𝑎 = 3 106). Although the most likely heat flux motifs corresponded583

to hot plumes near the bottom wall and cold plumes near the top wall, this is not the case for the584

temperature motifs. For the two lower Rayleigh numbers, temperature motifs are as likely to be585

found near the bottom wall than near the top wall. However, at 𝑅𝑎 = 107, Fig. 19 shows that the586

most likely temperature motifs correspond to hot fluctuations along the bottom side walls and cold587

near the top side wall, corresponding to late-stage plumes arriving at the opposite wall.588

Figure 20 shows the evolution of the temperature motif weights 𝑏𝜃𝑛 on both planes along with589

their filtered representation ⟨𝑏𝜃𝑛⟩𝑇 𝑓
. As observed for the heat flux (Fig. 13), the importance of590

the weights depends on the orientation of the large-scale circulation 𝐼. Similar evolutions were591
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observed at the lower Rayleigh numbers (not shown).592

Strong differences can be observed when comparing Figs. 19 and 21. At 𝑅𝑎 = 108, the most593

likely temperature motifs are no longer located within the vertical boundary layers, but extend from594

the corner of the cell along the horizontal walls. The first eight dominant structures consist of595

two types of corner motifs: large, predominantly horizontal ones, and small, vertical ones located596

within the boundary layers. Motifs near the top (resp. bottom) wall are hot (resp. cold) and597

therefore correspond to late-stage plumes. This is confirmed by the evolution of the motif weights598

shown in Fig. 22 for the plane 𝑥 = 0.5. These motifs correspond to hot fluid being brought from the599

bottom layer by the large-scale circulation next to the top wall and into the corner structure, thus600

decreasing buoyancy effects there. These observations are consistent with the reduction in intensity601

of the corner roll and the significant decrease in the reorientation rate observed at this Rayleigh602

number. We note that although the small vertical temperature motifs are similar to the heat flux603

motifs 4 and 6 identified in Fig. 11 at 𝑅𝑎 = 107, they represent fluctuations of the opposite sign,604

and they are well correlated (or anti-correlated) with the orientation 𝐼 of the large-scale circulation.605

This confirms the dominance of the impinging plumes in the corners of the cell.606

B. Kinetic energy607

More details about the structure of the large-scale circulation can be obtained by examining608

kinetic energy motifs. Figure 23 shows the spatial distribution of the velocity motifs for the609

different Rayleigh numbers and 𝑁𝑇 = 100. The spatial distribution of the time-averaged kinetic610

energy is also represented on the same plot. The size of the core (low-velocity region) appears to611

increase with the Rayleigh number. The size of the motifs did not appear to change significantly612

with the Rayleigh number, except for horizontal corner structures that seem to scale with the613

boundary layer thickness. The kinetic energy motifs have elongated shapes along the walls, with a614

significantly higher extent along the horizontal walls, which shows the importance of entrainment615

in the horizontal boundary layers, in particular in the middle of the cell. It is lowest at 𝑅𝑎 = 3 106
616

and highest at 𝑅𝑎 = 108, which varies like the time between reorientations 𝑇𝑟 . The question617

is whether this reinforcement of the large-scale circulation can be associated with characteristic618

temperature fluctuations.619

In Figs. 24 to 26 the 16 most prevalent kinetic energy motifs are represented at Rayleigh numbers620

106, 107 and 108 (the case 𝑅𝑎 = 3 106, not shown, was found generally similar to 106 and 107).621
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The motifs were organized according to the location of their maximum: within the horizontal or622

vertical boundary layers, which we will refer to as respectively HBL or VBL motifs, at the corners623

of the horizontal and the vertical boundary layer (CBL motifs), and outside the boundary layers in624

the horizontal or vertical entrainment zones, which were termed HEZ or VEZ motifs. The different625

locations are shown in the top right illustration of Fig. 24. For each category the motifs are ordered626

according to their prevalence, indicated at the top of each plot. Generally speaking, the prevalence627

of the motifs increased with the Rayleigh number, which is consistent with a strengthening of the628

large-scale circulation.629

For each kinetic energy motif 𝑛 (represented with green lines), we determined the temperature630

motif 𝑗 (represented with blue or red lines, depending on its sign) for which the correlation631

coefficient 𝐶 (𝑏𝑘𝑛 , 𝑏𝜃𝑛′) is maximal. The maximal value 𝑐 and the temperature motif are represented632

on each plot, except in two cases corresponding to HBL motifs, for which the associated temperature633

motif had a very low prevalence and was considered to be irrelevant. In almost all cases, the634

kinetic energy and temperature motifs are located close to each other in space. Although the635

correlation coefficients are typically lower than those between the flux and temperature motifs636

represented in Fig. 11, several are high enough to associate kinetic energy patterns with specific637

temperature fluctuations. We also represented on each plot the correlation coefficient 𝑐𝐼 , defined638

as 𝑐𝐼 = 𝐶 (⟨𝑏𝑘𝑛⟩𝑇 𝑓
, 𝐼), where ⟨𝑏𝑘𝑛⟩𝑇 𝑓

is the low-pass-filtered kinetic energy motif weight (using 𝑇 𝑓 )639

and 𝐼 is the large-scale circulation indicator defined in equation (19) (see also Fig. 24 top right).640

High positive (resp. negative) values of 𝑐𝐼 are indicated in red (resp. blue) for each motif, and641

show that the motif can be associated with a specific orientation of the large-scale circulation.642

a. Horizontal boundary layers and corners In all cases, the most frequent motifs consist643

of centered motifs close to the edge of the horizontal boundary layers (HBL). Evidence of weak644

correlation (0.3) for some motifs suggested possible association with impinging plumes, however645

generally low values of |𝑐𝐼 | suggest that the weights of the motifs do not depend on the orientation646

of the large-scale circulation. In contrast, high values of 𝑐 and |𝑐𝐼 | were found for corner (CBL)647

motifs, that were best correlated with impinging plumes. Corner motifs have a relatively high648

prevalence, which shows that impinging plumes make a significant contribution to the horizontal649

wind at the edge of the boundary layer. The correlation coefficient 𝑐𝐼 increased in absolute value650

with the Rayleigh number, and was larger than 0.9 at 𝑅𝑎 = 108. In contrast, the maximum651

correlation coefficient 𝑐 tended to decrease (but remained significant) at 𝑅𝑎 = 108.652
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b. Vertical entrainment zone The next prevalent category of motifs at 𝑅𝑎 = 106 and 𝑅𝑎 = 107
653

consisted of motifs in the vertical entrainment zone (VEZ motifs). They were generally weakly654

correlated with temperature motifs of a slightly larger size (𝑐 ∼ 0.2 − 0.3) and were still less655

correlated with the orientation of the large-scale circulation (𝑐𝐼 close to zero), which is consistent656

with their mid-height location. Two of the motifs at 𝑅𝑎 = 107 (third and fourth motifs) were657

located closer to a horizontal wall and showed a stronger correlation with 𝐼. They were found to be658

correlated with ”upstream” temperature fluctuations originating from the opposite wall (arriving659

plumes). At 𝑅𝑎 = 108, only one VEZ motif, with a lower prevalence (compared with the other660

motifs), was identified. It also corresponded to an arriving plume and was strongly correlated with661

the orientation of the large-scale circulation.662

c. Vertical boundary layers High values of |𝑐𝐼 | were also observed for motifs within the663

vertical boundary layers (VBL), as well as significant values of 𝑐. The corresponding temperature664

motifs were also located within the vertical boundary layers and consisted of hot (resp. cold)665

temperature fluctuations close to the bottom (resp. top plate), suggesting that they correspond to666

plumes in the early formation stage (leaving plumes).667

d. Horizontal entrainment zone At 𝑅𝑎 = 106 and 𝑅𝑎 = 107, the last category of motifs668

consisted of motifs in the horizontal entrainment zone (HEZ). At the lowest Rayleigh number669

𝑅𝑎 = 106, two of the HEZ motifs (second and fourth motif in the last row in Fig. 24) have a670

predominantly vertical shape and are associated with large temperature motifs originating from671

the opposite (here, top) wall. They are therefore likely to represent coalescing plumes drifting672

towards the center of the cell as they reach the opposite wall. In contrast, all other HEZ motifs at673

all Rayleigh numbers have a horizontal shape and are associated with smaller temperature motifs674

originating from the closest wall. They are very well correlated with the orientation of the large-675

scale circulation. Significant changes were observed at 𝑅𝑎 = 108, with a much larger number of676

HEZ motifs and a noticeable increase in their prevalence - the prevalence of the dominant HEZ677

motif is twice as large at 𝑅𝑎 = 108 than at 𝑅𝑎 = 107.678

To sum up, a significant difference is observed between 107 and 108. At the highest Rayleigh679

number, the large-scale circulation is largely reinforced in the horizontal direction due to the680

formation of new plumes, while stronger impinging plumes remain confined to the corner boundary681

layers.682
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VIII. CONCLUSION683

We have applied a new analysis technique, Latent Dirichlet Allocation, to characterize the684

spatio-temporal organization of fluctuations in Rayleigh-Bénard convection. The method is based685

on the inference of probabilistic latent factors, spatially localized motifs, from a collection of686

instantaneous fields. It provides a local yet compact description of the flow in terms of quantitative687

indicators such as the (spatial) size and the (temporal) weight of the motifs. The technique was688

applied to the vertical mid-plane of a Rayleigh-Bénard cubic cell in a range of Rayleigh numbers in689

[106, 108]. The method was found to be robust with respect to the user-defined parameters. When690

applied to the heat flux, it was found to provide good reconstructions of the snapshots and was able691

to generate new datasets that reproduced key statistics of the original one.692

For all Rayleigh numbers, dominant heat flux motifs consisted of elongated vertical structures693

located mostly within the vertical boundary layer, at a height of a quarter of the cell. The width694

of these motifs scaled with the boundary layer thickness. These motifs were found to be very695

well correlated with temperature motifs corresponding to plumes in their early formation stage696

(leaving plumes). The motif weights were found to depend on the large-scale organization of the697

flow: two states could be identified, one corresponding to the large-scale circulation and one to a698

corner roll structure. The two states were characterized by different average weights which varied699

non-monotonically with the Rayleigh number. A simple model was able to relate the weights of700

the dominant heat flux motif associated with the two states with the average reorientation rate of701

the large-scale circulation in the cell. This suggests that the model could be used as a predictor of702

this rate in cases where few or even no reorientations are observed.703

Additional insight about the flow physics was obtained by examining dominant motifs for the704

temperature and the kinetic energy. While dominant heat flux motifs seemed to be associated705

with early-stage (leaving) plumes, dominant temperature motifs were associated with later-stage706

(arriving) plumes. In contrast with the lower Rayleigh numbers, dominant temperature motifs at707

𝑅𝑎 = 108 were no longer within the vertical boundary layers, but consisted of plumes impinging708

onto the corners of the horizontal boundary layers, which led to a reduction of temperature709

gradients within the corner structure and a decrease in its potential energy. This is consistent with710

the significant drop in the large-scale reorientation rate observed at this Rayleigh number. LDA711

analysis of the kinetic energy showed that corner impinging plumes contributed to the kinetic energy712

of both the corner structure and the large-scale circulation. The reduction of the reorientation rate713

26



at 𝑅𝑎 = 108 was also associated with a reinforcement of the horizontal wind in the central part of714

the cell due to the formation and entrainment of new plumes. Changes in the dynamics of the large-715

scale circulation could thus be directly connected with local modifications of its structure. The716

LDA model therefore appears as a promising statistical tool that can help track subtle transitions717

in the spatio-temporal organization of turbulent flows. An interesting direction of investigation,718

suggested by one of the anonymous Reviewers, would be to explore the connection between the719

LDA representation and structure function analysis, which could provide insight into local energy720

transfer mechanisms at different scales.721
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FIG. 1. Evolution of the horizontal components of the angular momentum at 𝑅𝑎 = 107. The vertical black

lines correspond to reorientations of the large-scale circulation.
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Mode 1

Mode 2

Mode 3

FIG. 2. POD dominant modes and amplitudes in the vertical mid-plane at 𝑅𝑎 = 107. Left: POD modes 𝜑𝑛,

Right: POD amplitudes 𝑎𝑛 associated with plane 𝑥 = 0.5 (in blue) and plane 𝑦 = 0.5 (in red). The vertical

black lines correspond to changes in the component of the angular momentum. The darker line corresponds

to a moving average over 200 convective units.
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FIG. 3. Schematics of the LDA generative model illustrated here for a field defined on 12 cells and generated

with 3 motifs (corresponding to the purple, green and red colours). A snapshot 𝑚 is represented as a set of

integer values defined on an array of cells (see also text). Top: Probabilistic construction of a snapshot;

Let us consider a stack of 𝑞𝑇 tokens of unit value. Each token is assigned to a cell as follows: a motif 𝑛 is

selected by sampling the snapshot-motif distribution 𝑏(𝑡𝑚) corresponding to this snapshot. In the example

shown, the probabilities for the purple green and red motifs are respectively 40%, 30% and 30%. Once the

motif n is chosen, a cell j is selected by sampling the motif-cell distribution 𝜓𝑛. At the end of the process,

the number of tokens at cell 𝑗 yields the value of the field 𝑞 (𝑥 𝑗
, 𝑡𝑚). Bottom: Matrix-based reconstruction:

each snapshot 𝑚 is obtained by summing the contributions of all distributions 𝜓𝑛 (𝑥 𝑗) weighted by the

corresponding probabilities 𝑏𝑛 (𝑡𝑚), and rescaling the sum with a factor 𝑞𝑇 (𝑡𝑚).
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FIG. 4. Left: Instantaneous correlation coefficient between the projected and the true field as a function

of the integral convective heat flux for 𝑁𝑇 = 100 and 𝑅𝑎 = 107. Right: Average correlation coefficient

⟨𝐶 (Φ,Φ𝑅)⟩ as a function of the Rayleigh number and of the number of topics considered for both mid-

planes.

instantaneous field 100 motifs 20 dominant motifs 20-mode POD

FIG. 5. Example of an instantaneous snapshot and its reconstructions at 𝑅𝑎 = 107. From left to

right: original field, LDA-reconstructed field using 𝑁𝑇 = 100 motifs, LDA-reconstructed field using the 20

(instantaneously) most prevalent motifs, POD-reconstructed field using the 20 (on average) most energetic

modes.
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original field LDA-projected field LDA-generated field POD-generated field

FIG. 6. Time-averaged value of the convective heat flux for different databases at 𝑅𝑎 = 107. From left to

right: original fields, LDA-reconstructed (LDA-R) fields using 𝑁𝑇 = 100 motifs, LDA-generated (LDA-G)

fields using 𝑁𝑇 = 100 motifs, POD-generated (POD-G) fields using 100 modes.

A B C

-

FIG. 7. Autocorrelation of the convective heat flux at selected locations (see Fig. 6).
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A B C

FIG. 8. Probability density function of the convective heat flux at the selected locations indicated in Fig. 6.

𝑅𝑎 = 106 𝑅𝑎 = 107 𝑅𝑎 = 108

FIG. 9. Spatial distribution of the positive heat flux motifs 𝜓Φ
𝑛 in the vertical mid-plane for 𝑁𝑇 = 100. The

motifs are materialized by a black line corresponding to a probability contour of 0.606 𝜓𝑚𝑎𝑥
𝑛 . The vertical

lines correspond to the boundary layer thickness. The time-averaged convective heat flux is represented in

the background.

𝑅𝑎 = 106 𝑅𝑎 = 107 𝑅𝑎 = 108

FIG. 10. Distribution of motif areas (see definition in equation (12)) in the vertical mid-plane with the

distance from the lateral walls at varying Rayleigh numbers. The size of the symbols shown in the picture is

proportional to the fraction of motifs over which the average was performed. The black solid lines indicate

the boundary layer thickness. The dashed lines have slope 2.
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FIG. 11. Dominant heat flux motifs 𝜓Φ
𝑛 (green lines) ordered by prevalence and associated temperature

motifs 𝜓 𝜃
𝑛 (blue for negative and red for positive fluctuations) at 𝑅𝑎 = 107. Contour levels go from 0.2 to

0.9 𝜓𝑚𝑎𝑥
𝑛 with increments of 0.1 𝜓𝑚𝑎𝑥

𝑛 . 𝑐 is the maximum correlation coefficient between the heat flux and

temperature motif weights.

FIG. 12. Left: Dominant heat flux motifs𝜓Φ
𝑛 at Rayleigh numbers 𝑅𝑎 = 107 for 𝑁𝑇 = 100. The contour lines

correspond to 0.1 𝜓𝑚𝑎𝑥 and 0.3 𝜓𝑚𝑎𝑥 . The motif labels correspond to those of Fig. 13. Right: Characteristic

dominant motif at different Rayleigh numbers 𝑁𝑇 = 100. Isocontours of 𝜓1 at [0.2, 0.3, . . . , 0.9] 𝜓𝑚𝑎𝑥
1 . The

black lines correspond to the boundary layer thickness.
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FIG. 13. Evolution of the snapshot-motif distributions 𝑏Φ𝑛 for the four dominant heat flux motifs (see Fig. 12

for labels) at 𝑅𝑎 = 107 and for 𝑁𝑇 = 100. Left: plane 𝑥 = 0.5. Right: plane 𝑦 = 0.5. The thick line

corresponds to a moving average over 200 convective units (4 recirculation times 𝑇𝑐). The horizontal dashed

lines correspond to the values 𝑏− = 0.017 and 𝑏+ = 0.035. The vertical lines correspond to the changes in

angular momentum.

FIG. 14. Left: Streamlines of the flow conditionally averaged on the high weight value of 𝑏Φ1 . Right:

Schematics of the cell organization in the vertical mid-plane: the large-scale circulation (in red) corresponds

to the 𝐼+ state while the corner structure (in black) corresponds to the 𝐼− state.
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𝑅𝑎 = 106 𝑅𝑎 = 3 106

𝑅𝑎 = 107 𝑅𝑎 = 108

FIG. 15. Distribution of the dominant motif weight 𝑏Φ1 for different Rayleigh numbers and 𝑁𝑇 = 100.

FIG. 16. Probability 𝑝(𝑇+ > 𝑇−) (see text) and comparison with ratio of reorientation to recirculation time

scale at different Rayleigh numbers - the rescaling factor is 𝛽 = 5.6.
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𝑅𝑎 = 106 𝑅𝑎 = 107 𝑅𝑎 = 108

FIG. 17. Top row: Distribution of temperature motifs 𝜓 𝜃
𝑛 in the cell mid-plane at different Rayleigh

numbers; The motifs are materialized by a black line corresponding to a probability contour of 0.606𝜓𝑚𝑎𝑥
𝑛 .

Contours of the time-averaged variance are represented in the background. Bottom row: blow-up of the

bottom part of the cell.

FIG. 18. First four dominant temperature motifs 𝜓 𝜃
𝑛 at 𝑅𝑎 = 106.

FIG. 19. First four dominant temperature motifs 𝜓 𝜃
𝑛 at 𝑅𝑎 = 107.
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FIG. 20. First four dominant temperature motif weights 𝑏𝜃
𝑛 at 𝑅𝑎 = 107. Left: plane 𝑥 = 0.5𝐻. Right:

plane 𝑦 = 0.5𝐻. The thick line corresponds to a moving average over 200 convective units (4 recirculation

times 𝑇𝑐). The vertical lines correspond to the changes in angular momentum.

FIG. 21. First eight dominant temperature motifs 𝜓 𝜃
𝑛 at 𝑅𝑎 = 108.
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FIG. 22. First eight temperature motif weights 𝑏𝜃
𝑛 at 𝑅𝑎 = 108 in the plane 𝑥 = 0.5.

𝑅𝑎 = 106 𝑅𝑎 = 3 106 𝑅𝑎 = 107 𝑅𝑎 = 108

FIG. 23. Spatial distribution of kinetic energy motifs in the cell mid-plane at different Rayleigh numbers.

The motifs are materialized by a black line corresponding to a probability contour of 0.606𝜓𝑚𝑎𝑥
𝑛 . Contours

of the time-averaged kinetic energy are represented in the background.
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HBL

CBL

VEZ

HEZ

VBL

FIG. 24. Dominant kinetic energy motifs 𝜓𝑘
𝑛 at 𝑅𝑎 = 106 (green lines) ordered by prevalence and location

as indicated at top right. Temperature motifs 𝜓 𝜃
𝑛 with the highest correlation coefficient 𝑐 are shown in blue

(resp. red) for negative (resp. positive) fluctuations. Motif contour levels range from 0.2 to 0.9 𝜓𝑚𝑎𝑥
𝑛 with

increments of 0.1 𝜓𝑚𝑎𝑥
𝑛 . 𝑐𝐼 is the correlation coefficient between the heat flux motif weight and the LSC

indicator 𝐼. Values of 𝑐𝐼 larger than 0.3 (resp. lower than -0.3) are represented in red (resp. blue).43
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CBL

VEZ

VBL

HEZ

FIG. 25. Comparison between kinetic energy and temperature motifs at 𝑅𝑎 = 107. See legend of Fig. 24.
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VBL

VEZ

FIG. 26. Comparison between kinetic energy and temperature motifs at 𝑅𝑎 = 108. See legend of Fig. 24.
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