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Short title: Timing and location dictate development of tumor-associated macrophages 
 
 
Title: Editor’s Summary  
 
Tumor-associated macrophages (TAMs) promote tumor growth and immune suppression, but 
how TAMs develop from circulating monocytes and local tissue-resident macrophages remains 
incompletely understood. Using a model of pancreatic ductal adenocarcinoma (PDAC) in 
monocyte fate-mapping mice, Dunsmore et al. examined the dynamics of the monocyte-to-
macrophage transition in tumors. A population of “intermediate” TAMs gave rise to two more 
differentiated TAM subsets, distinguishable by their distinct surface marker phenotype, 
dependence on the transcription factor Maf, migratory behavior, and localization in tumors. 
These findings provide a time- and space-resolved picture of TAM heterogeneity and 
development in PDAC, which could guide the development of TAM-targeted therapeutic 
strategies.—Claire Olingy 
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Abstract: 
Tumor-associated macrophages (TAMs) are a heterogeneous population of cells whose 
phenotypes and functions are shaped by factors that are incompletely understood. Herein, we asked 
when and where TAMs arise from blood monocytes, and how they evolve during tumor 
development. We initiated pancreatic ductal adenocarcinoma (PDAC) in inducible monocyte fate-
mapping mice and combined single-cell transcriptomics and high-dimensional flow cytometry to 
profile the monocyte-to-TAM transition. We revealed that monocytes differentiate first into a 
transient intermediate population of TAMs (IntTAM) that generates two longer-lived lineages of 
terminally differentiated TAMs with distinct gene expression profiles, phenotypes and intra-
tumoral localization. Transcriptome datasets and tumor samples from patients with PDAC 
evidenced parallel TAM populations in humans and their prognostic associations. These insights 
will support the design of new therapeutic strategies targeting TAMs in PDAC. 

 
One Sentence Summary: Intermediate tumor-associated macrophages (TAM) emerge first and 
gives rise to two more differentiated TAM populations in pancreatic cancer.  
  



 

INTRODUCTION 
 Recent advances in our understanding of the tumor microenvironment (TME), including 
the roles of immune cells, has led to the development of immunotherapies (1, 2) with tumor-type-
specific efficacy. While some immunotherapies such as treatment with anti PD-1 antibodies have 
shown high efficacy in treating melanoma (3), immunotherapy has shown very little benefit for 
patients with pancreatic ductal adenocarcinoma (PDAC) (4). A deeper understanding of TME 
biology, specifically within the immune compartment, is needed to understand these differences.  

Tumor-associated macrophages (TAMs) are the most abundant immune cells in the TME, 
where they support tumor growth, angiogenesis, extracellular matrix remodeling, immune 
modulation/suppression and metastatic spread (5, 6). Furthermore, recent single-cell RNA 
sequencing (scRNA-seq) analyses have identified subpopulations of TAMs that inhabit distinct 
locations and have various functions within the TME (7, 8). Thus, although TAMs are a promising 
potential target for future immunotherapies, we do not yet fully understand their developmental 
trajectories and the spatial relationships between distinct TAM subpopulations. 

 Key factors determining macrophage identity include their ontogeny, their niche of 
residence and the homeostatic or inflammatory signals they encounter (9). Macrophages can be 
derived either from embryonic precursors or adult circulating monocytes, with each tissue 
inhabited by a characteristic proportion of these two ontogenically-distinct macrophage 
populations (10). Such equilibrium is subject to change in the TME, as studies in a murine model 
of PDAC revealed that approximately 70% of TAMs were of monocytic origin and exhibited 
different functional profiles compared to embryonically-derived TAMs (11). Furthermore, 
differential localization between embryonically-derived and monocyte-derived TAMs according 
to their origin was recently observed in murine and human non-small cell lung carcinoma (12). In 
addition, residency duration is another newly identified parameter shaping macrophage identity 
(9). Gradually, a picture of the dynamic environment of tumors, that is both reciprocally shaped 
by and shapes TAM diversity, is emerging. 

Here, we aimed to refine our understanding of the dynamic monocyte-to-TAM transition 
in PDAC and to define the developmental relationships between TAM subpopulations. We 
exploited PDAC-bearing monocyte fate-mapping and inducible CreERT2 monocyte fate-mapping 
(timestamping) mouse models that enabled us to track monocytes within the TME. Using this 
approach, we identified a pathway linking monocytes to specific TAM subpopulations with 
distinct localization and functional profiles, with relevant parallels in human PDAC. 

 
RESULTS  

Origin of TAMs in a murine model of PDAC 
To quantify the relative contribution of embryonic precursors and circulating monocytes 

to the TAM pool in PDAC, we employed Ms4a3Cre x RosatdTomato mice, in which all GMP-derived 
circulating monocytes and their progeny are stably fluorescently tagged while embryonically 
derived macrophages are not (13). We injected KPC cells orthotopically into the pancreas of these 
mice and conducted scRNA-seq on the immune cells (CD45+) isolated from tumors after 35 days 
(Fig. 1A). We then measured expression of canonical marker genes to cluster and annotated the 
immune cell populations present (Fig. S1, A and B, and Data file S1). As expected, tdTomato was 
expressed by all neutrophils, some mononuclear phagocytes, but not by T, B or plasma cell clusters 



 

(Fig. S1, C and D) (13). Within the cluster of mononuclear phagocytes, we identified three 
populations of cells: tdTomato+ monocytes (expressing Ly6c2, Hp, S100a4, and Plac8); 
macrophages (expressing Pf4, C1qa, C1qc, and Arg1), of which around 90% were tdTomato+; and 
dendritic cells (expressing Clec10a, H2-Aa, H2-Dmb2, and Ckb), among which ~10% were 
tdTomato+ (Fig. 1, B-E, S1E and Data file S2). Focusing on macrophages, we observed that 
tdTomato- cells (embryonically-derived) expressed genes specific to resident tissue macrophages 
(RTM) (Folr2 and Timd4, for example (14, 15)); while tdTomato+ macrophages (GMP-derived) 
exhibited a more inflammatory phenotype (expressing Il1b and Il6) (Fig. 1F and Data file S3). 
Gene ontology (GO) analysis showed that embryonic TAMs expressed genes that were associated 
with extracellular matrix remodeling, while monocyte-derived TAMs exhibited pro-inflammatory 
expression patterns (Fig. 1G), consistent with previous work on murine PDAC (11). 

 

Monocyte-derived TAMs are distinct from embryonic-derived TAMs 
As most TAMs in our PDAC model were of monocytic origin, we next investigated the 

dynamics of the monocyte-to-macrophage transition in these tumors using Ms4a3CreERT2 x 
RosatdTomato mice. In this model, treatment with tamoxifen induces tdTomato expression in GMP-
derived short-lived circulating Ly6Chi monocytes for six days, after which they are replaced in the 
circulation by newly generated tdTomato- cells (13). We injected KPC cells as described above, 
then administered tamoxifen on days 17/18 to induce GMP labelling midway through tumor 
growth to measure monocyte recruitment in an established tumor. At 35 days post-injection of 
tumor cells, we harvested tumors and control healthy pancreas to characterize the immune cells 
present (both tdTomato+ and tdTomato- cells) by scRNA-seq (Fig. 2A). We focused on 
mononuclear phagocyte subpopulations (Fig. S2, A to C). Following cell cluster annotation based 
on canonical DEGs (Fig. S2D and Data file S4), we identified five clusters that were enriched in 
PDAC: monocytes, TAM clusters 1-3, and dividing cells (Fig. S2, E and F). Monocytes and TAMs 
clustered closely, indicating transcriptional similarities (Fig. S2G), but with TAMs uniquely 
expressing specific markers including Arg1, Spp1, and Mmp12 (Fig. S2H) (16-18).  

Focusing on the PDAC-enriched monocyte and TAM populations, we visualized these 
subsets separately with uniform manifold approximation and projection (UMAP) and identified 
differentially expressed genes (DEGs) (Fig. 2, B and C, and Data file S5). These populations were 
highly similar to previously described subsets, with TAM1 representing a population of monocyte-
like TAMs that express Tnf and Ccr2, TAM2 being similar to hypoxic macrophages and TAM3 
resembling the previously described lipid-associated macrophages (LAMs) (19, 20). To define 
developmental relationships between these clusters, we applied the splicing analytical tool scVelo 
(21) and found that monocytes putatively gave rise to TAM1, which then differentiated into either 
TAM2 or TAM3 (Fig. 2D). These findings were recapitulated using the cell lineage and 
pseudotime inference tool Slingshot (22) (Fig. 2E). Therefore, TAM1 represent cells with a 
discrete but transient transcriptional state, likely constituting an intermediate stage between 
monocytes and TAM2/TAM3 differentiation (Fig. 2F). 

To validate this hypothesis, we exploited the “timestamping” feature of the model by 
comparing the proportion of tdTomato+ cells in each TAM cluster. We observed fewer labelled 
TAM1 than TAM2 or TAM3, confirming that the latter mainly derived from monocytes recruited 
shortly after the activation of tdTomato labelling on days 17/18, while by day 35, the TAM1 
population was derived mostly from more recently recruited tdTomato- monocytes (Fig. 2, G and 



 

H). As expected, monocytes were mostly tdTomato- at the time of tumor collection, confirming 
their short lifespan and their continuous replenishment by GMPs. Therefore, by coupling scRNA-
seq and monocyte timestamping, we revealed a transient cell state in the monocyte-to-TAM 
transition and its subsequent differentiation into two distinct TAM populations. 

 
High-throughput screening identifies surface markers associated with monocyte and TAM 
subpopulations  
 To enable further study and validation of these TAM clusters, we employed the Infinity 
Flow pipeline (23, 24) to assess the expression of surface markers on monocytes and TAM1-3. 
We first injected KPC cells into the pancreas of Ms4a3CreERT2 x RosatdTomato mice, treated them 
with tamoxifen during early- (days 14/15), intermediate- (days 21/22), or late- (days 28/29) stages 
of tumor establishment, and then collected, barcoded and labelled tumor cells at day 35 to assess 
surface expression of 270 proteins detectable by flow cytometry (Fig. 3A). 

tdTomato labelling of monocytes and TAMs exhibited the expected pattern: labelled 
monocytes (Ly6C+) were evident after late tamoxifen treatment, confirming their short lifespan, 
while TAM (CD64+ F4/80+) labelling was less pronounced, mirroring the continuous monocyte-
to-macrophage transition in tumors (Fig. S3A). Considering only tdTomato+ monocytes and 
TAMs, we generated a UMAP based on the flow cytometry data and identified four clusters that 
we annotated as monocytes and TAM1-3 based on similarities between their patterns of gene (Fig. 
2) and protein expression (Fig. 3B and S3, B and C). Thus, we defined monocytes as Ly6C+, 
TAM1 as CCR2+ CD64+, TAM2 as CD73+, and TAM3 as CD36+ CD11c+ cells (Fig. 3C and Data 
file S6). Using these markers, we established a gating strategy to discriminate monocytes, TAM1, 
TAM2, and TAM3 using a limited panel of surface markers that enables detection of the 
populations of interest by conventional spectral flow cytometry (Fig. 3D and S3, D and E). To 
verify the accuracy of this gating strategy and validate our scRNA-seq, we sorted Ly6C+ 

monocytes, TAM1, TAM2 and TAM3 and profiled them by bulk RNA sequencing. Each sorted 
population had a distinct transcriptional profile that corresponded to its respective cluster of 
interest when their signatures were projected back onto the scRNA-seq data (Fig. S4, A and B). 
We then compared the relative abundance of each of these populations within all tdTomato+ 
mononuclear phagocytes at different time points, revealing an enrichment in monocytes and 
TAM1 at the late timepoint of monocyte timestamping. In contrast, the early timepoint was almost 
exclusively composed of TAM2 and TAM3 (Fig. 3, E and F). The trajectory of monocytes to a 
transient TAM1 state and subsequentially TAM2 and TAM3 was also confirmed by applying 
Slingshot analysis to these surface marker data (Fig. 3, G and H). These results validated those 
generated from gene expression and confirmed at the protein level the temporal relationship 
between monocytes and the different TAM subpopulations. Because the TAM1 population 
constitutes an intermediate precursor of more stable TAM2 and TAM3 macrophage populations, 
we propose the nomenclature intermediate TAM (IntTAM) for these cells. 

 
IntTAMs give rise to TAM2 and TAM3, which are differentially regulated by Maf  

We next asked how the relative proportions of monocytes and TAM subpopulations varied 
during PDAC development. As expected, monocytes, IntTAM, TAM2, and TAM3 were more 
abundant in tumors compared to adjacent/healthy pancreas (Fig. S5A). However, these populations 



 

exhibited dynamic changes during tumor development: IntTAM abundance peaked at seven days 
after tumor initiation, while TAM2 and TAM3 became more abundant as the tumor developed 
(Fig. S5, B to D), consistent with our hypothesis of their sequential differentiation from IntTAMs. 

To further validate the dependence of TAM populations on monocyte differentiation, we 
orthotopically injected KPC cells into Ccr2-KO mice. After 3 weeks post-challenge, we observed 
that monocytes, IntTAMs, TAM2, and TAM3, but not RTM, were all reduced in Ccr2-KO mice 
compared to WT mice (Fig. S6A). To precisely define the transition of monocytes to TAMs, we 
treated PDAC-bearing Ms4a3CreERT2 x RosatdTomato mice with tamoxifen at various timepoints to 
provide sequential monocyte timestamping, then applied the conventional flow cytometry gating 
strategy to tumor samples (Fig. 4A). IntTAMs were mostly labelled following late tamoxifen 
induction, indicative of recent recruitment (Fig. 4B). Conversely, TAM2 and, to a lesser extent, 
TAM3 were mostly labelled after early induction, suggesting their long survival and their 
differentiation from early recruited monocytes (Fig. 4B). As mentioned above, previous studies 
reported a population of Trem2-expressing macrophages called LAMs in several diseases, 
including cancer (20, 25-27). Based on our gene and protein expression data, we hypothesized that 
TAM3 were equivalent to these TREM2+ LAMs. We tested this hypothesis by initiating PDAC in 
Trem2EGFP reporter mice and found that TAM3 were specifically labelled (Fig. S6, B and C).  

To validate the potential of IntTAMs to differentiate into TAM2 and TAM3, we sorted 
IntTAMs from tumor-bearing CD45.2 mice (21 days post orthotopic tumor injection) and 
adoptively transferred them intratumorally into tumor-bearing CD45.1 mice (21 days post 
orthotopic tumor injection). We analyzed the progeny of adoptively transferred CD45.2+ cells at 
day 3 and day 7 after the transfer by flow cytometry (Fig. 4C). The majority of CD45.2+ cells 
remained IntTAMs at day 3, but had then converted into TAM2 and TAM3 by day 7 post-transfer 
(Fig. 4D and S7A), validating the potential of IntTAMs to give rise to both TAM2 and TAM3.  

To better understand the transcriptomic identities and putative functions of monocytes, 
IntTAMs, TAM2, and TAM3 in PDAC, we applied the SCENIC analytical tool to our scRNA-seq 
data to predict transcription factor activity based on gene expression (28). This analysis revealed 
distinct regulons in the different cell populations: while monocytes preferentially used Irf1- and 
Klf3-related genes, IntTAMs rather used those related to Fosl2; TAM2 used Maf- and Irf8-related 
genes, and TAM3 used genes related to Bhlhe41 (Fig. 4E). Following our identification of Maf as 
a potential regulator of TAM2 differentiation, we used a LysMcre x Mafflox mouse model to 
investigate whether TAM differentiation was altered. Mice with Maf-deficient myeloid cells 
exhibited a significant reduction in TAM2, but not in tumor growth (Fig. 4, F and G). These results 
suggest that targeting transcription factors can modulate the differentiation of TAM 
subpopulations.  
 

IntTAMs, TAM2 and TAM3 have distinct motility and cellular interaction profiles 
 To further understand the functional potential of TAM subsets, we performed gene 
ontology analysis using MetaScape (29). Genes expressed by IntTAMs were associated with 
chemotaxis, those by TAM2 with hypoxia, and TAM3 expressed genes involved in the response 
to lipoproteins (Fig. S8A). Given the evolving gene scores for these pathways during the 
monocyte-to-TAM differentiation, it seems that IntTAMs start to express the chemotaxis-
associated program when differentiating from monocytes, presumably allowing them to migrate 
within the tumor to a site in which this initial program is gradually replaced by either the hypoxia-



 

associated identity of TAM2 or the response-to-lipoprotein-associated identity of TAM3 (Fig. 
S8B). 

 To further investigate the predicted role of IntTAMs, we sorted monocytes, IntTAMs and 
TAM2, and TAM3 and measured their motility capacity. Monocytes had the highest motility 
capacity, while IntTAM had an intermediate motile capacity and TAM2 and TAM3 had a 
comparatively reduced ability to move (Fig. S8, C and D). These results suggest that IntTAMs 
display an intermediate motility in the monocyte-to-macrophage transition, still endowed with 
migration ability compared to long-lived differentiated TAM2 and TAM3. Once IntTAMs have 
moved through tissue and further matured, thus losing their motile capacity, we questioned 
whether the role of spatial localization could influence the functional profiles of TAM 
subpopulations. To do so, we used our scRNA-seq data and integrated it with a publicly available 
scRNA-seq dataset to predict interactions between the different subpopulations with other 
components of the tumor microenvironment (30, 31) (Fig. S9A and B). To identify outgoing and 
incoming interactions in Monocytes, IntTAMs, TAM2 and TAM3, we calculated the number of 
significant interactions between cell types and found distinct preferential interactions (Fig. S9C). 
Together, these results suggest that the distinct TAM populations could interact with different cell 
types in a specific tumoral niche, subjecting them to distinct influences and microenvironmental 
factors that could contribute to their differentiation and functional profiles. 

 
TAM2 and TAM3 are associated with distinct spatial niches in PDAC 

Because our gene score analysis suggested the possibility of differential localization and 
functional specialization of TAM populations in PDAC, we next asked whether there was in vivo 
evidence for this by analyzing recently published spatial transcriptomics data (Visium, 10X 
Genomics) collected on sections of PDAC tumors (32) (Fig. 5A). Using BayesSpace joint 
clustering (33), we identified seven distinct spatial clusters corresponding to seven tumor niches 
associated with different gene expression and putative functions (Fig. 5, B and C, S10, A and B, 
and Data file S7): cluster 1 was associated with hypoxia, cluster 3 with cellular respiration, cluster 
4 with RNA splicing, cluster 5 with inflammatory response, cluster 6 with telomere lengthening, 
and cluster 7 with cell cycle, while cluster 2 was excluded from the analysis due to its restriction 
to necrotic areas and had lower-quality sequencing data (Fig. 5C). Using BayesSpace, we also 
projected genes associated with each cell type to predict the presence of multiple immune and non-
immune cell types in the tumor (Fig. S10C). We also projected the signatures of IntTAMs, TAM2, 
and TAM3 (Fig. 5D), and measured their proportions in each cluster from the different tissue 
sections. Notably, TAM2 was significantly enriched across all tissue sections in the cluster 1 
hypoxic tissue, suggesting an association between low oxygen levels and the TAM2 program (Fig. 
5, E and F). Strikingly, a mutual exclusion of TAM2 and TAM3 was observed (Fig. S10D). 
Therefore, these results suggest that differentiated TAM2 and TAM3 populations inhabit distinct 
niches within the tumor.  

To validate the distribution of these populations at the protein level, we utilized co-
detection by indexing (CODEX)-enabled high dimensional histology (34). First, we annotated 
tumor regions using H&E staining. Next, utilizing a 58-parameter staining panel, we identified 
cell types using common markers and the gating strategy previously identified by flow cytometry 
(Fig. 5G and S11, A and B). Here, CODEX analysis revealed that TAM2 were in closer proximity 
to the necrotic core of the tumor, while TAM3 were distributed further from the tumor core (Fig. 



 

5H and S11C), in agreement with our spatial transcriptomic analysis. To identify the cell 
interactions between TAMs and the tumor microenvironment, we identified regions where each 
TAM populations was present (Fig. S11D). Region 1 was enriched with IntTAMs, region 2 with 
monocytes, region 3 with TAM2 and region 4 with TAM3 (Fig. S11E). Within regions 3 and 4, 
fibroblasts, neutrophils, and B cells interacted frequently with TAM2, while TAM3 interacted with 
cancer cells, NK/T cells and DCs (Fig. S11, F and G). The interaction of TAM2 with neutrophils 
parallels recent findings that the hypoxic regions of the tumor can also reprogram neutrophils that 
impacts their functions (32). Together, these observations integrate time and space dimensions to 
reveal the fate of monocytes recruited in PDAC, highlighting a transient population of IntTAMs 
that gives rise to two distinct stable TAM populations occupying different locations within the 
TME and exhibiting patterns of gene expression consistent with distinct functional specializations.  
 

Human PDAC contains TAM subpopulations that transcriptionally and spatially correspond to 
murine TAMs 

 Lastly, we assessed whether similar macrophage populations were present in patients with 
PDAC. Using publicly available scRNA-seq data from human PDAC and adjacent healthy 
pancreas (35-38), we identified mononuclear phagocytes and applied clustering analysis (Fig. 6A). 
This revealed one population of monocytes and eight populations of human TAMs (Hu.TAM a-h) 
(Fig. 6B) with distinct transcriptomic identities (Fig. S12A and Data file S8) that were identifiable 
in every dataset representing 96 patients (Fig. S12B). In tumor tissue, there was an enrichment of 
Hu.TAM a-f compared to the adjacent healthy tissue (Fig. 6C). We then performed a label transfer 
pairing analysis (39) that revealed marked transcriptional similarities between murine and human 
monocytes, murine IntTAM and Hu.TAM a, murine TAM2 and Hu.TAM b/c, and murine TAM3 
and Hu.TAM d/e (Fig. 6D). Notably, we did not find an ortholog of the Hu.TAM f population, 
suggesting species specificity that warrants further exploration on TAM populations. When we 
projected DEGs across monocytes and TAMs in mouse and human PDAC, we observed similar 
gene expression on clustering between the species (Fig. 6E), as well as conserved functional 
pathways between paired populations (Fig. S12C). 

 To address whether monocyte-derived TAMs had a similar differentiation trajectory in 
human PDAC, we used PAGA to predict the differentiation pathway of monocytes to TAMs (40). 
We found that monocytes connected first to Hu.TAM a and then further differentiated into 
different TAMs (Fig. 6F). Furthermore, using Pseudotime analysis, we observed the putative 
differentiation of monocytes to Hu.TAM a and then to Hu.TAM b/c or Hu.TAM d/e along with 
genes identified to be associated with each population (Fig. 6G). To further confirm these 
observations, we projected the DEGs of human monocytes treated with M-CSF for 0, 3, 9, 24, and 
48 hours (41). We found that initially, monocytes displayed their classic signature, and after 3 
hours the signature overlapped with Hu.TAM a. Subsequent timepoints showed overlap with 
different Hu.TAM populations, further supporting that Hu.TAM a emerge first and give rise to 
other Hu.TAM populations (Fig. S12D). 

Using a publicly available PDAC Nanostring DSP dataset (GSE199102) (35), which 
allows the transcriptomic characterization of tumor (PanCK+) and immune (CD45+) cells within 
regions of interest (ROI) on tissue slices, we then predicted the presence of macrophage signatures 
in different parts of PDAC tissue. We deconvoluted the CD45+ fraction of each ROI to evaluate 
the presence of monocytes, Hu.TAM a, Hu.TAM b/c, and Hu.TAM d/e using the DEGs of each 



 

population. In parallel, we tracked hypoxic or lipid metabolism signatures in the PanCK+ fractions 
using publicly available gene sets from GSEA (42, 43). We then correlated these two layers to 
identify any association between TAM populations and environmental tumor phenotypes. As 
observed in murine PDAC, we found that tumor areas with a high score for hypoxia also had a 
high signature of Hu.TAM b/c, while the localization of other TAM populations were not 
significantly related to different functional signatures (Fig. S13A). 

Based on this transcriptional homology, we used our murine surface marker analysis to 
define putative markers for the Hu.TAM subpopulations (Fig. S13B, Data file S9). We annotated 
viable and necrotic regions of human PDAC tissues and identified Hu.TAM a (CCR2+ CD68+), 
Hu.TAM b/c (CD68+ CD73+), and Hu.TAM d/e (CD68+ TREM2+) (Fig. 7, A and B). In tumor 
sections, these populations were localized within different areas, with Hu.TAM b/c notably 
enriched in the necrotic tumor (Fig. 7 C). Moreover, by investigating the proximity of one TAM 
population to another, we found Hu.TAM b/c and Hu.TAM d/e localized further away from one 
another, suggesting a similar pattern of spatial segregation to those in murine PDAC (Fig. 7D). 

Finally, we asked whether the expression of TAM subpopulation-specific/related genes 
correlated with PDAC patient prognosis. We normalized monocyte and Hu.TAM abundance with 
a Dirichlet-multinomial regression comparing patient response to standard PDAC treatment 
(FOLFIRINOX, 5-FU, radiotherapy and Losartan in few patients) (35). We found that most 
Hu.TAM populations were reduced upon treatment; however, in poor responders, we observed a 
persistence in the abundance of Hu.TAM c, d, and e (Fig. S13C). Additionally, we screened the 
30 most DEGs from each TAM population using the cancer genome atlas (TCGA) database (44) 
and found that high expression of the Hu.TAM b/c signature was significantly associated with 
shorter survival of PDAC patients (Fig. 7E and S13D). Together, these results suggest that the 
abundance of different TAM populations could be used as a tool for patient prognosis.  

 
Discussion 

 Herein, we combined fate-mapping and timestamping Ms4a3-derived mouse models and 
multi-omics analyses to track monocytes entering PDAC to precisely analyze the dynamics of their 
differentiation into TAMs. In this context, we identified a discrete intermediate population in the 
transition from monocytes to macrophages, both in murine and human pancreatic tumors. While 
the impact of ontogeny on TAM functions has been well-studied during the last decade, little is 
known about the differentiation paths of TAM populations. Herein, we have addressed this gap of 
knowledge using our timestamping model, which represents the overcoming of a significant 
technological barrier. A recent study observed a cell population that resemble IntTAMs by the 
expression of CCR2 and CD64 within inflamed blood vessels but have not acknowledged the 
transitional capacity of these cells (45). In addition, while IntTAMs exhibit a proinflammatory 
phenotype, their exact contribution to tumor-derived inflammation should be investigated in future 
works.  

  Our results suggest that transient IntTAMs give rise to more mature TAM2 or TAM3, with 
their phenotype predominantly governed by their local environment. Given these observations, we 
propose that a major determinant of macrophage phenotype in cancer is the availability of 
nutrients. The TAM3 population that we observed in PDAC has been implicated in 
immunomodulatory functions, as reported by others, albeit without temporal assessment (26, 46). 
TAM3 express the lipid-binding gene Trem2: macrophages expressing this gene engage in lipid 



 

metabolism (20). Recent work suggests that the phagocytosis of tumor cells drive the emergence 
of Trem2+ macrophages in a murine model of lung adenocarcinoma and prevents natural killer 
(NK) cell recruitment (25). Additionally, the tumors of Trem2-deficient mice, which have few 
TREM2+ macrophages, are more responsive to anti-PD-1 treatment (26). 

 Conversely, IntTAMs can also give rise to TAM2, which may be driven by hypoxia. 
Accordingly, the transcription factor Hif1α, a primary regulator of hypoxia-induced programs, is 
expressed by TAM2. Previous work showed that hypoxia-associated macrophages contribute to 
immune suppression (47), and here we see that increased abundance of these hypoxia-associated 
TAM2 is linked with poor patient prognosis. Our observations are recapitulated in a recent study 
where spatially restricted TAM populations in a variety of cancers are associated with hypoxia and 
poor prognosis (48). Together, this feature argues for specific TAM2 targeting, potentially using 
hypoxia program inhibitors (49). Furthermore, we can inhibit the differentiation of IntTAMs to 
TAM2 by modulation Maf expression in LysMcre x Mafflox mice. While these results do not show a 
significant change in tumor growth, they provide a proof-of-concept that modulation of 
downstream transcription factors can impact populations that arise from IntTAM without 
impacting other populations.  

 Our work positions IntTAMs as a distinct cell type with the capacity to integrate 
environmental signals to facilitate the transition from a monocyte to a specialized macrophage. 
This feature of IntTAMs alludes to a possible stage of macrophage differentiation that could be 
manipulated by therapeutic targeting. Future work could target IntTAMs and skew their 
differentiation to benefit patient outcome. In conclusion, this work and others highlight the need 
for a more refined definition of TAM populations to enable the identification of critical targets for 
more effective immunotherapies, and notably integrates time as a key parameter when considering 
TAM biology (50). 

 
MATERIAL AND METHODS 

Study design 

 Macrophages are an abundant immune cell type in many tumors and are often associated 
with poor prognosis; however, the inherent heterogeneity of these cells makes them challenging 
to study. To address this, we propose that ontogeny, time, and location impact the heterogeneity 
of macrophages in PDAC. We used Ms4a3Cre RosatdTomato mice to identify the ontogeny of 
macrophages, Ms4a3CreERT2 RosatdTomato mice to investigate the impact of time on monocyte-
derived macrophages, and spatial transcriptomics/multiplex imaging to evaluate the influence of 
location on macrophage heterogeneity.  

Mouse models 

 Ms4a3Cre x RosatdTomato and Ms4a3CreERT2 x RosatdTomato mice were described previously 
(13). For tamoxifen treatment, mice were twice administered 1.75mg of tamoxifen in 100µl of 
corn oil by oral gavage 24 hours at the indicated time points after tumor cell injection. This study 
used healthy male and female mice for experimentation at 7-10 weeks of age. Ccr2-KO mice were 
provided by the laboratory of Marc Lecuit (51).  LysMCre x Mafflox mice were from the laboratory 
of Thomas Marichal (52). Mice housed and bred at Institut Gustave Roussy were kept and 



 

maintained according to national recommendations. All protocols were approved by the 
Institutional Animal Care and Use Committee (IACUC) (approval number 202102240810563). 
All experiments and procedures performed at the Shanghai Jiao Tong University School of 
Medicine animal facility, Cyagen Inc. Shanghai, were approved by the IACUC of Shanghai Jiao 
Tong University School of Medicine. All experiments and procedures performed on mice housed 
at the Singapore Immunology network were approved by the Institutional Animal Care and Use 
Committee of the Biological Resource Center (Agency for Science, Technology and Research, 
Singapore) following the guidelines of the Agri-Food and Veterinary Authority and the National 
Advisory Committee for Laboratory Animal Research of Singapore. All experiments presented in 
this paper were performed on equal parts male and female mice.  

Orthotopic injection of KPC tumor cells 

 The murine pancreatic ductal adenocarcinoma cancer cell line P48Cre KrasG12D/+ 

Trp53R172H/+ (KPC) was a gift from the Wong Siew Cheng lab (Singapore Immunology Network, 
A*STAR, Singapore) (53). Before using KPC cells for experiments, they were passaged more than 
six times. Briefly, 50,000 cells were resuspended in 20µl of ice-cold phosphate-buffered saline 
(PBS) and 25% Matrigel (Sigma) and were orthotopically injected into the pancreas of isoflurane-
anaesthetized healthy 7-10 week animals as previously described (54). Immediately following 
surgery, buprenorphine (10 mg/kg) was subcutaneously administered to mice, which were then 
monitored for the three subsequent days. All mice were sacrificed within six weeks of surgery. 
Additionally, KPC cells used for these experiments expressed the luciferase gene; therefore, tumor 
growth was measured weekly by injecting luciferin (Thermo), waiting for seven minutes and 
imaging isoflurane-anaesthetized mice with an Ivis Specturm Bioimager (Perkin Elmer). 

High parameter flow cytometry LEGENDScreenÔ and Infinity Flow 

 Infinity Flow was conducted as previously described (24); cells from mice treated with 
tamoxifen at days 14/15, 21/22, and 28/29 were labeled with a specific anti-CD45 barcoding 
antibody: CD45-BUV395, CD45-BUV661, and CD45-APC-Cy7. Barcoded cells were pooled and 
incubated with a ‘backbone’ flow cytometry panel including antibodies recognizing markers that 
discriminated monocytes, macrophages, and neutrophils. The antibodies used for the backbone 
were specific for: Ly6G (1A8), Siglec-F (E50-2440), CD101 (Moushi101), Gr-1 (RB6-8C5), 
Ly6C (HK1.4), CD11b (M1/70), I-A/I-E (M5/114.15.2), B220 (53-6.7), CD90.2 (53-2.1), NK1.1 
(PK136), CD11c (N418), CD45 (30-F11) and CD43 (S7). Labeled and barcoded cells were placed 
into a 96-well U-bottom plate and to each well was added a unique PE-conjugated antibody, as per 
the LEGENDScreenÔ kit (BioLegend). Fully labeled cells were acquired on a 5-laser LSR II (BD) 
using Diva software (BD). Each subsequent .fcs file with a unique PE-conjugated antibody and 
the backbone was analyzed using FlowJo (BD). Marker expression across cell types was predicted 
using the learning algorithm XGBoost implemented in Infinity Flow pipeline as previously 
described (24). Briefly, input data were subjected to logicle transformation, calculating a z-score 
for all backbone markers, before implementing the XGBoost R package, which trains a 
multivariate regression model and imputes the intensity expression of each marker on each cell 
into one concatenated .fcs file. The generated .fcs file is then used for downstream analysis. All 
downstream analysis was performed using FlowJo (BD) and the R package Seurat (55). 
Dimensional reduction (PCA, UMAP) was performed, and clustering using nearest-neighbor 
analysis by the Seurat package. Statistical analysis was performed by identifying differentially 



 

expressed proteins using a Wilcoxon ranked sum test. P values <0.05 were considered statistically 
significant.  

Single-cell RNA sequencing  

 tdTomato+/- cell populations were sorted from Ms4a3Cre x RosatdTomato and Ms4a3CreERT2 x 
RosatdTomato mice using the indicated gating strategies. The cells were processed using the 
Chromium Single Cell 3’ (v3 Chemistry) platform (10X Genomics). tdTomato+ and tdTomato- 
cells were sequenced separately using the NovaSeq sequencer (Illumina). Briefly, cells were 
loaded onto a Chromium Next GEM Chip G, and single cell suspensions in gel beads-in-emulsion 
(GEMs) were generated using the chromium controller (10X genomics). Reverse transcription 
(RT) was performed to generate cDNA, which was amplified, cleaned, and fragmented. Finally, 
libraries were subjected to standard quality control (QC) steps before sequencing.  

Analysis of scRNA-seq data 

 Raw counts were aligned to the GRCm38 mm10 Mus musculus genome from the Genome 
Reference Consortium using STAR 2.5.3a (56). Counts were log normalized, scaled, and 
dimensionality reduction was performed (PCA, UMAP). Nearest-neighbor analysis was used for 
stable clustering. A bimodal likelihood-ratio test was performed, comparing each cluster to all 
other clusters to identify differentially expressed genes with an adjusted p-value < 0.05 and a 
logFC ³ 0.25 (57). To integrate cells from different human PDAC datasets, we applied ten rounds 
of clustering and correction steps using Harmony with parameters “epsilon.harmony = -Inf, 
max.iter.harmony =10”. To cluster single cells by their expression profiles, we used the functions 
FindNeighbors and FindClusters with an appropriate number of Harmony reduction (10-15) and 
resolution (0.6-0.8) to perform unsupervised graph-based clustering. To compare monocytes and 
TAMs from human PDAC and murine PDAC, we used SciBet (version 0.1.0) (58), a supervised 
cell type identifier based on E-test to predict cell identities for mouse PDAC using cells from 
human PDAC as references. The SelectGene function in SciBet selected the marker genes for each 
subset. Pseudotime and trajectory analysis were performed using the R packages Slingshot (22), 
scVelo (21) and PAGA (40). Transcription factor activity prediction was performed using SCENIC 
(28). Gene ontology analysis was performed by uploading DEGs from scRNA sequencing analysis 
to Metascape (29). Interactome analysis was performed using CellChat (30) and RNA Magnet 
(31). Alluvial plots were made using ggplot2 and circus plots were made using the circlize package 
in R (59).  

10X Visium spatial transcriptomics 

 The 10X data presented here was previously published as GSE244534 (32); however, the 
analysis of the data was performed independently. Two tumor tissue sections were collected at day 
14 (shown as top two panels in Fig. S10A) and two at day 42 (shown as panel in Fig. 5B and 
bottom panel in S10A) and were fixed, and frozen using the specifications listed by 10X 
recommendations. Tissue sections were made by cutting frozen tissues with a cryostat (CM3050S, 
Leica) at 10µm thickness and mounted on Visium slides (10X Genomics). RNA was extracted 
following the 10X protocol. QC was performed using the RNA 6000 Pico kit (Agilent). Sequenced 
reads were aligned in Cell Ranger software (10X Genomics) using the mm10 genome and 
underwent standard QC. The output was then analyzed further as a single-cell object using the 



 

BayesSpace R package (33). Briefly, spatial clusters were assigned using the mclust function, and 
spot enhancement was performed. Cell type signatures were selected using the top 10 differentially 
expressed genes (DEGs) (adjusted p-value < 0.05 and a logFC ³ 0.25) identified by scRNA 
sequencing scored by a sum of the log counts and then projected onto the spatial transcriptomics 
data. 

 

CODEX Multiplex imaging and analysis 

5µm slices of embedded murine PDAC (day 35 post-orthotopic injection) were prepared 
and used for CODEX labeling following manufacturer instructions. Briefly, sections were 
retrieved from the freezer, rehydrated, and photobleached as described in (60). Following 
photobleaching, sections were blocked and incubated with a 21-plex CODEX antibody panel 
overnight at 4°C. After washing, samples were fixed with ice-cold methanol, washed again with 
PBS, and fixed for 20min with BS3 fixative (Thermo Fisher). Samples were subsequently washed 
with PBS and stored at 4°C for a maximum of one week before imaging. Sections were equilibrated 
at room temperature before imaging. Antibody detection was performed in a multicycle 
experiment, following manufacturer instructions. Images were acquired with a Zeiss Axio 
Observer widefield fluorescence microscope using a 40x objective (NA 0.85) and z-spacing of 
1.5µm. The 405, 488, 568, and 647 nm channels were used for acquisition. Images were exported 
using the CODEX Instrument Manager (Akoya Biosciences) and processed with CODEX 
Processor v1.7 (Akoya Biosciences). Processing steps included background subtraction, 
deconvolution, shading correction, stitching, and cell segmentation. DAPI counterstain was used 
for object detection, whereas sodium Potassium ATPase antibody labeling was used to mark 
membranes for delineating cell shape. Our defined gating strategy identified imaged cells as 
distinct cell types (monocytes, IntTAMs, TAM2 and TAM3). Cell types were projected onto the 
tissue section, and distance from hypoxic/necrotic tissue was calculated for each cell type. To 
define cell to cell interactions we identified cell types as either Monocytes, IntTAMs, TAM2 or 
TAM3. We also defined other cell types using common cell markers. A raster scan algorithm using 
a radius of 50µm was used. The objects generated were subsequently clustered based on the 
cellular local composition defining tissue regions or cellular neighborhoods. Next, we looked at 
cells surrounding either Monocytes, IntTAMs, TAM2 or TAM3 within the regions in which these 
populations were predominant. We then calculated an interaction score based on the frequency of 
these cell types interacting. These scores were validated in the images.   

Survival and treatment response data 

The Cox proportional hazards model implemented in the R package survival was used to 
perform survival analyses. The R function ggsurvplot was used to plot Kaplan-Meier survival 
curves using data from 178 patients with primary pancreatic adenocarcinomas from TCGA, which 
were used to evaluate the impact of Hu.TAM a-e signatures on overall survival (OS). Differences 
in age and gender were corrected for in the Cox model. Response to treatment was measured as 
described (35). Briefly, population variability was normalized using a Dirichlet-multinomial 
regression and stats were calculated using a non-parametric Mann-Whitney U test. 

Statistical analysis 



 

 All statistical analyses were performed with Prism 5.0 (GraphPad Software). All p-values 
are two-tailed. Other statistical analysis was performed using R as described in detail for each 
dataset, depending on the approach.  
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Figure captions 
Fig. 1. Ontogeny of TAMs influences their transcriptional profile. 

(A) Experimental design of scRNA-seq of tumor tdTomato+ and tdTomato- cells from Ms4a3Cre x 
RosatdTomato mice with KPC-derived PDAC (n=3 mice, samples pooled). Tumors were collected at 
day 35 post tumor injection. (B) UMAP representation of the scRNA-seq data filtered on 
monocytes, macrophages, and dendritic cells (DCs). (C) Dot plot showing top differentially 
expressed genes (FDR < 0.05 and highest LogFC) from monocytes, macrophages, and dendritic 
cells. (D) tdTomato protein labelling across sorted monocytes, macrophages, and DCs. (E) 
Proportions of monocytes, macrophages, and DCs labelled with tdTomato. (F) Dot plot showing 
leading differentially expressed genes from tdTomato+ and tdTomato- macrophages. (G) Alluvial 
plot where bar thickness represents the enrichment of gene ontology from tdTomato+ and 
tdTomato- macrophages. 

 

Fig. 2.  Timestamping reveals temporal relationships of TAM populations. 
(A) Experimental design of scRNA-seq of tumor tdTomato+ and tdTomato- cells from 
Ms4a3CreERT2 x RosatdTomato mice with KPC-derived PDAC, pulsed with tamoxifen at day 18 post-
tumor injection (n=3 mice, samples pooled). (B) UMAP representation of the scRNA-seq data 
filtered on monocytes, TAM1, TAM2 and TAM3 (C) Dot plots of top differentially expressed 
genes from monocytes, TAM1, TAM2 and TAM3. (D) UMAP with arrows showing the scVelo 
analysis of monocyte-to-macrophage differentiation. (E) UMAP showing clustering and 
pseudotime analysis of monocytes, TAM1, TAM2 and TAM3. (F) Heatmap of ordered pseudotime 
analysis from slingshot and signature density of monocytes, TAM1, TAM2 and TAM3. (G) 
UMAP showing Ms4a3CreERT2 x RosatdTomato labelling of monocytes, TAM1, TAM2 and TAM3. 
tdTomato labelling is based on the FACS sorting. (H) Proportions of Ms4a3CreERT2 x RosatdTomato 
labelling of monocytes, TAM1, TAM2 and TAM3.  

 
Fig. 3. Surface marker identification and dynamic timestamping of TAM subpopulations. 

(A) Experimental design of LEGENDscreen analysis from Ms4a3CreERT2 x RosatdTomato mice pulsed 
with tamoxifen at day 14, 21 and 28, after orthotopic injection of KPC cells (n = 3 mice for each 
timepoint). (B) UMAP of tdTomato labelled monocytes and macrophages from the Infinity Flow 
analysis labelled as monocytes, TAM1, TAM2, and TAM3. (C) Top differentially expressed 
proteins (Top 5 LogFC and FDR > 0.05) in monocytes, TAM1, TAM2 and TAM3. (D) Gating 
strategy identifying monocytes, TAM1, TAM2 and TAM3. (E) UMAP showing the different 
clusters present at late (day 28), intermediate (day 21) and early (day 14) tdTomato+ mononuclear 
cells. (F) Proportion of clustered cells in late (day 28), intermediate (day 21) and early (day 14) 
timepoints. (G) UMAP of slingshot analysis with lines showing start and end points and 
pseudotime analysis. (H) Heatmap of ordered pseudotime analysis from slingshot and signature 
density of monocytes, TAM1, TAM2 and TAM3.  
 

Fig. 4. IntTAMs give rise to Maf-dependant TAM2 and Maf-independant TAM3. 
(A) Experimental design of timestamping Ms4a3CreERT2 RosatdTomato mice every four days after 
tumor injection. All mice were sacrificed at day 35 and tissues were digested for spectral flow 



 

cytometry. (B) Proportion of tdTomato labelling of Monocytes, IntTAM, TAM2, and TAM3 at 
each timepoint of tamoxifen administration. (C) Experimental design of intratumoral adoptive 
transfer of IntTAMs into mice with KPC-derived PDAC. (D) Immunophenotyping of adoptively 
transferred IntTAMs at day 3 or 7 post-transfer. (E) SCENIC analysis predicting differentially 
expressed regulons in different Monocyte and TAM populations. (F) Tumor growth curve of 
LysMCre x Mafflox and WT mice (n=3-4 mice per group). (G) Cumulative results of the abundance 
of each TAM population in LysMCre x Mafflox and WT mice. Statistics were performed using a 
Mann-Whitney test. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 

 
Fig. 5. TAM2 and TAM3 inhabit distinct niches in PDAC. 

(A) Experimental outline of 10X Visium spatial transcriptomics sample preparation and data 
analysis of KPC-derived PDAC in wildtype mice at either day 14 or day 42 (n=4 mice). (B) 
Clustering and functional annotation of tumor areas. (C) Circo plot with bar thickness representing 
the enrichment score of gene ontology for each spatial cluster. (D) Projection of monocytes, 
IntTAMs, TAM2 and TAM3 signatures on the tumor sample (E) UMAP of spatial clusters and 
predicted cell types from 10X Visium analysis. (F) Abundance of monocytes, IntTAMs, TAM2 
and TAM3 in each spatial cluster (G) CODEX analysis with stromal and immune markers used to 
identify populations of cells in murine PDAC. (H) Density plots from multiplex CODEX imaging 
analysis representing IntTAMs, TAM2 and TAM3. Scale bars, 3.25 mm. 
 

Fig. 6. Identification of TAM subpopulations in human PDAC. 
(A) Integration and analysis of human PDAC analysis from previously published datasets 
containing a total of 7 healthy patient samples and 89 PDAC samples (35-38). (B) Identification 
of clusters corresponding to Monocyte and Human TAM (Hu.TAM) populations a-h. (C) 
Proportions of Monocytes and Hu.TAM a-h across Control and Tumor tissues. (D) Label transfer 
of monocyte and TAM populations in murine PDAC to populations identified in human PDAC. 
(E) Clustering and shared gene expression of monocytes and TAM populations in mouse and 
human PDAC. (F) PAGA analysis showing the link between the monocytes and TAM populations. 
(G) Heatmaps showing the differentiation of monocytes to TAMs.  
 

Fig. 7. TAMs have distinct spatial distribution in human PDAC. 
(A) H&E staining of human PDAC tissue with annotation of viable and necrotic tumor tissue. (B) 
Immunofluorescence of markers identifying monocytes and macrophages in human PDAC. 
Arrows point to Monocyte/Hu.TAM a, Hu.TAM b/c, and Hu.TAM d/e. (C) Dots representing 
different macrophage populations identified in human PDAC tissue. (D) Proximity of monocyte 
and TAM populations to one another (n=4 different human PDAC tissues). (E) Survival curve of 
data from the TCGA representing the impact of the Hu.TAM b/c signature on patient survival.  


