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Abstract
We address the online unconstrained submodular maximization problem (Online USM), in a setting
with stochastic bandit feedback. In this framework, a decision-maker receives noisy rewards from
a nonmonotone submodular function, taking values in a known bounded interval. This paper pro-
poses Double-Greedy - Explore-then-Commit (DG-ETC), adapting the Double-Greedy approach
from the offline and online full-information settings. DG-ETC satisfies a O(d log(dT )) problem-
dependent upper bound for the 1/2-approximate pseudo-regret, as well as a O(dT 2/3 log(dT )1/3)
problem-free one at the same time, outperforming existing approaches. To that end, we introduce
a notion of hardness for submodular functions, characterizing how difficult it is to maximize them
with this type of strategy.
Keywords: Unconstrained submodular maximization; stochastic bandits; logarithmic regret; sam-
pling complexity.

1. Introduction

1.1. Context and problem formulation

Several real-world settings can cast as combinatorial optimization problems over a finite set. With-
out some assumptions on the utility function to be maximized and/or the constraints to be satisfied,
such problems are not solvable in polynomial time. In practice, different types of assumptions and
constraints can be introduced to make these problems manageable, even approximately. One can,
for example, assume the utility to be linear. However, even this already strong assumption can be
helpless in making the problem easier, depending on the constraints.

In this paper, we focus on the cases where the maximized function is submodular, meaning that
it satisfies a “diminishing marginal gains” property. We consider the unconstrained setting, where
the whole combinatorial super-set is available and we do not assume the utility to be monotonous (if
it is, the solution is straightforward). We also place ourselves in a stochastic (combinatorial) bandit
setting, where a decision-maker / player chooses different sets along sequential rounds, and receives
noisy rewards. In this framework, one classically needs to balance exploration and exploitation, but
also to manage the combinatorial complexity of the problem at the same time. In particular, a good
strategy should efficiently leverage the underlying structure of the reward – submodularity in this
case – and estimate/exploit relevant quantities.
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Problem formulation and assumptions. We consider a finite set of itemsD where |D| = d ∈ N∗.
The player has access to actions from the whole superset P(D) and plays for an horizon of T ∈ N∗

rounds. We assume that the player receives noisy rewards from a nonmonotonous submodular set-
function f : P(D)→ [0, c] with c > 0. At each round t ∈ [T ] = {1, . . . , T}, the player chooses an
action At ∈ P(D) and receives

Zt = f(At) + ηt , (1)

where ηt is a random variable. Let σ > 0 (known), we assume that ηt is σ2-sub-Gaussian condi-
tionally to Ft−1 = σ(η1, . . . , ηt−1) and independent to the possibly random process generating the
actions (As)s≤t.

The algorithms that we study in this paper all consider the items sequentially. For convenience,
we identify D with [d] and assume an arbitrary ordering, but a player with prior knowledge could
try to optimize over permutations.

1/2-Approximate pseudo-regret minimization. The objective of the player is to maximize its
cumulative rewards over the T rounds. As it is common in bandit literature, we instead look at a
pseudo-regret, neglecting the contribution of the noise (ηt)t∈[T ]. Besides, rather than looking at the
exact pseudo-regret, we minimize an 1/2-approximation defined as

RT =
∑
t∈[T ]

[1
2
f(A∗)− f(At)

]
, (2)

where A∗ ∈ argmaxA⊆D
{
f(A)

}
. Considering approximate regrets is usual in settings where we

have access to an oracle solving the offline optimization approximately (Chen et al., 2013). In par-
ticular, the 1/2 factor here come from impossibility of solving the offline unconstrained submodular
maximization problem (USM), with a competitive ratio better than 1/2, using a polynomial number
of calls (Feige et al., 2011). In the following, except if we specify it explicitly, the expressions
pseudo-regret or even just regret refer to the 1/2-approximate pseudo-regret.

1.2. Related works

Combinatorial bandits. The recent monograph by Lattimore and Szepesvári (2020) makes an
extensive study of bandit problems. We are more particularly interested in settings where the action
space is combinatorial and too big to be explored in its entirety. Chen et al. (2013) introduced a
semi-bandit stochastic framework with approximate regrets and a monotone aggregation function
having bounded smoothness. When the aggregation is linear, the leading factors in the regrets
have been refined in several subsequent works (Kveton et al., 2015; Degenne and Perchet, 2016;
Perrault et al., 2020; Zhou et al., 2024). A matching adversarial semi-bandit setting has also been
explored (Ito, 2021; Neu and Valko, 2014). Besides, when the feedback is “only” full-bandit, and the
aggregation remains linear, one could see the problem as a linear bandit and use the corresponding
methods, as long as the offline problem can be solved (Abbasi-Yadkori et al., 2011; Bubeck et al.,
2012). Considering a nonlinear aggregation function with full-bandit feedback remains however
challenging without further assumptions on the reward (Han et al., 2021).

Unconstrained submodular maximization (USM). Submodularity has applications in various
fields, including economics, game theory and combinatorial optimization. As it shares properties
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similar to both convexity and concavity in continuous optimization (Lovász, 1983), both view-
points are of interest. The monograph by Bach (2013) details various cases where submodular
set-functions appear and highlights the parallels between submodular minimization and convex op-
timization. While submodular minimization can be solved exactly in polynomial time, the maxi-
mization is more difficult, and can in general be solved only approximately (Feige et al., 2011). A
(1−1/e)-approximation is possible in the cardinally-constrained monotone case (Nemhauser et al.,
1978), but the unconstrained nonmonotone setting can only be solved up to a 1/2-approximation
(Feige et al., 2011). Buchbinder et al. (2012) particularly shows that a double-greedy approach
reaches this ratio using a linear number of oracle calls.

Online USM with partial feedback. While Feige et al. (2011) proves that a 1/2-approximation
cannot be improved with a polynomial number of oracle calls in the offline setting, Buchbinder
et al. (2012) provides a linear-time approach reaching this ratio, closing the gap between upper and
lower bounds. Later on, Roughgarden and Wang (2018) introduces an online full-information ad-
versarial framework and provides an algorithm satisfying a O(d

√
T ) upper bound for the expected

1/2-approximate regret. Harvey et al. (2020) manages to gain a
√
d factor on this bound by using

tools related to online dual averaging and Blackwell approachability. However, the bandit setting
where the player has considerably less feedback has been less studied. Fourati et al. (2023) con-
siders a stochastic bandit setting, and proposes an Explore-then-Commit type algorithm satisfying
a O(dT 2/3 log(T )1/3) upper bound. However, Niazadeh et al. (2021) claims a similar O(dT 2/3) in
an adversarial bandit setting. As the latter framework seems significantly more difficult, one may
reasonably wonder if better guarantees can be satisfied in the stochastic setting. We answer this
question positively and propose an algorithm satisfying both logarithmic problem-dependent and
O(d(T log(dT ))2/3) problem-free upper bounds.

1.3. Contributions

We propose a novel algorithm Double-Greedy - Explore-then-commit (DG-ETC) for the online
unconstrained submodular maximization problem (Online USM), with stochastic bandit feedback
(Section 3). We introduce a new notion of hardness for this problem (Section 4.1), and prove that
DG-ETC satisfies both a logarithmic problem-dependent (hardness-dependent) upper bound for the
1/2-approximate pseudo-regret, as well as a worst-case O(dT 2/3 log(dT )1/3) (Sections 4.2 and 5).
Those bounds are satisfied both with high-probability and in expectation (Theorem 2) and leverage
the differences between the stochastic setting (Fourati et al., 2023) and the adversarial one (Ni-
azadeh et al., 2021). Asymptotically, DG-ETC allocates a logarithmic, hardness-dependent, number
of rounds to the design of a strategy that compensates the randomness errors with per-round negative
losses (therefore, with gains). DG-ETC actually leverages the looseness of the 1/2-approximation
ratio in non-adversarial cases, and we argue that this kind of strategy could also be applied to other
settings involving approximations.

2. Preliminary

In this section, we introduce submodularity, and remind the spirit of the Double-Greedy algorithm
(Buchbinder et al., 2012) on which our DG-ETC is based.
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2.1. Submodularity

Submodularity is a “diminishing marginal gains” property. It is formally defined as follows.

Definition 1 (Submodularity) Let D be a finite set and c > 0. A set-function f : P(D) → [0, c]
is said to be (bounded) submodular if, equivalently,

• For all A ⊆ B ⊆ D and i ∈ D, f(B ∪ {i})− f(B) ≤ f(A ∪ {i})− f(A) ;
• For all (A, B) ∈ P(D)× P(D), f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) .

Besides, f is said to be monotone if for all A ⊆ B ⊆ D, f(A) ≤ f(B). Otherwise, we say that f
is nonmonotone.

2.2. Double-Greedy for USM

Understanding the Double-Greedy Algorithm (DG, Algorithm 1) from Buchbinder et al. (2012) is
crucial for the rest of the paper.

Algorithm 1 Double-Greedy (DG from Buch-
binder et al., 2012)

1: Inputs: D
2: (X0, Y0)← (∅, D)
3: for i = 1, . . . d do
4: αi ← f(Xi−1 ∪ {i})− f(Xi−1)
5: βi ← f(Yi−1 \ {i})− f(Yi−1)

6: pi ← max{αi,0}
max{αi,0}+max{βi,0}

7: Ki ∼ B(pi)
8: if Ki then
9: (Xi, Yi)← (Xi−1 ∪ {i}, Yi−1)

10: else
11: (Xi, Yi)← (Xi−1, Yi−1 \ {i})
12: end if
13: end for
14: Return: Xd ⊆ D

When maximizing a nonmonotone sub-
modular function f , DG works in d steps (one
per item) and considers the items sequentially.

It first initializes a pair of sets X0 = ∅ and
Y0 = D as the empty set and the full set respec-
tively, and then modifies them sequentially.

At each step i ∈ [d], DG looks at the
“marginal gains” αi and βi respectively corre-
sponding to adding item i to Xi−1 or remov-
ing it from Yi−1 [Line 4-5]. It makes the fi-
nal decision of either adding or removing it by
sampling a Bernoulli random variable with pa-
rameter pi, defined from the positive part of the
marginal gains [Line 6-7]. After the d-th and
last step, DG returns the set Xd, which is iden-
tical to Yd by construction [Line 14].

Overall, DG requires 4d calls to f and satis-
fies the following guarantee.

Theorem 1 (Buchbinder et al. (2012), Theorem I.2.) Let D be a finite set. Algorithm DG returns
a set S such that E

[
f(S)

]
≥ 1

2f(A
∗) .

The result being in expectation, one can repeatedly run DG to obtain an acceptable set with a
high enough probability. In particular, we prove the following Proposition in Appendix B.

Proposition 1 Let D be a finite set, δ > 0 and T ∈ N∗ such that T > 2 log(1/δ). If (Si)i∈[T ] is
the sequence of sets obtained by running independently T times DG Algorithm, then

max
i∈[T ]

f(Si) >
(1
2
− log(1/δ)

T

)
f(A∗) , w.p. 1− δ .
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Stochastic bandit setting. In our setting, using DG directly is not possible as we do not have
access to the marginal gains αi and βi but only to noisy estimates. To overcome this difficulty,
Fourati et al. (2023) propose the Randomized Greedy Learning (RGL) algorithm, an Explore-then-
Commit strategy satisfying a O(dT 2/3 log(T )1/3) expected regret upper bound. Similarly to DG,
RGL works in d steps, one per item, each lasting T 2/3 log(T )1/3 rounds. During the i-th step,
RGL estimates the coefficients αi and βi , chooses a set Xi (and Yi) and move on to the next item.
After dT 2/3 log(T )1/3 exploration rounds, RGL commits to the last chosen set Xd.

However, we argue that RGL explores too much, and that logarithmic, problem-dependent regret
upper bounds can be obtained both in expectation and with high-probability.

3. Algorithm for full-bandit feedback: Double-Greedy - Explore-then-Commit
(DG-ETC)

In this section, we propose Double-Greedy - Explore-then-Commit (DG-ETC), a novel algorithm
for unconstrained submodular maximization (USM) with stochastic full bandit feedback. DG-ETC
builds on insights from Buchbinder et al. (2012), Roughgarden and Wang (2018) and Harvey et al.
(2020). We present the theoretical guarantees of DG-ETC in Section 4, which outperform existing
algorithms for this setting.

In the following, the word round refers to a single increment of time t, the word step refers to
the per-item exploration steps (containing several rounds) and the word phase refers to the explo-
ration/exploitation phases (the exploration phase containing several per-item steps).

3.1. Algorithms presentation

DG-ETC is presented in Algorithm 2, and is built on two subroutines: DG-Sp (Algorithm 3) and
UpdExp (Algorithm 4).

Double-Greedy - Explore-then-Commit (DG-ETC, Algorithm 2). Algorithm DG-ETC is an al-
gorithm implementing an Explore-then-Commit type strategy. It takes as inputs the set of items D,
c > 0 the range of f , the sub-Gaussian parameter of the noise σ > 0, as well as the horizon T ∈ N∗

and a confidence level δ ∈ (0, 1).
It first performs d exploration steps (one per item in D) [Lines 12 to 26], each lasting at most

4τmax rounds where
τmax = T 2/3 log(dT )1/3 . (3)

Contrarily to RGL (Fourati et al., 2023), the duration of each exploration step is problem-adaptive,
and can be considerably smaller than the worst case (See Section 5.3). It then spends the rest of
the rounds [Lines 27 to 32] exploiting the collected information. During this phase, it does not
play a fixed set, but repeatedly samples random sets based on d Bernoulli random variables with
parameters (pj)j∈[d] determined during the exploration phase.

Double-Greedy - Sampling (DG-Sp, Algorithm 3). Both phases rely on the DG-Sp subroutine
[Lines 15 and 30 in Algorithm 2], which is a variation of DG from Buchbinder et al. (2012) (Algo-
rithm 1). DG-Sp relies on the parameters (pj)j∈[d] provided by the meta-algorithm DG-ETC, which
also provides an item i ∈ [d + 1] at which DG-Sp should stop. Like DG, it begins by initializing
two sets X0 and Y0 as the empty and the full sets. Then it iterates over the parameters (pj)j∈[d]
and proceeds to either add (to Xj) or remove (from Yj) in order to create (Xj , Yj)j<i by sampling

5
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Algorithm 2 Double-Greedy - Explore-then-Commit (DG-ETC)

1: Inputs: D, c > 0, σ > 0, δ > 0, T ∈ N∗

2: /* Instantiating */
3: d← |D|
4: Instantiate gT,δ and τmax with (4) and (3)
5: Instantiate UpdExp with gT,δ and τmax

6: /* Initialisation */
7: (t, i)← (1, 1)
8: (α̂j , β̂j)j∈[d] ← 0
9: (pj)j∈[d] ← 1/2

10: (τj)j∈[d] ← 0
11: /* Exploration phase */
12: while i ≤ d do
13: /* 4 rounds for item i */
14: (Xi−1, Yi−1)← DG-Sp

(
D, (pj)j , i

)
15: Play:
16: At ← Xi−1 At+1 ← Xi−1 ∪ {i}
17: At+2 ← Yi−1 At+3 ← Yi−1 \ {i}

18: Receive:
19: Zt , Zt+1 , Zt+1 , Zt+3

20: Update:
21: α̂i ←

(
τiα̂i + (Zt+1 − Zt)

)
/(τi + 1)

22: β̂i ←
(
τiβ̂i + (Zt+3 − Zt+2)

)
/(τi + 1)

23: τi ← τi + 1
24: (pi, i)← UpdExp

(
i, (α̂i, β̂i), τi

)
25: t← t+ 4
26: end while
27: /* Exploitation phase */
28: while t ≤ T do
29: (Xd, Yd)← DG-Sp

(
D, (pj)j , i

)
30: Play: At ← Xd

31: Update: t← t+ 1
32: end while

Bernoulli random variables. At the end, DG-Sp returns (Xi−1, Yi−1) and DG-ETC then decides to
either collect information when i ≤ d or exploit when i = d + 1. An example of sampling from
DG-Sp is illustrated in Figure 1.

Xj Yj

j = 0

j = 1

j = 2

j = 3

j = 4

j = d

Figure 1: Example of sampling from DG-Sp,
for i = d + 1 and (Kj)j∈[d] =
(1, 0, 1, 0, . . . 1).

Exploration update for DG-ETC (UpdExp,
Algorithm 4). During its exploration phase,
DG-ETC calls the subroutine UpdExp [Line
24 in Algorithm 2]. The latter takes as in-
puts the index of the current step i, estimates
of the marginal gains (α, β) and the cur-
rent values of τ for item i. The objective of
UpdExp is to check if we can determine an ad-
equate Bernoulli parameter p for item i and/or
if the exploration has lasted too long (if τ ≥
τmax). In both those cases, UpdExp returns
an adequate parameter p and index i+ 1 to tell
DG-ETC to switch to the next item. Otherwise,
p stays the default 1/2 and UpdExp returns current index i.

3.2. Exploring just enough for zero exploitation regret: the key idea

In DG-ETC, the number of rounds devoted to the exploration for each item is adaptive, and is
controlled by the subroutine UpdExp. Given estimated marginal gains (α̂i, β̂i) and an exploration
time τ , UpdExp checks if it is possible to counterbalance the errors coming from the different
sources of uncertainties, with high probability.

6
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The per-round exploitation regret induced by all sources of uncertainty (estimations errors, ran-
dom sampling, noise fluctuations) for item i, is bounded with high-probability (Proposition 2 in our
analysis) by gT,δ/

√
τi where

gT,δ =
√

2(2σ2 + c2)
√

2 log(dT ) + log(1/δ)

(
1 + 2

√
log(dT )

T + 9c√
2σ2+c2

(
log(dT )

T

)1/3)
. (4)

On the other hand, the decision to either add or remove item i with probability pi [Line 30 in
DG-ETC (Alg. 2) and Lines 4-9 in DG-Sp (Alg. 3)] induces an average loss per exploration round
of l(α̂i, β̂i, pi) where

l(α, β, p) = max(l+(α, β, p), l−(α, β, p)), (5)

with l+(α, β, p) =
(
1− p

)
α− 1

2(pα+ (1− p)β), l−(α, β, p) = pβ − 1
2(pα+ (1− p)β).

In this definition, l+ and l− are per-round regrets of using parameter p when the estimated marginal
gains are (α, β), corresponding to the two cases {i ∈ A∗} and {i /∈ A∗}. As one wants to hedge
against both eventualities, we consider the worst-case loss l which is a max of both l+ and l−, which
explains the form of Eq. (11).

Algorithm 3 Double-Greedy - Sampling
(DG-Sp)

1: Inputs: D, (pj)j∈[d] ∈ [0, 1]d, i ∈ [d]
2: (X0, Y0)← (∅, D)
3: for j = 1, . . . , (i− 1) do
4: Kj ∼ B(pj)
5: if Kj then
6: (Xj , Yj)← (Xj−1 ∪ {j}, Yj−1)
7: else
8: (Xj , Yj)← (Xj−1, Yj−1 \ {j})
9: end if

10: end for
11: Return: (Xi−1, Yi−1)

Algorithm 4 Exploration update (UpdExp)
1: Inputs: i ∈ [d], (α, β) ∈ [−c, c]2, τ ∈ N∗

2: Λ← {p ∈ [0, 1] s. t. l(α, β, p) + gT,δ/
√
τ ≤ 0}

3: p← 1/2
4: if Λ = ∅ then
5: if τ ≥ τmax then
6: p← α+

α++β+
where (·)+ = max{·, 0}

7: i← i+ 1
8: end if
9: else

10: p← p ∈ Λ
11: i← i+ 1
12: end if
13: Return: (p, i)

UpdExp checks if, given estimations (α̂i, β̂i) and a current exploration duration 4τi, it is possi-
ble to find a parameter pi so that the random errors gT,δ/

√
τi are absorbed by the loss l(α̂i, β̂i, pi).

Formally, it looks for the existence of a pi ∈ [0, 1] so that

l(α̂i, β̂i, pi) +
gT,δ√
τi
≤ 0 , (6)

which is guaranteed to happen after a logarithmic number of rounds (Proposition 3). If it is the case,
UpdExp returns this parameter pi and makes DG-ETC move on to the next item. Otherwise, the
exploration for the current item i continues unless it has already lasted too long (i.e. if τi ≥ τmax).
In this case, UpdExp returns parameter pi =

α+

α++β+
and makes DG-ETC move on to the next step.

This last choice for pi ensures the loss l to be negative (or null) in the exploitation phase and the
per-round regret for item i to be bounded simply by gT,δ/

√
τmax.

7
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While RGL (Fourati et al., 2023) devotes the same number of rounds to all the items in the
exploration phase, the subroutine UpdExp enables more flexibility. In particular, Section 4 links
the number of exploration rounds necessary with problem-dependent quantities.

Remark 1 The possibility to counterbalance the accumulated errors with negative losses is enabled
by the approximate regret criterion, using the worst-case ratio, and an in-depth analysis of the
original Double-Greedy algorithm. In all generality, this kind of intuition could also be applied to
other methods to recover similar logarithmic upper bounds.

4. Theoretical guarantees for DG-ETC

This section presents theoretical guarantees satisfied by our approach. We introduce a concept of
problem-dependent hardness that characterizes how difficult it is to maximize a given submodular
function with a Double-Greedy approach. We then show that DG-ETC satisfies logarithmic 1/2-
approximate pseudo-regret upper bounds which depend on this hardness, with a O(dT 2/3 log(dT )1/3)
worst-case.

We remind that the items are taken in an arbitrary order, and the quantities may depend on it.

4.1. Double-Greedy hardness

The following hardness notion relates to the sufficient number of exploration rounds that guarantee
to find pi’s to induce zero 1/2-approximate exploration regret.

Definition 2 (DG-hardness) Let D be a set of d elements, considered in an arbitrary order. Let f
be a submodular set-function over D and i be an item in D.

We define the local DG-hardness at item i as

hf (i) = max
X⊆[i−1]

(
αf (i,X)+ + βf (i,X)+

)2(
αf (i,X)+ − βf (i,X)+

)4 ,
where ( · )+ = max{ · , 0} and

αf (i,X) = f(X ∪ {i})− f(X) ,

βf (i,X) = f
(
(D \ [i]) ∪X

)
− f

(
(D \ [i− 1]) ∪X

)
.

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

αf(i, X)

β f
( i

, 
X
)

1
1
0
2

1
0
4

1
0
6

1
0
8

In
f

We also define the global DG-hardness as Hf =
∑

i∈[d] hf (i) .

Remark 2
• This definition is actually not tight, as we will see in the analysis. We consider different

configurations of (α, β), but we use this form as it is more convenient.
• We can also define a dual quantity, a local DG-gap ∆f,i =

(
hf (i)

)−1/2, playing the same role
as the suboptimality gaps in pseudo-regret upper bounds for stochastic multi-armed bandits
(homogeneous to a difference of rewards). The corresponding global DG-gap is ∆f = H

−1/2
f .
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Example For illustration purposes, let’s consider the following function g: we assume there exists
ξ ∈ [−1, 1]d and ν ∈ (0, 1] such that for all X ⊂ [d],

g(X) =

( ∑
i∈X, ξi≥0

ξi

)ν

−

( ∑
i∈X, ξi<0

−ξi

)1/ν

+ ∥ξ−∥1/ν1 (7)

where ξ− = (ξi1{ξi < 0})i and the constant ∥ξ−∥1/ν1 is there solely to guarantee the positivity of
g. Then g is submodular and for all i ∈ [d]:

∆g,i =

{
g([i])− g([i− 1]) if ξi ≥ 0 ,

g(D \ [i])− g(D \ [i− 1]) if ξi < 0 .

These expressions remind the notion of (local) suboptimality gaps common in bandit literature. If
ξi ≥ 0 then i ∈ A∗ and the DG-gap corresponds to the reward gained by adding i to [i − 1]. If
ξi < 0 then i /∈ A∗ and the DG-gap corresponds to the reward increase when removing i from
{i, i + 1, . . . , d}. In particular, linear functions (ν = 1) and functions defined as powers of the set
cardinal (ξ ∈ {0, 1}d) can be written as in (7). If g is linear we have that ∆g,i = ξi for all i ∈ D.

4.2. Regret upper bounds for DG-ETC

We now present our main result, in the form of the following 1/2-approximate pseudo-regret upper
bounds for DG-ETC.

Theorem 2 Let D be a set with |D| = d ∈ N∗, T ∈ N∗ such that d(T
√
log(dT ))2/3 ≤ T/2,

σ ∈ R∗
+ and c ∈ R∗

+. Let 0 ∈ (0, 1].
Then, with probability greater than 1− 10δ/T , DG-ETC satisfies

RT ≤ C1min
(
Hf log(dT ), dT

2/3 log(dT )1/3
)

where C1 is a constant independent from d, T and δ.
Likewise, in expectation,

E[RT ] ≤ C2min
(
Hf log(dT ), dT

2/3 log(dT )1/3
)
,

where C1 is a constant independent from d and T .

Remark 3 We can get finer-grained bounds by using the local DG-hardnesses instead of the local
one. From Eq.8 at the end of Section 5, we can keep the per-item granularity to get with probability
at least 1− 10δ/T

RT ≤ C3

∑
i∈[d]

min
(
hf,i log(dT ), T

2/3 log(dT )1/3
)
,

where C1 is a constant independent from d, T and δ. In particular, depending on the scale of the
horizon T with respect to the different local hardnesses (hf,i)i∈[d], we have sum of some logarithmic
terms, and others of magnitude T 2/3 log(dT )1/3.

9
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5. Analysis of DG-ETC

This section presents a sketch of proof for Theorem 2.
We denote τ =

∑
i∈[d] 4τi the last exploration round. For all the items i, we also denote

ti =
∑

j<i 4τi, the last exploration round for item i. In this section, we have i-indices to denote
items, and t-indices to denote that we place ourselves at the end of the round t ∈ N∗. When t is not
made explicit (notably for α̂i, β̂i and pi), it means that we place ourselves after ti−1 and that they
are fixed.

Outline of the proof. The idea of the proof is to find a high-probability event E under which
the exploration phase takes a logarithmic number of rounds per-item, and the regret is non positive
during the exploitation phase. To that end, we first breakdown the per-round regret of the ex-
ploitation phase into per-item contributions (Section 5.1). This enables to highlight E under which
the per-round, per-item, regret is bounded by l(α̂i, β̂i, pi) + gT,δ/

√
τi for all the items i (Sec-

tion 5.2). Lastly, we prove that under E , for all the items and depending on the DG-hardness of f
(Definition 2), a logarithmic number of exploration rounds is sufficient to find a weight pi so that
l(α̂i, β̂i, pi) + gT,δ/

√
τi ≤ 0. Additionally, at worst, UpdExp returns a pi so that l(α̂i, β̂i, pi) ≤ 0

when τ reaches τmax (Section 5.3).

Template bound. Let E be an event, defined later in Section 5.2. Then, the 1/2-approximate
pseudo-regret can be bounded as

RT ≤ 1{Ec}cT
2

+ 1{E}

(
2c

d∑
i=1

τi +
1

2

T∑
t=τ+1

rt

)
. (8)

where rt = f(A∗) − 2f(At). Under Ec, we use the trivial upper bound cT/2 on the regret, and
under E , we separate the exploration and exploitation phases.

5.1. Double-Greedy breakdown: Per-item exploitation regrets

We use an approach similar to Buchbinder et al. (2012) to bound rt with a sum of per-item terms.

Item-wise breakdown. Let t > τ . We considers sets (A∗
i,t)i∈[d], with A∗

0,t = A∗ and A∗
d,t = At,

so that we can control the evolution of (f(Ai,t))i∈[d] from f(A∗) to f(At) using the coefficients
(αi,t, βi,t)i∈[d]. We define

For i = 0, A∗
0,t = A∗, with X0,t = ∅ , Y0,t = D ,

∀i ∈ [d], A∗
i,t = (A∗ ∪Xi,t) ∩ Yi,t, with Xi,t ⊆ A∗

i,t ⊆ Yi,t , (9)

For i = d, A∗
d,t = Xd,t = Yd,t = At ,

where Xi,t = {j ≤ i, Kj,t = 1} and Yi,t = D \ {j ≤ i, Kj,t = 0} are the sets defined in DG-Sp.
Using these sets and the definition of rt in Eq. (8), a telescopic argument yields

rt ≤ f(A∗)− f(At)−
1

2

[
2f(At)− (f(∅) + f(D))

]
← (f ≥ 0)

=
[
f(A∗

0,t)− f(A∗
d,t)
]
− 1

2

[
f(Xd,t)− f(X0,t) + f(Yd,t)− f(Y0,t)

]
=

d∑
i=1

[
f(A∗

i−1,t)− f(A∗
i,t)−

1

2

(
Ki,tαi,t + (1−Ki,t)βi,t

)]
, (10)

10
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where for all i ∈ [d], αi,t = f(Xi−1,t ∪ {i})− f(Xi−1,t) and βi,t = f(Yi−1,t \ {i})− f(Yi−1,t).

Submodularity. While the marginal gains (αi,t, βi,t)i∈[d] could be estimated, the sets A∗, and
(A∗

i,t)i∈[d] remain unknown. However, the definition of (A∗
i,t)i∈[d] and submodularity yield

• If [i ∈ A∗], then f(A∗
i−1,t)− f(A∗

i,t) ≤ (1−Ki,t)αi,t;
• Else [i /∈ A∗], and f(A∗

i−1,t)− f(A∗
i,t) ≤ Ki,tβi,t.

Eq. (10) then becomes

rt ≤
∑
i∈[d]

[
1{i ∈ A∗}(1−Ki,t)αi,t + 1{i /∈ A∗}Ki,tβi,t −

1

2

(
Ki,tαi,t + (1−Ki,t)βi,t

)]
.

Since [i ∈ A∗] and [i /∈ A∗] are exclusive, we have

T∑
t=τ+1

rt ≤
∑
i∈[d]

max
(
R+

T,i, R
−
T,i

)
, (11)

where
R+

T,i =
∑T

t=τ+1

[
(1−Ki,t)αi,t − 1

2

(
Ki,tαi,t + (1−Ki,t)βi,t

)]
,

R−
T,i =

∑T
t=τ+1

[
Ki,tβi,t − 1

2

(
Ki,tαi,t + (1−Ki,t)βi,t

)]
.

5.2. High-probability exploitation regret

Let i ∈ [d], the objective now is to control max
(
R+

T,i, R−
T,i

)
from Eq. (11). To that end, the

following propositions (proven in Appendix C.1) states how the errors coming from the different
randomness sources concentrate.

Proposition 2 LetH and E be the event

H =

∀i ∈ [d], ∀t > ti−1, |ᾱi − α̂i,t| ≤
√
2σ2 + c2

√
2
log(dT/δ)+log(1+4τi,t)

τi,t+1 ;

|β̄i − β̂i,t| ≤
√
2σ2 + c2

√
2
log(dT/δ)+log(1+4τi,t)

τi,t+1

 ,

E = H ∩

{
∀i ∈ [d], max

(
R+

T,i, R
−
T,i

)
− (T − τ)

(
l(α̂i, β̂i, pi) + gT,δ/

√
τi

)
≤ 0

}
,

where for all i ∈ [d], ᾱi = E
[
αi,t|(pj)j<i

]
and β̄i = E

[
βi,t|(pj)j<i

]
, both quantities being constant

for rounds t > ti−1, and gT,δ is defined in Eq. (4).
Then, P(Hc) ≤ 4δ

T , and P(Ec) ≤ 10δ
T .

Template bound. Reinjecting Eq. (11) and Proposition 2 yields

RT ≤ 1{Ec}cT
2

+ 1{E}
∑
i∈[d]

(
2cτi + (T − τ)

(
l(α̂i, β̂i, pi) +

gT,δ√
τi

))
, (12)

where E is the event defined Proposition 2.

11
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5.3. Sufficient exploration

In this section, we analyze the exploration steps for each item. We exhibit sufficient conditions
for the exploration to only last a logarithmic number of rounds, the choice of pi when τi ≥ τmax

ensuring a (O(T
√
log(dT ))2/3) regret for item i as the average loss would be non positive.

Subroutine UpdExp looks for a parameter p ∈ [0, 1] so that(
1− p

)
α̂i −

1

2

(
pα̂i + (1− p)β̂i

)
≤ −

gT,δ√
τi
, and pβ̂i −

1

2
(pα̂i + (1− p)β̂i) ≤ −

gT,δ√
τi

. (13)

Under E , as we can upper bound |α̂i − ᾱi| and |β̂i − β̄i|, it is sufficient to have
(
1− p

)
ᾱi − 1

2(pᾱi + (1− p)β̄i) ≤ −gT,δ√
τi
− 3

2

√
2σ2 + c2

√
2 log(dT/δ)+log(1+4τi)

τi+1

pβ̄i − 1
2(pᾱi + (1− p)β̄i) ≤ −gT,δ√

τi
− 3

2

√
2σ2 + c2

√
2 log(dT/δ)+log(1+4τi)

τi+1 ,

which in turn is implied by

p(β̄i − 3ᾱi) ≤ −
gi + γT,δ√

τi
+ (βi − 2ᾱi), p(3β̄i − ᾱi) ≤ −

gi + γT,δ√
τi

+ β̄i , (14)

where γT,δ = 3
√
(2σ2 + c2)(log(dT/δ) + log(1 + T )).

The following proposition gives sufficient conditions to find a pi for Eq. (13) to be satisfied.

Proposition 3 For each items i, under event E defined in Proposition 2, UpdExp finds a weight
pi such that l(α̂i,t, β̂i,t, pi) + gT,δ/

√
τi,t ≤ 0 before τi,t has reached (gT,δ + γT,δ)

2 hf,i.

Template bound. Using Proposition 3, the upper bound Eq. (12) becomes

RT ≤ 1{Ec}cT
2

+ 1{E}
∑
i∈[d]

[
2cmin

(
(gT,δ + γT,δ)

2hf (i), τmax

)

+ 1
{
(gT,δ + γT,δ)

2hf (i) > τmax

}
τmax

TgT,δ

(τmax)3/2

]

= 1{Ec}cT
2

+ 1{E}
∑
i∈[d]

(
2c+

gT,δ

log(dT )1/2

)
min

(
(gT,δ + γT,δ)

2hf (i), τmax

)
. (15)

Event E happens with probability greater than 1 − 10δ
T (Proposition 2), thus the high-probability

result. Choosing δ = 1 yields the bound in expectation.

6. Concluding remarks

We propose and analyze Algorithm DG-ETC for the online unconstrained submodular maximization
problem with stochastic bandit feedback. Our algorithm is a considerable improvement from other
existing approaches, as it satisfies logarithmic upper bounds for the 1/2-approximate pseudo-regret,
dependant on a new notion of hardness that we introduce. Possible extensions include designing
anytime variants, and algorithms adaptive to the adversarial/stochastic setting (best of both worlds).

An interesting feature of DG-ETC is that is leverages the looseness of worst-case approximation
ratios in non-adversarial cases, and we argue that this kind of strategy could also be applied to other
settings to yields similar performances.

12
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Appendix A. Sub-Gaussianity

We use sub-Gaussianity assumptions and use common concentration tools to control the noise from
(ηt)t∈[T ] and the randomization from the algorithm we propose. This section remind the results that
we use.

Definition 3 (Sub-Gaussian) Let σ > 0 and X be a real-valued random variable such that
E[X] = 0. We say that X is σ2-sub-Gaussian, for all λ ∈ R,

E[exp(λX)] ≤ exp
(λ2σ2

2

)
.

In particular, for bounded independent random variables, we have the following lemma.

Lemma 1 (Hoeffding’s inequality for sum of i.i.d. bounded r.v.) Let δ > 0, N ∈ N∗, and
(Zn)n∈[N ] a family of i.i.d. real random variables bounded in [a, b] where (a, b) ∈ (R)2, with
mean µ ∈ [a, b].

Then for all n ∈ [N ], Zn is (b−a)2

4 -sub-Gaussian, and with probability at least 1− δ,

1

N

N∑
n=1

[
Zn − µ

]
<

b− a

2

√
2

N
log(1/δ) .

The sub-Gaussianity for bounded random variables an the concentration for the sums of i.i.d
random variables are classical results proven that can be found Wainwright (2019) for example.

As we estimate quantities in an online setting, with observations arriving sequentially and de-
pending on our actions, we need a more powerful tool. This is provided by the following lemma.

Lemma 2 (Hoeffding’s inequality with martingales) Let δ > 0, σ > 0. Let (Gt)t∈N be a filtra-
tion and (Zt)t∈N∗ a (Gt)-adapted martingale with E[Z1] = 0. We assume that for all t ∈ N, Zt+1

is σ2-sub-Gaussian conditionally to Gt. Let (Ut)t∈N∗ be a (Gt)-predictable process. Then, with
probability at least 1− δ, for all t ∈ N

∑t
s=1 UsZs

1 +
∑t

s=1 U
2
s

<
σ√

1 +
∑t

s=1 U
2
s

√√√√2 log(1/δ) + log
(
1 +

t∑
s=1

U2
s

)

The proof relies on the method of mixture, widely used in the bandit literature (Abbasi-Yadkori
et al., 2011; Faury et al., 2020; Zhou et al., 2024).
Proof Let δ > 0, σ > 0. Let (Gt) be a filtration and (Zt) be a Gt-adapted martingale with E[Z1] = 0
and so that for all t ∈ N, Zt+1 is σ2-sub-Gaussian conditionally to Gt. Let (Ut) be a Gt-predictable
process.

Let t ∈ N∗, a first direct result is that, UtZt is (σUt)
2-sub-Gaussian conditionally to Gt−1. Let

λ ∈ R. Then,

E
[
exp

(
λUtZt −

λ2

2
(σUt)

2
)
|Gt−1

]
≤ 1 . (16)
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We define

Mt(λ) = exp

(
λ

t∑
s=1

UsZs −
λ2

2

t∑
s=1

(σUs)
2

)

with M0(λ) = 1. From eq. (16),

∀t ∈ N, E[Mt(λ)|Gt] = E

[
exp

(
λ

t∑
s=1

UsZs −
λ2

2

t∑
s=1

(σUs)
2

)∣∣∣∣∣Gt−1

]

= Mt−1(λ) E

[
exp

(
λUtZt −

λ2

2
(σUt)

2

)∣∣∣∣∣Gt−1

]
≤Mt−1(λ) .

Then, (Mt(λ))t is a Gt-supermartingale, with E[Mt(λ)] ≤ 1 .
We now consider λ ∼ N (0, 1/σ2), independent from all the other distributions, then we can

define

M̄t = Eλ∼N (0,1/σ2)[Mt(λ)]

=
σ√
2π

∫
R
exp

(
− (σx)2

2

)
exp

(
x

t∑
s=1

UsZs −
x2

2

t∑
s=1

(σUs)
2
)
dx

=
σ√
2π

∫
R
exp

(
−

(σx)2(1 +
∑t

s=1 U
2
s )

2
+ x

t∑
s=1

UsZs

)
dx

=
σ√
2π

∫
R
exp

(
−

σ2(1 +
∑t

s=1 U
2
s )

2

(
x2 − 2x

∑t
s=1 UsZs

σ2(1 +
∑t

s=1 U
2
s )

))
dx

=
σ√
2π

∫
R
exp

(
−

σ2(1 +
∑t

s=1 U
2
s )

2

(
x−

∑t
s=1 UsZs

σ2(1 +
∑t

s=1 U
2
s )

)2
+

(
∑t

s=1 UsZs)
2

2σ2(1 +
∑t

s=1 U
2
s )

)
dx

= exp

(
(
∑t

s=1 UsZs)
2

2σ2(1 +
∑t

s=1 U
2
s )

)
σ√
2π

√
2π

σ
√

1 +
∑t

s=1 U
2
s

σ
√

1 +
∑t

s=1 U
2
s√

2π∫
R
exp

(
−

σ2(1 +
∑t

s=1 U
2
s )

2

(
x−

∑t
s=1 UsZs

σ2(1 +
∑t

s=1 U
2
s )

)2)
dx

= exp

(
(
∑t

s=1 UsZs)
2

2σ2(1 +
∑t

s=1 U
2
s )

)
1√

1 +
∑t

s=1 U
2
s

E
λ∼N

( ∑t
s=1 UsZs

σ2(1+
∑t

s=1 U2
s )

, 1

σ2(1+
∑t

s=1 U2
t )

)[1]

=
1√

1 +
∑t

s=1 U
2
s

exp

(
(
∑t

s=1 UsZs)
2

2σ2(1 +
∑t

s=1 U
2
s )

)

M̄t = exp

(
(
∑t

s=1 UsZs)
2

2σ2(1 +
∑t

s=1 U
2
s )
− 1

2
log
(
1 +

t∑
s=1

U2
s

))
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Besides,

E
[
M̄t

∣∣∣Gt−1

]
= E

[
Eλ∼N (0,1/σ2)[Mt(λ)]

∣∣∣Gt−1

]
= Eλ∼N (0,1/σ2)

[
E[Mt(λ)|Gt−1]

]
≤ Eλ∼N (0,1/σ2)

[
Mt−1(λ)

]
= M̄t−1 .

So (M̄t)t is also a supermartingale, which yield that

E[M̄t] ≤ E[M̄0] = 1 .

Let ut > 0. Now, using Chernoff’s method,

P

( ∑t
s=1 UsZs

1 +
∑t

s=1 U
2
s

≥ ut

)
≤ P

(
exp

( (
∑t

s=1 UsZs)
2

2σ2(1 +
∑t

s=1 U
2
s )
− u2t

2σ2
(1 +

t∑
s=1

U2
s )
)
≥ 1

)

≤ E

[
exp

( (
∑t

s=1 UsZs)
2

2σ2(1 +
∑t

s=1 U
2
s )
− u2t

2σ2
(1 +

t∑
s=1

U2
s )
)]

≤ E

[
M̄t exp

(1
2
log(1 +

t∑
s=1

U2
s )−

u2t
2σ2

(1 +
t∑

s=1

U2
s )
)]

.

Choosing ut =
σ√

1+
∑t

s=1U
2
s

√
2 log(1/δ) + log(1 +

∑t
s=1 U

2
s ),

P

( ∑t
s=1 UsZs

1 +
∑t

s=1 U
2
s

≥ ut

)
≤ E

[
δM̄t

]
≤ δ .

The bound for all t is based on the stopping time construction from Abbasi-Yadkori et al. (2011).

Appendix B. Proof for the high-probability bound of DG

Proposition 1 Let D be a finite set, δ > 0 and T ∈ N∗ such that T > 2 log(1/δ). If (Si)i∈[T ] is
the sequence of sets obtained by running independently T times DG Algorithm, then

max
i∈[T ]

f(Si) >
(1
2
− log(1/δ)

T

)
f(A∗) , w.p. 1− δ .

Proof Let 1 > δ > 0 and T ∈ N∗, T > 2 log(1/δ). Then (f(Si))i ∈ [T ] is a sequence of T i.i.d.
random variables, bounded in [0, f(A∗)].
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Let 1
2 > u > 0. Then

P

(
max
i∈[T ]

f(Si) <
(1
2
− u
)
f(A∗)

)
= P

(
∀i ∈ [T ], f(Si) <

(1
2
− u
)
f(A∗)

)

=

T∏
i=1

P

(
f(Si) <

(1
2
− u
)
f(A∗)

)

≤ P

((1
2
− u
)
f(A∗) + f(A∗)− f(S1) > f(A∗)

)T

≤ 1

f(A∗)T
E

[(1
2
− u
)
f(A∗) + f(A∗)− f(S1)

]T
← Markov

≤ 1

f(A∗)T

[(1
2
− u
)
f(A∗) +

1

2
f(A∗)

]T
← Theorem 1

= (1− u)T

≤ exp(−Tu)

Therefore, taking u = log(1/δ)
T , we have the result

P

(
max
i∈[T ]

f(Si) <
(1
2
− u
)
f(A∗)

)
≤ δ .

Appendix C. Proofs for the analysis of DG-ETC

C.1. Proof for the high-probability exploitation regret

Proposition 2 LetH and E be the event

H =

∀i ∈ [d], ∀t > ti−1, |ᾱi − α̂i,t| ≤
√
2σ2 + c2

√
2
log(dT/δ)+log(1+4τi,t)

τi,t+1 ;

|β̄i − β̂i,t| ≤
√
2σ2 + c2

√
2
log(dT/δ)+log(1+4τi,t)

τi,t+1

 ,

E = H ∩

{
∀i ∈ [d], max

(
R+

T,i, R
−
T,i

)
− (T − τ)

(
l(α̂i, β̂i, pi) + gT,δ/

√
τi

)
≤ 0

}
,

where for all i ∈ [d], ᾱi = E
[
αi,t|(pj)j<i

]
and β̄i = E

[
βi,t|(pj)j<i

]
, both quantities being constant

for rounds t > ti−1, and gT,δ is defined in Eq. (4).
Then, P(Hc) ≤ 4δ

T , and P(Ec) ≤ 10δ
T .

Proof

18



LOG. REGRET FOR USM WITH STOCHASTIC BANDIT FEEDBACK

We remind Eq. (11),

T∑
t=τ+1

rt ≤
∑
i∈[d]

max
(
R+

T,i, R
−
T,i

)
, (11)

where
R+

T,i =
∑T

t=τ+1

[
(1−Ki,t)αi,t − 1

2

(
Ki,tαi,t + (1−Ki,t)βi,t

)]
,

R−
T,i =

∑T
t=τ+1

[
Ki,tβi,t − 1

2

(
Ki,tαi,t + (1−Ki,t)βi,t

)]
.

For all i ∈ [d], we define ᾱi = E
[
αi,t|(pj)j<i

]
and β̄i = E

[
βi,t|(pj)j<i

]
, both quantities being

constant for rounds t > ti−1 ≥ τ ,
Separating the different sources of randomness yields

R+
T,i = Ē+

T,i + Ê+
T,i + L+

T,i , R−
T,i = Ē−

T,i + Ê−
T,i + L−

T,i .

where we have
• errors coming from the deviation of (αi,t, βi,t) from (ᾱi, β̄i)

Ē+
T,i =

∑T
t=τ+1

[
(1−Ki,t)(αi,t − ᾱi)− 1

2

(
Ki,t(αi,t − ᾱi) +Kc

i,t(βi,t − β̄i)
)]

,

Ē−
T,i =

∑T
t=τ+1

[
Ki,t(βi,t − β̄i)− 1

2

(
Ki,t(αi,t − ᾱi) +Kc

i,t(βi,t − β̄i)
)]

,

• approximation errors for (α̂i, β̂i):
Ê+

T,i =
∑T

t=τ+1

[
(1−Ki,t)(ᾱi,t − α̂i)− 1

2

(
Ki,t(ᾱi,t − α̂i) + (1−Ki,t)(β̄i,t − β̂i)

)]
,

Ê−
T,i =

∑T
t=τ+1

[
Ki,t(β̄i,t − β̂i)− 1

2

(
Ki,t(ᾱi,t − α̂i) + (1−Ki,t)(β̄i,t − β̂i)

)]
,

• the deviation of losses caused by the randomization of (Ki,t)i,t’s:

L+
T,i =

∑T
t=τ+1(1−Ki,t)α̂i − 1

2(Ki,tα̂i + (1−Ki,t)β̂i)− (T − τ)l+i ,

L−
T,i =

∑T
t=τ+1(Ki)β̂i − 1

2(Ki, tα̂i + (1−Ki,t)β̂i)− (T − τ)l−i ,

• the average loss criterion used in UpdExp:

l+i = l+(α̂i, β̂i, pi) = (1− pi)α̂i − 1
2(piα̂i + (1− pi)α̂i),

l−i = l−(α̂i, β̂i, pi) = piβ̂i − 1
2(piα̂i + (1− pi)α̂i).

We analze those terms using the concentration lemmas is Appendix A. In particular, we define

G =
{
∀i, Ē+

T,i ≤ 3c
√
2(T − τ) log(dT/δ) and Ē−

T,i ≤ 3c
√
2(T − τ) log(dT/δ)

}
,

H =

∀i ∈ [d], ∀t > ti−1, |ᾱi − α̂i,t| ≤
√
2σ2 + c2

√
2
log(dT/δ)+log(1+4τi,t)

τi,t+1 ;

|β̄i − β̂i,t| ≤
√
2σ2 + c2

√
2
log(dT/δ)+log(1+4τi,t)

τi,t+1

 ,

I =

∀i ∈ [d], Ê+
T,i ≤ (T − τ)

(
1 +

√
2 log(dT/δ)√

T−τ

)
max

(
|ᾱi − α̂i|, |β̄i − β̂i|

)
Ê−

T,i ≤ (T − τ)
(
1 +

√
2 log(dT/δ)√

T−τ

)
max

(
|ᾱi − α̂i|, |β̄i − β̂t|

)
 ,

J =

{
∀i ∈ [d], L+

T,i ≤
3c√
2

√
(T − τ) log(dT/δ) ,

L−
T,i ≤

3c√
2

√
(T − τ) log(dT/δ)

}
.
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Applying Lemma 1 and a union bound yields that P(Gc ∪ Ic ∪ J c) ≤ 6δ
T . Likewise Lemma 2

yields P(Hc) ≤ 4δ
T .

Besides , G ∩ H ∩ I ∩ J ⊆ E (calculations assuming d ≥ 2 and τ ≤ T/2, log(dt/δ) ≥ 0 and
δ ≤ dT ).

C.2. Proof for the duration of the exploration phase

The following lemma is just a consequence of the definition, but it is particularly useful when
analyzing double-greedy approaches, as it limits the range of possible marginal gains to consider
when adding/removing items.

Lemma 3 Let D be a finite set and f be a submodular set-function. Let A ⊂ B ⊆ D and an item
i ∈ (B \A). Then, (

f(A ∪ {i})− f(A)
)
+
(
f(B \ {i})− f(B)

)
≥ 0 .

Proposition 3 For each items i, under event E defined in Proposition 2, UpdExp finds a weight pi
such that l(α̂i,t, β̂i,t, pi) + gT,δ/

√
τi,t ≤ 0 before τi,t has reached (gT,δ + γT,δ)

2 hf,i.

Proof We need to look for conditions for Eq. (14)

p(β̄i − 3ᾱi) ≤ −
gi + γT,δ√

τi
+ (βi − 2ᾱi), p(3β̄i − ᾱi) ≤ −

gi + γT,δ√
τi

+ β̄i , (14)

where γT,δ = 3
√
(2σ2 + c2)(log(dT/δ) + log(1 + T )) to be satisfied.

We consider the different configurations of (α, β) possible using Lemma 3, which gives 5
zones, and sufficient conditions for the existence of a pi ∈ [0, 1] satisfying Eq. (14).

Zone Threshold of τi
(gT,δ+γT,δ)2

1 ᾱi ≤ 0, β̄i > 0 1/β̄2
i

2 0 ≤ ᾱi ≤ β̄i/3 1/(β̄i − 2ᾱi)
2

3 0 ≤ β̄i/3 ≤ ᾱi ≤ 3β̄i (ᾱi + β̄i)
2/(β̄i − ᾱi)

4

4 0 ≤ 3β̄i ≤ αi 1/(ᾱi − 2β̄i)
2

5 ᾱi > 0, β̄i ≤ 0 1/ᾱ2
i

Table 1: Exploration thresholds for UpdExp.
x

y

1

5

2

4

3

The threshold of Table 1 are upper-bounded by the DG-hardness defined in Definition 2.
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