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Frédéric Maris1,2

PREPRINT VERSION

Abstract
This paper presents a novel approach to cognitive planning based on an NP-complete 
logic of explicit and implicit belief whose satisfiability checking problem is reduced to 
SAT. We illustrate the potential for application of our model by formalizing and then 
implementing a human–machine interaction scenario in which an artificial agent 
interacts with a human agent through dialogue and tries to motivate her to practice a 
sport. To make persuasion effective, the artificial agent needs a model of the human’s 
beliefs and desires which is built during interaction through a sequence of belief revision 
operations. We consider two cog-nitive planning algorithms and compare their 
performances, a brute force algorithm based on SAT and a QBF-based algorithm.

Keywords Cognitive planning · Epistemic logic · Conversational agents

1 Introduction

In social sciences, influence is defined as “change in an individual’s thoughts, feelings, 
atti-tudes, or behaviors that results from interaction with another individual or a 
group” [58]. It is conceived as tightly connected with persuasion. The latter is the 
intentional form of influence in which an agent (the persuader) tries to make someone 
(the persuadee) do or believe something by giving her a good reason [12, 54].

A natural way to model persuasion is by means of epistemic logic and of its applica-
tion to planning, the so-called epistemic planning. On the one hand, epistemic logic is the 
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Fig. 1  Cognitive planning: conceptual schema

variant of modal logic which is devoted to the formal representation of epistemic attitudes 
of agents including their beliefs and knowledge. Since the pioneering work of Hintikka 
[27], it has been widely studied both in artificial intelligence (AI) [21, 46] and in eco-
nomics [36]. It supports reasoning not only about propositional epistemic attitudes (that is, 
belief or knowledge about non epistemic facts) but also about higher-order epistemic atti-
tudes (that is, belief or knowledge about some belief or knowledge—from the agent itself 
or from other agents). On the other hand, epistemic planning [6, 44] is a generalization of 
classical planning [23] whereby the goal to be achieved is not necessarily a state of the 
world but some belief states of one or more agents. This requires a theory of mind by the 
planning agent [25]. A typical goal in epistemic planning is to make a certain agent believe 
something.

In this work we adopt a broader perspective by using the term ‘cognitive 
planning’ instead of ‘epistemic planning’, where the former is considered to be a 
generalization of the latter. In cognitive planning, it is not only some belief state 
of a target agent that is to be achieved, but more generally a cognitive state. The 
latter could involve not only beliefs, but also intentions. Cognitive planning makes 
clear the distinction between persuasion on beliefs (i.e., inducing someone to believe 
that a certain fact is true) and persuasion on intentions (i.e., inducing someone to 
form a certain intention), generally called influence, and elucidates the connection 
between these two notions. Specifically, since beliefs are the input of decision-making 
and provide reasons for deciding and for acting, the persuader can indirectly change 
the persuadee’s intentions by changing her beliefs, through the execution of a 
sequence of speech acts. In other words, in cogni-tive planning, the persuader tries 
to modify the persuadee’s beliefs in order to affect persuadee’s intentions. 
Moreover, cognitive planning takes into consideration resource boundedness and 
limited rationality of the interlocutor agent. This makes cognitive planning a very 
well-suited concept for human–machine interaction (HMI) applications in which an 
artificial agent is expected to interact with a human—who is by definition



resource-bounded—through dialogue and to induce her to behave in a certain way. 
These two aspects are exemplified in Fig. 1. The artificial agent has both (1) a model 
of the human’s overall cognitive state, and (2) a persuading or influencing goal towards 
the human. Given (1) and (2), it tries to find a sequence of speech acts aimed at modify-
ing the human’s cognitive state thereby guaranteeing the achievement of its persuading/
influencing goal.

We situate cognitive planning in a general architecture of an artificial agent which is 
expected to interact with a human user through dialogue and to motivate her to behave in 
a certain way or to change/adopt a certain style of life. From this perspective, cognitive 
planning is just a specific module of the architecture communicating with other modules 
including the agent’s belief revision module and action execution module. For instance, 
the belief revision module handles the process of gathering information about the human’s 
cognitive state including her belief and preferences. This information is needed to make 
the agent’s cognitive planning successful. Indeed, for the agent to be able to persuade the 
human and to influence her behavior, it must have a correct representation of the human’s 
cognitive state.

We formalize the cognitive planning and belief revision module of the architecture in 
the epistemic logic with operators for explicit and implicit belief recently proposed by [38, 
39]. Since the full logic is known to be PSPACE-complete, we study an NP fragment of 
it that can be leveraged more easily for practical applications through a SAT solver. The 
logic allows us to represent, at the same time: the limited reasoning of the human agent 
(the persuadee), whose explicit beliefs are not necessarily closed under deduction, and the 
unbounded inferential capability of the artificial agent (the persuader), which is capable of 
computing the logical consequences of its explicit beliefs and of finding an optimal persua-
sion plan. It also enables us to represent in a natural way the artificial agent’s belief revi-
sion process as well as its interrelationship with the agent’s cognitive planning phase.

Some underlying assumptions of our approach have to be elucidated. We do not pre-
tend to propose a general theory of cognitive planning that could be applied to any kind 
of multi-agent scenario involving multiple artificial and/or human agents. The latter would 
require a very expressive and computationally more complex multi-modal language com-
bining epistemic modalities and modalities for motivational attitudes (e.g., desires, prefer-
ences and intentions), such as the one presented by [40]. Rather, our aim is to propose a 
minimal language for cognitive planning that can be used in HMI applications involving 
one artificial planning agent (the persuader) and possibly many human agents (the per-
suadees), where minimality means that it can be automated using a SAT solver.

The examples studied in the paper focus on the interaction between one artificial agent 
and one human. To achieve our objective, we accept the following compromise. On the 
side of the human, we only model her explicit beliefs and motivational attitudes (desires 
and intentions). On the side of the artificial planning agent, we model its explicit and 
implicit beliefs. The latter cover explicit/implicit beliefs about the environment as well as 
about the human’s explicit beliefs and motivational attitudes. This is a fair compromise 
since the human is by definition resource-bounded and has no deductively closed beliefs. 
On the contrary, the artificial agent has perfect deductive capabilities, exemplified by the 
notion of implicit belief, that can be exploited to reason about the human’s epistemic and 
motivational attitudes and, consequently, to influence her behavior.

It is also important to note that, given the type of interaction we are interested in mod-
eling (one persuading machine, one human to be persuaded), we only need to represent the 
machine’s subjective theory about the human’s motivational attitudes. We do not need to 
represent the machine’s motivational attitudes. Under this assumption, we will be able to 



(1) represent the human’s desires and intentions through atomic formulas, and (2) encode
the machine’s theory about the human’s motivational attitudes directly in our minimal epis-
temic language.

As far as we know, there was no previous attempt (1) to come up with a simple logic-
based approach to epistemic planning, and more generally to cognitive planning, which 
could be implemented using a SAT solver, and (2) to combine it with belief revision in 
order to be exploited in a concrete HMI application, wherein the elements of the agent’s 
plans are speech acts executed during a dialogue. In this work, we are going to fill this gap. 
We will identify a minimal epistemic logic language that can be used to endow a persua-
sive artificial agent with cognitive planning and belief revision capabilities and that can be 
implemented using a SAT solver. This is in a nutshell the main novel contribution of our 
work.

Our work has ethical implications that are not explored in the paper. We deal with the 
problem of endowing an artificial agent with persuasive capabilities. The risk associated 
with this kind of AI models and technologies is that they could be used for manipulative 
purposes and for obnoxious activities. To limit this risk, it is important to combine the 
logic-based model of cognitive planning with a self-regulative component which speci-
fies those communicative actions that are legally permissible and ethically acceptable in 
a given situation. This is in order to guarantee that the artificial agent will refrain from 
behaving in an illegal or ethically deplorable way. We leave the combination of the cogni-
tive planning model and the self-regulative module to future work.

1.1  Outline of the paper

The paper is organized as follows. Section 2 is devoted to the discussion of related work. In 
Sect. 3, we provide a birds-eye view of the general architecture of the artificial agent with 
special emphasis on the interaction between the cognitive planning and the belief revision 
module. In Sect. 4 we introduce the language of explicit and implicit belief for the specifi-
cation of the cognitive planning problem. Given that the satisfiability problem for the full 
language is PSPACE-hard, we study an interesting NP fragment of it that can be used in 
the context of a real HMI application. Then, we present an extension of the language by 
the notion of belief base expansion which is necessary for representing the actions of the 
planning agent. The second part of the paper is devoted to specify the modules of the archi-
tecture and to describe their implementation in an artificial agent. In Sect. 5, we formulate 
the cognitive planning problem and study its complexity. We show that the cognitive plan-
ning problem formulated in our epistemic language is Σ�

2
-complete. Moreover, we present 

the belief revision module of the agent architecture. In Sect. 6 we instantiate the cognitive 
planning and belief revision module in a concrete example in which an artificial assistant 
has to help a human user to choose a sport to practice in her leisure time. To achieve its 
goal, the agent needs a model of the user’s beliefs and desires. Thanks to this model, the 
agent will be able to plan a sequence of speech acts aimed at persuading the user that a 
certain sport is the ideal one for her and, consequently, at inducing the user to form the 
intention to practice it. We also present an implementation of the example using a brute 
force approach to cognitive planning: the artificial agent has to generate all plans of a given 
length in order to find one which will enable it to achieve its goal. In Sect. 7 we present an 
optimal QBF-based algorithm for cognitive planning, as an alternative to the brute force 
algorithm. We provide an experimental comparison of the two algorithms. In Sect. 8 we 



conclude. To make the paper more readable, we have decided to put all proofs of the main 
technical results in an annex at the end of the paper.

This is the improved and extended version of a paper presented at the AAAI-21 confer-
ence [18]. The AAAI-21 paper did not include the following things that are included in 
the present paper: (1) detailed proofs of the technical results, (2) detailed comparison with 
state of the art on epistemic planning and planning models of dialogue, (3) the belief revi-
sion module and its integration with the cognitive planning module, (4) the hardness result 
for complexity of cognitive planning, (5) the QBF-based approach to cognitive planning 
and the experimental comparison with the brute force approach. Moreover, at the time of 
the AAAI-21 paper (6) neither the agent architecture nor the HMI scenario were imple-
mented. Finally, in the AAAI-21 paper (7) the HMI scenario was just sketched and not 
elaborated in detail by including both direction of interaction between the conversational 
agent and the human.

2  Related work

2.1  Formal models of persuasion

Models of persuasion in AI are mostly based on argumentation. See [55] for a general 
introduction to the research in this area. Some of these models are built on Walton & Krab-
be’s notion of persuasion dialogue in which one party seeks to persuade another party to 
adopt a belief or point-of-view she does not currently hold [66]. There exist models based 
on abstract argumentation [1, 4, 5, 9] as well probabilistic models where the persuader’s 
uncertainty about what the persuadee knows or believes is represented [28, 29]. There exist 
also models based on possibility theory in which a piece of information is represented as 
an argument which can be more or less accepted depending on the trustworthiness of the 
agent who proposes it [16]. Persuasion has also been formalized with the support of logi-
cal tools, e.g., by representing the support and the conclusion of an argument by sets of 
literals and an argument path as a sequence of arguments such that for each argument in 
the sequence its support is obtained through the conclusions of the preceding arguments 
[59], by combining abstract argumentation with dynamic epistemic logic (DEL) [56], epis-
temic logic with dynamic logic [10] and epistemic logic with a logic of agency [8]. There 
are also been attempts to build models of persuasive multimodal communication based on 
reinforcement learning (RL) [67]. Their idea is that in order to enhance persuasiveness of 
its communication strategy, an agent must learn the user’s preferences and adapt to the 
user’s personality. Weber et al. model this learning and adaptation process in the RL frame-
work. Unlike ours, none of the previous approaches to persuasion is based on planning.

A planning theory of persuasion, which is the core contribution of our work, requires a 
formal language for representing the persuadee’s beliefs, the target of the persuader’s com-
municative action. From this perspective, our work is closely connected to recent research 
in the area of epistemic planning.

2.2  Parsimonious approaches to epistemic planning

The concept of epistemic planning, as a generalization of classical planning, was intro-
duced by [6, 44]. The initial proposal was to use a standard logic of knowledge or belief 
together with a representation of actions in terms of event models of dynamic epistemic 



logic (DEL) [65]. While the DEL framework is very expressive, it turned out that the exist-
ence of a solution becomes quickly undecidable even for very simple kinds of event models 
[2, 7, 34]. Kominis and Geffner  [30] considered epistemic planning problems with very 
simple event models leading to a decidable fragment and that can be compiled into a clas-
sical planning problem. They distinguish three kinds of actions: physical actions modifying 
the world, public updates (DEL-like public announcements), and sensing actions by means 
of which an agent learns whether a formula is true. Other researchers investigated another 
source of complexity, namely that of standard epistemic logic. There, reasoning is strictly 
more complex than in classical logic: the satisfiability problem is at least in PSPACE [26].

Based on earlier work by [33] on efficient multi-agent epistemic reasoning later 
extended by [53] with the notion of consistent and introspective belief (modal logic sys-
tems KDn and KD45n ), Muise et al. [49, 51] studied epistemic planning by enforcing syn-
tactic restrictions on the agents’ beliefs. In particular, they considered state descriptions in 
terms of conjunctions of epistemic literals: formulas that do not contain any conjunction or 
disjunction. Their framework has been applied to team formation in a multi-agent setting 
whose fundamental aspect is the persuasion of some potential team members to join the 
team [52]. The aim of the initiator of the team formation process is to compute a condi-
tional plan (conditioned on the responses of the potential team members) which guarantees 
the formation of a cohesive team in the pursuit of a collective goal. This planning model of 
team formation is based on an earlier model by [20] on the formation of collective inten-
tions through structured dialogues.

Cooper et al. [13, 14] considered another fragment: boolean combinations of ‘knowing-
whether’ operators defined from the primitive concept of observability followed by propo-
sitional variables. They call the resulting logic EL-O, which stands for Epistemic Logic of 
Observability.

Both Muise et  al.’s language and Cooper et  al.’s language do not allow to represent 
beliefs about facts expressed in disjunctive form or by logical implication. This is a big lim-
itation from the point of view of our work in which cognitive planning is used for modeling 
a dialogue between an artificial agent and a human. Indeed, in a typical dialogue setting 
the planning agent could have conceptual information as well as causal information about 
the physical world, about the human’s cognitive state, and about the connection between 
the physical world and the human’s cognitive state. This kind of information is naturally 
expressed by means of disjunction, implication or double implication. For instance, the 
planning agent may believe that a certain property or event should be considered ‘ideal 
for the human’ if and only if it satisfies all her desires. This is an example of belief about 
“conceptual” information, inasmuch as it specifies the subjective interpretation of a given 
term by the planning agent (i.e., the meaning that the planning agent assigns to the term 
‘ideal for the human’). Or, the planning agent may believe that if the human believes that 
a certain action prevents her from satisfying her desires then she has no reasonable justi-
fication to perform it and, consequently, she will not intend to do it. This is an example of 
belief about the causal connection between the human’s beliefs and her intentions. Finally, 
the planning agent may believe that if the human feels tired then she will have the desire to 
rest or to perform a relaxing activity. This is an example of belief about the causal connec-
tion between the human’s physiological/physical state and her cognitive state (her desires).

In our work, we prefer to simplify the epistemic language by bounding nesting of the 
epistemic modalities, rather than by disallowing beliefs about disjunction or implication. 
We think this is a better compromise between simplicity and expressiveness, at least in 
the context of our application of cognitive planning to persuasive human–machine com-
munication. In the epistemic language we use for cognitive planning (see Sect. 4), we can 



nest explicit belief modalities, but we cannot nest implicit belief modalities. On the con-
trary, there is no restriction on the propositional logic level: we can represent explicit and 
implicit beliefs about any kind of propositional fact expressed by boolean connectives, 
including disjunction and implication.

2.3  Planning models of dialogue

The idea of using planning languages and algorithms for modeling dialogue between artifi-
cial and/or human agents is not new. Here, we only discuss the most relevant models for us, 
namely those based either on logic or on standard encoding languages for classical plan-
ning such as PDDL or STRIPS. A systematic literature review for the research in this area 
is provided by [64].

Muise et  al.  [50] propose a planning model for goal-oriented dialogue systems based 
on FOND (Fully Observable Non-Deterministic), where dialogue plans generated by the 
FOND planner are contingent plans with conditional effects. They encode their model in 
the PDDL (Planning Domain Definition Language) framework [22]. Another related work 
to be mentioned is Shams et al.’s combination of classical STRIPS planning and argumen-
tation applied to normative contexts in which conflicts between an agent’s goals and norms 
can arise [61]. In such contexts, it becomes useful to explain the criteria for selecting a 
certain plan and considering it the best plan with respect to goal achievement and norm 
compliance. Shams et al. use argumentation for this explanatory purpose in the context of 
a dialogue game. Unlike our approach, Muise et al and Shams et al do not explicitly repre-
sent the cognitive states (e.g., beliefs, preferences, intentions) of the agents involved in the 
dialogue.

Kominis and Geffner’s work [31] is the closest one to ours. They show that the mini-
malistic approach to epistemic planning they presented earlier [30] could be leveraged for 
modeling simple agent dialogues where agents collaborate by requesting or volunteering 
information in a goal-directed manner. They provide a translation of their framework into 
the STRIPS language extended with negation, conditional effects, and specific axioms han-
dling the dynamics of the agents’ epistemic states. An important difference between our 
approach and Kominis & Geffner’s is our emphasis on the connection between planning 
and belief revision both at the formal and architectural level that, we believe, is necessary 
to fully understand and model a dialogue between an artificial agent and a human agent. 
As we will show in Sect. 3, in our approach cognitive planning and belief revision are two 
interrelated modules of the conversational agent’s architecture, while Kominis & Geffner 
do not consider belief revision. Another crucial difference between our approach and theirs 
is our emphasis on the reduction of cognitive planning to SAT, while their target model is 
STRIPS and, more generally, classical planning.

3  General architecture

The general architecture of our system is detailed in Fig. 2.

3.1  Data structures

The artificial planning agent, that for simplicity we call the machine, is endowed with three 
kinds of data structure: its belief base, the goal to be achieved and the repertoire of speech 



acts (or communicative actions) it can perform. Such speech acts are aimed at changing 
the human’s cognitive state. The machine can have persuading goals, aimed at changing 
the human’s beliefs, or influencing goals, aimed at inducing the human to form a certain 
intention or to behave in a certain way. The machine’s belief base includes both informa-
tion about the environment and information about the human’s overall cognitive state and 
its way of functioning. In other words, the machine has a theory of the human’s mind. The 
machine’s belief base evolves during its dialogue with the human.

3.2  Exploratory and informative phase

The interaction between the machine and the human is structured in two phases the explor-
atory (or inquiry) phase and the informative phase.

In the exploratory phase the machine gathers information about the human’s cognitive 
state. This includes information about the human’s beliefs, desires and preferences. In this 
phase the human provides information to the machine and the machine expands or revises, 
when necessary, its belief base accordingly. Indeed, the information provided by the human 
can enrich the machine’s belief base with new facts about the environment (objective facts) 
or about the human’s cognitive state (mental facts) or make the machine’s belief base 
inconsistent. In the latter case, the machine must revise its belief base after having incorpo-
rated the new information.

The informative phase is the core of the cognitive planning process. In this phase, the 
machine performs a sequence of assertions aimed at modifying the human’s cognitive state 
(her beliefs and/or intentions). In our framework, the exploratory phase is propaedeutic 
to the informative phase. Indeed, for the machine to be able to lead the human to change 
her behavior, it must most often have information about the human’s cognitive state. Such 
information may be acquired during the exploratory phase.

It is reasonable to suppose that if in the informative phase the machine cannot find 
a plan, it moves to the exploratory phase. In fact, the machine might not have sufficient 

Fig. 2  General architecture



information at its disposal about the human’s cognitive state to find a plan aimed at per-
suading or influencing her. In the exploratory phase, the machine tries to fill this knowl-
edge gap.

The two phases can be kept separated or integrated at the planning level. In the “non-
integrated” solution the exploratory phase consists in an information gathering protocol. 
After the protocol has terminated, the machine enters the informative phase. It is the proper 
planning phase whereby the machine searches for a sequence of assertions which guaran-
tees the achievement of its persuasive or influencing goal.

In the “integrated” solution, not only the informative phase but also the exploratory 
phase is managed by the planning module. In the exploratory phase the machine includes 
in its plan not only assertions but also questions. In particular, it has to find a sequence 
of questions followed by a sequence of assertions such that, for some possible answer (or 
for all possible answers) by the human, the composition of the two sequences guarantees 
that the persuading or influencing goal will be achieved. It is reasonable to assume that 
the machine first tries to find a plan with only assertions. (Why asking questions to the 
human if what the machine knows about the human’s cognitive state is already sufficient to 
persuade or influence her). However, in most cases, the machine has uncertainty and lacks 
information about the human’s cognitive state so that it must ask questions to the human 
before trying to induce her attitude change through a sequence of assertions.

In this work, we will adopt the “non-integrated” solution for the sake of simplicity. 
Indeed, adding questions to plans would increase the complexity of the cognitive planning 
problem given their non-deterministic aspect (i.e., a question can seen as a speech acts with 
non-deterministic effects corresponding to the possible answers by the hearer). We will 
merely illustrate the basic functioning of the cognitive planning module in the informative 
phase and of the belief revision module in the exploratory phase. We leave the generaliza-
tion of our approach to plans including questions for future work.

4  Logical framework

This section is devoted to present the logical framework for the formal specification of 
cognitive planning. We start by recalling the full language and the semantics presented by 
[38, 39]. The latter distinguishes explicit and from implicit belief. An agent’s explicit belief 
is seen as a piece of information in the agent’s belief base, while an implicit belief corre-
sponds to a piece of information that is derivable from the agent’s belief base (i.e., included 
in the deductive closure of the agent’s belief base). It is interpreted over a semantics using 
belief bases. The central idea of this semantics is that an agent’s epistemic indistinguish-
ability relation should be computed from the agent’s belief base by stipulating that a state 
is considered possible by the agent if and only if it satisfies all information in the agent’s 
belief base.

The full multi-agent language being PSPACE-complete [39, Theorem 6], in this section 
we study an interesting novel NP fragment that can be used in HMI applications. In this 
fragment we can represent explicit beliefs of many agents and implicit beliefs of a single 
agent, with no nesting of implicit belief modalities. We conclude by presenting a dynamic 
extension of the static language by belief change operations. The latter are needed to repre-
sent the planning agent’s communicative actions.



4.1  Full language and semantics

Our epistemic language distinguishes explicit belief (a fact in an agent’s belief base) from 
implicit belief (a fact that is deducible from the agent’s explicit beliefs). It is parameterized 
by a finite set of agents Agt = {1,… , n} and a countable infinite set of atomic propositions 
Atm noted p, q,…

The language of our logic of explicit and implicit belief is defined in two steps.
First, the language L0(Atm,Agt) is defined by the following grammar in BNF:

where p ranges over Atm and i ranges over Agt . L0(Atm,Agt) is the language for represent-
ing agents’ explicit beliefs. The formula △i� is read “i explicitly believes that � ”. Then, 
the language L(Atm,Agt) extends the language L0(Atm,Agt) by modal operators of implicit 
belief and is defined by the following grammar:

where � ranges over L0(Atm,Agt) and i ranges over Agt . For notational conveni-
ence we write L0 instead of L0(Atm,Agt) and L instead of L(Atm,Agt) , when the con-
text is unambiguous. The formula ◻ i� is read “i implicitly believes that � ” and its dual 
◊

i
�

def
= ¬◻ i¬� is read “ � is compatible (or consistent) with i’s explicit beliefs”. The 

other Boolean constructions ⊤ , ⊥ , ∨ , → and ↔ are defined in the standard way.
The interpretation of language L exploits the notion of belief base. While the notions 

of possible state (or world) and epistemic alternative are primitive in the standard Kripke 
semantics for epistemic logic, they are defined from the primitive concept of belief base in 
our semantics. In particular, a state is a composite object including a description of both 
the agents’ belief bases and the environment.1

Definition 1 (State) A state is a tuple B = (B1,… ,Bn,V) where: for every i ∈ Agt , Bi ⊆ L0 
is agent i’s belief base; V ⊆ Atm is the actual environment. The set of all states is noted S.

Note that an agent’s belief base Bi can be infinite.2 The sublanguage L0(Atm,Agt) is 
interpreted w.r.t. states, as follows:

Definition 2 (Satisfaction) Let B = (B1,… ,Bn,V) ∈ S . Then:

Observe in particular the set-theoretic interpretation of the explicit belief operator: 
agent i explicitly believes that � if and only if � is included in her belief base. There is no 

� ∶∶= p ∣ ¬� ∣ � ∧ � ∣ △i�,

� ∶∶= � ∣ ¬� ∣ � ∧ � ∣ ◻ i�,

B ⊧ p ⟺ p ∈ V,

B ⊧ ¬𝛼 ⟺ B ̸⊧ 𝛼,

B ⊧ 𝛼1 ∧ 𝛼2 ⟺ B ⊧ 𝛼1 and B ⊧ 𝛼2,

B ⊧ △i𝛼 ⟺ 𝛼 ∈ Bi.

1 This is similar to the way states are modeled in the interpreted system semantics for multi-agent systems 
[21, 37].
2 This is just a technical feature that is not required to represent the beliefs of a human or of an artificial 
agent.



constraint on the agents’ belief bases. So, occasionally, during the exploratory phase, the 
belief base of the artificial agent may become inconsistent, but as we show below, consist-
ency is then restored by belief revision (which is a process external to the logic).

A multi-agent belief model (MAB) is defined to be a state supplemented with a set of 
states, called context. The latter includes all states that are compatible with the common 
ground [63], i.e., the body of information that the agents commonly believe to be the case.

Definition 3 (Multi-Agent Belief Model) A multi-agent belief model (MAB) is a pair 
(B,Cxt) , where B ∈ S and Cxt ⊆ S . The class of all MABs is noted M.

Note that we do not impose that B ∈ Cxt . When Cxt = S then (B,Cxt) is said to be com-
plete, since S is conceivable as the complete (or universal) context which contains all possi-
ble states. We compute an agent’s set of epistemic alternatives from the agent’s belief base, 
as follows.

Definition 4 (Epistemic alternatives) Let i ∈ Agt . Then Ri is the binary relation on the set 
S such that, for all B = (B1,… ,Bn,V),B

� = (B�
1
,… ,B�

n
,V�) ∈ S:

BRiB
′ means that B′ is an epistemic alternative for agent i at B. So i’s set of epistemic 

alternatives at B includes exactly those states that satisfy all i’s explicit beliefs.
Definition  5 extends Definition  2 to the full language L . Its formulas are interpreted 

with respect to MABs. We omit Boolean cases that are defined in the usual way.

Definition 5 (Satisfaction) Let (B,Cxt) ∈ M . Then:

A formula � ∈ L is valid in the class M , noted ⊧
M
𝜑 , if and only if (B,Cxt) ⊧ 𝜑 for 

every (B,Cxt) ∈ M ; it is satisfiable in M if and only if ¬� is not valid in M.

Theorem 1 Checking satisfiability of L(Atm,Agt) formulas in the class M is a PSPACE-
hard problem.

This theorem is a consequence of the fact that our logic contains the basic modal logic 
K whose satisfiability problem is PSPACE-complete [26].

4.2  NP‑complete fragment

We study the following fragment of the language L , called L
����

:

where � ranges over L0 and � is a special agent in Agt called the ‘machine’. In L
����

 , all 
agents have explicit beliefs but only agent � has implicit beliefs, and moreover the latter 
are restricted to L0-formulas of type � . So there are no nested implicit beliefs for agent � . 
Agent � is assumed to be the unique artificial agent in the system which is endowed with 

BRiB
� if and only if ∀𝛼 ∈ Bi ∶ B�

⊧ 𝛼.

(B,Cxt) ⊧ 𝛼 ⟺ B ⊧ 𝛼,

(B,Cxt) ⊧ ◻ i𝜑 ⟺ ∀B� ∈ Cxt, if BRiB
� then (B�,Cxt) ⊧ 𝜑.

� ∶∶= � ∣ ¬� ∣ � ∧ � ∣ ◻��,



unbounded reasoning and planning capabilities. The cognitive planning problem will be 
modeled from agent � ’s perspective.

The following example is given to illustrate the language L
����

 and its semantic 
interpretation.

Example 1 The scenario consists of agents � and � . Agent � is a person who applied 
for a loan to a bank, while agent � is her virtual assistant. The loan application can be 
either accepted (i.e., a) or rejected (i.e., ¬a ). Agent � is informed about the result of her 
application through e-mail notification by the bank (i.e., n). Let B = (B�,B�,V) ∈ S and 
(B,Cxt) ∈ M such that:

According to the previous specification, agent � ’s belief base includes the following facts 
only: notification has been sent out by the bank, and if notification has been sent out by 
the bank and agent � ’s application is accepted (resp. rejected), she will explicitly believe 
that her application is accepted (resp. rejected). Moreover, agent � ’s belief base includes 
the following facts only: notification has been sent out by the bank, and the application 
is accepted. Agent � ’s explicit beliefs are correct since the two facts are objectively true. 
Finally, the agents’ common ground only includes the information that agent � cannot 
explicitly believe at the same time that her application is accepted and that her applica-
tion is rejected. It is easy to verify that at model (B,Cxt) , agent � can infer that if agent � 
explicitly believes that her application is accepted, then her application is indeed accepted, 
that is:

In the rest of this section, we are going to provide a polysize reduction of the satisfiabil-
ity problem of L

����
 to SAT. The reduction consists of two steps which are summarized in 

Fig. 3.
As a first step, we define the following modal language L��� into which the language 

L
����

 will be translated3:

B� =
{
n, (n ∧ a) → △�a, (n ∧ ¬a) → △�¬a

}
,

B� = {n, a},

V = {n, a},

Cxt =
{
B� = (B�

�
,B�

�
,V�) ∈ S ∶ B�

⊧ ¬(△�a ∧ ¬△� ¬a)
}
.

(B,Cxt) ⊧ ◻�(△�a → a).

Fig. 3  Summary of reduction process

LFrag
tr1��� LMod

tr2��� LProp

3 See p. 24, just after Theorem 2, for the L���� definition.



where q ranges over the following set of atomic formulas:

So p△i�
 is nothing but a special atomic formula. In fact, in language L��� a formula 

describing an agent’s explicit belief is treated as an atomic formula.
We interpret the language L��� w.r.t. a pair (M,  w), called pointed Kripke model, 

where M = (W,⇒,�) , W is a non-empty set of worlds, ⇒ ⊆ W ×W  and � ∶ Atm+
⟶ 2W

.

Definition 6 The semantic interpretation for formulas in L��� w.r.t. a pointed Kripke 
model (M, w) is as follows:

(Boolean cases are again omitted as they are defined in the usual way.)

The class of pointed Kripke models is noted K . Satisfiability and validity of formulas 
in L��� relative to the class K is defined in the usual way.

We are going to define next a translation of L
����

-formulas into L���-formulas. It 
has two components. A translation tr0 of L0-formulas and a more general translation tr1 
which depends on it. We define tr0 ∶ L0 ⟶ L��� first:

The translation tr1 ∶ L
����

⟶ L��� is defined as follows:

It is easy to see that the translation tr1 is polynomial. Indeed, except for case tr1(△i�) at 
every step of the translation, the number of symbols does not increase. When we translate 
△i� there is no risk for exponential blow up since either the translation stops at the next
step (case i ≠ � ) or it produces a conjunctive formula whose first conjunct is p△��

 , which 
is not translated further, and whose second conjunct is translated at the next step using tr0 
(case i = � ). It is is trivial to verify that the translation tr0 is polynomial.

� ∶∶= q ∣ ¬� ∣ � ∧ �,

� ∶∶= q ∣ ¬� ∣ � ∧ � ∣ ▪�,

Atm+ = Atm ∪ {p△i�
∶ i ∈ Agt and � ∈ L0(Atm,Agt)}.

(M,w) ⊧ q ⟺ w ∈ 𝜋(q);

(M,w) ⊧ ▪𝜔 ⟺ ∀v ∈ W, if w ⇒ v then (M, v) ⊧ 𝜔.

tr0(p) = p,

tr0(¬�) = ¬tr0(�),

tr0(�1 ∧ �2) = tr0(�1) ∧ tr0(�2),

tr0(△i�) = p△i�
.

tr1(p) = p,

tr1(¬�) = ¬tr1(�),

tr1(�1 ∧ �2) = tr1(�1) ∧ tr1(�2),

tr1(△i�) =

{
p△��

∧ ▪tr0(�), if i = �,

p△i�
, otherwise,

tr1(◻��) = ▪tr0(�);



As the following theorem indicates, the translation tr1 guarantees the transfer of satis-
fiability from model class M to model class K.

Theorem 2 Let � ∈ L
����

 . Then, � is satisfiable in the class M if and only if tr1(�) is satisfi-
able in the class K.

(The proof is provided in “Appendix”.)
As a last step, we provide a polysize reduction of L���-satisfiability to SAT, where 

the underlying propositional logic language L���� is built from the following set of 
atomic propositions:

The set Atm++ includes two types of atomic propositions: one of the form qx denoting the 
fact that q is true at world x and the other of the form rx,y denoting the fact that world x is 
related to world y.

Let tr2 ∶ L��� × ℕ × ℕ ⟶ L���� be the following translation function:

Translation tr2 is similar to the translation of modal logic S5 into propositional logic given 
by [11] and, more generally, to the standard translation of modal logic into FOL in which 
accessibility relations are encoded by special predicates. In our framework, a third argu-
ment has been added. It specifies the maximum size of the model we restricted to, ensuring 
that the translation is not going to be of exponential size.

The size of an L��� formula, size(�) , is defined by:

Note that the size of tr2
(
�, 0, size(�)

)
 is polynomial in the size of �.

The following theorem is analogous to the result for the standard translation of modal 
logic to FOL. It is proved by a straightforward adaptation of [32, Lemma 6.1] about 
polysize-model property for modal logic S5 to our case. For this reason, we do not need 
to give the detailed proof.

Theorem 3 Let � ∈ L��� . Then, � is satisfiable in the class K if and only if tr2
(
�, 0, size(�)

)
 

is satisfiable in propositional logic.

The size of tr2
(
�, 0, size(�)

)
 is polynomial in size(�) . The only case to pay attention is

the translation tr2
(
▪�, 0, size(�)

)
 for some subformula ▪� during the translation process.

We generate a formula with y conjuncts. For each conjunct we only need to translate the 

Atm++ = {qx ∶ q ∈ Atm+ and x ∈ ℕ} ∪ {rx,y ∶ x, y ∈ ℕ}.

tr2(q, x, y) = qx,

tr2(¬�, x, y) = ¬tr2(�, x, y),

tr2(�1 ∧ �2, x, y) = tr2(�1, x, y) ∧ tr2(�2, x, y),

tr2(▪�, x, y) =
⋀
0≤z≤y

(
rx,z → tr2(�, z, y)

)
.

size(p) = 1,

size(�1 ∧ �2) = size(�1) + size(�2) + 1,

size(¬�) = size(�) + 1,

size(▪�) = size(�) + 1.



propositional formula � . It is trivial to verify that the translation of a propositional for-
mula is linear in the size of the formula to be translated. This guarantees that there is no 
exponential blow up when translating a subformula ▪� during the translation process.

Thanks to Theorems 2 and 3 we state the following complexity result.

Theorem 4 Checking satisfiability of formulas in L
����

 in the class M is an NP-complete 
problem.

(The proof is provided in “Appendix”)

4.3  Dynamic extension

In this section, we extend the language L
����

 by belief expansion operations. Specifically, 
we introduce the following language L+

����
:

where � ranges over the language L0 and i ranges over Agt . The formula [+i�]� is read “ � 
holds after agent i has privately expanded her belief base with � ”. Events of type +i� are 
generically called informative actions.

The notion of belief expansion we consider is rather simple: it consists in adding a sin-
gle piece of information (one formula in L0 ) to the belief base of an agent i. It is worth 
noting that the dynamic operators [+i�] are commutative. Therefore, an expansion with 
multiple information at a time can be simulated by a sequence of expansion operations
with one formula. Specifically, 

[
+i {�1,… , �k}

]
 can be defined as an abbreviation of[

+i �(�1)
]
…

[
+i �(�k)

]
 , where � is any permutation of the set {�1,… , �k}.

Our extension with belief base expansion operators has the following semantics relative 
to a MAB:

Definition 7 (Satisfaction relation, cont.) Let B = (B1,… ,Bn,V) ∈ S and let (B,Cxt) ∈ M . 
Then:

with V+i� = V  , B+i�

i
= Bi ∪ {�} and B+i�

j
= Bj for all j ≠ i.

Intuitively speaking, the private expansion of i’s belief base by � simply consists in 
agent i adding the information that � to her belief base, while all other agents keep their 
belief bases unchanged.

Let us go back to Example 1 to illustrate the update semantics for belief expansion.

Example 2 At model (B,Cxt) , after being informed that agent � believes that her application 
is accepted, agent � can infer that � ’s application is indeed accepted, that is:

Before illustrating the computational properties of our dynamic extension, we would 
like to emphasize some of its features. In this work we do not consider dynamic opera-
tors for belief contraction or revision that would allow an agent to retract information 

� ∶∶= � ∣ ¬� ∣ � ∧ � ∣ ◻�� ∣ [+i�]�,

(B,Cxt) ⊧ [+i𝛼]𝜑 ⟺ (B+i𝛼 ,Cxt) ⊧ 𝜑

(B,Cxt) ⊧ [+� △� a]◻�a.



from its belief base. We see belief base revision as an independent module of the agent 
architecture (see Sect. 5.2) and do not represent it at the planning level. Therefore, we 
can avoid altogether the unnecessary complication of including dynamic operators for 
revision in the logical language. More details about the extensions of our epistemic lan-
guage with belief base revision operators can be found in [39, 42]. Secondly, we take a 
weak logic of epistemic attitudes for the human since we only model her explicit beliefs. 
In our model, the human may explicitly believe that p ∨ q (resp. p → q ) and learn that 
¬p (resp. p), without explicitly believing that q as a consequence. In formal terms, 
△�(p ∨ q) ∧ [+�¬p]△� q and △�(p → q) ∧ [+�p]△� q are not valid in our setting. 
The reason why we do not take the previous formulas to be valid is that we do not want 
to make any assumption on the deductive capabilities of the human that, as clearly 
observed in cognitive psychology, are imperfect and context-dependent [15]. Conse-
quently, the machine might only have in its belief base partial information about the 
human’s deductive capabilities. However, adding to the formal semantics local deduc-
tive principles like the previous one would only require a minor change. For example, it 
would be sufficient to redefine the updated model B+��

�
 as follows to guarantee that the 

human infers all direct consequences of what she learns:

Under this variant of the update semantics, the following equivalence would become valid:

It is easy to show that the complexity results we provide are invariant under this slight 
modification of the semantics. But we do not investigate it in the paper.

Proposition 1 The following equivalences are valid in the class M:

B
+��

�
= B� ∪ {�} ∪ {�� ∶ � → �

� ∈ B�}.

[+�𝛼]△� 𝛼
� ↔

{
⊤, if 𝛼� = 𝛼,

△�(𝛼 → 𝛼
�), otherwise.

[+i𝛼]𝛼
� ↔

{
⊤, if 𝛼� = △i𝛼,

𝛼
�, otherwise;

[+i𝛼]¬𝜑 ↔ ¬[+i𝛼]𝜑;

[+i𝛼](𝜑1 ∧ 𝜑2) ↔ [+i𝛼]𝜑1 ∧ [+i𝛼]𝜑2;

[+i𝛼]◻�𝛼
� ↔

{
◻�(𝛼 → 𝛼

�), if i = �,

◻�𝛼
�, otherwise;



(The proof is provided in “Appendix”)
Thanks to the equivalences of Proposition 1 we can define the following reduction red 

transforming every L+
����

 formula � into an equivalent L
����

 formula red(�):

Proposition 2 Let � ∈ L
+
����

 . Then, � ↔ red(�) is valid in the class M , and red(�) ∈ L
����

.

(The proof is provided in “Appendix”)
The following proposition is a direct corollary of the previous one. The right-to-

left direction can be proved by contraposition: suppose � is valid in M ; thus, thanks 
to Proposition 2, red(�) is valid in M too. The left-to-right direction is proved in an 
analogous way.

Proposition 3 Let � ∈ L
+
����

 . Then, � is satisfiable in the class M iff red(�) is satisfiable 
too.

The following theorem is a consequence of Theorem 4, Proposition 2 and the fact 
that the size of red(�) is polynomial in the size of �.

Theorem 5 Checking satisfiability of formulas in L+
����

 in the class M is an NP-complete 
problem.

Before concluding this section, we define the concept of logical consequence for 
the language L+

����
 which will be used in the formulation of the cognitive planning 

problem.
Let Σ be a finite subset of L0 and let � ∈ L

+
����

 . We define 
S(Σ) = {B ∈ S ∶ ∀𝛼 ∈ Σ,B ⊧ 𝛼} . We say that � is a logical consequence of Σ in the 
class M , noted Σ ⊧

M
𝜑 , if and only if, for every (B,Cxt) ∈ M such that Cxt ⊆ S(Σ) we 

have (B,Cxt) ⊧ 𝜑 . We say that � is Σ-satisfiable in the class M if and only if, ¬� is not 
a logical consequence of Σ in M . Clearly, � is valid if and only if � is a logical conse-
quence of ∅ , and � is satisfiable if and only if � is ∅-satisfiable.

red(p) = p,

red(△i𝛼) = △i𝛼,

red(¬𝜑) = ¬red(𝜑),

red(𝜑1 ∧ 𝜑2) = red(𝜑1) ∧ red(𝜑2),

red(◻�𝛼) = ◻�red(𝛼),

red([+i𝛼]𝛼
�) =

{
⊤, if 𝛼� = △i𝛼,

red(𝛼�), otherwise;

red([+i𝛼]¬𝜑) = red(¬[+i𝛼]𝜑),

red
(
[+i𝛼](𝜑1 ∧ 𝜑2)

)
= red([+i𝛼]𝜑1 ∧ [+i𝛼]𝜑2),

red([+i𝛼]◻�𝛼
�) =

{
red

(
◻�(𝛼 → 𝛼

�)
)
, if i = �,

red(◻�𝛼
�) otherwise;

red([+i𝛼1][+j𝛼2]𝜑) = red
(
[+i𝛼1]red([+j𝛼2]𝜑)

)
.



As the following deduction theorem indicates, the logical consequence problem 
with a finite set of premises can be reduced to the validity problem and, consequently, 
to the satisfiability problem.

Proposition 4 Let � ∈ L
+
����

 and let Σ ⊂ L0 be finite. Then, Σ ⊧
M
𝜑 if and only if 

⊧
M

�⋀
𝛼∈Σ ◻�𝛼

�
→ 𝜑.

(The proof is provided in “Appendix”)
The previous result is important since in Sect.  5 the cognitive planning problem 

will be formulated using the left side of the equivalence, with Σ representing agent � ’s 
model of agent � ’s mind. Thanks to Proposition 4, we will be able to relate cognitive 
planning to validity and satisfiability checking.

5  From cognitive planning to belief revision

In this section, we provide a formal specification of the two modules of the agent archi-
tecture, the cognitive planning and the belief revision module. We mainly concentrate 
on the complexity of cognitive planning formulated in the epistemic logic framework 
we presented in Sect. 4.

5.1  Cognitive planning problem and its complexity

We specify the cognitive planning problem in a two-agent version of the language L+
����

 
presented in Sect. 4.3. In particular, we consider a finite set of agents Agt = {�,�} , where 
agent � is assumed to be an artificial agent which interacts with the resource-bounded 
human agent � . The cognitive planning problem consists in finding an executable sequence 
of speech acts such that if agent � performs it, at the end of its execution it will believe that 
its goal �G is achieved. In other words, the solution of a cognitive planning problem is an 
executable sequence of speech acts by agent � which guarantees the achievement of agent 
� ’s goal �G.

5.1.1  Speech acts

Let Act� = {+�� ∶ � ∈ L0} be agent � ’s set of belief expansion operations (or informa-
tive actions) and let elements of Act� be noted �, ��,… Speech acts of type ‘assertion’ are 
formalized as follows:

The event assert(�,�,�) captures the speech act “agent � asserts to agent � that � ”. The 
latter is assumed to coincide with the perlocutionary effect [60, Sect. 6.2] of the speaker 
learning that the hearer has learnt that the speaker believes that �.4 We distinguish simple 
assertions from actions of convincing:

assert(�,�,�)
def
= +� △� △� �.

4 We implicitly assume that, by default, � believes that � trusts its sincerity, so that � will believe that � 
believes what it says.



The event convince(�,�,�) captures the action “agent � convinces agent � that �”.5 We 
have assert(�,�,�) = convince(�,�,△� �) . We assume ‘to assert’ and ‘to convince’ cor-
respond to different utterances. While ‘to assert’ corresponds to the speaker’s utterances of 
the form “I think that � is true!” and “In my opinion, � is true!”, ‘to convince’ corresponds 
to the speaker’s utterances of the form “ � is true!” and “it is the case that �!”.

The previous abbreviations and, more generally, the idea of describing speech acts of a 
communicative plan performed by agent � with � ’s private belief expansion operations is 
justified by the fact that we model cognitive planning from the perspective of the planning 
agent � . Therefore, we only need to represent the effects of actions on agent � ’s beliefs. 
This does not mean that we assume that a speech act of agent � does not change agent � ’s 
beliefs. We simply do not model the effects of a speech act on � ’s beliefs. In order to model 
the effects of the speech act on both sides of interaction, we would need to define the act of 
asserting as the sequence of two belief expansion operations +� △� △��; +� △�� , and 
the act of convincing as the sequence of two belief expansion operations +� △� �; +� � . 
But this is out of the scope of our model.

5.1.2  Executability preconditions

We assume informative actions in Act� have executability preconditions that are specified by 
the following function: P ∶ Act� ⟶ L

����
 . We assume that an informative action � can take 

place if its executability precondition P(�) holds.
We use the executability precondition function P to define the following operator of pos-

sible occurrence of an event:

with � ∈ Act� . The abbreviation ⟨⟨�⟩⟩� has to be read “the informative action � can take 
place and � necessarily holds after its occurrence”.

5.1.3  Formal specification

We conclude this section with a formal specification of the cognitive planning problem.

Definition 8 (Cognitive planning problem) A cognitive planning problem is a tuple 
⟨Σ,Op, �G⟩ where:

• Σ ⊂ L0 is a finite set of agent � ’s available information,
• Op ⊂ Act� is a finite set of agent � ’s informative actions,
• �G ∈ L0 is agent � ’s goal.

Informally speaking, a cognitive planning problem is the problem of finding an executable 
sequence of informative actions which guarantees that, at the end of the sequence, the planning 

convince(�,�,�)
def
= +� △��.

⟨⟨�⟩⟩� def
= P(�) ∧ [�]�,

5 As for convincing we assume that, by default, � believes that � trusts its competence, so that � will 
believe what � says. For a logical analysis of trust in sincerity and competence in communication, see [19, 
41].



agent � believes that its goal �G is achieved. Typically, �G is a persuading or influencing goal, 
i.e., the goal of affecting agent’s � cognitive state (including her beliefs and intentions) in a
certain way. A solution plan to a cognitive planning problem ⟨Σ,Op, �G⟩ is a sequence of
informative actions �1,… , �k from Op for some k such that Σ ⊧

M
⟨⟨𝜖1⟩⟩… ⟨⟨𝜖k⟩⟩□�𝛼G.

5.1.4  Complexity results

For simplifying our notation, we introduce the following notation:

defined inductively for sequences of formulas.
As the following proposition highlights, checking existence of a solution for a cognitive 

planning problem has the poly-size property. Indeed, it can be easily seen that if an operator 
has been executed in a plan, another future occurrence of the same operator will not change 
the planning state due to the monotonicity of private belief expansion operations, that is,

There is a parallel between the previous property and the result presented in [44, Lemma 5] 
showing that action models with propositional preconditions commute making DEL plan-
ning tractable.

Proposition 5 A cognitive planning problem ⟨Σ,Op, �G⟩ has a solution plan if and only if it 
has a poly-size solution plan �1,… , �k with k ≤ ∣Op∣ and �i ≠ �j for all i < j.

The previous proposition is crucial for proving the following complexity upper bound.

Theorem 6 Checking plan existence for a cognitive planning problem is in Σ�
2
.

(The proof is provided in “Appendix”)
The following theorem provides a complexity lower bound for the cognitive planning 

problem.

Theorem 7 Checking plan existence for a cognitive planning problem is Σ�
2
-hard.

(The proof is provided in “Appendix”)

5.2  Belief revision module

In this section, we describe the belief revision module of the architecture we sketched in 
Sect. 3. As we emphasized above, such a module is necessary for updating the machine’s 
belief base during the exploratory phase of the interaction.

Let L���� be the propositional language built from the following set of atomic formulas:

B
+i(�1,…,�k ,�k+1)

i
=
(
B
+i(�1,…,�k)

i

)+i�k+1

B
+i(�1,…,�j,…,�h ,�j)

i
= B

+i(�1,…,�j ,…,�h)

i
.

Atm+ = Atm ∪ {p△i�
∶ △i� ∈ L0}.



Moreover, let tr���� be the following translation from the language L0 defined in Sect. 4 to 
L����:

For each finite X ⊆ L0 , we define tr����(X) = {tr����(�) ∶ � ∈ X} . Moreover, we say that
X is propositionally consistent if and only if ⊥ ∉ Cn

(
tr����(X)

)
 , where Cn is the classi-

cal deductive closure operator over the propositional language L���� . Clearly, the latter is
equivalent to saying that 

⋀
�∈X tr����(�) is satisfiable in propositional logic.

Let Σcore,Σmut ⊆ L0 denote, respectively, the core (or, immutable) information in agent 
� ’s belief base and the volatile (or, mutable) information in agent � ’s belief base. Agent
� ’s core beliefs are stable and do not change under belief revision. On the contrary, vola-
tile beliefs can change due to a belief revision operation. Moreover, let Σinput ⊆ L0 be agent
� ’s input information set. We define Σbase = Σcore ∪ Σmut . The set Σbase is nothing but the
first parameter of the cognitive planning problem we specified in Definition  8, namely,
agent � ’s available information. This information changes through interaction with the
other agent(s). This dynamic component of the agent architecture is handled by the belief
revision module.

In particular, the revision of (Σcore,Σmut) by input Σinput , noted Rev(Σcore,Σmut,Σinput) , is 
formally defined as follows: 

1. if Σcore ∪ Σinput is not propositionally consistent then Rev(Σcore,Σmut,Σinput) = (Σcore,Σmut),

2. otherwise, Rev(Σcore,Σmut,Σinput) = (Σ�
core

,Σ�
mut

) , with Σ�
core

= Σcore and

where X ∈ MCS(Σcore,Σmut,Σinput) if and only if:

• X ⊆ Σmut ∪ Σinput,
• Σinput ⊆ X,
• X ∪ Σcore is propositionally consistent, and
• there is no X�

⊆ Σmut ∪ Σinput such that X ⊂ X′ and X� ∪ Σcore is propositionally consist-
ent.

The revision function Rev has the following effects on agent � ’s beliefs: (1) the core belief 
base is not modified, while (2) the input Σinput is added to the mutable belief base only 
if it is consistent with the core beliefs. If the latter is the case, then the updated muta-
ble belief base is equal to the intersection of the subsets of the mutable belief base which 

tr����(p) =p,

tr����(¬�) =¬tr����(�),

tr����(�1 ∧ �2) =tr����(�1) ∧ tr����(�2),

tr����(△i�) =p△i�
.

Σ�
mut

=
⋂

X∈MCS(Σcore ,Σmut,Σinput)

X,



are maximally consistent with respect to the core belief base and which include the input 
Σinput.6 This guarantees that belief revision satisfies minimal change. The function Rev is 
a screened revision operator as defined by [45]. The latter was recently generalized to the 
multi-agent case by [42].

Let Rev(Σcore,Σmut,Σinput) = (Σ�
core

,Σ�
mut

) . For notational convenience, we 

write Revcore(Σcore,Σmut,Σinput) to denote Σ�
core

 and Revmut(Σcore,Σmut,Σinput) 
to denote Σ�

mut
 . Note that, if Σbase is propositionally consistent, then 

Revcore(Σcore,Σmut,Σinput) ∪ Revmut(Σcore,Σmut,Σinput) is propositionally consistent too.
The belief revision machinery described above is fundamental for completing the inter-

action cycle between the machine and the human. In the application we will present in 
Sect. 6, agent � ’s core belief base includes general principles about agent � ’s mind that 
are assumed to be immutable during the interaction, e.g., the fact that agent � has at least 
one desire or the fact that something is ideal for agent � if it satisfies all her desires. Agent 
� ’s mutable belief base will be constantly updated during the interaction in the light of the
information provided by agent � . For example, agent � can provide to agent � information
about her desires and � will update its mutable belief base accordingly. If necessary � will
have to revise its mutable belief base, e.g., if � tells to � that her desires have changed.

6  Application: an artificial assistant

In this section, we present an example illustrating the interrelationship between the cog-
nitive planning module and the belief revision module of the architecture we sketched 
in Sect.  3. The two modules were formally defined in Sects.  5.1 and  5.2. The example 
explores both directions of the interaction between agent � and agent �.

6.1  Preliminary notions

We consider a HMI scenario in which agent � is the artificial assistant of the human agent 
� . Agent � has to choose a sport to practice since her doctor recommended her to do a regu-
lar physical activity to be in good health. Agent � ’s aim is to help agent � to make the right
choice, given her actual beliefs and desires. The finite set of sport activities from which � 
can choose is noted Opt . Elements of Opt are noted o, o�,… Each option in Opt is identified
with a finite set of variables Var . Each variable x in Var takes a value from its correspond-
ing finite set of values Valx.

6 Note that the revision function Rev does not expand agent � ’s core belief set Σcore with the input informa-
tion set Σinput . It would be interesting to introduce a function f���� ∶ L0 ⟶ {0, 1} which specifies for every 
formula � in L0 whether the information � is completely apprehensible by agent � (i.e., f����(�) = 1 ) or 
not (i.e., f����(�) = 0 ). Specifically, f����(�) = 1 means that if agent � learns that � is true then, as a conse-
quence, it will firmly believe that � is true thereby adding � not only to its set of mutable beliefs but also to 
its set of core beliefs. The function f���� would allow us to define a variant of belief revision according to 
which if Σcore ∪ Σinput is propositionally consistent, then the core belief set Σcore is expanded by all formulas 
� in Σinput such that f����(�) = 1 , that is, Σ�

core
= Σcore ∪ {� ∈ Σinput ∶ f����(�) = 1}.



In this example, we suppose that Opt is composed of the following eight elements: 
swimming ( sw ), running ( ru ), horse riding ( hr ), tennis ( te ), soccer ( so ), yoga ( yo ), div-
ing ( di ) and squash ( sq ). Moreover, there are exactly six variables in Var which are used 
to classify the available options: environment ( env ), location ( loc ), sociality ( soc ), cost 
( cost ), dangerousness ( dan ) and intensity ( intens ). The set of values for the variables are:

The set of assignments for variable x is defined as follows:

The set of variable assignments is

Elements of Assign are noted a, a�,…
We assume that the content of an atomic desire is a variable assignment or its negation. 

That is, agent � ’s atomic desire can be any element from the following set:

Elements of Des0 are noted d, d�,… . For example, the fact that � has loc ↦ indoor 
as a desire means that � would like to practice an indoor activity, while if � ’s desire is 
∼cost ↦ high , then � would like to practice an activity whose cost is not high. Agent � ’s 
desires are either atomic desires or conditional desires. That is, � ’s desire can be any ele-
ment from the following set:

Elements of Des are noted � , � �,… For example, if agent � has [cost ↦ high] ⇝ dan ↦ low 
as a desire, then she would like to practice a sport whose dangerousness level is low, if its 
cost is high. We define 2Des∗ = 2Des ⧵ �.

Let us assume that the set Atm includes four types of atomic formulas, for every 
x ↦ v ∈ Assign , o, o� ∈ Opt and Γ ∈ 2Des∗ : (1) 𝗏𝖺𝗅(o, x ↦ v) standing for “option o has 
value v for variable x”, (2) �����(�, o) standing for “o is an ideal option for agent � ”, (3) 
������(�, o) standing for “agent � has a justification for choosing option o”, and (4) ���(�,Γ) 
standing for “ Γ is agent � ’s set of desires”.

The following function fcomp specifies, for every option o ∈ Opt and possible desire 
� ∈ Des , the condition guaranteeing that o satisfies (or, complies with) �:

Val
env

= {land,water},

Val
loc

= {indoor, outdoor,mixed},

Val
soc

= {single, team,mixed},

Val
cost

= {low,med, high},

Val
dan

= {low,med, high},

Val
intens

= {low,med, high}.

Assignx = {x ↦ v ∶ v ∈ Valx}.

Assign =
⋃
x∈Var

Assignx.

Des0 = Assign ∪ {∼a ∶ a ∈ Assign}.

Des = Des0 ∪
{
[d1,… , dk] ⇝ d ∶ d1,… , dk, d ∈ Des0

}
.

fcomp(o, a) = 𝗏𝖺𝗅(o, a),

fcomp(o,∼a) = ¬𝗏𝖺𝗅(o, a),

fcomp
(
o, [d1,… , dk] ⇝ d

)
= ¬fcomp(o, d1) ∨ … ∨ ¬fcomp(o, dk) ∨ fcomp(o, d).



The following function f �comp specifies, for every option o ∈ Opt and possible desire 
� ∈ Des , the condition guaranteeing that agent � believes that o satisfies �:

The previous formulation of f �comp
(
o, [d1,… , dk] ⇝ d

)
 presupposes an understanding of

conditional (goal) sentences by agent � . In particular, agent � does not need to provide 
information to agent � about the antecedent of the conditional, if the consequent is true.

6.2  Agent � ’s model of agent � ’s mind

We assume that the artificial agent � has the following pieces of information in its belief 
base:

Formula �1 captures the fact that a sport cannot have two different values for a given vari-
able. Formula �2 is its subjective version for agent � . Formulas �3 and �4 capture together 
the fact that agent � has exactly one non-empty set of desires. According to formula �5 , an 
option o is ideal for agent � if and only if it satisfies all agent � ’s desires. Finally, according 
to formula �6 , agent � has a reasonable justification for choosing option o if and only if she 
has all necessary information to conclude that option o satisfies all her desires.

Note that an alternative encoding of the problem would consist in using atomic formulas 
���(�, �) with � ∈ Des standing for “agent � has � as a desire” instead of atomic formulas 

f �
comp

(o, a) = △�fcomp(o, a),

f �
comp

(o,∼a) = △�fcomp(o,∼a),

f �
comp

(
o, [d1,… , dk] ⇝ d

)

= △�¬fcomp(o, d1) ∨ … ∨△�¬fcomp(o, dk) ∨△�fcomp(o, d).

�1

def
=

⋀
o ∈ Opt

x ∈ Var

v, v� ∈ Valx ∶ v ≠ v�

(
𝗏𝖺𝗅(o, x ↦ v) → ¬𝗏𝖺𝗅(o, x ↦ v�)

)
,

�2

def
=

⋀
o ∈ Opt

x ∈ Var

v, v� ∈ Valx ∶ v ≠ v�

(
△� 𝗏𝖺𝗅(o, x ↦ v) → △�¬𝗏𝖺𝗅(o, x ↦ v�)

)
,

�3

def
=

⋀
Γ,Γ�∈2Des∗∶Γ≠Γ�

(
𝖽𝖾𝗌(�,Γ) → ¬𝖽𝖾𝗌(�,Γ�)

)
,

�4

def
=

⋁
Γ∈2Des∗

𝖽𝖾𝗌(�,Γ),

�5

def
=

⋀
o∈Opt

(
𝗂𝖽𝖾𝖺𝗅(�, o) ↔

⋁
Γ ∈ 2Des∗

(
𝖽𝖾𝗌(�,Γ) ∧

⋀
�∈Γ

fcomp(o, �)
))

,

�6

def
=

⋀
o∈Opt

(
𝗃𝗎𝗌𝗍𝗂𝖿 (�, o) ↔

⋁
Γ ∈ 2Des∗

(
𝖽𝖾𝗌(�,Γ) ∧

⋀
�∈Γ

f �
comp

(o, �)
))

.



���(�,Γ) . This encoding would be simpler since it would allow us to remove the previous 
hypothesis �3 and to replace the hypotheses �4, �5, �6 by the following hypotheses �′

4
, �′

5
, �′

6
:

Notice that �4, �5, �6 are exponential while �′
4
, �′

5
, �′

6
 are polynomial in the size of Des.

We chose the more complex encoding with atomic formulas ���(�,Γ) in the lan-
guage instead of ���(�, �) for conceptual reasons. Indeed, in a realistic conversational 
context it is reasonable to suppose that an agent can say A!=“my set of desires is Γ ”! 
without necessarily enumerating in an explicit way all facts it desires and all facts it 
does not, that is, without explicitly saying that B!=“I desire �1 , ..., I desire �k , I don’t 
desire �k+1 , ..., I don’t desire �m ”! with Γ = {�1,… , �k} and Des⧵Γ = {�k+1,… , �m} . In 
other words, it is reasonable to take ���(�,Γ) as a primitive and leave to the hearer the 
deduction that B from hearing the speech act A!.

Of course, we could keep both types of atomic formulas ���(�, �) and ���(�,Γ) in the 
language and relate them by the following additional hypothesis:

But again this would make the encoding exponential in the size of Des since �des requires to 
quantify over 2Des∗.

So, to sum up, three encodings of the problem are possible: (1) only atomic formu-
las ���(�,Γ) are in the language and we use hypotheses �1, �2, �3, �4, �5, �6 , (2) only 
atomic formulas ���(�, �) are in the language and we use hypotheses �1, �2, �′

4
, �′

5
, �′

6
 , 

(3) both types of atomic formulas are in the language and we use hypotheses
�1, �2, �

′
4
, �′

5
, �′

6
, �des . The encoding (2) is polynomial in the size of Des , while the 

encodings (1) and (3) are exponential. As explained above, we prefer (1) to (2) for con-
ceptual reasons. We prefer (1) to (3) since we do not need formulas of type ���(�, �) in 
our formulation of the problem.

The experimental comparison of the brute force and the QBF-based approach we 
will present in Sect.  7.3 is relative to the encoding (1). We leave for future work an 
experimental comparison relative to the encodings (2) and (3).

We also assume that agent � has in its belief base a complete representation of 
Table 1, which specifies the variable assignments for all options:

We suppose that the pieces of information �1,… , �6 together with �o,x

7
 for 

every o ∈ Opt and x ∈ Var constitute agent � ’s initial core belief base, that is, 
Σ0
core

= {�1,… , �6} ∪ {�o,x

7
∶ o ∈ Opt and x ∈ Var} . Agent � ’s initial mutable belief 

base is supposed to be empty, that is, Σ0
mut

= � . We define Σ0
base

= Σ0
core

∪ Σ0
mut

.

�
�
4

def
=

⋁
�∈Des

𝖽𝖾𝗌(�, �),

�
�
5

def
=

⋀
o∈Opt

(
𝗂𝖽𝖾𝖺𝗅(�, o) ↔

⋀
� ∈ Des

(
𝖽𝖾𝗌(�, �) → fcomp(o, �)

))
,

�
�
6

def
=

⋀
o∈Opt

(
𝗃𝗎𝗌𝗍𝗂𝖿 (�, o) ↔

⋀
� ∈ Des

(
𝖽𝖾𝗌(�, �) → f �

comp
(o, �)

))
.

�des

def
=

⋀
Γ∈2Des∗

(
𝖽𝖾𝗌(𝔥,Γ) ↔

(⋀
�∈Γ

𝖽𝖾𝗌(𝔥, �) ∧
⋀

�∈Des⧵Γ

¬𝖽𝖾𝗌(𝔥, �)
))

.

�
o,x

7

def
= 𝗏𝖺𝗅(o, x ↦ vo,x).



6.3  Instantiation of the planning problem

Let us now turn to the cognitive planning problem. We define agent � ’s set of operators Op 
as follows:

In other words, agent � can only inform agent � about an option’s value for a certain vari-
able or about the ideality of an option for her.

We use the speech act convince since we suppose agent � fully trusts what agent � says 
(i.e., � believes that � is both sincere and competent).

We suppose the following executability precondition for every o ∈ Opt and a ∈ Assign 
(recall that Assignx has been defined p. 40):

According to the first definition, agent � can inform agent � about an option’s value for 
a certain variable, if and only if this information is believed by � and � believes that � 
has been already informed about the dangerousness level of the option. Indeed, we assume 
that, before being presented with an option’s features, agent � must be informed about its 
the dangerousness level and agent � complies with this rule.7 The second definition simply 

Op =
{
convince

(
�,�,���(o, a)

)
∶ o ∈ Opt and a ∈ Assign

}
∪{

convince
(
�,�,�����(�, o)

)
∶ o ∈ Opt

}
.

P

(
convince

(
�,�,𝗏𝖺𝗅(o, a)

))
=◻�

(
𝗏𝖺𝗅(o, a) ∧

⋀
v∈Valdan

(
𝗏𝖺𝗅(o,dan ↦ v) →

△� 𝗏𝖺𝗅(o, dan ↦ v)
))

if a ∉ Assigndan,

P

(
convince

(
�,�,𝗏𝖺𝗅(o, a)

))
=◻�𝗏𝖺𝗅(o, a) if a ∈ Assigndan,

P

(
convince

(
�,�,𝗂𝖽𝖾𝖺𝗅(�, o)

))
=◻�

(
𝗂𝖽𝖾𝖺𝗅(�, o) ∧ 𝗃𝗎𝗌𝗍𝗂𝖿 (�, o)

)
.

Table 1  Variable assignments

For every option o ∈ Opt and variable x ∈ Var , we denote by vo,x the 
corresponding entry in the table. For instance, we have vsw,env = water

Options Variables

env loc soc cost dan intens

sw water mixed single med low high

ru land outdoor single low med high

hr land outdoor single high high low

te land mixed mixed high med med

so land mixed team med med med

yo land mixed single med low low

di water mixed single high high low

sq land indoor mixed high med med

7 This rule arises from discussions we had with sociologists and ergonomists: if people refuse to do a dan-
gerous activity, most of the time they prefer to be informed quickly. This also illustrates the flexibility of 
our language which allows, if desired, to completely order the answers given. This choice has no technical 
consequence.



stipulates that � can inform � about the dangerousness level of an option if and only if it 
believes what it says. Finally, according to the third definition, � can inform � about the 
ideality of an option only if it believes that � has a reasonable justification for choosing 
it. Indeed, we assume � will inform � about the ideality of an option only after having 
explained why the option is ideal for her. The three definitions presuppose that agent � 
cannot spread fake news (i.e., something that it does not implicitly believe).

We moreover suppose that agent � has the influencing goal that � will form the 
potential intention to practice a sport activity. In particular, agent � wants to provide 
an effective recommendation to agent � that will induce her to choose a sport activity to 
practice. In order to define such a goal, we must first define the concept of potential inten-
tion. We assume that, for agent � to have a potential intention to choose option o, noted 
���������(�, o) , she must have a justified belief that o is an ideal option for her8:

This abbreviation together with the abbreviation �6 given above relate intention with belief 
and desire, in line with existing theories of intention [3, 17].

Agent � ’s influencing goal �G in the cognitive planning problem is then defined as 
follows:

6.4  Example of interaction

At every step k of the interaction with agent � , agent � tries to find a solution for the cogni-
tive planning problem ⟨Σk

base
,Op, �G⟩ . This is the core aspect of the informative phase. If 

it can find it, it proceeds with its execution and then interaction stops. Otherwise, it enters 
the exploratory phase in order to gather information about agent � ’s cognitive state. The 
exploratory phase is handled by the belief revision module. After having revised its belief 
base in the light of the information Σk

input
 provided by agent � , agent � moves to step k + 1 . 

We suppose that

Let us illustrate an example of interaction. It is easy to verify that the cognitive planning 
problem ⟨Σ0

base
,Op, �G⟩ has no solution. The reason is that in the initial situation agent � 

lacks information about agent � ’s desires. Therefore, it does not know how to influence her.
Thus, agent � enters the exploratory phase during which agent � discloses her actual 

desires to agent � . Let us suppose Σ0
input

= {���(�,Γ�)} with

���������(�, o)
def
= △� �����(�, o) ∧ ������ (�, o).

�G

def
=

⋁
o∈Opt

���������(�, o).

Σk+1
core

=Revcore(Σk
core

,Σk
mut

,Σk
input

),

Σk+1
mut

=Revmut(Σk
core

,Σk
mut

,Σk
input

).

8 Our account of potential intention is reminiscent of the JTB (‘justified true belief’) account to knowledge 
[24].



This means that agent � informs agent � that she would like to practice a land activity, with 
medium intensity, which is not exclusively indoor, with low danger, and which can be prac-
ticed both in single and team mode, if its cost is high.

As for step 0, it is easy to verify that the cognitive planning problem ⟨Σ1
base

,Op, �G⟩ has 
still no solution. Indeed, according to agent � ’s beliefs, there is no sport which meets all 
agent � ’s desires.

Therefore, agent � enters a new exploratory phase during which it asks to agent � to 
make a concession, namely, to be less demanding by putting aside some of her desires. Let 
us suppose agent � positively replies to agent � ’s request by dropping the requirement that 
an ideal sport should have a low level of dangerousness. In other words, we have 
Σ1
input

= {���(�,Γ�
�
)} with Γ�

𝔥
= Γ𝔥⧵{dan ↦ low} . Note that at this stage agent � has to 

revise its mutable belief base. In particular, it has to drop the information ���(�,Γ�) from 
its mutable belief base since the new information ���(�,Γ�

�
) is in conflict with it, due to the 

presence of the information �3 in its core belief base.
At step 2, agent � can find a solution plan. In particular, it turns out that the sequence of 

speech acts �1, �2, �3, �4, �5, �6 with

provides a solution for the cognitive planning problem ⟨Σ2
base

,Op, �G⟩ . This means that, by 
performing the sequence of operators �1, �2, �3, �4, �5, �6 at step 2, agent � will induce agent 
� to form a potential intention to choose an activity. In other words, agent � will provide an
effective recommendation to agent �.

The previous interaction between agent � and agent � is schematically illustrated in 
Table 2.

We conclude this section with a general observation about the formulation of the cogni-
tive planning problem for our example. Let � ’s set of operators for option o ∈ Opt relative 
to ⟨Σ2

base
,Op, �G⟩ be defined as follows:

It is easy to verify that the cognitive planning problem ⟨Σ2
base

,Op, �G⟩ has a solu-
tion if and only if there exists o ∈ Opt such that the cognitive planning problem 
⟨Σ2

base
,Op⟨Σ,Op,�G⟩

o
, �G⟩ has a solution. Therefore, in order to solve the cognitive planning

problem ⟨Σ2
base

,Op⟨Σ,Op,�G⟩
o

, �G⟩ , we simply need to linearly order the options in Opt and

Γ� ={env ↦ land, intens ↦ med,∼ loc ↦ indoor, dan ↦ low,

[cost ↦ high] ⇝ soc ↦ mixed}.

�1

def
= convince

(
�,�,𝗏𝖺𝗅(te, dan ↦ med)

)
,

�2

def
= convince

(
�,�,𝗏𝖺𝗅(te, env ↦ land)

)
,

�3

def
= convince

(
�,�,𝗏𝖺𝗅(te, intens ↦ med)

)
,

�4

def
= convince

(
�,�,𝗏𝖺𝗅(te, loc ↦ mixed)

)
,

�5

def
= convince

(
�,�,𝗏𝖺𝗅(te, soc ↦ mixed)

)
,

�6

def
= convince

(
�,�,𝗂𝖽𝖾𝖺𝗅(�, te)

)
.

Op
⟨Σ2

base
,Op,�G⟩

o =
�
convince

�
�,�,���(o, a)

�
∶ ���(o, a) ∈ Σ2

base

�
∪�

convince
�
�,�,�����(�, o)

��
.



solve the cognitive planning problems ⟨Σ,Op⟨Σ,Op,�G⟩
o

, �G⟩ in sequence one after the other
according to the ordering.

The scenario presented in this section does not exhaust the application potential of our 
approach. In a related work [43] we have designed an artificial agent aimed at motivating 
the user to practice a physical activity regularly. The logical specification of the agent was 
made in conformity with motivational interviewing, a counseling method used in clinical 
psychology for eliciting behavior change [47].

6.5  Implementation

This part of the document illustrates the implementation of our artificial assistant. The 
implemented system9 allows us to represent and reason about other agents’ beliefs, desires, 

Table 2  Human–machine 
interaction

Speaker Utterance Phase

� I cannot find any solution. Informative
Could you please tell me what you desire, 
to be able to find the ideal sport for you?

� I would like to practice Exploratory
a land activity,
with medium intensity,
which is not exclusively indoor,
with low danger,
and which can be practiced both
in single and team mode,
if its cost is high.

� I cannot find any solution Informative
which satisfies all your desires.
Could you please make a concession
by putting aside some of them?

� I would like to practice Exploratory
a land activity,
with medium intensity,
which is not exclusively indoor,
and which can be practiced both
in single and team mode,
if its cost is high.

� Tennis is an activity with medium danger ( �1), Informative
whose environment is land ( �2),
with medium intensity ( �3),
which can be practiced both
indoor and outdoor ( �4 ), and
both in single and team mode ( �5).
For all these reasons,
it is the ideal sport for you ( �6).

9 https:// github. com/ iritl ab/ artifi cial_ agent.

https://github.com/iritlab/artificial_agent


Fig. 4  Artificial agent use case 
diagram

and intentions using our NP-complete fragment. The use case diagram in Fig. 4 
represents our system functionality. It considers four use cases: the graphical user 
interface (GUI), the belief revision, the cognitive planning, and the translator module.

The GUI10 is used by the artificial agent to interact with the human agent in order 
to collect information about her desires and preferences and to perform the utterances 
cor-responding to the sequence of speech acts resulting from the planning process. The 
trans-lations module encapsulates the set of reductions showed in Fig. 3. This set of 
reductions is used by both the belief revision and the cognitive planning module. The 
belief revision module revises the belief base with the information provided by the human 
agent, as speci-fied in Sect. 5.2.

The cognitive planning module reads the initial state, the set of actions, and the goal and 
starts to generate candidate plans. We show the detailed system architecture in Fig. 5.

The main implementation of the cognitive planning functionality relies on a brute 
force algorithm based on SAT. It starts with plans of length 1, and enters in a loop. 
At each interaction, the planning module asks the SAT solver to verify whether the plan 
allows to achieve the goal. If no plan of length k is found, the program will increase the 
counter in one and look for a plan of length k+1 . However, it is possible to switch to a 
QBF-based algorithm for cognitive planning that we detail in the next section.

The SAT-based brute force algorithm relies on two facts. First of all, thanks to Proposi-
tion 4, verifying whether a plan is a solution plan can be formulated as a satisfiability 
checking problem of a L

�
+
���

-formula � . Secondly, thanks to Propositions 2 and 3, 
Theorems 2 and 3, the fact that the size of red(�) is polynomial in the size of � and that 
translations tr1 and tr2 are polynomial, we have a polysize reduction of satisfiability checking 
of � to SAT.

10 Note that a 3-D avatar web interface was implemented as the GUI module (see https:// cogni tive- plann 
ing. schm. fr/). It has been developed by the DAVI company (https:// davi. ai/ en/ home/). It behaves in con-
formity with the formal specification given in Sect. 6. In the exploratory phase, it interacts with the human 
user in order to collect information about her desires. Then, in the informative phase, it computes a plans 
consisting of a sequence of assertions aimed at persuading the human to practice a sport in line with her 
preferences.

Fig. 4   Articifial agent use case diagram

https://cognitive-planning.schm.fr/
https://cognitive-planning.schm.fr/
https://davi.ai/en/home/


7  A QBF‑based approach

We present now a QBF encoding for checking plan existence in a cognitive planning problem 
with prefix ∃∀ . Intuitively, a solution plan candidate is non-deterministically chosen ( ∃ ) and 
the validity of this plan is checked ( ∀ ). Moreover, we will empirically compare this QBF-
based approach with the brute force SAT-based approach in terms of time needed for comput-
ing a solution.

7.1  Extension with selectors

We first introduce the new language Lsel
����

 that extends the language L
����

 with selector 
propositional variables in order to represent, within a single formula, different formu-
las of L

����
 depending on the truth value of these selector variables. In other words, for 

any valuation of selectors we can syntactically simplify the formula of Lsel
����

 substitut-
ing selectors by ⊤ or ⊥ to obtain a formula of L

����
 . The idea behind the encoding of 

checking plan existence into QBF is to adapt the reduction process from L+
����

 to L���� 
using selectors so that each valuation of the selectors designates a specific plan candi-
date among all the possible plans for the problem. So we define the following exten-
sion of the language L

����
 called Lsel

����
 as followed:

where � ranges over L0 , � is the special agent in Agt called the ‘machine’, and s ranges 
over Atmsel a countable set of selectors distinct from all other atoms defined in this paper. 
Note that selector variables can be used in implicit beliefs but not in explicit beliefs. We 
also extend the modal language L��� to the language Lsel

���
:

� ∶∶= � ∣ ¬� ∣ � ∧ � ∣ s,

� ∶∶= � ∣ ¬� ∣ � ∧ � ∣ ◻��,

� ∶∶= q ∣ ¬� ∣ � ∧ � ∣ s,

� ∶∶= q ∣ ¬� ∣ � ∧ � ∣ ▪�,

Fig. 5  System architecture



where q ranges over Atm+ and s ranges again over Atmsel . And finally, to add selectors to 
L���� we define the propositional logic language Lsel

����
 built from the set of atomic proposi-

tions Atm++ ∪ Atmsel . In order to propagate the selector variables the right way, we extend 
on Lsel

����
 and Lsel

���
 the definitions of translations tr1 and tr2 respectively to trsel

1
 and trsel

2
 by 

adding to their inductive definitions the two rules:

and we extend the definition of the size of a formula from L��� to a formula from Lsel
���

 by 
adding size(s) = 1 for s ∈ Atmsel.

As we will only use selectors as a technical trick over the reduction process, it is not use-
ful to define semantics for the languages Lsel

����
 and Lsel

���
 . It is sufficient to define, in order 

to designate a particular formula of L
����

 given a fixed valuation Vsel ⊆ Atmsel of selectors, 
a syntactical simplification function �1 ∶ 2Atm

sel

× L
sel
𝖥𝗋𝖺𝗀

→ L
𝖥𝗋𝖺𝗀

 . The formula �1(Vsel,�) is 
the result of the successive applications of all following uniform substitutions on � : [⊤∕s] 
for all s ∈ Vsel and [⊥∕s] for all s ∈ Atmsel⧵Vsel . Moreover, in order to designate a particular 
formula of L���� given a fixed valuation Vsel ⊆ Atmsel of selectors, we define exactly the 
same way another syntactical simplification �2 ∶ 2Atm

sel

× L
sel
𝖯𝗋𝗈𝗉

→ L𝖯𝗋𝗈𝗉 . We then have the 
relations between the reduction processes over languages with or without selectors given in 
Fig. 6.

The following proposition states that the two ways to reduce and simplify a formula 
from Lsel

����
 to L���� , given a valuation of selectors, lead to equisatisfiable propositional 

formulas.

Proposition 6 Given a formula � ∈ L
sel
����

 and a valuation Vsel ⊆ Atmsel of selectors of � , 
the following two propositional formulas in L���� are equisatisfiable:

(The proof is provided in “Appendix”)

7.2  Encoding

For a given cognitive planning problem ⟨Σ,Op, �G⟩ , by Proposition 5 and without loss of 
generality, we can only consider poly-size solution plan candidates of the form �1,… , �k 

trsel
1
(s) = s

trsel
2
(s, x, y) = s

�2

(
Vsel, tr

sel
2

(
trsel
1
(�), 0, size

(
trsel
1
(�)

)))
,

tr2

(
tr1

(
�1(Vsel,�)

)
, 0, size

(
tr1

(
�1(Vsel,�)

)))
.

Fig. 6  Summary of reduction 
processes with selectors Lsel
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with k ≤ ∣Op∣ and �i ≠ �j for all i < j . We define the set of selector variables 
SelOp = {s

𝜖⪯𝜖� ∶ 𝜖, 𝜖� ∈ Op} ⊆ Atmsel and the formula �SelOp
 as the conjunction of the fol-

lowing axioms:

These axioms are constructed in order to set a bijective function between the models of 
�SelOp

 and the solution plan candidates for ⟨Σ,Op, �G⟩ . In the sequel, for a given model of 
�SelOp

 , the corresponding plan will be called the designated plan. Intuitively, we define a 
total order ⪯ between the elements of the designated plan, and other actions from Op are 
not ordered at all. Note that this assumption implies the reflexivity of ⪯ on elements of the 
designated plan and only on these elements of Op . Axiom S1 states that if an action � ∈ Op 
is not ⪯-reflexive, i.e. is not selected in the designated plan, then no other action �� ∈ Op is 
⪯-related with � . The following axioms define asymmetry (S2) and transitivity (S3) of ⪯ on 
elements of the designated plan. Finally, axiom S4 states that ⪯ is total on elements of the 
designated plan.

A plan candidate �1,… , �k is a solution plan for ⟨Σ,Op, �G⟩ if and only if the following 
formula is valid in the class M:

which can be also written as:

Note that for a given i ∈ {1,… , k} , we have

(S1)

⋀
�∈Op

(
¬s

�⪯� →
⋀

�
� ∈ Op

� ≠ �
�

¬s
�⪯�� ∧ ¬s

��⪯�

)

(S2)

⋀
�∈Op

⋀
�
� ∈ Op

� ≠ �
�

(
¬s

�⪯�� ∨ ¬s
��⪯�

)

(S3)

⋀
�∈Op

⋀
�
� ∈ Op

� ≠ �
�

⋀
�
�� ∈ Op

� ≠ �
��

�
� ≠ �

��

(
s
�⪯�� ∧ s

��⪯��� → s
�⪯���

)

(S4)

⋀
�∈Op

⋀
�
� ∈ Op

� ≠ �
�

(
s
�⪯� ∧ s

��⪯�� → s
�⪯�� ∨ s

��⪯�

)

��
�∈Σ

◻��

�
→ ⟨⟨�1⟩⟩… ⟨⟨�k−1⟩⟩⟨⟨�k⟩⟩□��G

(⋀
�∈Σ

◻��

)
→

( ⋀
i∈{1,…,k}

[+���1
]… [+���i−1

]P(�i)

)

∧ [+���1
]… [+���k−1

][+���k
]□��G



In words, if the precondition P(�i) of an operator �i is an explicit belief △���j
 of agent � 

which is added by another operator �j which precedes �i in the plan candidate, then the 
reduction of the test of the precondition of �i into L

����
 is set to ⊤ . Hence, to focus on a par-

ticular designated plan, we can use a selector variable s
�j⪯�i

 to generate a reduction into 
L
sel
����

 depending on the value of this selector by replacing ⊤ by s
�j⪯�i

∨△���j
 . Indeed, if �j 

is selected and precedes �i in a designated plan then [+���j
] should be taken into account in 

the reduction of the precondition, and s
�j⪯�i

 and the reduction are equivalent to ⊤ . Else, if �j 
is not selected or doesn’t precede �i in a designated plan then [+���j

] shouldn’t be taken 
into account in the reduction of the precondition, and s

�j⪯�i
 is equivalent to ⊥ and the reduc-

tion is equivalent to △���j
.

Moreover, if P(�i) contains implicit belief subformulas of the form □�� , the reduction 
of such a subformula is given by:

As previously, we can use a selector variable s
�j⪯�i

 to generate a reduction into Lsel
����

 depend-
ing on the value of this selector by replacing ¬�

�j
 by s

�j⪯�i
∧ ¬�

�j
 . Indeed, if �j is selected 

and precedes �i in a designated plan then s
�j⪯�i

 is equivalent to ⊤ and the disjunct ¬�
�j
 is 

present in the reduction, else s
�j⪯�i

 is equivalent to ⊥ and the disjunct ¬�
�j
 is absent from the 

reduction.
Finally, we can then define a function generating the reduction of the precondition P(�) 

of any action � from a designated plan, depending on all the actions �′ that precede � in the 
designated plan given by a model of �SelOp

 . For � ∈ Op , we define such a function 
Π⪯� ∶ L

����
⟶ L

sel
����

 such that:

For the goal, we proceed in a similar manner to calculate the reduction depending on the 
selector variables, and we obtain the formula of Lsel

����
:

red
(
[+�𝛼𝜖1

]… [+�𝛼𝜖i−1
]P(𝜖i)

)
=

{
⊤ if P(𝜖i) = △�𝛼𝜖j

for some j < i,

red
(
P(𝜖i)

)
otherwise.

red
(
[+���1

]… [+���i−1
]□��

)
= ◻�

(
�
�1
→

(
… → (�

�i−1
→ �)…

))

= ◻�

(( ⋁
j∈{1,…,i−1}

¬�
�j

)
∨ �

)

Π⪯�(p) = p

Π⪯�(�) =

{
s
��⪯� ∨△���� if ∃�� ≠ � ∶ � = △����

� otherwise

Π⪯�(¬�) = ¬Π⪯�(�)

Π⪯�(�1 ∧ �2) = Π⪯�(�1) ∧ Π⪯�(�2)

Π⪯�(◻��) = ◻�

(( ⋁
�
� ∈ Op

� ≠ �
�

s
��⪯� ∧ ¬�

��

)
∨ �

)



It is now easily seen that, depending on the values of selector variables, the following for-
mula of Lsel

����
 represents all possible formulas of L

����
 that allows us to check the validity of 

all plan candidates for the planning problem ⟨Σ,Op, �G⟩:

Proposition 7 Given a plan candidate P = �1,… , �k with k ≤ ∣Op∣ and �i ≠ �j for all i < j , 
if we consider the valuation Vsel of selectors in SelOp such that P is the corresponding des-
ignated plan, then �1

�
Vsel,�⟨Σ,Op,�G⟩

�
≡ red

��⋀
�∈Σ ◻��

�
→ ⟨⟨�1⟩⟩… ⟨⟨�k−1⟩⟩⟨⟨�k⟩⟩□��G

�
.

(The proof is provided in “Appendix”)
Using respectively functions trsel

1
 and trsel

2
 , we can calculate the reduction of �⟨Σ,Op,�G⟩ 

into propositional logic as F⟨Σ,Op,�G⟩ = trsel
2

�
trsel
1
(�⟨Σ,Op,�G⟩), 0, size

�
trsel
1
(�⟨Σ,Op,�G⟩)

��
 and we 

denote by Atm++(F⟨Σ,Op,�G⟩) the set of all propositional variables from Atm++ occurring in 
the formula F⟨Σ,Op,�G⟩ . We then have the following theorem.

Theorem 8 The cognitive planning problem ⟨Σ,Op, �G⟩ has a solution plan iff the follow-
ing quantified boolean formula is true:

(The proof is provided in “Appendix”)
This theorem allows us to check plan existence and to compute, when exists, a solution 

plan from the truth values of selectors given by a QBF solver.

7.3  Experimental comparison

In this section, we present the experimental trials conducted in order to test our imple-
mented cognitive planning system on the artificial assistant application that we introduced. 

�P = ◻�

(( ⋁
�∈Op

s
�⪯� ∧ ¬�

�

)
∨ �G

)

�⟨Σ,Op,�G⟩ = �SelOp
∧

���
�∈Σ

◻��

�
→

�
�∈Op

�
s
�⪯� → Π⪯�

�
P(�)

��
∧ �P

�

Table 4  Translator module and 
TouIST solver processing times 
(in s)

Plan size Translator module TouIST module

Prop. logic QBF MiniSat RAReQS

4 0.004 4.340 0.006 15.890
5 0.003 4.663 0.018 14.819
6 0.005 4.983 0.016 16.428
7 0.013 5.660 0.016 18.472
8 0.012 6.171 0.029 18.912
9 0.013 6.944 0.034 23.712



These experiments evaluate the performance of the SAT-based and the QBF-based 
approaches of the planning module, in integration with the belief revision module. The 
GUI was not used during the test; therefore, the procedure was carried out on command 
line mode.

In order to perform the test we generate first a set of desires of the human in differ-
ent input files. These input files are processed by the belief revision module sequentially 
in order to generate the mutable part of the belief base. Second, the translator module is 
called to generate the initial state and the goal. Finally, the planning module is called, 
using MiniSat11 when SAT-based approach is selected, or RAReQS12 when QBF-
approach is selected.

In the experimental analysis the bound for the length of a plan was arbitrarily set to 9. 
Nonetheless, in a dialogical context like the one investigated in Sect. 6, we do not expect 
a human to be able to process sequences of speech acts of much greater length due to 
her cognitive limitations. The comparison of computation times for the SAT-based and the 
QBF-based approach given in Fig. 7 shows that each approach should be preferred depend-
ing on the length of the cognitive plan. When the size of the computed plan is strictly 
shorter than 6 than the brute force approach outperforms the QBF-based approach. For 
plans strictly larger than 6 the QBF-based approach outperforms the brute force approach, 
and the performance of the former is exponentially better than the performance of the lat-
ter. Since we do no know the length of the cognitive plan before, the parallel execution of 
both approaches could be used to generate efficiently such a plan.13

To identify possible bottlenecks during the process, we decomposed the amount of 
execution time spent by each module in the system. Table  3 indicates, for different 
maximum lengths of the plan sought (column 1), the time taken to find this plan with 
the SAT approach (column 2) and with the QBF approach (column 3). We can observe 
a very clear increase in the difference between the times taken by each approach in 

Fig. 7  Computation times for the 
SAT-based and the QBF-based 
approach

11 http:// minis at. se/.
12 http:// sat. inesc- id. pt/ ~mikol as/ sw/ areqs/.
13 Of course, this threshold 6 on the length of the plan depends strongly on the test conditions, in particu-
lar the machine used. The experiments tabulated in Tables 3, 4 and plotted in Fig. 7 were conducted using 
an Ubuntu 64-bit Linux virtual machine running on an Intel Core i7 processor with 16 gigabytes RAM. 
However, to evaluate the variations in performance depending on the hardware in which we run the system, 
we also decided to run the experiments in a secondary machine that uses an Intel Core i5 processor with 
16 gigabytes RAM. The results showed that the former outperformed the latest in performance, ranging 
between 60 and 70% faster.

http://minisat.se/
http://sat.inesc-id.pt/%7emikolas/sw/areqs/


favor of the QBF approach. (Note that the times themselves don’t matter much here, 
and it’s the difference that interests us.) In Table  4, we show the times taken by the 
translation module between (that is, the set of transformations shown in Fig. 3 p. 22) 
our modal logic on the one hand and the SAT or QBF approach on the other hand 
(columns 2 and 3). We also present in this table the time used by TouIST to solve the 
propositional logic formula using MiniSat on the one hand, and to solve the QBF for-
mula using RAReQS on the other hand (columns 4 and 5). Finally, it is important to 
note that the calculation times presented are the result of the average between 3 suc-
cessive tests and the difference between tests did not exceed 10% of the average time 
retained. We are aware of the limited value of these results, but the implementation is 
for this work just a proof of concept of its feasibility, and we did not seek to optimize 
the results (which was outside the scope of this work).

8  Conclusion

We have presented a simple logic-based framework for cognitive planning which can be 
used to endow an artificial agent with the capability of influencing a human agent’s beliefs 
and intentions. We have studied complexity of both satisfiability checking for the logic and 
the cognitive planning problem. We have shown its potential for application in the HMI 
domain by formalizing and implementing a HMI scenario in which a human agent and an 
artificial agent interact through dialogue. We have illustrated the interrelations between the 
cognitive planning and the belief revision module in this scenario. Our implementation 
relies on SAT techniques, given the NP-completeness of the satisfiability problem for the 
epistemic language we consider. We compared the brute force approach to cognitive plan-
ning based on a SAT-solver with a competing implementation using a reduction to QBF, 
relative to the time needed to find a valid plan. According to our tests and their implemen-
tation conditions, we observed that the latter beats the former when computing plans with 
length above a given threshold and, moreover, the improvement in performance is expo-
nential in the length of the plan. Nonetheless, when computing plans of length below the 
threshold, the brute force approach turns out to be more efficient than the QBF approach. 
In particular, we recall that the present work does not claim to be an exhaustive comparison 
between the SAT and the QBF approach.

Future work will be devoted to complement our reasoning and planning model with 
a machine learning component. We intend to combine our cognitive planning approach 
with inductive logic programming (ILP) [48], in order to construct an agent’s prior 

Table 3  Planning module 
processing time (in s) for the 
SAT-based and the QBF-based 
approach

Plan size Brute force QBF

4 0.884 22.475
5 3.719 22.546
6 14.561 23.363
7 61.920 26.337
8 225.077 28.245
9 615.434 30.697



information Σ , as used in the formulation of the cognitive planning problem, through 
inductive methods. This will allow the persuader to predict the persuadee’s beliefs, 
like in models of theory of mind based on neural networks [57].

Another direction we intend to explore is an extension of our framework by a nor-
mative component. The formal language and agent architecture we have presented so 
far do not include this component. We plan to endow our conversational agent with 
the capacity to reason about the normative consequences of its behavior and to comply 
with a presupposed set of ethical and legal norms. To this aim, we will extend our epis-
temic language by a deontic component. Examples of ethical and legal norms that are 
relevant for our dialogue scenario are the ethical norm of sincerity (i.e., don’t lie, don’t 
assert facts that you do not believe) or the ethical norm of refraining from manipulat-
ing or deceiving others. The latter requires a proper understanding by the agent of the 
subtle distinction between benevolent, harmless forms of persuasion and malevolent, 
harmful forms that are investigated in some related work on the logical theory of per-
suasion and manipulation [8, 35].

Appendix: Proofs

Proof of Theorem 2

Proof The proof relies on a previous result proved in [39, Theorem 1]. The result shows 
that the set of validities for the full epistemic language L relative to the belief base seman-
tics given in Sect. 4.1 is the same as the set of validities relative to a Kripke-style semantics 
in which an agent’s set of epistemically accessible states at a given state s is a subset of, 
and not necessarily equal to, the set of states that satisfy all formulas in the agent’s belief 
base at s.

From that result, it is straightforward to show that the belief base semantics for the lan-
guage L

����
 is equivalent to a “weaker” semantics exploiting Kripke-like pointed structures 

of the form (N, s) with N = (S,B,⇝, �) and s ∈ S , where

• S is a non-empty set of states,
• B ∶ Agt × S ⟶ 2L0 is a belief base function,
• ⇝ ⊆ S × S is agent � ’s epistemic accessibility relation,
• � ∶ Atm ⟶ 2S is valuation function,

and with respect to which L
����

-formulas are interpreted as follows (boolean cases are 
omitted for simplicity):

In particular, for every � ∈ L
����

 , we have that � is satisfiable in M iff there exists a pointed 
structure (N, s) with N = (S,B,⇝, �) and s ∈ S such that (N, s) ⊧ 𝜑 and

(N, s) ⊧ p ⟺s ∈ 𝜏(p),

(N, s) ⊧ △i𝛼 ⟺𝛼 ∈ B(i, s),

(N, s) ⊧ ◻�𝛼 ⟺∀s� ∈ S, if s ⇝ s� then (N, s�) ⊧ 𝛼.

(BG)⇝(s) ⊆
⋂

𝛼∈B(�,s)

∣∣ 𝛼 ∣∣ N ,



with ∣∣ 𝛼 ∣∣ N = {s� ∈ S ∶ (N, s�) ⊧ 𝛼} and ⇝(s) = {s� ∈ S ∶ s ⇝ s�} . We denote by N the 
subclass of pointed structures (N,  s) satisfying the previous Constraint (BG) and define 
satisfiability of a formula � ∈ L

����
 relative to N in the usual way.14

In the rest of the proof, we are going to show that � is satisfiable in the class N if and 
only if tr1(�) is satisfiable in the class K.

We first prove the left-to-right direction: if � is satisfiable in the class N then tr1(�) is 
satisfiable in the class K.

Let (N, s0) ∈ N with N = (S,B,⇝, �) and s0 ∈ S such that (N, s0) ⊧ 𝜑 . We build the 
Kripke model M = (W,⇒,�) , as follows:

• W = S,
• ⇒=⇝,
• �(p) = �(p) for p ∈ Atm,
• �

(
p△i�

)
= {s ∈ W ∶ � ∈ B(i, s)} for p△i�

∈ Atm+ ⧵ Atm.

By induction on the structure of � ∈ L0 , it is straightforward to show that

The boolean cases are trivial. As for the case � = △i� , we have (N, s) ⊧ △i𝛽 iff � ∈ B(i, s) 
iff s ∈ �

(
p△i�

)
 iff (M, s) ⊧ p△i𝛽

 iff (M, s) ⊧ tr0(△i𝛽).
By induction on the structure of � , we are going to show that (N, s0) ⊧ 𝜑 if and only if 

(M, s0) ⊧ tr1(𝜑) . The atomic case and the boolean cases are straightforward and we do not 
need to prove them. Let us prove the case � = △��.

(⇒ ) (N, s0) ⊧ △�𝛼 means � ∈ B(�, s0) . By definition of M, the latter implies

Moreover, � ∈ B(�, s0) implies ⇝(s0) ⊆ ∣∣ 𝛼 ∣∣ N since (N, s0) satisfies the previ-
ous Constraint (BG). By the previous item (i) and the construction of ⇒ , we have 
∣∣ � ∣∣ N = ∣∣ tr0(�) ∣∣M with ∣∣ tr0(𝛼) ∣∣M = {s� ∈ W ∶ (M, s�) ⊧ tr0(𝛼)} . Therefore, by the 
definition of ⇒ , it follows that

From the previous items (ii) and (iii), we obtain (M, s0) ⊧ p△�𝛼
∧ ▪tr0(𝛼) . Hence, 

(M, s0) ⊧ tr1(△�𝛼).
(⇐ ) Suppose (M, s0) ⊧ tr1(△�𝛼) . The latter means (M, s0) ⊧ p△�𝛼

∧ ▪tr0(𝛼) . Hence, by 
construction of M from N, we have � ∈ B(�, s0) . The latter means that (N, s0) ⊧ △�𝛼.

It is just routine to prove the case � = △i� with i ≠ �.
Finally, let us prove the case � = ◻�� . (N, s0) ⊧ ◻�𝛼 iff ⇝(s0) ⊆ ∣∣ 𝛼 ∣∣ N iff 

⇒(s0) ⊆ ∣∣ tr0(𝛼) ∣∣M — by the previous item (i) and the construction of ⇒ — iff, 
(M, s0) ⊧ ▪tr0(𝛼) iff (M, s0) ⊧ tr1(◻�𝛼).

Thus, (M, s0) ⊧ tr1(𝜑) , since we supposed (N, s0) ⊧ 𝜑.
We are going to prove the right-to-left direction: if tr1(�) is satisfiable in the class K 

then � is satisfiable in the class N.

(i)for every s ∈ S, (N, s) ⊧ 𝛼 if and only if (M, s) ⊧ tr0(𝛼).

(ii)s0 ∈ �
(
p△��

)
.

(iii)⇒(s0) ⊆ ∣∣ tr0(𝛼) ∣∣M .

14 (BG) stands here for “belief groundedness” in the sense that agent � ’s epistemic state ⇝(s) at the actual 
state s is defined from and grounded on its actual belief base B(�, s).



Let M = (W,⇒,�) be a Kripke model and w0 ∈ W such that (M,w0) ⊧ tr1(𝜑) . We build 
the structure N = (S,B,⇝, �) as follows:

• S = {wA ∶ w ∈ W} ∪ {wB ∶ w ∈ W},
• B(i, vx) =

{
� ∈ L0 ∶ v ∈ �(p△i�

)
}
 for i ≠ � or v ≠ w0 or x ≠ A,

• B(�,wA
0
) =

{
𝛼 ∈ L0 ∶ w0 ∈ 𝜋(p△�𝛼

) and ⇒(w0) ⊆ ∣∣ tr0(𝛼) ∣∣M
}
,

• ⇝= {(wA, vB) ∶ w ⇒ v} ∪ {(wB, vB) ∶ w ⇒ v},
• �(p) = {wA ∶ w ∈ �(p)} ∪ {wB ∶ w ∈ �(p)} for p ∈ Atm.

It is easy to verify that, for every � ∈ L0 , {
vB ∈ S ∶ (M, v) ⊧ tr0(𝛼)

}
=
{
vB ∈ S ∶ (N, vB) ⊧ 𝛼

}
 . Therefore, by construction of ⇝ , 

⇒(w0) ⊆ ∣∣ tr0(𝛼) ∣∣M is equivalent to ⇝(wA
0
) ⊆ ∣∣ tr0(𝛼) ∣∣ N . Again by construction of ⇝ , 

the latter is equivalent to ⇝(wA
0
) ⊆ ∣∣ tr0(𝛼) ∣∣ N . Thus,

The previous item (iv) guarantees that (N,wA
0
) ∈ N.

By induction on the structure of � , we are going to show that (M,w0) ⊧ tr1(𝜑) if and 
only if (N,wA

0
) ⊧ 𝜑 . The atomic case and the boolean cases are straightforward and we do 

not need to prove them. Let us prove the case � = △��.
(M,w0) ⊧ tr1(△�𝛼) is equivalent to (M,w0) ⊧ p△�𝛼

∧ ▪tr0(𝛼) . The latter is equivalent 
to w0 ∈ �(p△��

) and ⇒(w0) ⊆ ∣∣ tr0(𝛼) ∣∣M . By definition of B(�,wA
0
) , the latter is equiva-

lent to � ∈ B(�,wA
0
) which in turn is equivalent to (N,wA

0
) ⊧ △�𝛼.

Let us prove the case � = △i� with i ≠ �.
Suppose i ≠ � . Then, (M,w0) ⊧ tr1(△i𝛼) is equivalent to (M,w0) ⊧ p△i𝛼

 . The latter is 
equivalent to w0 ∈ �(p△i�

) . By definition of B(i,wA
0
) for i ≠ � , the latter is equivalent to 

� ∈ B(i,wA
0
) which in turn is equivalent to (N,wA

0
) ⊧ △i𝛼.

Finally, let us prove the case � = ◻�� . (M,w0) ⊧ tr1(◻�𝛼) is equivalent to 
(M,w0) ⊧ ▪tr0(𝛼) . The latter is in turn equivalent to ⇒(w0) ⊆ ∣∣ tr0(𝛼) ∣∣M.

Therefore, by construction of ⇝ , ⇒(w0) ⊆ ∣∣ tr0(𝛼) ∣∣M is equivalent to 
⇝(wA

0
) ⊆ ∣∣ tr0(𝛼) ∣∣ N . Again by construction of ⇝ , the latter is equivalent to 

⇝(wA
0
) ⊆ ∣∣ tr0(𝛼) ∣∣ N . The latter means that (N,wA

0
) ⊧ ◻�𝛼.

Thus, (N,wA
0
) ⊧ 𝜑 , since we supposed (M,w0) ⊧ tr1(𝜑) .   ◻

Proof of Theorem 4

Proof Suppose we want to check whether a formula � ∈ L
����

 is satisfiable. Thanks to The-

orems 2 and 3, we just need to check whether tr2
(
tr1(�), 0, size

(
tr1(�)

))
∈ L���� is satisfi-

able in propositional logic. The size of tr2
(
tr1(�), 0, size

(
tr1(�)

))
 is clearly polynomial in 

the size of � since, as we have shown above, tr1 and tr2 are polynomial translations. We 
know that satisfiability checking in propositional logic (SAT problem) is NP-complete [62, 
Theorem 7.37]. Thus, we can conclude that checking satisfiability of formulas in L

����
 is in 

NP.

(iv) for every 𝛼 ∈ L0,⇒(w0) ⊆ ∣∣ tr0(𝛼) ∣∣Miff ⇝(wA
0
) ⊆ ∣∣ tr0(𝛼) ∣∣ N .



NP-hardness follows from the evident fact that there exists a polysize reduction of SAT 
to satisfiability checking of L

����
-formulas.   ◻

Proof of Proposition 1

Proof The second and third equivalences are valid since the binary relation ⇝+i𝛼
⊆ M ×M 

such that (B,Cxt) ⇝+i�
(B�,Cxt�) iff B� = B+i� and Cxt� = Cxt is functional (i.e., serial and 

deterministic). We prove the first and fourth equivalence.
Let us start with the first equivalence, case �� = △i�:

The case �′ ≠ △i� is provable by induction on the structure of �′ in a straightforward 
manner.

Let us move to the fourth equivalence, case i = �:

The case case i ≠ � is analogous:

This concludes the proof. ◻

Proof of Proposition 2

Proof The proof is by induction on the structure of the formula �.
Cases � = p and � = △i� are evident.

(B,Cxt) ⊧ [+i𝛼]△i 𝛼 ⟺ (B+i𝛼 ,Cxt) ⊧ △i𝛼,

⟺ 𝛼 ∈ B
+i𝛼

i
,

⟺ 𝛼 ∈ Bi ∪ {𝛼},

⟺ (B,Cxt) ⊧ ⊤.

(B,Cxt) ⊧ [+�𝛼]◻�𝛼
�

⟺ (B+�𝛼 ,Cxt) ⊧ ◻�𝛼
�,

⟺ ∀B� ∈ Cxt, if B+�𝛼
R�B

� then (B�,Cxt) ⊧ 𝛼
�,

⟺ ∀B� ∈ Cxt, if
(
∀𝛽 ∈ B� ∪ {𝛼},B�

⊧ 𝛽
)
then

(B�,Cxt) ⊧ 𝛼
�,

⟺ ∀B� ∈ Cxt, if
(
BR�B

� and B�
⊧ 𝛼

)
then

(B�,Cxt) ⊧ 𝛼
�,

⟺ (B,Cxt) ⊧ ◻�(𝛼 → 𝛼
�).

(B,Cxt) ⊧ [+i𝛼]◻�𝛼
�

⟺ (B+i𝛼 ,Cxt) ⊧ ◻�𝛼
�,

⟺ ∀B� ∈ Cxt, if B+i𝛼R�B
� then (B�,Cxt) ⊧ 𝛼

�,

⟺ ∀B� ∈ Cxt, if BR�B
� then (B�,Cxt) ⊧ 𝛼

�

(since i ≠ �),

⟺ (B,Cxt) ⊧ ◻�𝛼
�.



Case � = ¬� . ¬� ↔ red(¬�) is equal to ¬� ↔ ¬red(�) . The latter is logically 
equivalent to � ↔ red(�) , i.e., for every (B,Cxt) ∈ M , (B,Cxt) ⊧ ¬𝜓 ↔ ¬red(𝜓) 
iff (B,Cxt) ⊧ 𝜓 ↔ red(𝜓) . By induction hypothesis, the latter is valid. Therefore, 
¬� ↔ red(¬�) is valid. Furthermore, red(¬�) is equal to ¬red(�) and, by induction 
hypothesis red(�) ∈ L

����
 . Thus, red(¬�) ∈ L

����
.

Case � = �1 ∧ �2 can be proved in analogous way.
Case � = ◻�� . ◻�� ↔ red(◻��) is equal to ◻�� ↔ ◻�red(�) . By structural 

induction, it is easy to prove the following useful proposition.

Proposition 8 For every � ∈ L0 , red(�) = �.

Thus, by Proposition 8, ◻�� ↔ ◻�red(�) is equal to ◻�� ↔ ◻�� which is valid. 
Hence, ◻�� ↔ red(◻��) is valid. Clearly, red(◻��) ∈ L

����
.

Case � = [+i�]� . We prove this case by induction on the structure of �.
Subcase � = △i� . [+i�]△i � ↔ red

(
[+i�]△i �

)
 is equal to [+i𝛼]△i 𝛼 ↔ ⊤ . 

By Proposition 1 (first equivalence, first case), the latter is valid. Hence, 
[+i�]△i � ↔ red

(
[+i�]△i �

)
 is valid. Clearly, red([+i�]△i �) ∈ L

����
 since 

red([+i𝛼]△i 𝛼) = ⊤ and ⊤ ∈ L
����

.
Subcase � = �

� with �′ ≠ △i� . [+i�]�
� ↔ red

(
[+i�]�

�
)
 is equal to [+i�]�

� ↔ red
(
�
�
)
 

which is equal to [+i�]�
� ↔ �

� , by Proposition  8. By Proposition  1 (first equivalence,
second case), the latter is valid. Hence, [+i�]�

� ↔ red
(
[+i�]�

�
)
 with �′ ≠ △i� is

valid. Clearly, red([+i�]�
�) ∈ L

����
 since, by Proposition  8, red([+i�]�

�) = [+i�]�
� and 

[+i�]�
� ∈ L

����
.

Subcase � = ¬� . [+i�]¬� ↔ red
(
[+i�]¬�

)
 is equal to [+i�]¬� ↔ red

(
¬[+i�]�

)
 

which is equal to [+i�]¬� ↔ ¬red
(
[+i�]�

)
 . The latter is logically equiva-

lent to ¬[+i�]¬� ↔ red
(
[+i�]�

)
 . By Proposition  1 (second equivalence), 

¬[+i�]¬� ↔ [+i�]� is valid. Therefore, ¬[+i�]¬� ↔ red
(
[+i�]�

)
 is logically equiv-

alent to [+i�]� ↔ red
(
[+i�]�

)
 . By induction hypothesis, the latter is valid. It fol-

lows that [+i�]¬� ↔ red
(
[+i�]¬�

)
 is valid too. Clearly, red

(
[+i�]¬�

)
∈ L

����

since red
(
[+i�]¬�

)
= red

(
¬[+i�]�

)
= ¬red

(
[+i�]�

)
 and, by induction hypothesis

red
(
[+i�]�

)
∈ L

����
.

Subcase � = �1 ∧ �2 is proved in an analogous way.
Subcase � = ◻��

� and i = � . [+��]◻��
� ↔ red

(
[+��]◻��

�
)
 is equal to

[+��]◻��
� ↔ red

(
◻�(� → �

�)
)
 which is equal to [+��]◻��

� ↔ ◻�red(� → �
�) . 

By Proposition 8, the latter is equal to [+��]◻��
� ↔ ◻�(� → �

�) 
which in turn, by Proposition 1 (fourth equivalence), is valid. Thus, 
[+��]◻��

� ↔ red
(
[+��]◻��

�
)

is valid too. Clearly, red
(
[+��]◻��

�
)
∈ L

����
 since

red
(
[+��]◻��

�
)
= red

(
◻�(� → �

�)
)
= ◻�red(� → �

�) and, by Proposition   8, 
◻�red(� → �

�) ∈ L
𝖥𝗋𝖺𝗀

.
Subcase � = ◻��

� and i ≠ � can be proved in an analogous way.
Subcase � = [+j�]� . By induction hypothesis, we have that [+j�]� ↔ red([+j�]�) 

is valid and red([+j�]�) ∈ L
����

 . Thus, [+j�]� and red([+j�]�) are logically equivalent. 
Hence, [+i�][+j�]� and [+i�]red([+j�]�) are logically equivalent too.



By induction hypothesis, since red([+j�]�) ∈ L
����

 , we also have that
[+i�]red([+j�]�) ↔ red

(
[+i�]red([+j�]�)

)
 is valid. Thus, [+i�]red([+j�]�) and

red
(
[+i�]red([+j�]�)

)
 are logically equivalent.

Therefore, we can conclude that [+i�][+j�]� and red
(
[+i�]red([+j�]�)

)
 are logically

equivalent too and, moreover, [+i�][+j�]� ↔ red
(
[+i�]red([+j�]�)

)
 is valid. Hence,

[+i�][+j�]� ↔ red([+i�][+j�]�) is also valid since it is equal to the latter.
Checking that red([+i�][+j�]�) ∈ L

����
 is easy. We have 

red([+i�][+j�]�) = red
(
[+i�]red([+j�]�)

)
 and, by induction hypothesis, 

red([+j�]�) ∈ L
����

 . Thus, again by induction hypothesis, red
(
[+i�]red([+j�]�)

)
∈ L

����
 . 

Hence, red([+i�][+j�]�) ∈ L
����

 .   ◻

Proof of Proposition 4

Proof We first prove the left-to-right direction, namely, that Σ ⊧
M
𝜑 implies

⊧
M

�⋀
𝛼∈Σ ◻�𝛼

�
→ 𝜑 , with � ∈ L

+
����

 and Σ ⊂ L0 . Suppose Σ ⊧
M
𝜑 and, towards a 

contradiction,  ⊧
M

�⋀
𝛼∈Σ ◻�𝛼

�
→ 𝜑 . The latter means that we can find (B,Cxt) ∈ M

with B = (B1,… ,Bn,V) such that (B,Cxt) ⊧
⋀

𝛼∈Σ ◻�𝛼 and (B,Cxt) ̸⊧ 𝜑 . We define
Cxt� =

(
Cxt ∩Ri(B)

)
, with Ri(B) = {B� ∈ S ∶ BRiB

�} . Since (B,Cxt) ⊧
⋀

𝛼∈Σ ◻�𝛼 , it is
straightforward to verify that Cxt� ⊆ S(Σ) . Moreover, by induction on the structure of � 
and the fact that (B,Cxt) ̸⊧ 𝜑 , it is routine to verify that (B,Cxt�) ̸⊧ 𝜑 which contradicts the 
initial assumption Σ ⊧

M
𝜑.

Let us prove the right-to-left direction. Suppose ⊧
M

�⋀
𝛼∈Σ ◻�𝛼

�
→ 𝜑 and, towards

a contradiction, Σ ⊧̸
M
𝜑 . The latter means that that we can find (B,Cxt) ∈ M with 

B = (B1,… ,Bn,V) such that Cxt ⊆ S(Σ) and (B,Cxt) ̸⊧ 𝜑 . Since Cxt ⊆ S(Σ) , clearly 
(B,Cxt) ⊧

⋀
𝛼∈Σ ◻�𝛼. Thus, (B,Cxt) ⊧

⋀
𝛼∈Σ ◻�𝛼 ∧ ¬𝜑 which contradicts the initial

assumption. ◻

Proof of Theorem  6

Proof By Proposition  5, a cognitive planning problem ⟨Σ,Op, �G⟩ has a solution plan 
if and only if it has a poly-size solution plan. Consider a poly-time non-deterministic 
Turing machine with an NP-oracle ( Σ�

2
-Turing machine). It begins with an empty plan and 

branches over all poly-size plans of length k ≤ ∣Op∣ choosing non deterministically oper-
ators to add to the plan. It accepts if Σ ⊧

M
⟨⟨𝜖1⟩⟩… ⟨⟨𝜖k⟩⟩□�𝛼G i.e., using Proposition 4,

if ¬
��⋀

�∈Σ ◻��
�
→ ⟨⟨�1⟩⟩… ⟨⟨�k⟩⟩□��G

�
 is unsatisfiable in the class M . Thanks to

Theorem 5, unsatisfiability of this L+
����

 formula can be checked by the NP-oracle. When 
k = ∣Op∣ and the formula is satisfiable, the Turing machine rejects.   ◻

Proof of Theorem  7

Proof It is well known that checking satisfiability of a ∃∀ QBF is Σ�
2
-hard as it is pos-

sible to simulate an alternating Turing machine in polynomial time with 2 alternations 



and starting in an existential state, that decides all the problems in the class Σ�
2
 . Let 

� = ∃x1 …∃xn∀y1 …∀ym�(x1,… , xn, y1,… , ym) be a quantified boolean formula (QBF) 
in prenex normal form. We consider the cognitive planning problem ⟨Σ,Op, �G⟩ where:

where

We want to prove that ⟨Σ,Op, �G⟩ has a solution plan if and only if � is true.
If ⟨Σ,Op, �G⟩ has a solution plan, then by Proposition  5, it has a poly-size solu-

tion plan P = �1,… , �k with k ≤ ∣Op∣ and �i ≠ �j for all i < j . It is easily seen that 
for each i ∈ {1,… , n} , exactly one action of either +� △� xi or +� △� ¬xi is in 
the plan P. Indeed on the one hand, at most one of these actions is in the plan because 
¬△� xi ∨ ¬△� ¬xi ∈ Σ . And on the other hand, at least one is in the plan because of the 
goal △�xi ∨△�¬xi.

Then, we can match each solution plan candidate for ⟨Σ,Op, �G⟩ to a valuation v of 
propositional variables in {x1,… , xn} . Hence, a solution plan candidate for ⟨Σ,Op, �G⟩ is 
given by ⟨⟨�1⟩⟩… ⟨⟨�n⟩⟩ , with for all i ∈ {1,… , n}:

Such a plan is a solution plan if and only if Σ ⊧
M
⟨⟨𝜖1⟩⟩… ⟨⟨𝜖n⟩⟩□�𝛼G which can be also 

written as:

Given that, on the one hand P(𝜖i) = ⊤ for all i ∈ {1,… , n} and red([+�𝛼]⊤) = ⊤ , and on
the other hand red([+��]◻��

�) = red
(
◻�(� → �

�)
)
= ◻�

(
red(¬� ∨ �

�)
)
 , when apply-

ing recursively the reduction from L+
����

 to L
����

 we obtain:

Σ = {¬△� xi ∨ ¬△� ¬xi ∶ i ∈ {1,… , n}}

Op = {+� △� xi,+� △� ¬xi ∶ i ∈ {1,… , n}}

P(+� △� xi) = ⊤ for all i ∈ {1,… , n}

P(+� △� ¬xi) = ⊤ for all i ∈ {1,… , n}

𝛼G =
⋀

i∈{1,…,n}

(
△�xi ∨△�¬xi

)
∧ encode

(
𝜑(x1,… , xn, y1,… , ym)

)

encode(xi) = △�xi

encode(¬xi) = △�¬xi

encode(yi) = △�yi

encode(¬yi) = ¬△� yi

encode(�1 ∧ �2) = encode(�1) ∧ encode(�2)

encode(�1 ∨ �2) = encode(�1) ∨ encode(�2)

𝜖i =

{
+� △� ¬xi if v ̸⊧ xi
+� △� xi if v ⊧ xi

Σ ⊧
M

( ⋀
i∈{1,…,n}

[+�𝛼𝜖1
]… [+�𝛼𝜖i−1

]P(𝜖i)

)
∧

(
[+�𝛼𝜖1

]… [+�𝛼𝜖n−1
][+�𝛼𝜖n

]□�𝛼G

)



Then, by Propositions 2 and 4, Σ ⊧
M
⟨⟨𝜖1⟩⟩… ⟨⟨𝜖n⟩⟩□�𝛼G if and only if the following for-

mula Φ ∈ L
����

 is valid in class M:

That is verified, by Theorems  2 and  3, if and only if the following formula F ∈ L���� , 
resulting from the successive applications of tr1 then tr2 to the previous one, is valid in 
propositional logic:

where y = size(tr1(Φ)) , and

We consider partial valuations of only propositional variables {r0,z ∶ 0 ≤ z ≤ y} in F with 
the k variables {r0,zi ∶ 0 ≤ i < k} being true, the other ones being false. Without loss of 
generality, we can choose any zk ∈ {0,… , y}⧵{zi ∶ 0 ≤ i < k} to obtain a new partial valu-
ation {r0,zi ∶ 0 ≤ i < k + 1} from the latter by switching the truth value of one propositional 
variable r0,zk from false to true, and repeat this process until k = y + 1.

Let Fk = Ak → Bk where A0 = B0 = ⊤ and

red
(

⟨⟨�1⟩⟩… ⟨⟨�n⟩⟩□��G
)

=□�

((

⋁

i ∈ {1,… , n}
v ⊧̸ xi

¬△� ¬xi

)

∨
(

⋁

i ∈ {1,… , n}
v ⊧ xi

¬△� xi

)

∨ �G

)

Φ =

(⋀
𝛼∈Σ

◻�𝛼

)
→ ◻�

(( ⋁
i ∈ {1,… , n}

v ̸⊧ xi

¬△� ¬xi

)
∨

( ⋁
i ∈ {1,… , n}

v ⊧ xi

¬△� xi

)
∨ 𝛼G

)

F =

( ⋀
i∈{1,…,n}

⋀
0≤z≤y

(
r0,z → (¬p△�xi (z)

∨ ¬p△�¬xi (z)
)
))

→

⋀
0≤z≤y

[
r0,z →

[( ⋁
i ∈ {1,… , n}

v ̸⊧ xi

¬p△�¬xi (z)

)
∨

( ⋁
i ∈ {1,… , n}

v ⊧ xi

¬p△�xi (z)

)
∨…

…

(( ⋀
i∈{1,…,n}

(
p△�xi (z)

∨ p△�¬xi (z)

))
∧ encode2

(
𝜑(x1,… , xn, y1,… , ym), z

))]]

encode2(xi, z) = p△�xi (z)

encode2(¬xi, z) = p△�¬xi (z)

encode2(yi, z) = p△�yi (z)

encode2(¬yi, z) = ¬p△�yi (z)

encode2(�1 ∧ �2, z) = encode2(�1, z) ∧ encode2(�2, z)

encode2(�1 ∨ �2, z) = encode2(�1, z) ∨ encode2(�2, z)



It is easily seen that for a given partial valuation {r0,zi ∶ 0 ≤ i < k} we can simplify con-
junctions on the left part and the right part of the implication in F to obtain Fk . Hence, the 
truth value of F and Fk is the same for this partial valuation.

Let us now prove that any complete valuation V is a model of F (i.e. F is valid in 
propositional logic) if and only if given the partial valuation v of propositional variables 
in {x1,… , xn} and for any valuation of propositional variables in {y1,… , ym} we have 
�(x1,… , xn, y1,… , ym) is true (i.e. the QBF � is true). The proof is by induction on the
number k of true propositional variables from {r0,z ∶ 0 ≤ z ≤ y} in the valuation V.

Case k = 0 is evident as F0 = ⊤ → ⊤.
Case k + 1 : Assume that Fk is true for a given partial valuation with k true propositional 

variables {r0,zi ∶ 0 ≤ i < k}.
On the one hand, if Ak is false, then Ak+1 is also false and Fk+1 is true.
On the other hand, if Ak is true, then Bk is true. In this case, if Ak+1 is false, Fk+1 is true 

again. Suppose that Ak+1 is true, then we have 
⋀

i∈{1,…,n}

�
¬p△�xi (zk )

∨ ¬p△�¬xi (zk )

�
 is true.

Hence, we have ¬p△�xi (zk )
∨ ¬p△�¬xi (zk )

 is true for any i ∈ {1,… , n} . Then, at least one of 
the three following cases holds:

(1) ¬p△�¬xi (zk )
 is true for at least one xi such that v ̸⊧ xi , then the disjunct �⋁

i ∈ {1,… , n}

v ̸⊧ xi

¬p△�¬xi (zk )

�
 is true and Bk+1 and Fk+1 are true.

(2) ¬p△�xi (zk )
 is true for at least one xi such that v ⊧ xi , then the disjunct �⋁

i ∈ {1,… , n}

v ⊧ xi

¬p△�xi (zk )

�
 is true and Bk+1 and Fk+1 are true.

(3) ¬p△�xi (zk )
 is true and ¬p△�¬xi (zk )

 is false for all xi such that v ̸⊧ xi , and ¬p△�xi (zk )
 is false 

and ¬p△�¬xi (zk )
 is true for all xi such that v ⊧ xi , then the disjunct ��⋀

i∈{1,…,n}

�
p△�xi (zk )

∨ p△�¬xi (zk )

��
∧ encode2

�
�(x1,… , xn, y1,… , ym), zk

��
 is true and

Bk+1 and Fk+1 are true if and only if �(x1,… , xn, y1,… , ym) is true for the partial valuation v 
of propositional variables in {x1,… , xn} completed by any valuation of propositional varia-
bles in {y1,… , ym}.

Ak+1 =Ak ∧
⋀

i∈{1,…,n}

(
¬p△�xi (zk )

∨ ¬p△�¬xi (zk )

)

Bk+1 =Bk ∧

[( ⋁
i ∈ {1,… , n}

v(xi) = 0

¬p△�¬xi (zk )

)
∨…

…

( ⋁
i ∈ {1,… , n}

v(xi) = 1

¬p△�xi (zk )

)
∨…

…

(( ⋀
i∈{1,…,n}

(
p△�xi (zk )

∨ p△�¬xi (zk )

))
∧…

… encode2
(
�(x1,… , xn, y1,… , ym), zk

))]



Indeed, p△�¬xi (zk )
 is true for all xi such that v ̸⊧ xi and p△�xi (zk )

 is true for all xi such that 
v ⊧ xi . On the one hand, 

⋀
i∈{1,…,n}

�
p△�xi (zk )

∨ p△�¬xi (zk )

�
 is true. On the other hand, we

compare the truth values of encode2
(
�(x1,… , xn, y1,… , ym), zk

)
 and 

�(x1,… , xn, y1,… , ym) . For all i ∈ {1,… , n} the truth values of propositional variables
p△�xi (zk )

 and p△�¬xi (zk )
 match respectively with the truth values of litterals xi and ¬xi given by

valuation v. Moreover, for all i ∈ {1,… ,m} the truth value of propositional variable 
p△�yi (zk )

 matches with the truth value of propositional variable yi . Then 
encode2

(
�(x1,… , xn, y1,… , ym), zk

)
 is true for any complete valuation of variables 

{p△�yi (zk )
∶ 1 ≤ i ≤ m} if and only if �(x1,… , xn, y1,… , ym) is true for the partial valuation 

v of propositional variables in {x1,… , xn} completed by any valuation of propositional var-
iables in {y1,… , ym}.

We can conclude that F is true for any valuation, and then F is valid in propositional 
logic, if and only if v is a valuation of existentially quantified variables for which � is true. 
Then ⟨Σ,Op, �G⟩ has a solution plan if and only if � is true. This proves that deciding plan 
existence for ⟨Σ,Op, �G⟩ is Σ�

2
-hard.   ◻

Proof of Proposition 6

Proof Let a formula � ∈ L
sel
����

 and a valuation Vsel ⊆ Atmsel of selectors of � . The 
constants ⊥ and ⊤ are respectively represented in Lsel

����
 by (p ∧ ¬p) and ¬(p ∧ ¬p) 

for one propositional variable p. Without loss of generality, we can consider that 
size(⊥) = size(⊤) = 1 , because these constants can be represented instead by fresh propo-
sitional variables p

⊥
 and p

⊤
 adding two conjuncts to formula 𝜑� = 𝜑[p

⊥
∕⊥][p

⊤
∕⊤] such

that 𝜓 = 𝜑
� ∧

(
p
⊥
↔ (p ∧ ¬p)

)
∧
(
p
⊤
↔ ¬(p ∧ ¬p)

)
 and � are equisatisfiable. Under this

assumption, we prove by induction on the structure of �′ that A
�� = B

��,

Indeed, in the case �� = s , on the one hand Bs = size
(
trsel
1
(s)

)
= 1 . On the other hand,

when s ∈ Vsel we have As = size
(
tr1

(
𝜎1(Vsel, s)

))
= size(⊤) = 1 , and when s ∉ Vsel we

have As = size
(
tr1

(
𝜎1(Vsel, s)

))
= size(⊥) = 1 . All other induction cases are evident. Given

this result for �′ , is it easily seen that A
�
= B

�
.

Let now prove that the following syntactic equality between formulas:

Again, it is easily seen that it suffices to prove this result for the formula �′ . The proof is by 
induction on the structure of �′.

Cases �� = p , �� = △i� , �� = s , �� = ¬�0 and �� = �1 ∧ �2 are evident.
Case �� = ◻�� is verified because A

�
= B

�
 . Indeed, we have the following syntactic 

equality between formulas:

where

⎧⎪⎨⎪⎩

A
�� =size

�
tr1

�
�1(Vsel,�

�)
��

B
�� =size

�
trsel
1
(��)

�

tr2

(
tr1

(
�1(Vsel,�)

)
, 0,A

�

)
= �2

(
Vsel, tr

sel
2

(
trsel
1
(�), 0,B

�

))



In conclusion, as we have the result of syntactical equality for � , we have the expected 
result of equisatisfiability for � .   ◻

Proof of Proposition 7

Proof Let P = �1,… , �k a sequence of actions such that k ≤ ∣Op∣ and �i ≠ �j for all i < j . 
We consider the valuation Vsel of selectors in SelOp such that P is the corresponding desig-
nated plan. First, we are going to prove the three following properties: 

a. 𝜎1(Vsel,𝜑SelOp
) ≡ ⊤

b. ∀i ∈ {1,… , k} ∶ �1

(
Vsel,Π⪯�i

(
P(�i)

))
≡ red

(
[+���1

]… [+���i−1
]P(�i)

)

c. �1(Vsel,�P) ≡ red
(
[+���1

]… [+���k−1
][+���k

]□��G

)

Property (a.) is trivially verified because the designated plan is a particular plan candi-
date, and then it corresponds to a model of �SelOp

.
We prove property (b.) by induction on the structure of P(�i) ∈ L

����
 . We give here only 

the explicit and implicit belief cases. Other cases propagate the property trivially following 
the inductive definitions of �1 , Π⪯� and red.

• if P(�i) = △���� then

– when �� = �j with j < i we have 𝜎1(Vsel, s𝜖�⪯𝜖i ) = ⊤ and then �1
(
V
sel
,Π⪯�i

(
P(�

i
)
))

= 𝜎1

(
V
sel
, s

𝜖�⪯𝜖i
∨△�𝛼𝜖�

))
≡ ⊤ = red

(
[+�𝛼𝜖1

]… [+�𝛼𝜖i−1
]P(𝜖

i
)
)

– when �� = �j with j ≥ i , or �� ∈ Op⧵P , we have 𝜎1(Vsel, s𝜖�⪯𝜖i ) = ⊥ and then
�1

(
V
sel
,Π⪯�i

(
P(�

i
)
))

= �1

(
V
sel
, s

��⪯�i
∨△����

))
≡ △���� = red

(
[+���1

]… [+���i−1
]P(�

i
)
)

• if P(�i) = ◻�� then �1
�
Vsel,Π⪯�i

�
P(�i)

��
= �1

�
Vsel, ◻�

��⋁
�
� ∈ Op

�i ≠ �
�

s��⪯�i ∧ ¬���

�
∨ �

��

≡ ◻�

�⋁
j ∈ {1,… , i − 1}

¬�
�j
∨ �

�
= red

�
[+���1

]… [+���i−1
]P(�i)

�

Property (c.) is proved as followed:

�1(Vsel,�P) = �1

(

Vsel, □�

((

⋁

�∈Op
s�⪯� ∧ ¬��

)

∨ �G

))

≡ □�

((

⋁

i∈{1,…,k}
¬��i

)

∨ �G

)

= red
(

[+���1 ]… [+���k−1 ][+���k ]□��G
)

Finally, from the properties (a.), (b.) and (c.), and the inductive definitions of �1 and red , 
we have:

⋀
0≤z≤A

�

(
rx,z → tr2

(
�, z,A

�

))
= �2

(
Vsel,

⋀
0≤z≤B

�

(
rx,z → trsel

2

(
�, z,B

�

)))



◻

Proof of Theorem 8

Proof (⇒ ) Suppose that the cognitive planning problem ⟨Σ,Op, �G⟩ has a solution plan. Then, 
by Proposition 5, we know that there is a solution plan P = �1,… , �k with k ≤ ∣Op∣ and �i ≠ �j 
for all i < j . By definition of solution plan, we have Σ ⊧

M
⟨⟨𝜖1⟩⟩… ⟨⟨𝜖k⟩⟩□�𝛼G , and then using 

respectively Propositions 4 and 2, red
��⋀

�∈Σ ◻��

�
→ ⟨⟨�1⟩⟩… ⟨⟨�k⟩⟩□��G

�
 is valid in 

the class M . We consider the valuation Vsel of selectors in SelOp such that P is the correspond-
ing designated plan (i.e. ∀i, j such that 1 ≤ i ≤ j ≤ k , we have 𝜎1(v, s𝜖i⪯𝜖j ) = ⊤ and 
∀�, �� ∈ Op⧵P we have 𝜎1(v, s𝜖⪯𝜖� ) = ⊥ ). Then, by Proposition 7, �1(Vsel,�⟨Σ,Op,�G⟩) is valid
in the class M , by Theorem 2,tr1

�
�1(Vsel,�⟨Σ,Op,�G⟩)

�
 is valid in the class K , and by Theorem 3

and Proposition 6, �2
�
Vsel,F⟨Σ,Op,�G⟩

�
 is valid in propositional logic. Hence, Vsel gives a valua-

tion of selectors such that for all truth values of other variables in F⟨Σ,Op,�G⟩ this latter formula 
is true. Then the quantified boolean formula Q is true.

(⇐) Let v a valuation of variables in SelOp for which Q is true. Note that, in this case, 
�SelOp

 is evaluated to ⊤ as it remains as a conjunct of F⟨Σ,Op,�G⟩ after application of trsel
1

 and 
trsel
2

 on �⟨Σ,Op,�G⟩ . We have to prove that the corresponding designated plan P = �1,… , �k 
with k ≤ ∣Op∣ is a solution plan. As the quantified boolean formula Q is true in particular
for the valuation v of existentially quantified variables, �2

�
Vsel,F⟨Σ,Op,�G⟩

�
 is valid in propo-

sitional logic. Moreover, by Propositions 6 and 7, we have �2
�
Vsel,F⟨Σ,Op,�G⟩

�
 is equisatisfi-

able to the reduction into propositional logic of 
�⋀

�∈Σ ◻��
�
→ ⟨⟨�1⟩⟩… ⟨⟨�k⟩⟩□��G

using respectively functions red , tr1 and tr2 . Then, using respectively Theorems 2, 3, Prop-
ositions 2 and 4 we can deduce that Σ ⊧

M
⟨⟨𝜖1⟩⟩… ⟨⟨𝜖k⟩⟩□�𝛼G (i.e. P is a solution plan).  

◻
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�1(Vsel,�⟨Σ,Op,�G⟩) =
��

�∈Σ

◻��

�
→ �1

�
Vsel,

�
�∈Op

�
s
�⪯� → Π⪯�

�
P(�)

��
∧ �P

�

≡

��
�∈Σ

◻��

�
→

�
i∈{1,…,k}

�1

�
Vsel,Π⪯�i

�
P(�i)

��
∧ �1

�
Vsel,�P

�

≡ red

���
�∈Σ

◻��

�
→

� �
i∈{1,…,k}

[+���1
]… [+���i−1

]P(�i)

�
…

⋯ ∧ [+���1
]… [+���k−1

][+���k
]□��G

�

= red

���
�∈Σ

◻��

�
→ ⟨⟨�1⟩⟩… ⟨⟨�k−1⟩⟩⟨⟨�k⟩⟩□��G

�
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