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Abstract

We develop a spatially realistic model of mutualistic metacommunities that exploits the joint struc-
ture of spatial and interaction networks. Assuming that all species have the same colonisation
and extinction parameters, this model exhibits a sharp transition between stable non-null equilib-
rium states and a global extinction state. This behaviour allows defining a threshold on coloni-
sation/extinction parameters for the long-term metacommunity persistence. This threshold, the
‘metacommunity capacity’, extends the metapopulation capacity concept and can be calculated
from the spatial and interaction networks without needing to simulate the whole dynamics. In
several applications we illustrate how the joint structure of the spatial and the interaction net-
works affects metacommunity capacity. It results that a weakly modular spatial network and a
power-law degree distribution of the interaction network provide the most favourable configuration
for the long-term persistence of a mutualistic metacommunity. Our model that encodes several
explicit ecological assumptions should pave the way for a larger exploration of spatially realistic

metacommunity models involving multiple interaction types.
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1 Introduction

A fundamental goal of predictive ecology is to forecast the dynamics of interacting species in a given
region (Thuiller et al. 2013, Mouquet et al. 2015). Reaching such a goal has direct implications
for biodiversity management and conservation and to anticipate or mitigate the effects of habitat
destruction and global change on biodiversity.

Metapopulation models have long been used to characterise the dynamics of populations that
can colonise, persist or go extinct in a given landscape configuration (Hanski & Ovaskainen 2003).
This configuration is often summarised by a spatial network of suitable patches (Dale & Fortin
2010; Hagen et al. 2012) that best represents habitat patchiness in both natural and human-altered
ecosystems (Haddad et al. 2015). Levins (1969) devised a seminal model of species occupancy i.e.,
the probability of presence of species populations across a landscape. In this model, a mean-field,
deterministic differential equation model represented the population dynamics in fully connected
patches, so that equilibrium occupancy depended on both a colonisation and an extinction pa-
rameter. More than 30 years later, Etienne & Nagelkerke (2002) proposed a stochastic analogue
of Levins’ model and studied the links between the properties of the two models. Two sources
of spatial heterogeneity can be embedded in metapopulation models: the heterogeneity on coloni-
sation/extinction parameters among species (functional connectivity) and on the spatial network
structure (structural connectivity) (Tischendorf & Fahrig 2000). The impact of structural con-
nectivity on stationary occupancy (e.g., Gilarranz & Bascompte 2012) underlines the influence of
fragmentation on metapopulation persistence (Fahrig 2003, Fletcher Jr et al. 2018). Subsequent
deterministic, spatially realistic models acknowledged variation of connectivity among nodes, and
allowed quantifying analytically the viability of a metapopulation that depends on the mere struc-
tural properties of the spatial network (Ovaskainen & Hanski 2001, Hanski & Ovaskainen 2003).
The viability is defined through the metapopulation capacity, i.e., a threshold on colonisation and
extinction parameters above which the metapopulation can survive. This threshold is thus of prime
importance in biological conservation (Groffman et al. 2006).

However, populations of a species are likely to interact with many other species within habitat
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patches. These interactions should also affect the spatial coexistence of multiple metapopulations
and their respective capacities (Thuiller et al. 2013). Metacommunity models are designed to assess
the joint dynamics of multiple species in a habitat network (Leibold et al. 2004). While the structure
of interaction networks is known to strongly influence biodiversity dynamics (Sole & Bascompte
2007), most existing deterministic metacommunity models generally focused on global competition
and competition-colonisation trade-off in fully connected patches (Tilman et al. 1997, Calcagno et al.
2006), or sometimes in evenly connected patches (e.g., lattice Amarasekare et al. 2004, Mouquet
et al. 2011). Models focusing on other interaction types (e.g. facilitation, mutualistic and trophic)
were developed for species-poor communities, homogeneous or lattice space (i.e. for few species
Nee et al. 1997, Gravel & Massol 2020, homogeneous space Astegiano et al. 2015, lattice space Kéfi
et al. 2007), preventing the study of complex networks and further generalisations.

Yet, stochastic models of interactions where species are either present or absent can encode
mechanisms through specific rules, like having at least one prey to survive in the Trophic Theory
of Island Biogeography (Gravel et al. 2011, Massol et al. 2017), or through increasing probability of
presence depending on prey availability (Cazelles et al. 2016, Auclair et al. 2017). The latter model
belongs to graphical models, a class of statistical models that represents conditional dependencies
between species distributions using graphs. Using network-based metrics, these models can encode
several mechanisms in terms of conditional probabilities of presence (Staniczenko et al. 2017).
Nevertheless, these approaches still ignore the spatial structure of the environment.

So far, theoretical studies on the dynamics of metacommunities within a spatially explicit en-
vironment and with biotic interactions have rarely considered how the dynamics jointly depend on
graph properties of both interaction and spatial networks (e.g., Amarasekare et al. 2004, but see
Zhang et al. 2021), trophic interactions (Pillai et al. 2010, Brechtel et al. 2018, Gross et al. 2020
but see Wang et al. 2021) or mutualistic interactions on a lattice (Filotas et al. 2010, Sardanyés
et al. 2019). These models often elude the question of existence of a non-null equilibrium, and
the metacommunity persistence is often assessed through tedious dynamic simulations or using
strong approximations (Wang et al. 2021). If this approach provides points in the parameter space

where the metacommunity persists, it neither maps regions of this space leading to persistence,
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nor it demonstrates the existence of critical thresholds acting on metacommunity persistence as in
metapopulation theory.

Interestingly, thresholds between local community persistence and extinction have already been
identified in the case of positive interactions (Callaway 1997, Kéfi et al. 2016). For instance,
mutualistic interactions play a major role in natural systems by conditioning coexistence (Valdovinos
2019). Thébault & Fontaine (2010) showed that mutualistic networks generally have a nested
architecture favouring persistence, and empirical surveys evidenced a truncated power-law of degree
distribution (Bascompte & Jordano 2006, Vazquez et al. 2009, Bascompte 2009). Kéfi et al. 2007
studied a metacommunity model with facilitation on a lattice space. However, no network-based
model of spatially realistic, mutualistic metacommunities has been proposed so far. Such model
should allow to test the joint impact of the structure of the spatial and interaction networks on the
viability of a metacommunity and, potentially, allow to exhibit thresholds acting at the mutualistic
metacommunity level. It should also reconcile the ongoing debate on the impact of the structure of
the spatial network on metapopulations (Fletcher Jr et al. 2018).

In this paper, we explicitly model mutualistic interactions in an heterogeneous space using
dynamic Bayesian networks (Auclair et al. 2017). We derive then a deterministic approximation
and exhibit a threshold in metacommunity persistence assuming that all species have the same
colonisation and extinction parameters. It defines an abrupt transition between stable coexistence
and global metacommunity extinction. Our approach extends the computation of metapopula-
tion capacity sensu Ovaskainen & Hanski to the case of mutualistic metacommunities with specific
assumptions on colonisation and extinction functions. Using numerical methods, we show how
metacommunity capacity relies on the structure of both mutualistic and spatial networks. Impor-
tantly, specific submodels can be derived to encode key ecological assumptions on extinction and
colonisation. For these different ecological assumptions, we represent how spatial proximity of sites
and mutualistic interactions modulate colonisation and/or extinction probability, and we compute
metacommunity capacities. We finally explore the relationship between the degrees of the nodes of
both spatial and interaction networks and species’ occupancy at equilibrium. This allows extracting

ecological relevant quantities on species among the sites (e.g., mean occupancy) or in sites among
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species (e.g., species diversity, interaction network diversity). We thus quantify how metacommu-

nity capacity is shaped by the joint structure of spatial and interaction networks.

2 Stochastic models of metacommunity dynamics using dy-
namic Bayesian networks

We first present a formalism that unifies stochastic spatially realistic metapopulation models and
mainland-island models of biotic interactions in discrete time using Dynamic Bayesian Networks
(DBNs). DBNs describe dependencies between random variables at different time steps through
a bipartite directed graph, and represent stochastic models in which parameters are networks
(Ldhdesmiki & Shmulevich 2008, Koller & Friedman 2009). The network represents the influ-
ences between species distributions between two time steps. Once the structure of causal influences
is fixed, several distributions can be associated to a given network structure through different pa-
rameterisations. These parameterisations represent interaction mechanisms that describe the effect
of neighbour species or sites on the probability of presence of a given species at time ¢t + 1. See Ap-
pendix for a more precise introduction on dynamic Bayesian networks and proof of the convergence
of the different models.

The heterogeneous space is represented by a spatial network Gy = (Vj, Es), where V5 is the set of
spatial vertices and F the set of spatial edges (linking unordered pairs of vertices). We assume that
this network is undirected and connected, i.e., considering two nodes u and v of G, there is always
a path from u to v. Biotic interactions in the metacommunity are represented by an interaction
network Gy = (Vj, Ep), with V,, its set of vertices and FEj, its set of edges, which we also assume

undirected and connected. We note n = |V,| and m = |V} (see Table 1 for notations).
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Object Name
G, Spatial network (n nodes)
Gy Interaction network (m nodes)
GY Spatial network where edges have been deleted (n nodes)
G Interaction network where edges have been deleted (m nodes)
Gy = GG, Cartesian product of the spatial and biotic interaction networks (n * m nodes)
Ag Adjacency matrix of the spatial network
Ay Adjacency matrix of the biotic interaction network
Asp =As 01, + 1, ® Ay | Adjacency matrix of the Cartesian product network)
G, Colonisation network (n % m nodes)
Ge Extinction network (n * m nodes)
A, Adjacency matrix of the colonisation network
A. Adjacency matrix of the extinction network
AM Metacommunity persistence capacity
A1 Metacommunity invasion capacity
A Dominant eigenvalue of the adjacency matrix of the spatial network
Ay Dominant eigenvalue of the adjacency matrix of the biotic interaction network
Asp=As+ Ay Dominant eigenvalue of the adjacency matrix of the Cartesian product network

Table 1: Notations

2.1 Spatially realistic metapopulation model

We start by defining, using DBNs, a spatially realistic metapopulation model where populations
of a single species colonise the spatial network Gs. Let X! be a random variable associated to the
presence of a population in a site 4 (i.e. the node v; of Gg) at time t (1 < i < n, t € N*, where
N* is the set of positive integers). We depict the dependency structure between the X! using a
DBN built from G, (Fig. 1a). Defining the neighbours of v; in G as N (i), the parents of Xf“ in
the DBN are { X, X;IS (i)}. This means that the presence of a population at time ¢ + 1 is causally
influenced by the presence of a population at time ¢ in site ¢ and in sites adjacent to ¢. In this first
model, no other variables or species influence the presence of a population in site i at time ¢ + 1.
Through conditional probabilities, the parameterisation encodes the way the presence or absence
of a population in adjacent sites modulates the probability of presence of a population in the focal

site. Here, we chose the same parameterisation as in Gilarranz & Bascompte 2012.

K3

P(X[ = 11X], XYy, ) = (1= (1= ¢Zkemao XY (1= X) + (1 - o) X! (1)
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where ¢ and e are the respective colonisation (0 < ¢ < 1) and extinction (0 < e < 1) parameters. In
Eq. 1, the probability of presence grows with the number of occupied adjacent sites. Specifically,
the probability that node ¢ includes a population at time ¢ + 1 is 1 — e if it had one at time ¢,
while the probability that node i is colonised between time ¢ and time ¢ + 1 is equal to 1 minus
the probability that all occupied neighbouring sites do not colonise node ¢, which happens with

probability 1 — ¢ independently for each of these nodes.

2.2 A mainland-island model with biotic interactions

In this section, we present, using DBNs, a mainland-island model of species community where dif-
ferent species colonise an island without any spatial structure but with a biotic interaction network
Gy.

Let X; be the random variable associated to the presence of population of species j on the island. A
DBN representing the dependency structure is built from G, (Fig. 1a). Here, the DBN represents
the network of species interactions as interactions affect colonisation and extinction probabilities
on the island. Defining as N¢, (j) the neighbours of v; in Gy , the parents of XJ(H_U in the DBN are
{th., Xlt\rcb (j)}7 meaning that the presence of species v; and species that interact with v; at time ¢
on the island, causally influences the presence of species v; at time ¢ + 1. Importantly, there is no
other variables influencing the presence of a species v; at time ¢ + 1. We chose a parameterisation

similar to Auclair et al. 2017:

_ ZkENcb (j) XltC

t+1 _ txt = - X -
P(X5 = 1145, Xivg, () = (1 = Xj) + (1 —e(1 1+ dege, (j)

J

))X; (2)

where degg, (j) is the degree of j in Gy. The probability of extinction (defined by Eq. 2) belongs
0 ]0,1[ (Appendix). Although the dependency between species occurrences can encode any kind
of interactions, we here focus on the mutualistic case by imposing an extinction function. In this
case, the probability of extinction of a given species decreases with the number of species present

that interact with the focal species.
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2.3 Spatially realistic models of mutualistic metacommunities

Integrating the models from Section 2.1 and 2.2, we built a spatially explicit metacommunity model.
In this model, several species, interacting through Gy, are colonising the spatial network Gs. The
colonisation and extinction probabilities of population of a given species in a site are affected by
the presence of interacting species in the same site and presence of population of focal species in
neighbour sites. To do so, we used the Cartesian product of graphs that builds a network from Gy,

and G, (Imrich & Klavzar 2000).

Definition 1. The Cartesian product of Gs and Gy, G, = G;OG) is the graph in which the set of
nodes is Vs XVy,. A node of this graph is identified by a pair of nodes of G5 and G,. Moreover, there
is an edge between (us,up) and (vs,vp) if (us = vs and (up,vy) € Ep) or (up = vp and (us,vs) € Es).
The first condition corresponds to the case where the two species are present at the same location
and interact with one another; the second condition, to the case where only one species is considered

and the two locations are linked by a spatial edge.

The adjacency matrix, Ay, of Gsp is
Acb =A@ Ty + 1, ® Ay, (3)

where I, and I,, denotes the identity matrices of dimension m and n and ® denotes the Kronecker
product of two matrices.

Let Xitj be the random variable associated to the presence of a population of species j in site i
at time . The dependency structure between the ij is depicted using a DBN that is built from
G, (Fig. la). Defining as N(4,7) the neighbours of (v;,v;) in Ggp, the parents of Xf;rl in the
DBN are {ij, Xf\l(m)}. This means that the presence of a population of species j in site i at time
t 4+ 1 is causally influenced by the presence of population of the same species in adjacent sites at

time ¢ and by the presence of populations of species that interact with j in the same site.

At this stage, it is crucial to define several submodels that formalise key ecological assumptions in

10



(a) The different models
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(b) A temporal dynamic
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Figure 1: (a) Metapopulation model, mainland-island interaction model and metacommunity model.
The second column represents the network associated to each model (spatial, interaction and prod-
uct network). The third column represents the dynamic Bayesian network associated to each model
that represents the causal influences of variables (presence of populations of a given species, species
on the island, species in sites) at ¢ on variables at ¢ + 1

(b) Simulating a dynamic in the combined effect model between two time steps. The nodes of the
product network are either empty or occupied (grey: occupied, white: empty). For the sake of
simplicity, the model here is turned deterministic (¢ = 1, e = 1). To colonise a new node of the
product network, species A and B must be both present in the same site and can colonise adjacent
site only. The population of species B originally present in site ¢ goes extinct since it does not
co-occur with A at t whereas species A and B that co-occur in site a colonise the site b.
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the product graph, using either the spatial network or the biotic interaction network to modulate
colonisation and extinction probability.

Let GO be the network that has the same set of nodes as G, but an empty set of edges, and let
GY be the network that has the same set of nodes as G, but an empty set of edges. We introduce
then the colonisation network G. (A, is its adjacency matrix) and the extinction network G. (Ae
is its adjacency matrix). These networks modulate the colonisation and extinction probability in

the different submodels. We build two submodels from a given product graph (Fig. 2) :

e a Levins type submodel, where both the spatial and biotic interaction networks modulate the
colonisation probability (G. = G;0G}), while the extinction probability is constant (G, =
GUOGY)

e a combined effect submodel, where both the spatial and the biotic interaction networks modu-
late the colonisation probability (G. = Gs0G}), and the biotic interaction network modulates

the extinction probability (G. = G0G})

For the two submodels, the conditional probabilities of colonisation and non-extinction are expressed
as:

P(Xz‘tj+1 = 11X;; =0, Z Xi)=e+(1—¢ [1 -(1- C)Z“"’Z’ENGCU’” Xm} (4)
(k,)eNg, (i,5)

Z(k )ENg, (i,7) Xi
P(Xf+1 = 1|Xlt = 1’ Xt ) —1— e 1— 5 Ge ’L,_? : (5)
’ ’ (k,l)e%; (.9) i 1+ degc. ((7,4))

where € €]0; 1] is a constant that guarantees the convergence of the model. This constant allows
colonisation from an external source, analogous to nodal self-infection in the epidemiology literature
(Van Mieghem & Cator 2012). The proposed metacommunity model is analogous to the open Levins
model, that better fits with data than the classic Levins model (Laroche et al. 2018). degq, ((¢,7))
is the degree of (v;,v;) in G, and Ng,(i,7) (resp. Ng,(%,7)) denotes the neighbours of (v;,v;) in
G. (resp. G.). Fig. 1b shows a simplistic dynamics in the combined effect model. Computing the
stationary distribution is also intractable in the general case (since transition matrix is of dimension

2™ but, it is however possible to simulate the dynamics of the metacommunity as Gilarranz &

12
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Bascompte (2012) did for metapopulation model. The code to sample in the stochastic model is

available on the gitlab repository (https://gitlab.com/marcohlmann/metacommunity_theory).

3 The nm-intertwined model

Since studying the stochastic model of Section 2.3 is intractable in the general case, we propose to
study deterministic models that approximate the stochastic models, referred to as the intertwined
model in the epidemiology literature (Van Mieghem 2011). We extended the spatially realistic
Levins model to a metacommunity model based on the product of spatial and interaction network
(Ovaskainen & Hanski 2001). The approximation is derived from Van Mieghem (2011) and Bianconi
(2018). The aim is to study the dynamics of mean occupancy of each species j in each site i, i.e.

pij(t) = E(X};) = P(X}; = 1) where E(.) denotes the expected value. For all i and j:

pijlt+1) = E(L= X5 (4 (1= ) (1= (1= )= 0=c 00 Xh0))) L E(1— o1 — )= 08e, o Y 1)
(6)

Eq. 6 leads to a hierarchy of equations that cannot be solved (i.e. we need to consider E(XT ;, ..., X/, ,,)

to find a solution to the system). In order to get moment closure, we assume that site occupancies

are independent. More precisely, for any sequence of indices n(1),n'(1);...,n(r),n'(+') :

E(X 1)1y Xorymr (o)) = B0y 1))+ E(X 0y s (o)) (7)

After some algebra, introducing a new single index v for the nodes of the product network and

assuming that ¢ << l,e << 1 and € << ¢ (see Appendix), it follows :
pv(t + 1) _pv(t) = Cv(p(t))(l _pv(t)) - Ev(p(t))(pv(t)) (8)
where Cy(p(t)) = ¢>,[Aclo,upu(t) and E,(p(t)) = e(1 =, [Ae]vupu(t)/M,) with M, = 1+

degg, (u)

13
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This rewrites:

P(t +1) — p(t) = c(Acp(t)) © (1 = p(t)) — e(1 — (De + Lum) "' Aep(t)) © p(t) (9)

where ® denotes the element-wise product, De denotes the in-degree matrix of G, and I,,,,, denotes
the identity matrix of dimension nm.

Eq. 8 is analogous to master equation of Ovaskainen & Hanski (2001). Now, to assess the viability
of a given mutualistic metacommunity, we need to determine the equilibrium states and evaluate

their local stability in function of ¢ and e parameters.

3.1 Metapopulation capacity

In these spatially realistic metapopulation models, equilibrium state is either stable coexistence (all
sites have non-null occupancy) or global extinction (all patches have null occupancy). Metapopula-
tion capacities have thus been derived to assess both the persistence and the stability of metapopula-
tions at equilibrium (Hanski & Ovaskainen 2000, Ovaskainen & Hanski 2001). The metapopulation
persistence capacity Aps is a threshold between coexistence and global extinction (depending on
the colonisation and extinction parameters), computable from the spatial network. Importantly,
in spatially realistic metapopulation models, as soon as a population is present in a site, it can
colonise gradually the entire spatial network.

More formally, in the metapopulation case, Gy, is made of a single node, (m = 1) and we assume

that G, is undirected and connected. We have:

VteN* p(t) e Q={zr e R", Vi, 0 <z <1} (10)

with the following assumptions on the colonisation functions (per site i), C;(.), and extinction

functions, F;(.):

14



262 e there is no external source of migrants

Ci(0) =0 (11)
263 e the occupied sites make a positive contribution to the colonisation function of an empty site
VpeQ={xeR"Vi, 0<uz; <1},Ci(p) >0 (12)

264

%Ci(p) >0 fori+j

o (13)
Sip) =0
265 e there is no mainland population, extinction rates are positive and, eventually, reduced by the
266 presence of local populations
Vpe Q, Ei(p) >0 (14)
9B: < () fori# j
Op; (15)
OE; __
opi 0
267 e Colonisation and extinction functions are smooth functions
C; € Cl(ﬁ) (16)
268
E; €C'(Q) (17)
260 Let:
eCi(p)
9i\p) = 18
) cEi(p) (18)

15
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The model is also assumed to be irreducible. Let J be the matrix of dimension n X n so that:

1 if $%2(p)>0,peQ
Jij = ? (19)

0 otherwise

9g;
Pj

We say that the model is irreducible if J is irreducible, i.e., the graph that has J as adjacency
matrix is strongly connected.

In the case of the spatially realistic Levins model :

e Ci(p) = c(Asp)i
e E(p)=e

where Ag is the adjacency matrix of the spatial network. Then,

9i(p) = (Asp): (20)

and the model is irreducible since Ag is irreducible.
The metapopulation invasion capacity, A7, is defined as the dominant eigenvalue of the Jacobian
matrix of g evaluated in p = 0. It measures the stability of the equilibrium p = 0 that is the ability

of a single population to invade the spatial network.
Definition 2. The metapopulation persistence capacity, Ayr, is defined as:

Aum = sup h(p)
pPeER

where

and

16
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We now present a weak version of the main theorem of Ovaskainen & Hanski (2001).

Theorem 1. (Ovaskainen & Hanski) The deterministic metapopulation model has a non-trivial
non-negative equilibrium state if and only if the threshold condition Ayy > £ (if all the components
of g are concave) or A\py > € (otherwise) is satisfied. Moreover, if the threshold condition is

satisfied, the non-trivial non-negative equilibrium state is unique if all components of g are concave

and equilibria are ordered otherwise.

Au is a threshold on the colonisation/extinction parameters that allows the metapopulation
to persist. Importantly, if the metapopulation persists, the equilibrium points are interior (they
belong to ), meaning that all occupancies are strictly positive.

Moreover, if all the components of g are concave (it is the case for the spatially realistic Levins
model), we have:

Ay =Ar=Ag (21)

where Ay is the dominant eigenvalue of Ag. If one component (or more) of g is not concave, then

A < Au

3.2 Extension to mutualistic metacommunity capacity

In order to extend the metapopulation concept to metacommunity concept, we first consider a
case with no interaction. Assuming that all species have the same colonisation and extinction
parameters, since they also share the same spatial network, they have then the same metapopulation
capacity even if their have independent dynamics. However, in this case, we cannot define a
metacommunity capacity since the different metapopulations have independent dynamics: if a
species is initially absent from the metacommunity, it will never colonise it. In this section, we show
that adding mutualistic interactions to the metacommunity tangle the dynamics of the different
metapopulations and allows defining a single threshold controlling the extinction of the entire
metacommunity. Importantly, we show that this metacommunity capacity is higher than individual

metapopulation capacities.
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3.2.1 The mutualistic metacommunity concept

We extend metapopulation capacities from Section 3.1 to mutualistic metacommunity capacities in
the dynamical system defined by Eq. 9, using the product of the spatial network and the biotic
interaction network and specific assumptions on colonisation and extinction functions. Importantly,
in our spatially realistic mutualistic metacommunity model, as soon as a population of a given
species is present in a site, it can colonise gradually the entire spatial network and populations of
partner species will also colonise the spatial network thanks to this focal species. As a consequence,
the proposed mutualistic metacommunity model presents a sharp transition between coexistence (all
species have non-null occupancy in all sites) and global extinction (all species have null occupancy
in all sites).

For this model, the state space is: @ = {x € R™™ Yo € {1,....,n*m} 0 <z, < 1}

We have:
Co(p(t)) = > [Acluupu(t) (22)

and

E,(p(t) = e(1 =) [Aclu.upu(t)/M.,) (23)

u
In order to apply theorem 1 to the product network, we first verify assumptions on colonisation and

extinction functions (notice that index v represents a combination of a site and a species index).

e there is no external source of migrants
Cy(0) =0 (24)

Notice that this assumption is only verified at order 1

e species occupying sites make a positive contribution to the colonisation function of an empty
site

Vp e Q,Cy(p) >0 (25)
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oC, (
CEe(p) >0 foru##w
o (26)

9Cy, _
m(P) =0
Importantly, in both Levins type and combined effect model, since G, = G;JG}, an empty
site can be colonised by a given species if this species is present in neighbor sites or if species

that interact with the focal species are present in this site. By doing so, even if a species is

initially absent from the metacommunity, it can colonise it thanks to partner species.

e there is no mainland population, extinction rates are positive and reduced by the presence of

others species

Vp € Q, E,(p) >0 (27)
9B < (0 fori # j
5 (28)
oE; __
opi 0

Notice that, due to this assumption, we stick to the modelling of mutualistic metacommunity.

e Colonisation and extinction are smooth functions

C, €CHQ) (29)

E, €C'(Q) (30)

Additionally:
Proposition 1. The Levins type model and the combined effect model are irreducible on

See proof in Appendix.
We then define metacommunity invasion capacity as the dominant eigenvalue of the jacobian matrix

of g evaluated in p = 0.
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Definition 3. The mutualistic metacommunity persistence capacity, Ay, is defined as:

An = sup h(p)
PeQ

where
h(p) = min h, (p)
and

1_p'u

hy(P) = gv(p) o

By applying theorem 1, a non-trivial equilibrium that the dynamical system has a non trivial
equilibrium if and only if Apy > €. Aps is then a threshold on the colonisation/extinction parame-
ters that allows the mutualistic metacommunity to persist. Importantly, a non-trivial equilibrium

point is interior (it belongs to ), so each species in each site has a positive abundance at equilibirum.

Proposition 2. For the Levins type model, Apyy = A\ = As + Ay

The Levins type model is actually the spatially realistic metapopulation model with G, =
GOG), as spatial network (the extinction is constant equals to €). The dominant eigenvalue, A,

of A, is As + Ay. Consequently, for the Levins type submodel:
A=A =AM+ Ay (31)

For the combined effect model, \; = A; + Ay (see Appendix for proof). Notice that in the Levins
type model, both the biotic interaction and the spatial networks play interchangeable roles.
3.2.2 Computation of metacommunity capacity for the combined effect model

For the combined effect model, we computed the metacommunity capacity Ap; using Appendix
D of Ovaskainen & Hanski 2001 and simulating annealing. We propose an implementation in R

and Python available at: https://gitlab.com/marcohlmann/metacommunity_theory. Only the
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Name of the submodel Mochanisms and assumptions Colonisation and extinction networks | Met
The spatial and the biotic network modulate the colonisation probability.
The extinction probability is constant. G. = G,0G,
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Levins type The different sites and species acts independently G. = G'0G)
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The biotic interaction network modulates the extinction probability. G, = G,0G, A=A+ Ay
The different sites and speci independently G. = G,0G) A to compute numerically
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Combined effect

Figure 2: Top: Map of the different models, submodels and their parameters. Bottom: The
four submodels associated to mutualistic metacommunity models, their assumptions, colonisa-
tion/extinction networks and metacommunity capacities

metapopulation or the metacommunity persistence capacity is really the focus for assessing viability.
For the sake of simplicity, we will thus use metacommunity capacity as metacommunity persistence

capacity in the rest of the text (unless specified otherwise)

4 Applications

4.1 Illustration

To illustrate the metacommunity capacity concept, we built a toy model (Fig. 3). We used a circu-
lar spatial network with 4 nodes (Fig. 3a) and a star shaped interaction network made of 4 nodes
(Fig. 3b), which could represent a plant species and its mutualistic mycorrhizal fungi species. The
Cartesian product is built from the spatial and the interaction networks (Fig. 3c¢). For the illustra-
tion, we derived the Levins type submodel dynamics. In this case, both metacommunity invasion
capacity A; and persistence capacity A\j; are equal to the dominant eigenvalue of the product of

the networks (3.73). A defines the feasibility domain that is the portion of space where all species
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have a non-null occupancy (see Song et al. (2018)) (Fig. 3d). We showed two possible outcomes of
species occupancy dynamics (Fig. 3). One had a combination of colonisation and extinction values
allowing metacommunity persistence, while the other had values outside the feasibility domain and
yielded metacommunity extinction. Occupancies of persisting species converge toward two different
values due to symmetries in the product network. Despite its simplicity, this toy model shows
that we can predict the outcome of mutualistic metacommunity dynamics for any location of the

parameter space, depending on the metacommunity capacity.

4.2 Structures of spatial and mutualistic interaction network jointly shape

the metacommunity capacity

We applied our model to investigate how the structure of the spatial and interaction networks shape
the metacommunity capacity of a bipartite mutualistic system. To simulate landscape fragmenta-
tion, we sampled two types of spatial networks while keeping constant the expected number of edges.
We generated random spatial networks with 10 nodes in either Erdés-Renyi graphs (all edges are
independent and identically distributed, with connectance C' = 0.25) or modular graphs using a
block model (C = 0.25, more details in Appendix). We only kept connected spatial networks and
used 15 replicates for each type of spatial network. Concerning the mutualistic network, we sampled
two types of bipartite networks while keeping constant the number of edges. We generated random
interaction networks with 14 nodes and 16 edges in either Erd&s-Renyi graphs or networks with
degree distribution shaped as a power-law of scaling parameter equals to 2. We used the function
sample_ fitness_pl implemented in the R package igraph (Csardi & Nepusz 2006). We only kept
connected interaction networks and used 15 replicates per type of interaction network. We then
computed the colonisation and extinction networks for each combination of spatial and interaction
networks, so generating 4 x4 x 15 = 900 different networks in total. This number of replicates was
large enough to generate robust results (see Appendix). We first computed the metacommunity
capacities for each combination of spatial and interaction networks to assess the viability range of
the metapopulations. Then, we choose ¢ and e parameters so that the mutualistic metacommunity

persists and compared the stochastic model with its nm-intertwined deterministic approximation.
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Figure 3: Toy model built from (a) a circular spatial network, (b) a star-shaped interaction network
giving (c¢) the product network. The product network defines (d) the persistence and extinction
domain. (e) Two trajectories sampled in and outside the persistence domain leading to persistence
or extinction of the metacommunity
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We also studied how species occupancy at equilibrium and aggregated quantities build from these
occupancies (mean occupancy, species diversity) depend on node characteristics of both networks

in the deterministic model.

4.2.1 Computing metacommunity capacities

We computed the metacommunity capacity Ay; for the Levins type and combined effect submodels
with the four combinations of networks structure (Fig. 4, Fig. S3). Despite known concerns on
the ability to fit power-laws on small networks (Clauset et al. 2009, Stumpf & Porter 2012), we
were able to statistically distinguish estimation of metacommunity capacity for almost all sampled
combinations of structures (cf. Appendix). For both the Levins type and combined effect submodel,
the metacommunity capacity decreased when the spatial network was modular and when the degree
distribution was not a power-law. In this case, the modularity of the spatial network had a stronger
impact on the metacommunity capacity than the structure of the mutualistic interaction network.

Metacommunity capacity values were similar for the combined effect and Levins type model.

4.2.2 Comparison between the stochastic model and the nm-intertwined model

We compared the output of the stochastic metacommunity models with the nm-intertwined model
for a given network combination with colonisation and extinction parameters chosen so that the
metacommunity persist. We set ¢ = e = 0.05, ¢ = 0.0005 and used a spatial network with modularity
of 0.36 and a mutualistic network with a degree distribution sampled in a power-law with parameter
2. We sampled 1000 trajectories on 1500 time steps in the Levins type and the combined effect
model and compared the mean stationary local occupancies and total occupancy with the prediction
of the nm-intertwined model. For the combined effect model, the nm-intertwined model provides
a accurate approximation of total occupancy (sum of occupancies of all species in all sites) at
equilibrium (Fig. 5a). The deterministic model also provides a reasonible approximation of local
occupancies (occupancy of each species in each site) compared to the mean values computed from
the stationary distribution built from the stochastic simulations (Fig. 5b). We show this comparison

for the Levins type model in Appendix (Fig. S4). Both the total occupancy and local occupancies
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Figure 4: Assessing metacommunity persistence capacity in function of the structure of the spatial
network (Erdés-Renyi/Modular) and the structure of the interaction network (Erdés-Renyi/Power
law) for the combined effect model

are higher at equilibrium with the combined effect model compared to the Levins type model.

4.2.3 A focus on species occupancies at equilibrium for a given network combination

Using the same parameters than the previous section, we simulated metacommunity dynamics and
studied how the occupancy at equilibrium of each node of the product network depends on its
degree for the combined effect model (see Appendix for the Levins type model). Additionally, we
studied the mean occupancy of species across sites, plus species and link diversity in each site.

We represented the occupancy of the nodes of the product network (that is the colonisation
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Figure 5: Comparison between the stochastic metacommunity model and the nm-intertwined model
for the combined effect model. (a) Comparison of the mean total occupancy dynamics averaged
over 1000 replicates (solid line, the standard deviation is represented in grey) with the prediction of
the equilibrium by the nm-intertwined model (dashed line) (b) Comparison of the mean local oc-
cupancies in the stationary distribution of the stochastic metacommunity model with the predicted
values by the nm-intertwined model

network in this combined effect model) in function of their degree (Fig. 6). The occupancy of
the nodes of the product network (indexed by a species and a site) increased with the degree
of the nodes. Moreover, in this submodel, at a fixed node degree of the product network, the
occupancy decreased with the ratio of the degree of the site over the degree of the node of the
product network. This means that nodes of the product network that combined a generalist species
with a low-connected site have a higher occupancy at equilibrium compared to nodes that combined
a specialist species with a highly connected site. We observed the same patterns for the Levins

type model with lower occupancies (Appendix). From the occupancies at equilibrium, we then
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computed, species a-diversities in each site using the framework developed in (Ohlmann et al.,
2019) with n = 2 (Fig. 6). We observed a positive relationship between species a-diversity and the
degree of the nodes of the spatial network (Fig. 6). Mirroring the analysis on the spatial network,
we represented the mean occupancy among the sites (Fig. 6) and observed a positive relationship
between mean occupancy of a species and its degree in the biotic interaction network. For the
Levins type model, we observed similar patterns except lower occupancies and mean occupancies

per species (Fig. S5).

5 Discussion

In this paper, we proposed a stochastic spatially explicit model of mutualistic metacommunities
that depends on the structure of spatial and biotic interaction networks, using Dynamic Bayesian
Networks and graph products. Our stochastic model is built by integrating a metapopulation and
a mainland-island interaction model (where species colonise an island influenced by a known meta-
network). Spatial and interaction networks can modulate colonisation and extinction probabilities
depending on the mechanisms that are encoded in the model. We proposed two sub-models but
we encourage the implementation of other parameterisations or even interaction type since the
stochastic model is highly flexible. The proposed mainland-island model is analogous to the trophic
theory of island biogeography (TTIB, Gravel et al. 2011, Massol et al. 2017). However, in the TTIB,
the interaction network must be a directed acyclic graph contrary to our mainland-island model
where any network, even empty, can be used. The TTIB represents trophic interaction as energy
flow from basal to non-basal species at a given time step whereas our stochastic interaction model
represents population dynamics between two time steps, allowing feedback loops. The downside of
this flexibility is the complexity and high-dimensionality of our stochastic model. However, network
symmetries can be used to perform exact dimension reduction as in epidemics model (Simon et al.
2011).

In order to further investigate properties of our mutualistic metacommunity model, we did a

deterministic approximation to obtain the nm-intertwined model, named in reference to epidemics
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Figure 6: Simulating the dynamics for a given spatial and biotic interaction network with the com-
bined effect model. (a) Colonisation network whose size of the nodes is proportional to their degree
and colour indicates the occupancy at equilibrium (grey: low occupancy, black: high occupancy)
(b) Spatial network whose size of the nodes is proportional to their degree and colour indicates the
species a-diversity at equilibrium (grey: low a-diversity, black: high a-diversity) (¢) Mutualistic
interaction network whose size of the nodes is proportional to their degree and colour indicates
the mean occupancy across the sites at equilibrium (grey: low mean occupancy, black: high mean
occupancy) (d) Relationship between the occupancy at equilibrium and the degree of the node of
the product network. Each point of the relationship (corresponding to a node of the product graph)
is coloured according to the ratio of the degree of the site in the spatial network over the degree
of the focal node in the colonisation network (e) Relationship between the species a-diversity at
equilibrium and the degree of the sites in the spatial network (f) Relationship between the mean
occupancy at equilibrium and the degree of the species in the biotic interaction network
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model (Van Mieghem 2011). It allows to keep track of interaction and spatial network structure
in the deterministic model, contrary to mean field approximation in lattice based metacommunity
models (Kéfi et al. 2007). We assume that species occupancies vary independently and we showed,
using simulations, that it provides a reasonable approximation of our metacommunity stochastic
model (Fig. 5). However, this approximation holds as soon as the metacommunity is far from
the extinction threshold. Otherwise, pairwise correlation between species occupancies must be
considered (pair approximation, e.g., Kéfi et al. 2007) or even higher order correlation structure
(Hiebeler & Millett 2011, Wuyts & Sieber 2022).

Assuming that all species have the same colonisation and extinction parameters, our determin-
istic metacommunity model showed a sharp transition between states where the metacommunity
persisted (i.e., all species have non-null occupancy in all sites), and a state where the entire meta-
community went extinct (i.e., all species have null occupancy in all sites). The transition depended
on the structure of the interaction and spatial networks and on colonisation and extinction pa-
rameters. We defined the metacommunity capacity, a scalar quantity depending on the structure
of both networks, as a threshold on colonisation/extinction parameters governing persistence of
interacting species, thus extending the single-species concept of metapopulation capacity (Hanski
& Ovaskainen 2000, Ovaskainen & Hanski 2001) to a metacommunity context. Importantly, strong
assumptions on colonisation and extinction functions lead to the threshold behaviour of our model.
We assume that both spatial and interaction networks contribute to species colonisation. By doing
so, even if a species is absent from the metacommunity, populations of this species can colonise
sites where partner species are present. This guarantees not to have prior invariant (except 0) in
the model, as for deterministic metapopulation model and leads to the threshold behaviour of the
metacommunity model. We consider that mutualistic interactions help implantation of new species.
This assumption is supported by the existence of foundation species that helps the metacommuni-
ties to settle down (e.g., cushion plants, Reid & Lortie 2012). In our mutualistic model, presence
of a foundation species in the metacommunity will lead to colonisation of the metacommunity by
partner species.

We extended the framework of metapopulation capacity to the case of a mutualistic meta-
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community with a critical extinction threshold that is the same for all species belonging to the
metacommunity. Importantly, in this model, even in the absence of biotic interactions, all species
have the same metapopulation capacity (since they have the same spatial network and colonisa-
tion and extintion parameters) leading to a the same extinction threshold for all species (even if
they have independant dynamics). Adding mutualistic interactions tangle the different metapop-
ulation dynamics and increase metapopulation capacity (that becomes metacommunity capacity)
thus strengthening the metacommunity in regard to extinction. This conclusion is specific to the
deterministic model, while local extinctions are still possible in our stochastic model. We showed
that spatial and interaction networks jointly determine the metacommunity capacity (Fig. 4, Fig.
S3). In other words, any viability statement on a metacommunity (like classic metapopulation
viability statements, e.g., Bulman et al. 2007) should be done using both networks, although we
should keep in mind that the perceived spatial grain (i.e. nodes of the spatial network) and coloni-
sation/extinction parameters might differ among species. Metacommunity capacity has important
implications for biodiversity management (e.g., for metapopulations Groffman et al. 2006), since it
helps conservationists to forecast and thus prevent crossing critical thresholds to metacommunity
extinction when facing habitat destruction, pollution or other alteration. Despite appealing proper-
ties, our deterministic mutualistic metacommunity model is ecologically unrealistic since all species
have stricly positive occupancies at equilibirum (in case of metacommunity persistence) ignoring so
the possibility of local extinction due to environmental constrains or demographic stochasticity.
Our model of mutualistic metacommunity showed a sharp state-transition. Such abrupt transi-
tions are known for community with positive interactions along environmental gradients (Callaway
1997, Kéfi et al. 2016). We somehow extended these known results for mutualistic metacommunities.
Mutualistic interactions tangle individual metapopulation dynamics and strengthen metacommu-
nity in regards of extinction and, thanks to the proposed framework, we are able to quantify the
gain in viability. If we assume that species have different colonisation and extinction parameters
(depending on the environment for example) or that new species cannot colonise the metacommu-
nity thanks to mutualistic partners, we can no more apply Ovaskainen & Hanski (2001). We might

expect intermediate equilibrium states (i.e., states where only a subset of species goes extinct). Can
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we extend the framework for other types of interactions? The assumptions on extinction functions
in our model cannot represent non-mutualistic interactions and thus prevent its extension to com-
petitive or multitrophic metacommunities. Regarding competition, competitive exclusion models
in communities (Chesson 2000) and metacommunities (Calcagno et al. 2006) can lead to several
intermediate states between coexistence and extinction of the entire metacommunity. However,
competitive interactions along environmental gradients can induced dependencies between species,
entailing alternative stable states (Liautaud et al. 2019). In the classic Lotka-Volterra deterministic
model, conditions on trophic interaction network can lead to states where some of the species goes
extinct but not the entire community (Takeuchi 1996; Bunin 2017). Wang et al. (2021) proposed
a two species extension of metapopulation capacity with trophic interaction. They consider the
metapopulation capacity for the prey and the predator separately. By approximating equilibrium
prey occupancy, they compute predator metapopulation capacity. They extend the results to food
chain in a hierarchical way. Contrary to the proposed framework, they do not propose a meta-
community capacity but rather a set of metapopulation capacity that depends on each other in
hierarchical way. It could be extended towards a trophic metacommunity model in a more general
framework in several ways (Gross et al. 2020). However, predicting the outcome of these models
from parameters only still poses tough challenges (Gross et al. 2020). In particular, this makes it
difficult to establish critical thresholds for conservation science for competitive and trophic meta-
communities. Nevertheless, we doubt that a single threshold value governs the fate of many species
engaged in several types of interaction with each others as we believe that threshold phenomena
occur in multi-interactions metacommunity. Our model should pave the way for a better under-

standing of properties of spatially realistic trophic and competitive metacommunity models.
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A Appendix: details on the model and simulations and proofs

A.1 Stochastic models of metacommunity dynamics using dynamic Bayesian

networks
A.1.1 Bayesian networks and dynamic Bayesian networks

Given a set of n random variables (X7,...,X,,) (we note I = {1,...,n}),

Definition 4. Two random variables X; and X; are independent conditionally given Xy (; 5y iff:
P(Xi, X1 X1 qigy) = P(Xi| X a5y P (X5 [ X gigy)

Bayesian networks aim to map conditional independence statements using a Directed Acyclic Graph

G (DAG). For a given node u, we note Pa,(G) the set of nodes that are parents of u.
Pa,(G)={v eV, (v,u) € E} (32)
The joint probability P(X) factorises over G as :

P(X1, s Xn) = [[P(XilXpa, () (33)

The factorisation gives the independence conditional statement according to the structure of the
DAG.

A particular case of Bayesian network consists in Dynamic Bayesian Networks (DBNs). Indexing
our previous n random variables by time ¢, a DBN describes the homogeneous dependencies be-

tween {X*, ..., Xt} and {X!T! . X'*t1) using a directed bipartite network Gy, (we note Apip, its
1 n 1 n P p
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adjacency matrix). Importantly, as the structure of Gy does not depend on ¢, it can be built
using an aggregated network G (we note A its adjacency matrix) and a graph P, (we note Ag its

adjacency matrix) whose set of nodes is {t,¢ 4+ 1} and set of edges is {(¢,t + 1)}. We have
Apip = A2 ® (A +1,) (34)

where I, denotes the identity matrices of dimension n. We set A=A+ I,, and denotes G the

associated graph. The joint probability factorizes over Gy;p:
PO, XX, XD = TP X () (35)
i

A.1.2 Convergence properties of the stochastic models

The spatially realistic metapopulation model is a homogeneous Markov chain on x = {0,1}". A
state of the metapopulation is a binary vector of length n indicating whether each site is occupied
or not. The dimension of the transition matrix is 2™ % 2™ and the probability of transition between
a state si = (z1,...,z,) and s; = (21, ..., 7p) is

Py =PX{T =1, . X =2, | Xt =21, ., X, = ) (36)

n

By applying conditional independence statements, we get:

Py =[P = &|X] = 20, X ) = (@n,)) (37)

7

0 is an absorbing state of the model. However, the model will reach a quasi-stationary distribution
(see Darroch & Seneta 1965) before extinction which gives a distribution of all possible states of the
metapopulation among sites. Getting extinction time and quasi-stationary distribution require to
compute eigenvectors and eigenvalues of P that are intractable in the general case since P is high-
dimensional. Using the “sampling from the past” algorithm (Aldous et al., 1988) is an alternative

option to estimate the quasi-stationary distributions and associated eigenvalues, see e.g. Schreiber
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et al. (2023) for an application of this technique in an ecological context.

The mainland-island model of species interaction is a homogeneous Markov chain on x = {0,1}™
with no absorbing state. A state of the mainland-island model of species interaction is a binary
vector of length m, representing the composition of the community. The dimension of the transition
matrix is 2™ % 2™ and the probability of transition between a state sy = (x1,...,2.,,) and s =

(€1, .oy Top) 1

Ppy =PI = 45|X) = 2, XK, ) = (@n,(7))) (38)
J

The chain converges towards a unique stationary distribution, a distribution of probability over all
possible species communities. However, as in the metapopulation case, computing the stationary
distribution is intractable in the general case since P is high-dimensional. To summarise, in the
metapopulation model, the spatial network acts on the probability of colonisation, whereas in the

interaction model, the biotic network acts on the probability of extinction.

Proposition 3. The stochastic spatially realistic metacommunity model converges towards a unique

stationnary distribution

In the stochastic spatially realistic models of mutualistic metacommunities, the transition matrix
of the chain is of dimension 2™" x 2" encoding the probability of transition between a state
Sk = (Z11,...,Zmn) of the metacommunity and a state s; = (271,...,Zmn), Where z;; € {0,1}
describes the presence of a population of species ¢ in site j. We note P the transition matrix, the

probability of transition between sy and s is :
Poy =[P = a1 X1 = 211,000, Xhy = Tnn) (39)
4,J
Moreover, we have:

.
P(X; ! =1]X{; =0, Z Xp)=e+(l—ex(1—(1- C)Z(’“">€Ncc“*” Her (40)
(k,))eNg. (i,4)
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with € €]0; 1] and ¢ €]0; 1[. We have:
Pe<e+(1—-€¢)x(1—(1- c)z"“*”ENGc“’j) X’“/’l) <l)=1 (41)

Moreover:

Dk )eNe, (i) Xkl
1+ dege. ((i,5))

P(X{T =11X], =1, Z Xp)=1—e(l-
(k,1)ENG, (3,7)

) (42)

where e €]0; 1[. We have then:

e <e(l - 2 (k)e NG, (i) Xkl
1+ degea. ((4,7)) 1+ dega. ((,7))

The probability of extinction is in ]0; 1[.

Consequently :

» Amyn

Vie{l,...,n},Vje{l,..,m}, P(X/T' =2 ;X =271,... X}, ,, = Tmin) >0 (44)

It follows that P is irreducible and aperiodic and (X*)! converges towards a unique stationary
distribution. Importantly, in the stationnary distribution, each species in each sites has a non-nul

probability of presence.

A.2 The nm-intertwined model

The approximation is derived from Bianconi (2018) and Van Mieghem (2011). The aim is to study
the dynamics of occupancy of each species j in each site i: p;;(t) = E(Xitj)). For all ¢ and j, we
have

2 (D ENG, (i) S

L+ dege, (7))
(45)

t
pii(141) = E((1-X1 ) (e (1) (1- (1) = 0Neen X)) LB (XY (11~
This approach leads to a hierarchy of equations that cannot be solved (i.e. we need to consider
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E(Xi17 e ann) to find a solution to the system). A drastic approximation consists in the mean

field approximation, for any sequence of indices n(1),n'(1);...,n(r),n’(r'), we assume :

t t N t t
E(Xn(l),n’(l)’ st Xn(r),n/(r’)) - E(Xn(l),n’(l)) E(Xn(r),n/(r’))

Pig (t41) = (1=py s (D) (e (1—€) (1—(1—¢) = ®0eNae i Py L (1 _e(g

2 (ke (i) Pri (D)

1+ dege, ((i, 7))

(46)

)pi (1)
(47)

We assume that ¢ = o(1), e = o(1) and € = o(c), a Taylor expansion at order 1 with set M, ; :=

1+ dege, ((4, 7)) leads to:

Pij(t+1) = (1—p;;(t))(e+(1—e

pij(t+1) = (1—pi;(t))(c

e Y ) +(U—ete D> pra(t)/Mij)pi(t)

(k’l)eNGc ('LJ)

(}C,l)ENGe (i’j)

oo @) FU—ete D pra(®)/Mig)pi(t)

(k,)ENG, (i,5)

(k,l)ENG, (4,5)

We introduce a single index v for the nodes of the product networks and get:

pv(t + 1) = (1 - pv(t))(c Z pu(t)) + ((1 —e+te Z pu(t))/Mv)pv(t)

u€ENg, (v)

u€Ng, (v)

pv(t + 1) - pv(t) = (1 - pv(t))(c Z pu(t)) - e((l - Z pu(t))/Mv)pv(t)

uENg, (v)

u€Ng, (v)

pv(t + 1) - pv(t) = Cﬂ(p(t))(l - pv(t)) - Ev(p(t))(pv(t))

where Cv(p(t)) = CZU[AC]U,upu(

t) and E,(p(t)) =

6(1 - Eu[Ae]v,upu(t)/Mv)'

P(t +1) — p(t) = c(Acp(t)) © (1 = p(t)) — e(1 — (De + Lum) "' Acp(t)) © p(t)

(48)
(49)

(50)

(51)

(53)

where © denotes the element-wise product, D, denotes the indegree matrix of G, and I, the

identity matrix of dimension nm.
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A.3 Proof of proposition 1

We need to show that the two submodels are irreducible. Let J be the matrix of dimension n x n

so that:

1 if2%(p)>0,pe
Jij = o (54)

0 otherwise
We say that the model is irreducible if J is irreducible, i.e., the graph that has J as adjacency
matrix is strongly connected.
Importantly, as pointed out in Smith (2008), we need to show that the models are irreducible on
Q, that is the interior of the domain but also its boundary.
We have:
2 ulAclv,upu

90 = T A/, %)

We first note that g, is defined on § since:

N Advupa /M| <> Al /M| < 1 (56)
We have:
09y . [AC]v,u(l - Zk[Ae]v,kpk/Mv) + ([Ae}v,u/Mv) Zk[Ac]v,kpk
op. P = (1= o[ Adu i/ M, 2 (57)
For the Levins type model:
99 (5) = [Ad (55)

Opu
And since, G4 and G, are both strongly connected and G. = G;0Gy, G, is also strongly connected

and J is irreducible on €.

For the combined effect model, we note that E(G.) C E(G.). It follows that [A°],, = 0 =
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[A¢]y, =0 and [A°],,, =1 = [A]y,u = 1. We have then:

[Ac]v,u + (E}C[Ac]w,k[Ae]v,upk/M'u - [Ac]v,u[Ae]v,k:pk/Mv)
(1 - Zk[Ae]v,kpk/Mv)Q

09y
Opu

(p) = (59)

o If [Ac]u,w = 0, then [Ac]y . = 0 and, for all k, [Ac]y u[Aelvk — [Aclvk[Ac]ou = 0. It follows

643

644

645

654

that 29
4

au(p)zo

o If [Ac]y =1 and [Ac]y,w = 0, then:

and %(p) >0

99y
Opu

o If [Ac]y =1 and [Ac]y,w = 1, then:

990
Opy,

Since E(G.) C E(G.), we have (3, [AcJur — [Ae)o k) > 0 and 22

(p) =

1+

k

(Zk[AC]v,k -

(0) = 1= S [Adupe/M,

[Aclok)/Pr My

(1 =25 [Aclo.kpr/My)?

op

v
u

(p) > 0.

(60)

(61)

Consequently, for the combined effect model, then non-zero elements of J are the non-zero elements

of Ac. Since G, = G,0G, it follows that J is irreducible.

A.4 Computation of \;

As provided in the main text, for the Levins type submodel, A\; = Ay = Ag+ Ap. We now compute

the A; for the three other submodels.

We first compute the Jacobian matrix of p — g(p) evaluated in p = 0. We have

A7 is the dominant eigenvalue of (

0gv
Opu

99y
Opu

<o>)w

(O) = [Ac]v,u
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e Combined effect submodel

For this submodel, A. = A, ® I,,, + I, ® Ay, it follows A\; = A,

A.5 Computation of )\,

In order to compute Ap; for the combined effect submodel, the separated effect model and the
rescue effect submodel where the components of g are not concave, we used a simulated annealing
algorithm. We used the result of the iterative procedure described in Appendix D of Ovaskainen &
Hanski 2001 as starting point.

The code to compute the metacommunity capacity in the different models is available at: https:
//gitlab.com/marcohlmann/metacommunity_theory.

We assessed the performance of the method on the Levins type model on the simulated data, since
we know analytically the metacommunity capacity in this case. We used 20000 time steps on the
900 different networks for the two submodels. The maximum is not reached (Fig. Sla) but the there
is a strong correlation (0.955) between the estimated metacommunity capacities and the theoretical
metacommunity capacities (Fig. S1b), allowing so comparison of the metacommunity capacities

among the different network structures.

B Appendix: detail on the simulation

B.1 Spatial networks

In order to mimic fragmentation of the landscape, we sampled spatial networks (10 nodes) using
Erdés-Renyi model and a block model. For the Erd&s-Renyi model, the probability of connection

was C' = 0.25 and we kept connected networks only. For the block model, we partitioned in two
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Figure S1: (a) Distribution of the relative error in the estimation of the metacommunity capacity (b)
Relation between the metacommunity persistence capacity computing using a simulating annealing
algorithm and the theoretical metacommunity capactity for the Levins type submodel

groups of equal sizes, p and ¢, with a matrix of probability of connection, IT, given by:

SN SIS
.&‘a N[O
S ]

672 where C' = 0.25.

673 The overall probability of connection in the network is :

P(i < j) = > Prii«jlick,jel)Pr(ick)Pr(j€l) (63)
ke{p,a},i€{p,q}

17C C C 1C
+ =+ =+ =) (64)

Pli ¢ j) = - (=
Gon=30r+3+7+7
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Pii«j)=C (65)

So the expected value of connectance for all spatial networks is the same despite different

modularity values (Fig. S2).

0.4

modularity

0.2

Erdos-Renyi Modular
structure

Figure S2: Distribution of the modularity of the spatial networks over the 15 replicates for the
Erdés-Renyi strucutre and the modular structure

B.2 Biotic interaction networks

We first generated random undirected network with various shapes of the degree distribution using
the function sample_ fitness_ pl implemented in the R package igraph (Csardi & Nepusz, 2006). We
generated Erdds-Renyi networks and networks with a degree distribution given by a power-law.

We only kept connected networks. On the random network G sampled (A is its adjacency matrix),

we build a bipartite network Gy, with adjacenncy matrix Ay as:

Apip = Az ® (A +1,) (66)
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where A, is the adjacency matrix of an undirected graph made of two nodes and a single edge
between these two nodes. By doing so, all the sampled undirected bipartite networks are strongly

connected.

B.3 Results

We simulated the dynamic (as presented in the main text for the combined effect submodel) for the

Levins type model (Fig. S5, Fig. S6).

Power law A

Am

interaction network

Erdos—RenyiH

Erdosl—Renyi Modlular
spatial network

Figure S3: Assessing metacommunity persistence capacity in function of the structure of the spatial

network (Erdés-Renyi/Modular) and the structure of the interaction network (Erdés-Renyi/Power
law) for the Levins type model
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Figure S4: Comparison between the stochastic metacommunity model and the nm-intertwined
model for the Levins type model. (a) Comparison of the mean total occupancy dynamics averaged
over 1000 replicates (solid line, the standard deviation is represented in grey) with the prediction of
the equilibrium by the nm-intertwined model (dashed line) (b) Comparison of the mean local oc-
cupancies in the stationary distribution of the stochastic metacommunity model with the predicted
values by the nm-intertwined model

B.4 Robustness of metacommunity capacity estimation

We analysed the robustness of the estimation of Aj; for the four different structures for each
submodel. We described the distribution of Ap; (225 samples per combination of structure for
each model) using a boxplot (Fig. S7). Morever, we used a Tukey test to estimate the confidence
intervals of the difference in mean metacommunity capacity per pairs of structures (Fig. S8). For
the Levins type and combined effect model, all differences in mean Ajp; were statistically different
of 0. For the seperated effect and rescue effect model, difference in mean Ap; of PL/E-E/E (PL:

Power-Law, E: Erdés-Renyi, M: Modular) and PL/M-E/M were statistically not different from 0.
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Figure S5: Simulating the dynamics for a given spatial and biotic interaction network with the
Levins type model. (a) Colonisation network whose size of the nodes is proportional to their degree
and colour indicates the occupancy at equilibrium (grey: low occupancy, black: high occupancy)
(b) Spatial network whose size of the nodes is proportional to their degree and colour indicates the
species a-diversity at equilibrium (grey: low a-diversity, black: high a-diversity) (¢) Mutualistic
interaction network whose size of the nodes is proportional to their degree and colour indicates
the mean occupancy across the sites at equilibrium (grey: low mean occupancy, black: high mean
occupancy) (d) Relationship between the occupancy at equilibrium and the degree of the node of
the product network. Each point of the relationship (corresponding to a node of the product graph)
is coloured according to the ratio of the degree of the site in the spatial network over the degree
of the focal node in the colonisation network (e) Relationship between the species a-diversity at
equilibrium and the degree of the sites in the spatial network (f) Relationship between the mean
occupancy at equilibrium and the degree of the species in the biotic interaction network
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Figure S6: Aggregated statistics from occupancy at equilibrium for the combined effect submodel
in the spatial network and the biotic interaction network. (a) Spatial network whose size of the
nodes is proportional to their degree and colour indicates the a-diversity at equilibrium (grey: low
a-diversity, black: high a-diversity). (b) Relationship between the a-diversity at equilibrium and
the degree of the sites in the spatial network. (c) Biotic interaction network whose size of the
nodes is proportional to their degree and colour indicates the mean occupancy across the sites at
equilibrium (grey: low a-diversity, black: high a-diversity). (d) Relationship between the mean
occupancy at equilibirum and the degree of the species in the biotic interaction network.

eos It means that, for these two models, whatever the structure of the spatial network (Modular or

eo7  Erdés-Renyi), mean \j; was comparable for a power-law or Erdés-Renyi biotic interaction network.

(@ Levins type (0) Combined effect
8 8
6 6 )_L_\
é == é '
3 \;4 | E \;1 |
4 4
2 2
networks networks

Figure S7: Boxplot representing distributions of Aj; for each combination of structure in the Levins
type and the combined effect model. E: Erdés-Renyi, PL: Power-Law, M: Modular
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Figure S8: Tukey plot representing the confidence intervals of the difference in mean metacommu-
nity capacity per pairs of structures. E: Erd&s-Renyi, PL: Power-Law, M: Modular

46



698

699

700

References

Aldous, D.; Flannery, B. & Palacios, J.L. (1988). Two applications of urn processes the fringe
analysis of search trees and the simulation of quasi-stationary distributions of markov chains.

Probability in the engineering and informational sciences 2, 293-307.

Amarasekare, P., Hoopes, M.F., Mouquet, N. & Holyoak, M. (2004). Mechanisms of coexistence in

competitive metacommunities. The American Naturalist 164, 310-326.

Astegiano, J., Guimaraes Jr, P.R., Cheptou, P.O., Vidal, M.M., Mandai, C.Y., Ashworth, L. &
Massol, F. (2015). Persistence of plants and pollinators in the face of habitat loss: insights from
trait-based metacommunity models. In: Advances in ecological research. Elsevier vol. 53 pp.

201-257.

Auclair, E.,; Peyrard, N. & Sabbadin, R. (2017). Labeled dbn learning with community struc-
ture knowledge. In: Joint european conference on machine learning and knowledge discovery in

databases. Springer pp. 158-174.
Bascompte, J. (2009). Mutualistic networks. Frontiers in Ecology and the Environment 7, 429-436.

Bascompte, J. & Jordano, P. (2006). The structure of plant-animal mutualistic networks. Ecological
networks: linking structure to dynamics in food webs. Oxford University Press, Oxford, UK pp.

143-159.

Bianconi, G. (2018). Multilayer Networks: Structure and Function. Oxford University Press; p.60-
62.

Brechtel, A., Gramlich, P., Ritterskamp, D., Drossel, B. & Gross, T. (2018). Master stability

functions reveal diffusion-driven pattern formation in networks. Physical Review E 97, 032307.

Bulman, C.R., Wilson, R.J., Holt, A.R., Bravo, L.G., Early, R.I., Warren, M.S. & Thomas, C.D.
(2007). Minimum viable metapopulation size, extinction debt, and the conservation of a declining

species. Fcological Applications 17, 1460-1473.

47



742

743

744

Bunin, G. (2017). Ecological communities with Lotka-Volterra dynamics. Physical Review E 95,
042414.

Calcagno, V., Mouquet, N., Jarne, P. & David, P. (2006). Coexistence in a metacommunity: the

competition—colonization trade-off is not dead. Ecology letters 9, 897-907.

Callaway, R.M. (1997). Positive interactions in plant communities and the individualistic-continuum

concept. Oecologia 112, 143-149.

Cazelles, K., Mouquet, N., Mouillot, D. & Gravel, D. (2016). On the integration of biotic interaction

and environmental constraints at the biogeographical scale. FEcography 39, 921-931.

Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annual review of Ecology and

Systematics 31, 343-366.

Clauset, A., Shalizi, C.R. & Newman, M.E. (2009). Power-law distributions in empirical data.

SIAM review 51, 661-703.

Csardi, G. & Nepusz, T. (2006). The igraph software package for complex network research.

InterJournal Complex Systems, 1695.

Dale, M. & Fortin, M.J. (2010). From graphs to spatial graphs. Annual Review of Ecology, Evolu-

tion, and Systematics 41.

Darroch, J.N. & Seneta, E. (1965). On quasi-stationary distributions in absorbing discrete-time
finite markov chains. Journal of Applied Probability 2, 88—100.

Etienne, R.S. & Nagelkerke, C. (2002). Non-equilibria in small metapopulations: comparing the
deterministic levins model with its stochastic counterpart. Journal of Theoretical Biology 219,

463-478.

Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual review of ecology,

evolution, and systematics 34, 487-515.

48



768

769

Filotas, E., Grant, M., Parrott, L. & Rikvold, P.A. (2010). The effect of positive interactions on
community structure in a multi-species metacommunity model along an environmental gradient.

Ecological Modelling 221, 885-894.

Fletcher Jr, R.J., Didham, R.K., Banks-Leite, C., Barlow, J., Ewers, R.M., Rosindell, J., Holt,
R.D., Gonzalez, A., Pardini, R., Damschen, E.I. et al. (2018). Is habitat fragmentation good for

biodiversity? Biological conservation 226, 9-15.

Gilarranz, L.J. & Bascompte, J. (2012). Spatial network structure and metapopulation persistence.

Journal of Theoretical Biology 297, 11-16.

Gravel, D. & Massol, F. (2020). Toward a general theory of metacommunity ecology. In: Theoretical

Ecology. Oxford University Press.

Gravel, D., Massol, F., Canard, E., Mouillot, D. & Mouquet, N. (2011). Trophic theory of island
biogeography. Ecology Letters 14, 1010-1016.

Groffman, P.M., Baron, J.S., Blett, T., Gold, A.J., Goodman, I., Gunderson, L.H., Levinson, B.M.,
Palmer, M.A., Paerl, HW., Peterson, G.D. et al. (2006). Ecological thresholds: the key to
successful environmental management or an important concept with no practical application?

Ecosystems 9, 1-13.

Gross, T., Allhoff, K.T., Blasius, B., Brose, U., Drossel, B., Fahimipour, A.K., Guill, C., Yeakel,
J.D. & Zeng, F. (2020). Modern models of trophic meta-communities. Philosophical Transactions

of the Royal Society B 375, 20190455.

Haddad, N.M., Brudvig, L.A., Clobert, J., Davies, K.F., Gonzalez, A., Holt, R.D., Lovejoy, T.E.,
Sexton, J.O., Austin, M.P., Collins, C.D. et al. (2015). Habitat fragmentation and its lasting

impact on earth’s ecosystems. Science advances 1, e1500052.

Hagen, M., Kissling, W.D., Rasmussen, C., De Aguiar, M.A., Brown, L.E., Carstensen, D.W.,
Alves-Dos-Santos, 1., Dupont, Y.L., Edwards, F.K., Genini, J. et al. (2012). Biodiversity, species

interactions and ecological networks in a fragmented world. 46, 89-210.

49



776

777

Hanski, I. & Ovaskainen, O. (2000). The metapopulation capacity of a fragmented landscape.
Nature 404, 755.

Hanski, I. & Ovaskainen, O. (2003). Metapopulation theory for fragmented landscapes. Theoretical

population biology 64, 119-127.

Hiebeler, D.E. & Millett, N.E. (2011). Pair and triplet approximation of a spatial lattice popula-
tion model with multiscale dispersal using markov chains for estimating spatial autocorrelation.

Journal of theoretical biology 279, 74-82.
Imrich, W. & Klavzar, S. (2000). Product graphs: structure and recognition. Wiley p.27.

Keéfi, S., Holmgren, M. & Scheffer, M. (2016). When can positive interactions cause alternative

stable states in ecosystems? Functional Ecology 30, 88-97.

Kéfi, S., Rietkerk, M., van Baalen, M. & Loreau, M. (2007). Local facilitation, bistability and

transitions in arid ecosystems. Theoretical population biology 71, 367-379.

Koller, D. & Friedman, N. (2009). Probabilistic graphical models: principles and techniques. MIT

press.

L&hdesmaki, H. & Shmulevich, I. (2008). Learning the structure of dynamic bayesian networks

from time series and steady state measurements. Machine Learning 71, 185-217.

Laroche, F., Paltto, H. & Ranius, T. (2018). Abundance-based detectability in a spatially-explicit
metapopulation: a case study on a vulnerable beetle species in hollow trees. Oecologia 188,

671-682.

Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F., Holt, R.D.,
Shurin, J.B., Law, R., Tilman, D. et al. (2004). The metacommunity concept: a framework for

multi-scale community ecology. FEcology letters 7, 601-613.

Levins, R. (1969). Some demographic and genetic consequences of environmental heterogeneity for

biological control. American Entomologist 15, 237-240.

50



813

814

815

Liautaud, K., van Nes, E.H., Barbier, M., Scheffer, M. & Loreau, M. (2019). Superorganisms
or loose collections of species? a unifying theory of community patterns along environmental

gradients. Ecology letters 22, 1243-1252.

Massol, F., Dubart, M., Calcagno, V., Cazelles, K., Jacquet, C., Kéfi, S. & Gravel, D. (2017). Island

biogeography of food webs. Advances in Ecological Research 56.

Mougquet, N., Lagadeuc, Y., Devictor, V., Doyen, L., Duputié, A., Eveillard, D., Faure, D., Garnier,
E., Gimenez, O., Huneman, P. et al. (2015). Predictive ecology in a changing world. Journal of

Applied Ecology 52, 1293-1310.

Mouquet, N., Matthiessen, B., Miller, T. & Gonzalez, A. (2011). Extinction debt in source-sink

metacommunities. PLoS One 6, e17567.

Nee, S., Hassell, M.P. & May, R.M. (1997). Two-species metapopulation models. In: Metapopulation

biology. Elsevier pp. 123-147.

Ohlmann, M., Miele, V., Dray, S., Chalmandrier, L., O’connor, L. & Thuiller, W. (2019). Diversity
indices for ecological networks: a unifying framework using hill numbers. FEcology letters 22,

737-747.

Ovaskainen, O. & Hanski, I. (2001). Spatially structured metapopulation models: global and local

assessment of metapopulation capacity. Theoretical population biology 60, 281-302.

Pillai, P., Loreau, M. & Gonzalez, A. (2010). A patch-dynamic framework for food web metacom-
munities. Theoretical Ecology 3, 223-237.

Reid, A.M. & Lortie, C.J. (2012). Cushion plants are foundation species with positive effects

extending to higher trophic levels. Ecosphere 3, 1-18.

Sardanyés, J., Pifiero, J. & Solé, R. (2019). Habitat loss-induced tipping points in metapopulations

with facilitation. Population Ecology 61, 436-449.

Schreiber, S.J., Levine, J.M., Godoy, O., Kraft, N.J.B. & Hart, S.P. (2023). Does deterministic

coexistence theory matter in a finite world? FEcology 104, e3838.

o1



819

821

822

824

831

832

842

Simon, P.L., Taylor, M. & Kiss, I.Z. (2011). Exact epidemic models on graphs using graph-

automorphism driven lumping. Journal of mathematical biology 62, 479-508.

Smith, H.L. (2008). Monotone dynamical systems: an introduction to the theory of competitive and
cooperative systems: an introduction to the theory of competitive and cooperative systems. 41.

American Mathematical Soc.
Sole, R.V. & Bascompte, J. (2007). Self organization in complex ecosystems.

Song, C., Rohr, R.P. & Saavedra, S. (2018). A guideline to study the feasibility domain of multi-

trophic and changing ecological communities. Journal of theoretical biology 450, 30-36.

Staniczenko, P.P., Sivasubramaniam, P., Suttle, K.B. & Pearson, R.G. (2017). Linking macroecology
and community ecology: refining predictions of species distributions using biotic interaction

networks. FEcology letters 20, 693—-707.
Stumpf, M.P. & Porter, M.A. (2012). Critical truths about power laws. Science 335, 665-666.
Takeuchi, Y. (1996). Global dynamical properties of Lotka-Volterra systems. World Scientific.

Thébault, E. & Fontaine, C. (2010). Stability of ecological communities and the architecture of

mutualistic and trophic networks. Science 329, 853-856.

Thuiller, W., Miinkemdiller, T., Lavergne, S., Mouillot, D., Mouquet, N., Schiffers, K. & Gravel, D.
(2013). A road map for integrating eco-evolutionary processes into biodiversity models. Ecology

letters 16, 94-105.

Tilman, D., Lehman, C.L. & Yin, C. (1997). Habitat destruction, dispersal, and deterministic

extinction in competitive communities. The American Naturalist 149, 407-435.

Tischendorf, L. & Fahrig, L. (2000). On the usage and measurement of landscape connectivity.
Oikos 90, 7-19.

Valdovinos, F.S. (2019). Mutualistic networks: moving closer to a predictive theory. Ecology letters

22, 1517-1534.

52



843

855

Van Mieghem, P. (2011). The n-intertwined sis epidemic network model. Computing 93, 147-169.

Van Mieghem, P. & Cator, E. (2012). Epidemics in networks with nodal self-infection and the

epidemic threshold. Physical Review E 86, 016116.

Vazquez, D.P.; Chacoff, N.P. & Cagnolo, L. (2009). Evaluating multiple determinants of the struc-

ture of plant—animal mutualistic networks. Ecology 90, 2039-2046.

Wang, S., Brose, U., van Nouhuys, S., Holt, R.D. & Loreau, M. (2021). Metapopulation capacity
determines food chain length in fragmented landscapes. Proceedings of the National Academy of

Sciences 118.

Wuyts, B. & Sieber, J. (2022). Mean-field models of dynamics on networks via moment closure:

An automated procedure. Physical Review E 106, 054312.

Zhang, H., Bearup, D., Nijs, I., Wang, S., Barabas, G., Tao, Y. & Liao, J. (2021). Dispersal network
heterogeneity promotes species coexistence in hierarchical competitive communities. FEcology

Letters 24, 50-59.

53



	Introduction
	Stochastic models of metacommunity dynamics using dynamic Bayesian networks
	Spatially realistic metapopulation model
	A mainland-island model with biotic interactions
	Spatially realistic models of mutualistic metacommunities

	The nm-intertwined model
	Metapopulation capacity
	Extension to mutualistic metacommunity capacity
	The mutualistic metacommunity concept
	Computation of metacommunity capacity for the combined effect model


	Applications
	Illustration
	Structures of spatial and mutualistic interaction network jointly shape the metacommunity capacity
	Computing metacommunity capacities
	Comparison between the stochastic model and the nm-intertwined model
	A focus on species occupancies at equilibrium for a given network combination


	Discussion
	Appendix: details on the model and simulations and proofs
	Stochastic models of metacommunity dynamics using dynamic Bayesian networks
	Bayesian networks and dynamic Bayesian networks
	Convergence properties of the stochastic models

	The nm-intertwined model
	Proof of proposition 1
	Computation of I
	Computation of M

	Appendix: detail on the simulation
	Spatial networks
	Biotic interaction networks
	Results
	Robustness of metacommunity capacity estimation


