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Abstract. Deep learning models have shown tremendous gains in com-
puter vision in the last decade. However, given their highly non-linear
nature, they are often seen as black-boxes. This has led to the develop-
ment of eXplainable Artificial Intelligence (XAI) as a parallel field with
the aim of investigating the behavior of deep learning models. Research
in XAI, however, has almost exclusively been focused on image classifi-
cation models. Dense prediction tasks such as image segmentation have
received little attention. The last few years have seen a shift in this trend
with works focusing on exploring XAI in the context of image segmenta-
tion. A fair number of these works have borrowed from XAI techniques
proposed in the context of image classification. It is safe to assume that
going forward the number of XAl techniques focused on image segmen-
tation are bound to increase. Reviewing the journey of XAI in image
segmentation thus far would therefore be ideal, and is the goal of the
present work. This review aims at presenting an overview of the XAI
techniques proposed in the context of image segmentation. Another goal
is to highlight the lack of interest in this field and its potential causes
as well as to comment on potentially underexplored avenues. Given the
relative nascency of the field, no review papers currently exist, a gap this
work aims to fill.

Keywords: image segmentation - explainability - interpretability - XAI
- review.

1 Introduction

AlexNet’s [47] breakthrough on ImageNet [13] in 2012 proved to be the pivotal
moment in the evolution of computer vision. Going forward, the impact of clas-
sical computer vision declined, and that of deep learning increased. Since then,
the field has been dominated by deep learning architectures, the most prominent
of them being convolutional neural networks (CNNs). In recent years, owing to
their competitive performance, transformer based architectures such as the vi-
sion transformer [15] have also started becoming popular. Whereas AlexNet was
proposed to solve an image classification task, deep learning’s influence has since
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broadened to include various other computer vision tasks as well such as image
segmentation [54], object detection [91], pose estimation [92], image generation
[87], etc.

Given the highly non-linear nature of deep learning algorithms, a parallel
field of research soon came into existence, that of XAI (eXplainable Artificial
Intelligence). Research in XAl is broadly concerned with understanding a deep
learning model’s behavior. For example, one sub-field concerns itself with trying
to understand why a model arrived at a particular decision. The earliest tech-
niques in this regard were proposed as occlusion analysis [88] and image-specific
class saliency [73] in 2013 and 2014 respectively. These techniques were focused
on identifying regions in an input image which were important for the model
to arrive at its decision. This sub-field has received significant traction as is ev-
ident from the popularity of algorithms such as LIME [63], SHAP [52], RISE
[61], Grad-CAM [70], etc. Another sub-field concerns itself with investigating
the kind of representations learned by a model. An example is [73] in which
representative examples of a given class are generated for a CNN. This allows
researchers to identify patterns which a CNN has associated with each class.

While research in XAI commenced within an year of the deep learning revo-
lution, the initial focus of the field remained almost exclusively on image classi-
fication. In recent years, however, dense prediction tasks, such as image segmen-
tation, have also started receiving attention in the context of XAI. Due to the
attention XAI in image classification has received, multiple survey papers detail
the field’s progression in this context [67/2]. No review paper, however, exists for
XAI in image segmentation. We aim to fill this gap by providing an overview
of the post-hoc techniques which have been proposed in the context of XAl in
image segmentation.

One of the main reasons as to why image segmentation has received relatively
little attention lies with the utility of a saliency map in the context of a dense
prediction task. Given that the prediction is already in the spatial domain, it
is arguable as to whether the end-user will find the saliency map to be of any
use [I7]. Nevertheless, XAI research in image segmentation is still dominated
by saliency generation methods. Other than that, research has also focused on
detecting biases within a segmentation model [38], identifying useful concepts
learned by a segmentation model [I7], generating insights about the segmenta-
tion model [58], etc.

2 Categorization of XAI Techniques for Image
Segmentation

In order to search for relevant papers, we used two approaches. In the first
approach, we searched for abstracts which mentioned XAI, explainability,
or interpretability, along with segmentatiorEI on Google Scholar. For the
second approach, we considered some of the most widely cited papers relevant

3 as well as morphological variants of these words.
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to XAl in image segmentation [3878I84I65]. Following a recursive approach, we
exhaustively searched for works which had cited these papers followed by those
which had cited the ones found in the previous step, and so forth. Ending up with
81 papers, we classified these into two categories. The first category consists of
works in which techniques are proposed (39 papers) whereas the second category
consists of works in which techniques are utilized as tools (42 papers). Barring
passing mentions of the second category, in this review paper we have primarily
focused on the first category. A complete list of techniques belonging to the first
category can be found in Appendix [A]

Techniques in XAI can generally be classified as belonging to local XAI or
global XAI. Local XAI concerns itself with techniques focused on understanding
the model’s decisions for individual input samples. In this context the terms in-
terpretability and explainability are often interchangeably used. We have opted
for ’explainability’, and consider algorithms falling under this category as those
aiming at explaining the model’s decision to an end user. These explanations
generally take the form of saliency maps (also referred to as attribution maps
or heatmaps). On the other hand, global XAI concerns itself with techniques
focused on investigating the model’s overall characteristics; an example of this
is the feature space carved out by the model’s internal representations. Another
category which overlaps with both local and global XAI is that concerned with
the concepts a model has learned. Figure [I| shows a taxonomy of the XAI algo-
rithm categories discussed in this review.

3 Review of XAI Techniques for Image Segmentation

3.1 Local XAI

For local XAI in image classification, we are interested in explaining the model’s
output score (y°) for a target class given an input image. However, due to image
segmentation being a dense prediction task, there are three possibilities when
it comes to what we are interested in explaining: (i) the entire segmentation
map for a target class, (i) a region of a segmentation map for a target class,
or (iii) an individual pixel from the segmentation map for a target class. Going
forward, we shall refer to the region to be explained as M. In the discussion to
follow, we categorize local XAI in image segmentation into three categories: (i)
methods relying on the intermediate feature space, (ii) methods relying on the
input space, and (iii) perturbation based methods.

Explainability Methods relying on the Intermediate Feature Space
One of the most popular saliency generation methods in image classification has
been Grad-CAM [71]. Grad-CAM generates saliency as the linear combination
of the activation maps of a given model layer. This saliency for class ¢ can be
expressed as:

L&raa—canm = ReLU <Z o - Ak) (1)
k
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Fig. 1. Taxonomy of discussed XAI algorithms with a representative example for each
category. Boxes indicates categories (and subcategories) whereas free text indicates
instances of said categories.

AF represents the kth activation map and af, represents the kth coeflicient.
af is calculated in two steps. First, the gradient of the target class score with
respect to the activation map (AF) is computed, and this is followed by applying
global average pooling (GAP) to this gradient matrix:

C
af = GAP (gflk) (2)

Since image segmentation returns a dense prediction instead of a single value,
extending Grad-CAM to image segmentation required a necessary modiﬁcatiorﬁ
Primarily, two approaches can be tracked which aimed at extending Grad-CAM
to image segmentation.

A pixel-wise application of Grad-CAM was proposed [80] leading to multiple
saliency maps associated with individual pixels followed by an aggregation of
these maps. Additionally, [80] also proposed the modification of Eq. such that
af is replaced by aﬁ’,j which is the gradient matrix, and the multiplication (-) is
replaced by the element-wise multiplication (®). This modification is proposed
in order to avoid global average pooling (GAP) as GAP leads to a loss of spatial
information owing to it collapsing the entire gradient matrix into a scalar. It
is obvious that for a task such as image segmentation, this spatial information
could have been crucial towards explaining the model’s decision. This approach,

4 Unless the goal is to explain the model’s prediction for an individual output pixel.
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named Grad-PAM, computes a map L, ., paa (i, ) for an individual pixel at
location (i, 7):

c . s ;
Graa—pan (i, J) = RELU( E 6TWJ O] Ak) (3)
%

The most popular modification, however, is Seg-Grad-CAM [78] which works
by replacing y¢ in Eq. with a sum of the target class’ scores in the region of
interest (M). This leads us to «f, as being:

(&
af = GAP <a Z%JEM & > (4)

Grad-CAM has been considerably well-received in image classification and
this has led to many derivatives such as Grad-CAM++ [1], Guided Grad-CAM
[70], LayerCAM [42], etc. aimed at improving upon the original technique. Sim-
ilarly, in image segmentation, Seg-Grad-CAM has led to techniques such as
Seg-GradCAM++ [49/56)30], Seg-XGrad-CAM [30], Seg-Eigen-CAM [30], Seg-
ScoreCAM [56l30], Seg-Ablation-CAM [30/27], and Seg-XRes-CAM [34]. As is
obvious, these techniques are primarily extensions of their namesakes in image
classification to image segmentation. It is worth noting that not all derivatives
of Grad-CAM are gradient based; some such as Score-CAM, and Eigen-CAM
bypass gradients in order to avoid the associated problems such as the noisy
gradient problem [75].

Even though Seg-Grad-CAM (and its gradient-based derivatives) can be used
to generate saliency maps when it comes to explaining an entire segmentation
map for a target class, it is best avoided when it comes to the explanation of
a region of interest within that segmentation map for a target class. This is
attributable to the issue of spatial information collapsing due to the presence of
global average pooling (GAP) [80]. If one wishes an explanation for the model’s
prediction of a region located near the top right of an image, it is unlikely that
the bottom left region of the image would have made a significant contribution
towards the model’s decision. GAP, however, ensures that all spatial locations of
an activation map (A4%) in Eq. are multiplied by the same scalar «f without
any regard for their spatial relationship in the image Similar to the formulation
of Eq. 3] Seg-XRes-CAM [34] and Seg-HiRes-Grad CAM [62] extend Seg-Grad-
CAM such that the GAP is avoided when generating saliency maps for a region
of interest given a target class.

Grad-CAM in image classification is generally applied to the final feature
extraction convolutional layer. This layer is a good choice as its representations
not only contain the effective summary of the original image, but these are also
the sole convolutional representations responsible for the model’s output deci-
sion. The situation in image segmentation, however, is not as straightforward.

® Non-gradient-based algorithms such as Seg-Ablation-CAM fail too since they are
computing linear coefficients based on the complete spatial presence or absence of
an activation map.
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For a standard segmentation network such as a U-Net [64], the convolutional
representations responsible for the final prediction (near the end of the decoder)
do not contain a summary of the original image. A more likely candidate to con-
tain the summary is the bottleneck layer (end of the encoder). The bottleneck’s
representations, however, are not directly responsible for the final segmentation
output. These reservations notwithstanding, the bottleneck has been a common
choice when it comes to applying Grad-CAM to image segmentation. Aiming
to bypass this issue, [56] proposed an ’Adapted’ alternative in which the tech-
nique is individually applied to all of the decoder’s layers, and the obtained
saliency maps are then aggregated by summing them up (appropriate transfor-
mations are applied in order to account for the differing spatial dimensions of
the saliency maps). This adapted approach was utilized with Adapted Seg-Grad-
CAM, Adapted Seg-GradCAM++, and Adapted Seg-ScoreCAM. Additionally,
[56] also proposed a gradient-agnostic method of determining the linear coeffi-
cients such that the coefficient associated with each activation map is a product
of the dependent and independent contribution of the activation map to the fi-
nal segmentation. Dependence and independence, in this case, are defined such
that they take into account the contribution of the activation map to the final
prediction given its presence.

Explainability Methods relying on the Input Image Space Whereas
Grad-CAM requires access to the intermediate activation space, many XAT tech-
niques proposed in the context of image classification work directly with the
input image space instead. Computing the saliency map as the derivative of
the model’s output score with respect to the input image was the earliest such
method [73]. Owing to the noisy nature of the gradient signal in a deep network,
techniques have been proposed which aim towards ’cleaning’ this signal. An early
technique proposed the inhibition of negative gradients in order to only highlight
those gradient signals which contributed positively towards the model’s decisions
[76]. This method was one of the earliest XAI methods from image classification
to be extended to image segmentation [84]. Other techniques proposed in the
context of cleaning image gradient include SmoothGrad [75] which aims at gen-
erating saliency maps for multiple noisy versions of the input image followed by
an averaging based aggregation. Similarly, Integrated Gradients [77] works by
generating saliency maps for multiple versions of the input image each of which
differs from the other in terms of the image brightness. This, too, is followed
by an averaging based aggregation. Both of these method have been extended
to image segmentation ([89], [33]). Similar to the problem of extending Grad-
CAM to image segmentation, the necessary output modifications are applied to
the final segmentation prediction before the application to these methods. Such
modifications include applying global average pooling [39] to the final segmenta-
tion prediction or taking a summation over the target class’ scores in the region
of interest (M).
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Perturbation based Methods Another class of explainability methods are
based on tracking the model’s behavior as systematic modifications (perturba-
tions) are applied to the input image. Perturbations which significantly impacted
the model’s output serve as indicators towards identifying salient regions in the
original image. These techniques are categorized as perturbation based tech-
niques. Given that they treat a model as a black box, they possess the distinct
advantage of being model agnostic. This is advantageous because techniques be-
longing to the CAM family [93] are not guaranteed to work for non-convolutional
architectures, a pressing example of which are architectures utilizing transformer
blocks [835]. Grid saliency [38] was the earliest attempt of utilizing a pertur-
bation based technique to image segmentation. This was an extension of the
Meaningful Perturbation technique [21] originally proposed in the context of im-
age classification. Grid saliency iteratively modifies an input image by removing
irrelevant regions in order to finally arrive at the necessary context required by
the segmentation model for its correct segmentation. This modification is guided
by the gradient of a loss function, the aim of which is to simultaneously preserve
the model’s prediction as well as to get rid of unneccesary regions. Examining
necessary contexts for various images allowed [38] to identify potential biases
which the segmentation model might have learnt during its training.

Another popular perturbation based approach in image classification is SHAP
[62] which works by dividing an image into superpixels, and then aims at dis-
tributing the overall contribution of each superpixel to the model’s final decision.
This is achieved by feeding the input image to the model multiple times such
that on each occasion certain superpixels are masked and the remaining un-
masked. Upon multiple iterations, this allows us to quantify the contribution of
each superpixel towards the model’s final decision. This approach was extended
to image segmentation as well [I2] with a slight modification. Instead of using
algorithms such as SLIC [4] to identify superpixels, the authors reported better
results if the input image is divided into a hexagonal grid structure, followed by
treating each hexagon as a superpixel. The same work also extended RISE [61],
another perturbation based approach, to image segmentation. For image classi-
fication, RISE starts by generating multiple random masks which are multiplied
with the original image leading to multiple masked versions of the original im-
age. The saliency map is then defined as the linear combination of these masks
with the linear coefficients obtained using the model’s classification scores as-
sociated with each masked image. Extending both RISE and SHAP to image
segmentation is straightforward with the minor modification of averaging over
the prediction scores of our target class in a region of interest (M) in order to
convert it to a scalar.

U-Noise [45] proposed a relatively novel approach in which an independent
model is learned on top of the existing segmentation model (frozen) with the aim
of directly predicting a saliency map given an input image. The goal of the inde-
pendent model is to generate a noise mask, the addition of which to the original
input image would not lead to a deterioration of the segmentation model’s pre-
diction. The rationale is that the predicted noise mask will contain more noise
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for regions in the input image that are less important to the segmentation model
and less noise for more important regions. An identical approach does not exist
in image classification. Some similarities, however, can be seen in [II] in which
a model is learned to predict a mask which is then element-wise multiplied with
the input image before feeding it to the classification model. The goal in both
cases [I1/45] is to learn an additional model that can predict a mask (noise mask
in the case of U-Noise) in real-time such that the application of this mask to
the input image does not harm the original prediction. A modification to U-
Noise’s optimization procedure was recently proposed arguing for the inclusion
of bilateral filtering to generate smooth noise masks [59].

Concept based Methods Instead of generating a single saliency map, concept
based methods aim at identifying the useful concepts present in the image which
might have contributed towards the final segmentation decision. [80] extended
[79] to image segmentation in which the segmentation model’s decision for a
single pixel is decomposed into a decision tree. A saliency map can be generated
for each decision node allowing us to track the conceptual journey undertaken
by the model in order to arrive at its final decision. Another approach was pro-
posed by [I7] in which the explanation of a segmentation model’s prediction
is decomposed in terms of its concepts. Filters responsible for the detection of
specific concepts are first identified in the segmentation model followed by a con-
ditional application of Layer-wise Relevance Propagation (LRP) [6]. This allows
us to highlight the contribution of individual filters leading to a disentangled
concept-specific explanation.

3.2 Evaluation of Local XAI methods

The results of local XAI methods are visual, and therefore relatively qualitative
in nature, a consequence of which has been a lack of an agreed upon evalua-
tion methodology. Occasionally, proposed techniques have found it sufficient to
simply display the saliency maps without providing a quantitative qualification
of the proposed technique. Quantitative evaluation, however, is not completely
absent, and some evaluation metrics have been proposed. One popular evalua-
tion technique is faithfulness [66J67] which tracks the model’s performance as
the most significant pixels from the input image - as identified from the local
XAI technique - are removed.

Specifically in the context of image segmentation, a pair of metrics were
proposed [56] in order to evaluate the generated saliency maps. The saliency
map is first used to mask the input image such that the unimportant pixels
- as per the saliency map - are removed. This masked image is then fed to
the segmentation model. The first of our metrics, 'Prediction Preserved Score’
(PPS), records the percentage of the prediction which is preserved given this
masked image as compared to the model’s prediction on the original image.
The second metric, 'Tmage Preserved Score’ (IPS), acting as a complement to
the first, records the percentage of the original image which is retained in the
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masked image. The idea behind this pair is that a good saliency map would score
highly on the PPS and low on the IPS.

An evaluation strategy utilizing the U-Noise model was recently proposed
[72]. The saliency map is first utilized to mask the input image. This masked
image is then fed to the U-Noise model. The statistics of the generated noise
mask serve as our evaluation metric with the rationale being that less noise would
be added if the saliency map was correct in its identification of the important
regions.

3.3 A Comparative Analysis of Local XAI Methods

Figure [2] shows the saliency maps generated using Seg-Grad-CAM, Seg-XRes-
CAM, Seg-Figen-CAM, Seg-AblationCAM, and RISE on a few samples from the
COCO-2017 dataset [50]. The first four of these algorithms belong to the inter-
mediate feature space category whereas RISE is a perturbation based method.
Between the first four methods, Seg-Grad-CAM and Seg-XRes-CAM are gra-
dient dependent whereas Seg-Eigen-CAMf] and Seg-Ablation CAM are gradient
independent. The segmentation model was a pre-trained DeepLavaﬂ and the
intermediate feature space methods were applied to the bottleneck layer.

From a qualitative point of view, a few things are observable. First, some
parts of the object appear more salient as compared to other parts. For example,
in the case of ’Cat’, the ears and the nose appear more prominent compared to
other regions of the cat. Similarly, for the 'Dog’ case, the nose is comparatively
brighter than the rest of the body in all saliency maps barring that of Seg-
Eigen-CAM. Secondly, except for Seg-Eigen-CAM, the three intermediate feature
space algorithms broadly agree with each other. For Seg-Eigen-CAM, in the
cases of 'Dog’, 'Bike’, and "Train’, the saliency maps, interestingly, highlight
the background instead of the object itself - almost a complement of the other
saliency maps in the same row. Lastly, even though saliency maps for RISE
broadly agree with the rest as far as general localization is concerned, the maps
are much coarser as compared to the others. Where the intermediate feature
space methods might highlight specific regions of interest in some detail, the
same cannot be expected from RISE.

For the same dataset and segmentation model, Figure |3| shows the saliency
maps generated using RISE with varying number of masks. Unsurprisingly, the
number of masks play an important role in the saliency map generation. It
appears that between 100 masks and 2000 masks, the saliency map becomes more
refined in the sense of being more concentrated around the object of interest. An
interesting case presents itself in the third row where the segmentation model
has predicted two cats whereas it is obvious that the left one is a dog. Saliency
maps generated from RISE prominently highlight the correct cat whereas the
incorrect dog is almost completely ignored.

5 A gradient driven version of Seg-Eigen-CAM is also possible
" https://pytorch.org/hub/pytorch_vision_deeplabv3_resnet101/
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For a quantitative comparison we utilize a slighlty modified version of the
pair of metrics from [56]. The saliency map is first binarized, and this binarized
version is then used to mask out the original image. This masked image is then
passed on to the segmentation model. We define our first metric, Dice Explained,
as the dice score between the segmentation model’s prediction on this masked
image and the segmentation model’s prediction on the original image. Our second
metric is defined as the ratio of the number of pixels in the binarized saliency
map to the number of pixels in the prediction. Figure [] summarizes our metric
calculation process. For binarization purposes, thresholds of 0.05 and 0.1 are
experimented with for intermediate feature space methods, and thresholds of
0.2 and 0.4 are used with RISE.

Table [I] summarizes the results of applying our methods on a subset of the
COCO-2017 dataset. RISE with 500 masks reports the best dice explained of
0.948, whereas for intermediate feature space methods, Seg-AblationCAM leads
at 0.843. The saliency ratios for the two are 10.59 and 6.68 respectively. The
worst dice explained with RISE is 0.747 (2000 masks) with a saliency ratio of
2.196, and for intermediate feature space methods, it is that of Seg-Eigen-CAM
at 0.354 with a saliency ratio of 4.83. While it might be tempting to decide
in favor of RISE or Seg-AblationCAM when it comes to generating saliency
maps for image segmentation, the computational time paints a disheartening
picture with average times around 2.5 minutes for Seg-AblationCAM and 1.5 to
5.5 minutes for RISE. Both Seg-Grad-CAM and Seg-XRes-CAM, operate much
more swiftly taking less than a second on average. This is easy to explain as both
RISE (a perturbation based method) and Seg-AblationCAM (an intermediate
feature space method) require multiple iterations before they can compute the
necessary coefficients in order to generate a saliency map. Seg-Grad-CAM and
Seg-XRes-CAM, on the other hand, only require a single forward and backward
pass.
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Prediction Seg-Grad-CAM Seg-XRes-CAM Seg-Eigen-CAM Seg-AblationCAM

Fig. 2. Sample saliency maps generated from the application of Seg-Grad-CAM, Seg-
XRes-CAM, Seg-Eigen-CAM, Seg-AblationCAM, and RISE on a few samples from the
COCO-2017 dataset. For RISE, 2000 masks were utilized.
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Prediction RISE - 100 RISE - 500 RISE - 1000 RISE - 2000

Fig. 3. Sample saliency maps generated from the application of RISE with various
number of masks (100, 500, 1000, 2000) on a few samples from the COCO-2017 dataset.

3.4 Global XAI

Similar to image classification, global XAl approaches in image segmentation
are considerably sparse compared to local XAI approaches. [I0] investigated
the sensitivity of a segmentation model to image features using an approach
borrowed from activation maximization. An image for which the segmentation
model predicts the background class for a region of interest is used as the initial
image. The goal is for this image to be modified such that the model predicts
the desired foreground class for the region of interest. The derivative of the
foreground class’ activation with respect to the input image serves as the guiding
signal which gradient ascent uses in order to modify the initial image. This can
be formulated as follows:
i
Xj+1=Xj+04'aa—Xj (5)
X represents the image at iteration j, whereas 7 is the output activation one
wishes to maximize. « is the learning rate.
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Table 1. Comparison between Seg-Grad-CAM, Seg-XRes-CAM, Seg-Eigen-CAM,
Seg-Ablation-CAM, and RISE on a subset of the COCO-2017 Dataset. The first four
algorithms are representatives of the intermediate feature space methods whereas
RISE represents the perturbation based methods. For dice explained, saliency ratio,

and time, the mean value has been reported.

XAI Method Binary [Gradient-| No. of Dice [Saliency |Time (s)
Threshold| based | Masks |Explained| Ratio

Seg-Grad-CAM 0.05 v - 0.606 3.47 0.25
Seg-Grad-CAM 0.1 v - 0.515 2.403 0.25
Seg-XRes-CAM 0.05 v - 0.671 1.788 0.26
Seg-XRes-CAM 0.1 v - 0.636 1.25 0.26
Seg-Eigen-CAM 0.05 X - 0.421 5.166 7.67
Seg-Eigen-CAM 0.1 X - 0.354 4.831 7.67
Seg-AblationCAM 0.05 X - 0.843 6.675 163.4
Seg-Ablation CAM 0.1 X - 0.793 3.859 163.4
RISE 0.2 X 100 0.927 11.155 16.1
RISE 0.4 X 100 0.853 7.773 16.1
RISE 0.2 X 500 0.948 10.59 80.4
RISE 0.4 X 500 0.766 3.884 80.4
RISE 0.2 X 1000 0.942 9.282 160.8
RISE 0.4 X 1000 0.762 3.154 160.8
RISE 0.2 X 2000 0.913 7.053 321.2
RISE 0.4 X 2000 0.747 2.196 321.2
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(f) Prediction on
(a) Image (b) Prediction (c) Saliency Map (d) Binarized Saliency (e) Masked Image Masked Image

Fig. 4. Examples (from the COCO-2017 dataset) in order to explain the process of
computing metrics for evaluating Saliency Maps for Image Segmentation. (a) Original
Image, (b) Prediction obtained after passing (a) through the segmentation model, (c)
Generated Saliency Map, (d) Binarizing the Saliency Map with a threshold (e) Masking
the original image using the binarized Saliency Map (f) Obtaining the segmentation
model’s prediction on this Masked Image. The Dice Explained is then defined as the
dice between (b) and (f). The Saliency Ratio is defined as the ratio of the number of
non-zero pixels in (d) to the number of non-zero pixels in (b). For the current examples,
the Dice Explained are: 0.81, 0.86, and 0.94 respectively. The Saliency Ratios are:
0.8, 1.42, and 1.45 respectively. For the current examples, the saliency maps were
generated using Seg-XRes-CAM, and a threshold of 0.1 was utilized for binarization.

The path taken by the image is referred to as the DeepDream path with
the idea being that by taking the steepest route, the image would have followed
a path whereby only the most important features would have been modified.
Accross multiple images, this analysis allows one to identify features to which a
model is most or least sensitive to.

[58] too utilized activation maximization in order to investigate the kind of
concepts being learned in various filters of an image segmentation model. An
image is randomly initialized, and in order to determine the kind of concepts a
filter might be looking for in an input image, gradient ascent is again utilized
such that it is now guided by the derivative of an intermediate activation (that
of the filter of interest) instead of the prediction space. Gradually, the random
image transforms such that it is now dominated by the concept which the filter
of interest is most activated by.
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[41] explored the relationship of the segmentation model’s bottleneck repre-
sentations with the segmentation model’s Intersection over Union (IoU) scores.
Bottleneck representations of sample images followed by an application of di-
mensionality reduction serve as the input whereas the corresponding IoU scores
for each of those images serves as the output. A simple regression model is then
trained utilizing these input-output pairs allowing us to assess the segmentation
model’s predictions for unseen images whose ground truths are not available.

Another work [40] focused on the identification of useful concepts learned
by an image segmentation model on a cardiac dataset. This was achieved with
the help of Automated Concept-based Explanation (ACE) [25] which, in turn,
is an extension of Concept Activation Vectors (CAV) [44]. Superpixels are first
generated from individual images using SLIC [4]. These are then fed to the seg-
mentation model in order to obtain their bottleneck representations. Clustering
is performed on these representations, and each cluster center is identified as a
concept. A Concept Activation Vector (CAV) is then learned for each concept
in order to determine its global importance for each segmentation category.

4 Tools for Practitioners

Existing tools for XAl in image segmentation are mostly focused on local meth-
ods. One of the earliest toolbox was developed by [69] which allows for the
application of various local methods belonging to the intermediate feature space
as well as the input image space. Another similar, but more recent, toolbox is
[89] which provides seven local X AT algorithms. [26] provides a library which con-
tains most of the CAM-based methods (intermediate feature space). The library
is designed to work for both image classification as well as image segmentatiorﬁ

5 Discussion

In terms of their application, the task for which XAI algorithms in image seg-
mentation have been most utilized for is the generation of saliency maps, with
Seg-Grad-CAM [78] being the favored choice of practitioners - see [3285] for med-
ical examples, and [43l9] for examples from natural images. However, another
application of these saliency generation methods has been found in investigat-
ing the intermediate representations of segmentation models. The application of
a saliency generation method to various layers of a segmentation model allows
one to inspect the flow of information [48J53]. Additionally, if a custom layer is
added to a segmentation model, these XAI methods can allow one to monitor
whether the layer’s representations follow the outcome one expected from the
layer’s design [82/51]. Another interesting application has been the identification
of how much context is required by a segmentation model in order to success-
fully segment an object. An analysis of context information can allow one to

8 See also: https://jacobgil.github.io/pytorch-gradcam-book/Class,
20Activation’,20Maps’%20for),20Semantic)20Segmentation.html
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identify whether the segmentation model has associated an object with spurious
context [38]. Association with spurious context can be harmful as the segmen-
tation model would fail to successfully segment the object in the absence of
that context. Identifying such associations can help developers refine the train-
ing pipeline by introducing enough variation into the training data in order to
minimize the possibility of a segmentation model learning irrelevant contexts.

While intermediate feature space dependent saliency generation methods
have enjoyed considerable popularity for convolutional architectures, it is clear
that with the advent of alternate architecture designs such as those incorpo-
rating transformer blocks [835], these methods would have to be accordingly
adjusted or new methods be proposed. Given that the receptive field of trans-
former models is fundamentally different from convolutional models, it remains
an open question as to which layers need to be utilized in order to generate a
saliency map.

With concept-based XAI, researchers have mostly been focused on identify-
ing the various concepts which have been learned by the intermediate activations
of the segmentation model [58/40]. However, a major issue in this regard, par-
ticularly for medical datasets, is concept identification. Concepts identified by
automatic concept generation algorithms are hard to associate with tangible
medical concepts, whereas labelled medical concept datasets using which a seg-
mentation model can be probed are almost non-existent. For natural images, the
problem is considerably alleviated due to the availability of a generous amount
of online data regarding virtually any concept as well as due to the fact that one
often doesn’t require special training in order to interpret concepts associated
with natural images.

6 Conclusion

The methods discussed above consistently reveal a common theme: XAI tech-
niques used in image segmentation are derived from those employed in image
classification. [78]’s Seg-Grad-CAM is an extension of Grad-CAM [71], [12] be-
ing an extension of RISE [61] and SHAP [52], and [17] being an extension of
[5], for example. Some exceptions to this rule include [41] and [45]. Despite its
widespread use, the heavy dependence on XAl in classification is not straightfor-
ward to justify. Classification and segmentation are inherently distinct tasks: the
former seeks to assign a single label to the entire image, while the latter involves
a dense prediction task, aiming to assign a label to each pixel. Since the output
of image segmentation is a spatial map, the effectiveness of generating saliency
maps is diminished, as they often merely emphasize the object they were meant
to clarify [I7].

Instead of merely extending XAl approaches from image classification to im-
age segmentation, it would be better if XAl in image segmentation was treated
as an independent field by researchers. The initial focus should then be towards
identifying potential applications of XAl in image segmentation as that would
organically lead to the proposal of XAI methods fine-tuned to image segmen-
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tation. In the medical field, for example, saliency maps in image classification
can aid a medical practitioner identify important regions in an image, whether
the same role can be played by saliency maps of image segmentation is hardly
obvious. Given the ubiquitous nature of image segmentation for medical images,
the involvement of medical practitioners can help identify useful end goals for
the field of XAI in medical image segmentation. Once potential applications
have been identified, the design of XAI algorithms would then naturally be tai-
lored towards fulfilling those roles allowing for informed borrowing from XAI
algorithms in image classification. Taking inspiration from XAI in image classi-
fication is only natural, however, simple imitation should be discouraged owing
to the fundamental difference between the two sets of computer vision problems.
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A Reviewed XAI Algorithms

Our search yielded 81 papers out of which 39 were works responsible for initially
proposing a technique, and 42 were works which utilized these techniques as
tools. Tables 2BJ[]list works belonging to the former category. This ends up being
44 proposed techniques (as some papers proposed more than one technique).
Additionally, the datasets on which these techniques were applied in their parent
papers are also mentioned with a symmetrical distribution of 31 datasets each
for both medical as well as natural images.

Table 2. Local XAI algorithms considered for this paper. Bold is used to indicate
medical datasets. Additionally, if the algorithm is based on an existing algorithm from
image classification, the predecessor is also identified. Key: IFS = Intermediate Feature
Space.

Algorithm Family |Gradient-based Dataset Imalg::e(c);l:sssc;li:‘lcl:tion
Pascal-Context
Grad-PAM [B0] Local (IFS) 4 Cityscapes Grad-CAM [T1]
Look Into Person
Seg-Grad-CAM [78]58] |Local (IFS) v Cityscapes Grad-CAM [71]
Polyp (Colonoscopy)
improved Grad-CAM [86]|Local (IFS) v Liver Tumor (CT) Grad-CAM [71]
Skin Lesion
L . Cityscapes ) ’
Seg-GradCAM++ [49]56]|Local (IFS) v Brain Tumor (MRI) Grad-CAM++ [I]
Seg-ScoreCAM [56]  |Local (IFS) X Brain Tumor (MRI)[ ¢ . can R
i Satellite Imaging !
Seg-XGrad-CAM [30] |Local (IFS) v Satellite Imaging XGrad-CAM [22]
Seg-Eigen-CAM [30] |Local (IFS) X Satellite Imaging Eigen-CAM [55]
. Satellite Imaging . .
Seg-AblationCAM [30]27]|Local (IF'S) X Industrial Datasot Ablation-CAM [14]
] Multi-organ (CT) o /
Seg-XRes-CAM [34] |Local (IFS) v COCO-2017 HiResCAM [I6]
o Teeth (X-Ray)
Seg-llires-Grad 1y | 1 (17s) v Kidney (CT) HiResCAM [16]
CAM [62 . '
§ Cityscapes
. Cityscapes
Seg-Sobol [72] Local (IFS) X Satellite Tmaging Sobol XAI [19]
Adapted . .
Seg-Grad-CAM [56] Local (IFS) v Brain Tumor (MRI) -
Adapted .
Seg-GradCAM -+ [56] Local (IFS) v Brain Tumor (MRI) -
Adapted ] .
Seg-ScoreCAM [5] Local (IFS) X Brain Tumor (MRI) -
Kernel-Weighted [56157] |Local (IFS) X Brain Tumor (MRI) -
Activations x .
Predictions [63] Local (IFS) X Brain Tumor (MRI) -
Attribution-based . .
Explanation [39] Local (IFS) ) Fungi B
Score
Maps [69] Local (IFS) v nuScenes -
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Table 3. Local XAI algorithms considered for this paper (cont.). Bold is used to indi-
cate medical datasets. Additionally, if the algorithm is based on an existing algorithm
from image classification, the predecessor is also identified. Key: IS = Input Space, P
= Perturbation, C = Concept.

Algorithm Family |Gradient-based Dataset Imalg):eé;l:sssoi;cl:tion
Guided Guided
backpropagation[3334] Local (I5) v Polyp (colonoscopy) backpropagation [76]
Integrated Integrated
Gradient [33] Local (IS) v Lungs (CT) Gradient [77]
SmoothGrad [89] [Local (IS) v Brain Tumor (MRI) SmoothGrad [75]

. . Artery-Vein . .
Vanilla Saliency [3] |Local (IS) v (OCT Angiography) Vanilla Saliency [73]
Grid . R Meaningful
Saliency [38] Local (P) / Cityscapes Perturbation [21I]
SHAP [12] Local (P) X . SAR SHAP [52
y Cityscapes :
RISE [12] Local (P) X SAR RISE [61]
Stable Explanation [23]| Local (P) - Cityscapes -
U-Noise [45159] Local (P) v Pancreas (CT) -
Occlusion [29] Local (P) X COCO-2017 Occlusion [88]
Pascal-Context
SegNBDT [80] Local (C) v Ctiyscapes NBDT [79]
Look Into Person
Concept Graphs [46] |Local (C) v Brain Tumor (MRI) -
L-CRP [18] Local (C) v Cityscapes CRP
Example-based .
Explanation[37] Local X SemanticKITTI -
Graph-based [24] Local - Liver Vessel (CT) -
Adversarial attacks . Adversarial
on Saliency Maps[28] Local Y Industrial Perturbation [31]
Counterfactual [74] Local X Instrument (Endoscopy) -
: Polyp (colonoscopy)
Counterfactual -
Generative [30] Local v BDD100k -

Table 4. Global XATI algorithms considered for this paper. Bold is used to indicate
medical datasets. Additionally, if the algorithm is based on an existing algorithm from
image classification, the predecessor is also identified. Key: C = Concept.

Precursor in

Algorithm Family |Gradient-based Dataset Image Classification
Network . Network
Dissection [58] |*1°P21 (©) X Brain Tumor (MRI) Dissection [7]
Activation . Activation
Maximization [58] Global (C) v Brain Tumor (MRI) Maximization [73]
CAV [40] Global (C) v Heart (MRI) CAV [41]

. . Activation
DeepDream [I2] | Global v Liver Tumor (CT) Maximization [73]
Visualizing
Bottleneck [41] Global X Satellite Imaging -
Representations
Emergent

Global 4 Brain Tumor (MRI) -
Brain Tumor (MRI)

Language [68]

Segmentation Global ) COVID-19 (CT) )
Ability [36] Prostate (MRI)
Pancreatic Mass (CT)
Permutation Permutation
Feature[60] Global X Satellite Imaging Feature[20]

Importance Importance
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