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ABSTRACT  43 

 44 

Impulsivity and higher preference for sooner over later rewards (i.e., delay discounting) are 45 

transdiagnostic markers of many psychiatric and neurodegenerative disorders. Yet, their 46 

neurobiological basis is still debated. Here, we aimed at 1) identifying a structural MRI signature of 47 

delay discounting in healthy adults, and 2) validating it in patients with behavioral variant 48 

frontotemporal dementia (bvFTD)—a neurodegenerative disease characterized by high impulsivity. 49 

We used a machine-learning algorithm to predict individual differences in delay discounting rates 50 

based on whole-brain grey matter density maps in healthy male adults (Study 1, N=117). This resulted 51 

in a cross-validated prediction-outcome correlation of r=0.35 (p=0.0028). We tested the validity of this 52 

brain signature in an independent sample of 166 healthy adults (Study 2) and its clinical relevance in 53 

24 bvFTD patients and 18 matched controls (Study 3). In Study 2, responses of the brain signature did 54 

not correlate significantly with discounting rates, but in both Studies 1 and 2, they correlated with 55 

psychometric measures of trait urgency—a measure of impulsivity. In Study 3, brain-based predictions 56 

correlated with discounting rates, separated bvFTD patients from controls with 81% accuracy, and 57 

were associated with the severity of disinhibition among patients. Our results suggest a new structural 58 

brain pattern—the Structural Impulsivity Signature (SIS)—which predicts individual differences in 59 

impulsivity from whole-brain structure, albeit with small-to-moderate effect sizes. It provides a new 60 

brain target that can be tested in future studies to assess its diagnostic value in bvFTD and other 61 

neurodegenerative and psychiatric conditions characterized by high impulsivity. 62 

 63 

 64 

Keywords: brain signature; machine-learning; dementia; decision-making; delay discounting; 65 

intertemporal choice; prediction 66 
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 4 

BACKGROUND  68 

 69 

Impulsivity is the tendency to act in a rush and to seek immediate rewards without 70 

consideration of potentially negative long-term consequences 1. Trait impulsivity varies substantially 71 

within the general population, with high impulsivity being a hallmark of many psychiatric and 72 

neurological conditions 2. Despite the many negative consequences of high impulsivity for health and 73 

life in general 3,4, its neurobiological correlates are still unclear, and it is unknown whether individual 74 

differences in impulsivity can be reliably predicted based on structural brain features 5–7. 75 

Neurobiological measures of impulsivity could help to understand the mechanisms and disentangle the 76 

heterogeneity of symptoms related to maladaptive behavior and decision-making. Brain signatures of 77 

impulsivity could also constitute new targets for diagnosis and treatment. They might aid in the 78 

diagnosis and monitoring of conditions such as behavioral variant frontotemporal dementia (bvFTD)—79 

a neurodegenerative disorder characterized by frontal and temporal brain atrophy, with high impulsivity 80 

and inappropriate behaviors as core symptoms 8. In this study, we aimed at developing a structural 81 

brain signature of individual differences in impulsivity, and tested whether it could accurately classify 82 

patients with bvFTD from matched healthy controls.  83 

The idea that any psychological construct would depend on only one or a few isolated brain 84 

regions has been more and more challenged. A new paradigm of “brain signatures” (or 85 

“neuromarkers”) promoting a multivariate brain patterns view has therefore emerged, to complement 86 

the traditional univariate brain mapping approach examining brain regions independently 9. Brain 87 

signatures are predictive models of mental events or of individual variables (such as impulsivity) that 88 

take into account distributed information across multiple brain systems 10. Brain signatures using 89 

structural data are increasingly used in the field of translational neuroimaging, especially for 90 

applications in patients with neurodegenerative conditions 11. One of the greatest advantages of these 91 

predictive models which predict behavior from brain features is that they can be tested across studies, 92 

labs and populations to challenge their generalizability. We used this brain signature approach to 93 

identify a network of spatially distributed structural features associated with impulsivity, as measured 94 

by delay discounting. The present study applies the “component process” framework of brain 95 

signatures 11. Instead of predicting a given heterogenous condition such as bvFTD, we aimed at 96 

identifying a predictive model of a key symptom (i.e., impulsivity), which is a common factor across 97 
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different diseases. This framework is also suited to the purpose of predicting a specific patient’s 98 

clinical profile in a perspective of personalized medicine. 99 

Several arguments support the idea that delay discounting—how much people prefer smaller 100 

sooner over larger later rewards—is a reliable measure of stable individual differences in a specific 101 

facet of impulsivity (that is the urgency to get short-term rather than long-term reward). Individual 102 

differences in delay discounting are relatively stable over time and show significant genetic heritability 103 

12–14. Delay discounting moreover constitutes a potential transdiagnostic marker of conditions with high 104 

impulsivity since it has been found to be altered across multiple psychiatric 15 and neurodegenerative 105 

conditions 16. Recent studies have therefore started to investigate the neurobiological basis of 106 

individual differences in delay discounting 7,14,17–23. However, less is known about how these candidate 107 

brain markers of delay discounting are expressed in psychiatric and neurological conditions 108 

characterized by increased impulsivity.  109 

Characterized by multiple impulsivity-related symptoms, bvFTD is a good example to 110 

demonstrate the clinical potential (in particular for diagnosis) of a structural brain signature of delay 111 

discounting. BvFTD is the most common clinical variant of syndromes associated with predominant 112 

degeneration of the prefrontal and temporal regions as well as the basal ganglia. It is characterized by 113 

significant changes in personality and behavior including disinhibition (socially inappropriate and 114 

generally impulsive behaviors), as well as executive function deficits 8. Brain regions known to be 115 

related to delay discounting such as the orbitofrontal cortex (OFC), ventromedial prefrontal cortex 116 

(vmPFC) and ventral striatum 24–26 are often affected in bvFTD 27,28. Relatedly, most studies found an 117 

alteration of delay discounting in bvFTD patients compared to controls 16,29–32.  118 

Here, we first trained and cross-validated a structural MRI-based brain signature in a healthy 119 

adult population (Study 1, N=117) using LASSO-PCR (least absolute shrinkage and selection 120 

operator-principal component regression)—an established machine-learning algorithm 33,34 —to 121 

predict individual differences in delay discounting rates from subjects’ grey matter maps (N=117). 122 

Brain markers of individual differences need to be tested in different and completely independent 123 

samples and studies to establish their robustness and generalizability 10. Thus, in Study 2, we tested 124 

the replicability of the brain signature in a second independent sample of healthy adults (N=166). In 125 

Study 3, we tested the validity of the structural brain signature in a clinical population of patients with 126 

behavioral variant frontotemporal dementia, who often show high impulsivity and were shown to be 127 
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steeper discounters (N = 42, including 24 bvFTD patients and 18 matched controls) 35. If a consistent 128 

pattern of grey matter density across the brain can reliably predict delay discounting and more 129 

generally impulsivity, then the brain-predicted discounting should be higher in bvFTD patients than in 130 

controls and should be related to the level of clinically assessed impulsivity in patients. In addition to 131 

testing the generalizability of the brain signature developed in Study 1, we analyzed the topographical 132 

distribution of the most important structural alterations contributing to differences of brain-predicted 133 

delay discounting.  134 

  135 
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MATERIALS AND METHODS 136 

 137 

Participants 138 

The research reported here complies with all relevant ethical regulations. The study protocols were 139 

approved by the institutional review board of Bonn University’s Medical School (Study 1), by the 140 

University of Pennsylvania Institutional Review Board (Study 2), and by the French Ethics Committee 141 

“Comité de Protection des Personnes Sud Méditerranée I” (Study 3).  142 

Study 1 143 

In Study 1, participants were recruited in the context of a seven-week dietary intervention study 144 

(https://osf.io/rj8sw/?view_only=af9cba7f84064e61b29757f768a8d3bf) at the University of Bonn in 145 

Germany. In this study, only male participants were recruited, with the following inclusion criteria: age 146 

between 20 and 60 years, right-handedness, non-smoker, no excessive drug or alcohol use in the 147 

past year, no psychiatric or neurological disease, body mass index (BMI) between 20 and 34, no other 148 

chronic illness or medication, following a typical Western diet without dietary restrictions, and no MRI 149 

exclusion criteria (e.g., large tattoos, metal in the body,). For the present purpose, we used only the 150 

behavioral and structural MRI data collected during a baseline session before the dietary intervention. 151 

N=117 participants were tested for the baseline session of Study 1. However, four participants were 152 

excluded from the present analyses due to being outliers on grey matter density maps (three 153 

participants) and due to very incoherent choices at the intertemporal choice task (one participant). 154 

Thus, the data of a total of 113 participants was used for the analyses.  155 

Study 2 156 

In Study 2, participants were recruited in the context of a ten-week cognitive training study (registered 157 

at clinicaltrials.gov as Clinical trial reg. no. NCT01252966) at the University of Pennsylvania, USA. 158 

Individuals between 18 and 35 years of age who reported home computer and internet access were 159 

recruited. Exclusion criteria were: an IQ score of <90 on Shipley Institute of Living Scale, self-reported 160 

history of neurological, psychiatric, or addictive disorders (excluding nicotine), positive breath alcohol 161 

reading (>0.01), color blindness, left-handedness, and claustrophobia. Here, we focused on behavioral 162 

and structural MRI data collected during the baseline session before the cognitive training. In Study 2, 163 

N=166 participants (mean age=24.5, 59% male) were included in the baseline session and all were 164 

included in our data analyses.  165 
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Study 3 166 

For Study 3, participants were recruited in the context of a clinical study at the Paris Brain Institute, 167 

France (clinicaltrials.gov: NCT03272230). This study was designed to investigate the behavioral 168 

correlates and neural bases of neuropsychiatric symptoms associated with behavioral variant 169 

frontotemporal dementia (bvFTD). BvFTD patients were recruited in two tertiary referral centers, at the 170 

Pitié-Salpe�trière Hospital and the Lariboisière Fernand-Widal Hospital, in Paris. Patients were 171 

diagnosed according to the International Consensus Diagnostic Criteria 8. To be included, bvFTD 172 

patients had to present a Mini-Mental State Evaluation (MMSE) score of at least 20. Healthy controls 173 

(HC) were recruited by an online announcement. Inclusion criteria included a MMSE score of at least 174 

27 and matching the demographic characteristics of the bvFTD group. In total, 24 bvFTD patients 175 

(mean age=66.6, 66.6% male) and 18 controls matched to patients for age and sex (mean age=62.6, 176 

44.4% male) were recruited in this clinical study (see Supplementary table 1). Data of all participants 177 

were used for our analyses. 178 

 179 

Intertemporal choice tasks  180 

Study 1 181 

During the intertemporal choice (ITC) task performed in an MRI scanner, participants in Study 1 were 182 

presented with 108 trials offering a choice between a smaller sooner (SS) reward option and a larger 183 

later (LL) reward option 14. Participants were informed that one of their choices could be paid out at the 184 

end of the experiment, which made their choices non-hypothetical and incentive-compatible. The two 185 

options were displayed on the left or right of the screen (position randomized) for 4 seconds. 186 

Participants used their left or right index finger to press the response key corresponding to their choice 187 

(left index for left option or right index for right option). The option chosen by the participant was then 188 

highlighted by a yellow frame which remained on the screen until the end of the 4 second trial. Trials 189 

were presented in randomized order (see Koban et al., 2023 for further details on the trial structure).  190 

Study 2 191 

During the ITC performed in an MRI scanner, participants had to make 120 choices between the same 192 

smaller immediate reward ($20 today) and a varying larger reward available after a longer delay (e.g., 193 

$40 in a month) 36. Participants were informed that one of their choices could be paid out at the end of 194 

the experiment, which made their choices non-hypothetical and incentive-compatible. Each trial 195 
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 9 

started with the presentation of the amount and delay of the larger later option. Once subjects had 196 

made their choice, a checkmark on the screen indicated if the larger later option was chosen and a “X” 197 

indicated that the immediate option was chosen for 1 s. Subjects had 4 s to make their choice.  198 

Study 3 199 

In Study 3, participants performed two ITC tasks on a computer screen, one using monetary rewards 200 

(from 8 to 35 euros) and one using food rewards (from 8 to 35 chocolates) in randomized order 35. In 201 

this study, using these two tasks allowed us to test the validity of our brain signature for the prediction 202 

of discounting of several types of reward, and thus to investigate generalizability across reward 203 

domains. Each of these tasks included 32 choices between SS and LL options. Participants were 204 

instructed that one of their 32 choices could be randomly selected and the option that they had chosen 205 

would be given to them. Thus, like in Study 1 and 2, participants’ choices were non-hypothetical and 206 

incentive-compatible. For each trial, participants could indicate their choice by pressing either a blue 207 

key on the keyboard with their right-hand index to select the option on the left or a yellow key with their 208 

right-hand middle finger to select the option on the right. Once the choice had been made, a message 209 

on the screen indicated which option had been chosen. Trials were presented in randomized order.  210 

 211 

Other measures of impulsivity traits and symptoms 212 

Study 1 213 

In Study 1, along with choice data collected from the ITC task, we used self-report data from the 214 

Impulsive Behavior Short Scale–8 (I-8), which measures the psychological construct of trait impulsivity 215 

according to the Urgency, lack of Premeditation, lack of Perseverance, and Sensation seeking (UPPS) 216 

model with four subscales comprising two items each 37. We predicted that the trait of urgency— 217 

defined as the tendency to act rashly in an emotional context (e.g., “I sometimes do things to cheer 218 

myself up that I later regret”)— would be closest to brain-predicted delay discounting, as both urgency 219 

and delay discounting are supposed to measure a tendency to prefer most immediate rewards at the 220 

expense of potential long-term gains.  221 

Study 2 222 

In Study 2, we used data from the UPPS-P Impulsive Behavior Scale, which measures trait impulsivity 223 

according to the UPPS model with five subscales: positive urgency, negative urgency, lack of 224 

premeditation, lack of perseverance, and sensation seeking 38. Paralleling Study 1, we predicted that 225 
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 10 

urgency would be the most closely related to brain-based predictions. We used the average of the 226 

subscales of positive urgency (rash actions taken in response to positive emotional states) and 227 

negative urgency (rash actions taken in response to negative emotional states) to test this hypothesis. 228 

Study 3 229 

This clinical study did not include a trait measure of impulsivity such as the UPPS scale. However, 230 

clinical measures of core symptoms of bvFTD were available, in particular for two symptoms closely 231 

related to impulsivity: inhibition deficit and dysexecutive syndrome (i.e., dysfunction in executive 232 

functions). In another recent investigation of the same sample, we found that these two bvFTD 233 

symptoms are related to higher discounting rates of both money and food 35. We further used the 234 

Hayling Sentence Completion Test (HSCT) 39 considered as an objective measure of inhibition deficit, 235 

and the Frontal Assessment Battery (FAB) 40 as a measure of executive functions (lower scores 236 

indicating worse executive functions). In the HSCT, participants are asked to complete 15 sentences 237 

using the appropriate word, as fast as possible (automatic condition, part A), and 15 sentences using a 238 

completely unrelated word (inhibition condition, part B). We used the Hayling error score (number of 239 

errors in part B) as a measure of the difficulty to inhibit a prepotent response, as in Flanagan et al. 41.  240 

 241 

MRI data acquisition and preprocessing 242 

Study 1 243 

Brain imaging data for Study 1 were acquired using a Siemens Trio 3T scanner. Structural images 244 

were acquired using a T1 weighted MPRAGE sequence with the following parameters: TR 1660 ms; 245 

TE 2.54 ms; FoV 256 mm; 208 slices; slice thickness 0.80 mm; TI 850 ms; flip angle 9°; voxel size 0.8 246 

mm isomorphic; total acquisition time 6:32 min. T1 images were preprocessed for Voxel Based 247 

Morphometry (VBM) analyses with SPM 12. We used the SPM module “Segment” for segmentation, 248 

bias correction and rigid alignment of T1 images. These images were then used as input into the 249 

DARTEL SPM module to create a customized DARTEL template and individual ‘flow fields’ for each 250 

subject. DARTEL determines the nonlinear deformations for warping all grey and white matter images 251 

so that they match each other. Finally, the SPM module “Normalise to MNI space” generated spatially 252 

normalized grey matter images using the deformations estimated in the previous step and images 253 

were spatially smoothed with a 6 mm Gaussian FWHM kernel. Among the obtained grey matter 254 
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images, three outliers (based on Mahalanobis distance of individual grey matter density maps with 255 

Bonferroni correction) were detected and excluded from further analyses. 256 

Study 2 257 

Brain imaging data for Study 2 were acquired using a Siemens Trio 3T scanner (with a 32-channel 258 

head coil). Structural images were acquired using a T1 weighted MPRAGE sequence with the 259 

following parameters: TR 1630 ms; TE 3.11 ms; FOV 192x256; 160 slices; slice thickness 1 mm; TI 260 

1100 ms; flip angle 15°; voxel size 0.9375 × 0.9375 × 1.000 mm; total acquisition time 4:35 min. We 261 

used existing data preprocessed by Kable and colleagues 36. T1 images were preprocessed for VBM 262 

analyses using the default preprocessing pipeline of the Computational Anatomy Toolbox (CAT12) for 263 

SPM12. T1-weighted images underwent spatial adaptive non-local means (SANLM) denoising filter, 264 

were bias corrected, and affine-registered, followed by standard SPM unified tissue segmentation into 265 

grey matter, white matter, and cerebral spinal fluid. The grey matter volume images were spatially 266 

registered to a common template using Geodesic Shooting, resampled to 1.5 mm3, and spatially 267 

smoothed with an 8 mm Gaussian FWHM kernel. 268 

Study 3 269 

Brain imaging data for Study 3 were acquired using a Siemens Prisma whole-body 3T scanner (with a 270 

12-channel head coil). Structural images were acquired using a T1 weighted MPRAGE sequence with 271 

the following parameters: TR 2400 ms; TE 2.17 ms; FOV 224 mm; 256 slices; slice thickness 0.70 272 

mm; TI 1000 ms; flip angle 8°; voxel size 0.7 mm isomorphic; total acquisition time 7:38 min. T1 273 

images were preprocessed for Voxel Based Morphometry (VBM) analyses using SPM 12, following 274 

the same steps as in Study 1.  275 

            276 

Data analyses  277 

The analyses detailed in the following subsections aimed to: (1) develop and validate a structural brain 278 

signature predicting delay discounting in a healthy population (Study 1); (2) test the validity of 279 

predictions of this structural brain signature as measures of impulsivity in independent studies 280 

involving different types of populations, including healthy (Study 2) and clinical samples (Study 3). All 281 

analyses were performed using R Studio (1.2.1335) and Matlab (R2017b). The global analytic 282 

approach is summarized in Figure 1A. The specific analyses conducted in each study to check the 283 

validity of brain-based predictions are detailed in Figure 1B. 284 
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 285 
 286 

Figure 1. Methodological approach for the development and validation of a structural brain 287 

signature of impulsivity. A) Grey matter density (GMD) maps from healthy participants of Study 1 288 

were used for the prediction of delay discounting (log(k)) by LASSO-PCR with 10-fold cross-validation. 289 

In each fold, the classifier was trained on 90% of the data and tested on the remaining 10% hold-out 290 

data to evaluate its predictive accuracy. The predictive whole-brain pattern obtained from Study 1 was 291 

then tested in two independent samples, on the data of participants of Study 2 (healthy participants), 292 

and Study 3 (patients with neurodegenerative dementia and matched healthy control participants). 293 

The brain pattern was applied to the grey matter density maps of each study’s participants to evaluate 294 

the validity of its predictions in different types of population. B) Several tests were performed in each 295 

of the four studies to assess the validity of the structural signature trained and cross-validated in 296 

A. General analytic approach

B. Delay discounting paradigms and prediction validity assessment
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Study 1. In Study 1 (the training and cross-validation sample), permutation tests on different metrics 297 

(MSE, RMSE, MAE) and in particular on the correlation between predicted and actual log(k) were 298 

used to investigate the predictive accuracy of the developed brain pattern; the validity of predictions 299 

was also assessed through testing their correlation with out-of-sample log(k) measured several weeks 300 

later and with a self-report measure of the urgency component of impulsivity trait (subscale of 301 

Impulsive Behavior Short Scale). Study 2 and 3 served as independent test samples to further validate 302 

and generalize the structural signature developed in Study 1. In Study 2, we tested whether brain-303 

based predictions correlated with the actual log(k)’s computed in the sample and with self-reported 304 

urgency trait (mean of positive and negative urgency subscales of UPPS- Impulsive Behavior Scale). 305 

In Study 3, which involved patients with behavioral variant frontotemporal dementia (bvFTD) matched 306 

with healthy controls, we tested: 1) correlations between the brain pattern predictions and observed 307 

delay discounting for two types of stimuli (money and food) across patients and controls; 2) the ability 308 

of brain-based predictions to distinguish patients from controls; 3) correlations between measures of 309 

impulsivity symptoms (inhibition and executive deficits) and brain-based predictions among patients.  310 

 311 

 312 
Computation of discount rates  313 

In all three studies, the individual discounting rate (k) was estimated by fitting logistic regressions to 314 

the individual choice data, with the assumption that the subjective value (SV) of the choice options 315 

followed hyperbolic discounting, as follows: 316 

 317 

where A is the amount of the option, D is the delay until the receipt of the reward (for immediate 318 

choice, D = 0), and k is a discounting rate parameter that varies across subjects. Higher values of k 319 

indicate greater discounting and thus higher preference for sooner rewards. In Study 1, we used 320 

logistic regressions (as described in Wileyto et al., 2004) to estimate the individual parameter k from 321 

the participant’s answers in the ICT task at baseline and we used the log(k) values as the parameter to 322 

be predicted. Individual k’s were log-transformed in all studies to obtain non-skewed distributions of 323 

discounting parameters. In Study 2, we also used the log(k) values at baseline (see 36). In Study 3, we 324 

used the log(k) values calculated in bvFTD patients matched with controls for both monetary and food 325 

rewards (see 35).  326 

 327 

LASSO-PCR, training and cross-validation of the brain pattern predicting log(k) in Study 1 328 

We used a regression-based standard machine learning algorithm, LASSO-PCR (least absolute 329 

shrinkage and selection operator-principal component regression) 34, to train a classifier to predict 330 

�� �  
�

1 � �	
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log(k) from the individual whole brain grey matter density (GMD) maps. LASSO-PCR uses principal 331 

components analysis (PCA) to reduce the dimensionality of the data and LASSO regression to predict 332 

the outcome (log(k)) from the extracted component scores. The components identified by the PCA 333 

correspond to groups of brain regions that covary with each other in terms of grey matter density. The 334 

LASSO algorithm fits a regularized regression model predicting log(k) from the identified components. 335 

This algorithm iteratively shrinks the regression weights towards zero, thus selecting a subset of 336 

predictors and reducing the contribution of unstable components. LASSO-PCR is suited to make 337 

predictions from thousands of voxels across the whole-brain, in particular because it solves the issue 338 

of multicollinearity between voxels and brain regions (see 43,44). Moreover, it is possible to reconstruct 339 

voxel weights across the brain (from voxel loadings on PCA components and LASSO regression 340 

coefficients of components), yielding predictive brain maps that are easier to interpret than component 341 

weights. To assess the accuracy of this predictive modeling from GMD maps, we used a 10-fold cross-342 

validation process. The brain classifier was trained on 90% of the data and tested on the remaining 343 

10% with 10 iterations, so that each participant was used for training the model in nine folds and for 344 

testing the accuracy of its prediction in the remaining fold. Ten-fold cross-validation is within the range 345 

of typically recommended folds (between 5 and 10) and allowed for a large training sample size at 346 

each iteration 45,46. Default regularization parameters were used for all machine-learning analyses to 347 

avoid overfitting of the model to the data. We used four metrics to assess the accuracy of the model 348 

predictions: the mean squared error (MSE) of prediction, the root mean squared error (RMSE), the 349 

mean absolute error (MAE), and the correlation between the model predictions (from the 10 hold-out 350 

test samples) and observed log(k)’s (prediction-outcome correlation). 351 

  352 

Test of the validity of predicted log(k) in Study 1 353 

To test the reliability of the predictions, we used permutation tests assessing the statistical significance 354 

of the accuracy metrics (MSE, RMSE, MAE and prediction-outcome correlation). More precisely, 5000 355 

iterations of randomly permuting the log(k) values were used to generate null distributions of these 356 

four metrics and thus to assess the probability of: (MSE < actual MSE), (RMSE < actual RMSE), 357 

(Mean abs. error < actual Mean abs. error) and of (prediction-outcome correlation < actual prediction-358 

outcome correlation) under the null hypothesis. To further confirm the validity of out-of-sample 359 

predictions of log(k), we performed correlation tests between the predicted log(k) and: (1) calculated 360 
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log(k) values for the ITC task performed seven weeks later (at the end of the dietary intervention); (2) 361 

the urgency trait subscale of the Impulsive Behavior Short Scale–8 (I-8). Since we had directional 362 

hypotheses, we used one-tailed correlation tests for all correlations between predicted and observed 363 

log(k).  364 

  365 

Predictions of the brain pattern in an independent sample of healthy participants in Study 2 366 

To assess the predictions of the brain classifier developed in Study 1 in participants of Study 2, we 367 

calculated the dot product between the predictive weight map and the grey matter density map of each 368 

participant of Study 2. The dot product (computed as a linear combination of the participant’s voxel 369 

grey matter density multiplied by voxel weight across the brain), plus the classifier’s intercept, provides 370 

a pattern response and thereby a predicted value of log(k) for each participant. This allowed us to test 371 

the correlations between the predicted log(k) values and: (1) the actual log(k) values computed in the 372 

sample; (2) the average of positive and negative urgency measures from the UPPS-P Impulsive 373 

Behavior Scale.  374 

 375 

Predictions of the brain pattern in patients with neurodegenerative dementia in Study 3 376 

To assess the predictions of the brain classifier developed in Study 1 in participants of Study 3, we 377 

calculated again the dot product as a measure of pattern response and thereby a predicted value of 378 

log(k) for each participant of Study 3. This allowed us to test: (1) the correlation between the predicted 379 

log(k) and the actual log(k) values (for both monetary and food rewards) across the whole sample 380 

(bvFTD patients and matched controls); (2) whether predicted log(k) values could accurately 381 

discriminate between bvFTD patients and controls, using a single-interval test (thresholded for optimal 382 

overall accuracy). Further, we explored whether the predicted log(k)’s were related to the severity of 383 

inhibition deficit (measured by Hayling error score) and of dysexecutive syndrome (i.e., lower FAB total 384 

score) among bvFTD patients. 385 

 386 

Bootstrapping and thresholding of the predictive brain pattern obtained in Study 1 387 

We used a bootstrapping analysis to detect the brain regions that were the most robust contributors to 388 

predict log(k). Sampling with replacement from the initial sample of Study 1 participants generated 389 

5,000 samples. The LASSO-PCR algorithm yielded a predictive brain pattern (voxel weights across 390 
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the brain) from the data (paired GMD map – log(k) outcome) in each of these 5,000 samples. For each 391 

voxel weight in the whole-brain pattern, the probability of being different from 0 (either above or below 392 

0) could be estimated across the 5,000 samples. Thus, two-tailed, uncorrected p-values were 393 

calculated for each voxel across the whole brain and false discovery rate (FDR) correction was used 394 

to correct for multiple comparisons. Bootstrapped weights were thresholded at q=0.05 FDR-corrected 395 

across the whole weight map, as well as at p=0.05 uncorrected for display. 396 

 397 

Spatial distribution of weights in the predictive brain pattern obtained in Study 1 398 

To further characterize the spatial distribution of regions predicting log(k) and their link to different 399 

functional networks, we investigated the similarity between the predictive brain pattern (resulting from 400 

the LASSO-PCR procedure) and term-based meta-analytic images 47 representing functional networks 401 

that have been previously hypothesized 48 to contribute to temporal discounting, namely brain areas 402 

related to valuation, executive control and memory/prospection. We calculated the spatial correlation 403 

coefficients (Pearson’s r) between the brain pattern (map of weights) and each of the meta-analytic 404 

maps (thresholded meta-analytic uniformity maps from Neurosynth) corresponding to the following list 405 

of terms: “value”, “reward”, “emotion”, “affect”, “executive”, “conflict”, “cognitive control”, “attention”, 406 

“planning”, “imagery”, “memory”, “episodic memory”. These spatial correlations provide descriptive 407 

insight into the importance of the contribution of GMD within specific functional networks to predict 408 

individual differences in delay discounting 14,49.  409 

 410 

RESULTS 411 

 412 

Development and cross-validation of a structural brain signature predicting delay discounting 413 

in healthy adults (Study 1) 414 

  415 
Individual differences in impulsivity  416 

On average, participants had a fitted log(k) parameter of -5.94 (median log(k)=-5.49, corresponding to 417 

k=0.0041).  Discounting rates were characterized by substantial individual differences (SD=2.00), with 418 

log(k) ranging from -11.92 to -2.16. These individual differences were very stable over a 7-week period 419 

as reported previously 14. On the I-8 subscale of urgency trait, participants’ average scores varied 420 
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between 1 and 5 (mean=2.72; median=2.5; SD=0.84). Log(k) showed a trend for a weak positive 421 

correlation with the urgency trait (R=0.17, p=0.06, 95%-CI= [-0.009, 0.35]). 422 

  423 
Cross-validated predictions of delay discounting - Validity of predicted log(k) in healthy participants 424 

The 10-fold cross-validation procedure revealed a significant accuracy of the brain-based prediction 425 

(see Figure 2A and 2B and Supplementary figure 1): the predictions had a mean squared error of 3.45 426 

(permutation test: p=0.0026), a root mean squared error of 1.86 (permutation test: p=0.0026), a mean 427 

absolute error for predicted log(k) of 1.46 (permutation test: p=0.0022), and a cross-validated 428 

prediction-outcome correlation of R=0.35 (permutation test: p=0.0028) (Figure 2C).   429 

Further, supporting the reliability and conceptual validity of the brain-predicted log(k)’s, we found that 430 

brain-based predictions at baseline significantly correlated with (out-of-sample) log(k)’s computed from 431 

the ITC task performed seven weeks later (R=0.34, p<0.001, 95%-CI= [0.18, 1]) (Figure 2D). This 432 

suggests that a relatively stable part of the between-person variability in delay discounting was 433 

explained by individual differences in brain structure. Moreover, higher brain-predicted log(k) values 434 

were associated with higher self-reported urgency (R=0.20, p=0.037, 95%-CI= [0.01, 0.37]) (Figure 435 

2E).  436 

Like the actual measures of log(k) (see 14), brain-based predictions of log(k) did not significantly 437 

correlate with age (R=-0.11, p=0.24, 95%-CI= [-0.29, 0.07]), education (R=-0.15, p=0.10, 95%-CI= [-438 

0.33, 0.03]), income (R=-0.12, p=0.21, 95%-CI= [-0.30, 0.07]), BMI (R= -0.04, p=0.66, 95%-CI= [-0.22, 439 

0.14]), and percentage of body fat (R= -0.13, p=0.18, 95%-CI= [-0.31, 0.06]) (see more details in 440 

Supplementary figure 2).  441 

 442 

Performance of the Structural Impulsivity Signature in a second independent sample of healthy 443 

participants (Study 2) 444 

 445 

Study 2 tests the predictions of the Structural Impulsivity Signature (SIS) in a second MRI dataset of 446 

healthy participants, that has used a different protocol, scanner, different preprocessing pipeline, in a 447 

socio-demographically different participant population.  448 

 449 

Individual differences in impulsivity  450 
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The mean log(k) parameter in Study 2 was -4.09 (median log(k)=-3.94, corresponding to a k of 0.019).  451 

Individual differences in the discounting parameter were less variable (SD=0.98) as compared to 452 

Study 1, with log(k) ranging from -7.08 to -2.12. Participants had average urgency trait scores (means 453 

of positive and negative urgency) varying between 1.00 and 3.01 (mean=1.76; median=1.68; 454 

SD=0.48). In Study 2, log(k) had a trend for a negative correlation with urgency (R=-0.14, p=0.06, 455 

95%-CI= [-0.29, 0.008]). Therefore, in Study 2, the discounting rate does not seem to be related to 456 

individual differences in impulsivity. 457 

 458 

Brain-based predictions of impulsivity - Validity of predicted log(k) in a second independent sample of 459 

healthy participants 460 

For each participant in Study 2, we calculated the predicted individual log(k) as the dot-product 461 

between the weight map developed in Study 1 and the individual GMD map. We then tested whether 462 

predicted log(k) correlated with observed individual log(k) and with the impulsivity trait of urgency 463 

(UPPS subscales). While we did not find a significant link between predicted and observed log(k) in 464 

Study 2 (R=0.06, p=0.21, 95%-CI= [-0.07, 1]), predicted log(k) was positively associated with urgency 465 

scales (R=0.15, p=0.047, 95%-CI= [0.002, 0.30], see Figure 2F), as in Study 1. Thus, the results of 466 

Study 2 partially validate the developed structural brain signature as a brain signature of impulsivity.  467 
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 468 
 469 

Figure 2. Predictive validity of the structural brain pattern in Study 1 and Study 2. A) Mean 470 

squared error (MSE) of prediction and significance obtained by permutation test (5,000 samples – 471 

N=113 males). B) Mean absolute error (MAE) of prediction and significance obtained by permutation 472 

test (5,000 samples – N=113 males). C) Correlation between predicted log(k) and actual log(k) in 473 

Study 1 and significance of prediction-outcome correlation obtained by permutation test (5,000 474 

samples – N=113 males). D) Test of the parametric correlation between predicted log(k) and actual 475 

log(k) assessed 7 weeks later in Study 1 (R=0.34, p<0.001, 95%-CI= [0.15, 0.50]). E) Test of the 476 

parametric correlation between predicted log(k) and self-reported urgency (subscale of I-8 Impulsive 477 

Behavior Short Scale) in Study 1 (R=0.20, p=0.037, 95%-CI= [0.01, 0.37]). F) Test of the parametric 478 

correlation between predicted log(k) and self-reported urgency (mean of positive and negative urgency 479 

subscales of UPPS‐P Impulsive Behavior Scale) in Study 2 (R=0.15, p=0.047, 95%-CI= [0.002, 0.30]).  480 

  481 

MSE = 3.45, p = 0.0026A. B.

C. D.

E. F.

Validity of brain-based predictions of impulsivity
in healthy participants 

Study 1 – Prediction of delay discounting

Study 1 – Prediction of urgency

MAE = 1.46, p = 0.0022
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Validation of the structural brain signature in a clinical sample of bvFTD patients and matched 482 

controls (Study 3) 483 

 484 

Our last analysis step aimed at further testing the generalizability of the SIS by evaluating its validity in 485 

a patient population that is characterized by impulsivity. Study 3 employed a distinct protocol from 486 

Studies 1 and 2 (different ITC task, different MRI scanner and parameters), and in a different, older 487 

population including dementia patients with substantial structural atrophy. This further allowed us to 488 

investigate the clinical relevance of the SIS (1) for classifying patients with bvFTD differently from 489 

matched control participants and (2) for predicting the core symptoms of disinhibition and executive 490 

deficits in patients with bvFTD 8 . 491 

 492 

Differences of impulsivity between bvFTD patients and healthy controls 493 

In line with the core symptoms of this disorder, bvFTD patients presented significantly higher delay 494 

discounting (i.e. more impatient or impulsive choices) compared to controls, for both money rewards 495 

and food rewards (see 35). They also showed higher inhibition deficit (Hayling-error score; t=5.71, 496 

p<0.001, Cohen’s d=1.60, 95%-CI=[0.87, 2.33]) and lower executive performances (FAB score; t=-497 

7.31, p<0.001, Cohen’s d=-2.00, 95%-CI=[-1.23, -2.77]) compared to controls (see Supplementary 498 

table 1). 499 

  500 

Brain-based predictions of impulsivity – Validity of predicted log(k) in bvFTD patients 501 

To investigate the predictive validity of our classifier in Study 3, we first tested whether predicted 502 

log(k)’s (obtained from the brain pattern applied to each participant’s grey matter density map) were 503 

correlated with actual log(k)’s calculated in this study across the whole sample (patients and controls). 504 

This analysis showed that the predicted log(k) values were positively correlated with actual log(k) 505 

values, for both monetary rewards (R=0.30, p=0.03, 95%-CI= [0.03, 1], mean absolute error of 2.08) 506 

and for food rewards (R=0.40, p=0.006, 95%-CI= [0.15, 1], mean absolute error of 2.65) (see Figure 507 

3.A and 3.B).  508 

We next tested whether the SIS predictions could distinguish bvFTD patients from controls. As 509 

expected, we found that brain-predicted log(k) was significantly higher in bvFTD patients than in 510 

controls (t=3.60, p= 0.0009, Cohen’s d=1.09, 95%-CI=[0.41, 1.76] – see Figure 3.C). Notably, brain-511 
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predicted log(k) significantly predicted whether a grey matter density map was from a bvFTD patient or 512 

from a control participant, with a classification accuracy of 81 % (p= 0.002, sensitivity = 87.5%, 513 

specificity = 72.2%, - see Figure 3.D). Interestingly, the actual log(k)’s calculated for monetary and 514 

food rewards in this sample revealed slightly lower predictive accuracies and especially lower 515 

specificities: 73.7 % accuracy for monetary rewards (p= 0.07, sensitivity = 100%, specificity = 37.5%,) 516 

and 76.3 % for food rewards (p= 0.01, sensitivity = 100%, specificity = 47.1%).  517 

We next investigated the relationship between brain-predicted log(k) and clinical measures of bvFTD 518 

core symptoms of disinhibition and executive deficits. Across both the patient and control groups, 519 

higher predicted log(k) was associated with higher inhibition deficit (higher Hayling-error score; 520 

R=0.55, p=0.0002, 95%-CI= [0.30, 0.74]) and higher executive troubles (lower FAB score; R=-0.56, 521 

p=0.0001, 95%-CI= [-0.74, -0.30]). More interestingly, even within the group of bvFTD patients, higher 522 

predicted log(k) was associated with higher inhibition deficit (higher Hayling-error score; R=0.52, 523 

p=0.01, 95%-CI= [0.14, 0.77]) and higher executive troubles (lower FAB score; R=-0.43, p=0.04, 95%-524 

CI= [-0.71, -0.03]) (see Figure 3.E and 3.F). Further, we checked that predicted log(k) was still 525 

significantly related to lack of inhibition (i.e., higher Hayling-error scores; B=8.63, p=0.02, 95%-CI= 526 

[1.51, 15.7]) within bvFTD patients even after controlling for executive function deficit; this added result 527 

showed that the relationship between brain-based predictions and disinhibition symptom was not only 528 

due to shared variance with the severity of dysexecutive syndrome. Together, these findings show that 529 

the SIS significantly and accurately classified bvFTD patients from matched controls, and that it 530 

tracked the severity of key symptoms in these patients. 531 
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 532 

Figure 3. Predictive validity of the structural brain pattern in Study 3. (A) Parametric correlation 533 

between predicted log(k) and actual log(k) assessed with monetary rewards in Study 3 (R=0.30, 534 

p=0.07, 95%-CI= [-0.02, 0.57]). Patients are represented as squares in darker blue and controls as 535 

circles in lighter blue. (B) Parametric correlation between predicted log(k) and actual log(k) assessed 536 

with food rewards in Study 3 (R=0.45, p=0.01, 95%-CI= [0.1, 0.64]). Patients are represented as 537 

squares in darker blue and controls as circles in lighter blue. (C) As expected, predicted log(k) was 538 

higher in bvFTD patients (N=24) than in controls (N=18) (t=3.60, p=0.0009, Cohen’s d=1.09, 95%-539 

CI=[0.41, 1.76]). (D) ROC curve showing the performance of the brain-based prediction of log(k) in 540 

classification of bvFTD patients versus healthy controls (single interval test thresholded for optimal 541 

accuracy: accuracy=81 %, p= 0.002, AUC = 0.80, sensitivity = 87.5%, specificity = 72.2%). (E) Higher 542 

predicted log(k) was related to greater inhibition deficits (Hayling-error score) in bvFTD patients 543 

(R=0.52, p=0.01, 95%-CI= [0.14, 0.77]). (F) Higher predicted log(k) was related to more impaired 544 

executive functions (as measured with the FAB score) in bvFTD patients (R=-0.43, p=0.04, 95%-CI= [-545 

0.71, -0.03]). 546 

 547 

Validity of brain-based predictions of impulsivity in patients 
with bvFTD matched with controls (Study 3) 

A. B.

C. D.
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 548 

Spatial distribution of weights in the structural brain signature (Study 1) 549 

 550 

Thresholded pattern of structural brain signature 551 

Bootstrapping results revealed the positive and negative weights that most strongly contributed to 552 

GMD-based prediction of individual differences in delay discounting. At a threshold of q=0.05 FDR-553 

corrected, we found two clusters in which grey matter density positively contributed to discounting 554 

differences (which means that higher grey matter density was associated with higher impatience); 555 

these clusters were in the left lateral parietal cortex (supramarginal gyrus) and left lateral occipital 556 

cortex (superior division). At a threshold of p=0.001 uncorrected, we found additional clusters 557 

contributing positive weights, especially in regions of the valuation system 50 such as the right 558 

orbitofrontal cortex (OFC), ventromedial prefrontal cortex (vmPFC) and right ventral striatum.  559 

At q=0.05 FDR-corrected, there was one cluster in the posterior cingulate cortex (PCC) and adjacent 560 

lingual gyrus (including retrosplenial cortex) in which grey matter density contributed negatively to 561 

discounting differences (i.e., in which lower grey matter density was associated with higher 562 

impatience). At a threshold of p=0.001 uncorrected, other important regions contributing negative 563 

weights were found in the left hippocampus, the right anterior insulae (AI), dorsal anterior cingulate 564 

cortex (ACC), and amygdalae. For display purposes, the bootstrapped weight map is displayed in 565 

Figure 3A at a more comprehensive threshold (p=0.05 uncorrected, see also Supplementary table 2).  566 

  567 
Similarity of structural brain signature to meta-analytic maps 568 

When comparing the predictive map of log(k) with meta-analytic uniformity maps 47, we observed that 569 

the highest similarities (spatial correlation r’s > 0.1 in absolute value) were with the “Emotions”, 570 

“Affect”, “Conflict” and “Imagery” meta-analytic maps (Figure 4B). These spatial correlations were all 571 

negative, indicating that greater grey matter density in areas related to emotions, affect, conflict 572 

processing, and imagery contributes to predicting lower delay discounting or more ‘patient’ decision-573 

making (or conversely, lower grey matter density in these areas predicts higher discounting and more 574 

impulsive decision-making). The “Emotions”, “Affect”, “Conflict” and “Imagery” meta-analytic maps 575 

correspond to overlapping functional networks (see Figure 4.B). Among the most overlapping regions 576 

between these four networks (in red), the AI and dorsal ACC, corresponding to robust negative 577 

weights in the brain pattern, are known to be major hubs of the salience network 51. 578 
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 579 

 580 
 581 
Figure 4. Spatial organization of the structural brain pattern developed in Study 1. A) Whole-582 

brain weight map thresholded at p=0.05 (uncorrected for multiple comparisons across the brain) 583 

resulting from a bootstrapping procedure (5,000 samples); negative weights (contributing to lower 584 

discounting with higher grey matter density) are shown in blue. Positive weights (contributing to higher 585 

discounting with higher grey matter density) are shown in orange. The three framed clusters 586 

correspond to the three clusters in which peaks are significant at q=0.05 FDR-corrected. Regions 587 

indicated in italics are some of the main regions significant at p=0.001, uncorrected (OFC: orbitofrontal 588 

cortex; vmPFC: ventromedial prefrontal cortex; VS: ventral striatum; AI: anterior insula; ACC: anterior 589 

cingulate cortex). B) On the left, spatial correlations of the unthresholded delay discounting brain 590 

pattern with thresholded meta-analytic uniformity maps from Neurosynth (http://www.neurosynth.org). 591 

As in 14, we selected meta-analytic maps corresponding to three types of functions assumed to be 592 

involved in delay discounting: 1/ valuation and emotion processing; 2/ executive control; 3/ memory 593 

and prospection. Spatial correlations are descriptive and indicate the extent of spatial similarities 594 

between the structural brain pattern and the functional networks of interest 47. Highest correlations (or 595 

Overlap between “Emotions”, “Affect”, “Conflict” and “Imagery” 
meta-analytic maps
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similarities) were observed with the “Emotions”, “Affect”, “Conflict”, and “Imagery” meta-analytic maps, 596 

and were all negative, meaning that higher grey matter density in these functional regions is 597 

associated with lower discounting. On the right, we show the spatial distribution and overlap between 598 

the four meta-analytic maps found to be the most negatively correlated with the structural brain pattern 599 

(from 1, corresponding to non-overlapping regions from only one map, to 4, corresponding to regions 600 

of overlap between the 4 maps).  601 

 602 

 603 

Spatial distribution of brain regions contributing to higher predicted log(k) in bvFTD (Study 3) 604 

To identify the main brain regions which contributed to differentiate bvFTD patients from controls on 605 

the brain-predicted log(k), we contrasted bvFTD patients versus controls in terms of voxel-wise pattern 606 

expression of the predictive map of log(k). To this end, for each bvFTD patient and each control 607 

participant, we computed an ‘importance map’ as the unsummed matrix dot product between the 608 

predictive structural weight map and the individual grey matter density map. Since higher resulting dot 609 

product contributes to higher predicted discounting, the importance map shows which brain regions 610 

contributed to increase (or decrease) predicted discounting in each individual. We performed a t-test 611 

contrasting bvFTD patients and controls (bvFTD > controls) on the resulting importance maps, with a 612 

family-wise error (FWE) correction applied to p-values to correct for multiple comparisons across the 613 

brain (see Figure 5.C). This contrast shows the regions in which structural atrophy contributed 614 

positively to higher predicted discounting in bvFTD than in controls (regions in red). These included 615 

the OFC, anterior insulae, dorsal ACC, striatum, thalamus, amygdalae, hippocampus, and middle 616 

temporal regions. These regions corresponded to areas combining the presence of negative weights 617 

in the predictive brain pattern (i.e., voxels for which higher GMD predicts lower discounting and more 618 

patient decision-making, shown in Figure 5.B) and the presence of significant grey matter atrophy due 619 

to bvFTD pathology (see atrophy pattern in Figure 5.A). Thus, the contrast shown in Figure 5.C also 620 

maps the regions in which the SIS is the most similar to bvFTD atrophy pattern. 621 

  622 
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 623 

Figure 5. Spatial distribution of regions contributing to higher predicted discounting in bvFTD 624 

in Study 3.  We computed an importance map as the unsummed matrix dot product between the 625 

Structural Impulsivity Signature (SIS) (developed in Study 1) and the individual grey matter density 626 

map of each Study 3 participant. Since higher resulting dot product contributes to higher predicted 627 

Study 3: Spatial distribution of brain regions contributing to higher predicted 
delay discounting in bvFTD patients 
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discounting, the importance map shows how brain regions contribute to increased (or decreased) 628 

predicted discounting in each individual. We performed a t-test contrasting bvFTD patients and 629 

controls (bvFTD > controls) on the resulting importance maps, to show in particular the regions in 630 

which the contribution to higher discounting was significantly higher in bvFTD than in controls. Within 631 

regions showing atrophy in bvFTD (see 6.A), those corresponding to negative (/positive) weights in the 632 

whole-brain predictive pattern (see 6.B) contributed to increase (/decrease) discounting in bvFTD (see 633 

6.C). (A) VBM–derived grey matter atrophy map of bvFTD patients contrasted with matched controls 634 

(bvFTD<Controls), FWE-corrected and thresholded at p < 0.05. (B) Unthresholded whole-brain weight 635 

map of the structural brain pattern developed in Study 1 and used in Study 2 to predict delay 636 

discounting in bvFTD patients (N=24) and matched controls (N=18). Negative weights (contributing to 637 

lower discounting with higher grey matter density) are in blue and positive weights (contributing to 638 

higher discounting with higher grey matter density) are in orange. (C) Contrast between bvFTD 639 

patients and controls (bvFTD>Controls)) on the importance map, FWE-corrected and thresholded at p 640 

< 0.05; this map shows regions contributing to increase discounting in bvFTD patients (compared to 641 

controls) in red and regions contributing to decrease discounting in bvFTD patients (compared to 642 

controls) in blue, the balance being in favor of a global increase in predicted discounting in bvFTD 643 

patients.  644 
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DISCUSSION  645 

 646 

Impulsive and maladaptive decision-making is a transversal feature of many mental disorders, 647 

especially prominent in behavioral-variant frontotemporal dementia (bvFTD). Yet, its relationship with 648 

individual brain characteristics, in particular brain structure, is still debated. Here, we used a machine 649 

learning technique to develop a brain signature (i.e., a multi-variate brain model) of individual 650 

differences in delay discounting—a facet of impulsivity—based on whole-brain grey matter density 651 

patterns. We performed out-of-sample cross-validation in a first sample of 117 healthy adults (Study 1) 652 

used for brain signature development. We further tested the generalizability of this brain signature 653 

developed in Study 1 in two independent studies: a second sample of 166 healthy adults (Study 2) 654 

and a clinical study including 24 bvFTD patients and 18 matched controls (Study 3). Individual 655 

differences of whole-brain grey matter density reliably predicted individual differences in discounting 656 

rates in the first sample of healthy adults but not in the second independent sample. However, the 657 

brain signature predicted individual differences of urgency (a subcomponent of impulsivity according to 658 

the UPPS model) with small-to-moderate effect sizes in both the first and the second samples of 659 

healthy adults. Most importantly, in the clinical study, we found that this structural signature of 660 

impulsivity (SIS) separated bvFTD patients from controls with 81% accuracy and that it significantly 661 

predicted not only individual differences in delay discounting across participants but also inhibition 662 

deficit (objectively assessed from the Hayling test), even within the group of bvFTD patients. Thus, the 663 

SIS might be more closely and reliably related to the broader concepts of impulsivity, urgency, and 664 

inhibition deficits rather than to specifically delay discounting, which may be more driven by cultural 665 

and educational factors than trait urgency. In sum, our results suggest that: 1) it is possible to predict 666 

individual differences in impulsivity from whole-brain structure and 2) this novel brain signature is 667 

sensitive to the structural atrophy that is characteristic of bvFTD, making it a novel candidate 668 

neuromarker for improving bvFTD diagnosis.  669 

The identification of the SIS advances our knowledge of the neurobiology underlying individual 670 

differences in impulsivity. Higher discounting (i.e., greater impulsivity) was associated with higher grey 671 

matter density in clusters of the lateral parietal and occipital cortex as well as in regions of the OFC, 672 

vmPFC, ventral striatum, lateral PFC, precentral gyrus, and precuneus. Functional activation of these 673 

regions during intertemporal choices and in response to rewards has previously been shown to predict 674 
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higher discounting 14,52. The SIS obtained from Study 1 also revealed regions in which greater grey 675 

matter density contributes to lower individual impulsivity. Among the strongest negative contributors, 676 

we found clusters corresponding to hub regions of the salience network (anterior insulae, dorsal ACC, 677 

amygdalae). Dorsal ACC and anterior insula were also consistently found as significant regions 678 

predicting delay discounting from whole-brain functional MRI 14. These regions are associated with the 679 

processing of emotionally significant internal and external stimuli 51,53,54 and awareness of present and 680 

future affective states 55; they are also supposed to be involved in switching between large-scale 681 

networks to facilitate access to attention and working memory resources in the presence of a salient 682 

event 56. These areas are also known to be involved in cognitive conflict processing 57,58 and previous 683 

studies have shown their response to difficult choices (characterized by choice conflicts between 684 

options) during delay discounting 59. Thus, our results suggest that more impulsive individuals might 685 

be those for whom lower affective, attentional, and conflict processing would lead to more impulsive 686 

decision-making, favouring immediately rewarding options over long-term consequences of behavior. 687 

The SIS has the potential to contribute to the early diagnosis of conditions characterized by 688 

high impulsivity, such as bvFTD. Brain signatures can in particular help the diagnosis of conditions 689 

involving brain lesions that are sometimes difficult to detect by mere visual inspection of MRI scans, 690 

especially at early stages of the disease. In addition, brain signatures can constitute neuroimaging 691 

markers with diagnostic value that can be used across different samples and populations 11,60. The SIS 692 

may contribute to the diagnosis of bvFTD by complementing other brain models able to detect bvFTD. 693 

A few previous studies successfully trained structural MRI classifiers for the specific purpose of 694 

distinguishing FTD patients from controls (e.g., 61–63). These bvFTD classifiers have shown their 695 

accuracy to detect patients with clear structural brain damage but their ability to distinguish individuals 696 

at risk of developing FTD due to genetic mutations is likely to be limited to the period just before 697 

symptom onset 64,65. Under the hypothesis of a continuum of marked impulsivity in presymptomatic 698 

individuals and patients 16, the SIS might serve the early prediction and monitoring of bvFTD before 699 

symptom onset. Impulsive behaviors may be present in an attenuated form long before clinical 700 

diagnosis and hard to detect with traditional clinical methods. A neuromarker predicting impulsivity 701 

may be sensitive to specific brain modifications that appear very early in individuals predisposed to 702 

FTD (possibly as neurodevelopmental lesions 66) and would thus allow to enhance the monitoring of 703 
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clinical signs of these subtle behavioral changes. Future tests of this brain signature in 704 

presymptomatic populations will allow to evaluate these potential clinical applications.  705 

As it predicts nearly 30% of the variance of inhibition deficit among bvFTD patients, the SIS 706 

may be sensitive to lesions in a structural network underlying the core bvFTD symptom of disinhibition. 707 

In addition to its potential contribution to the early detection of presymptomatic individuals, this brain 708 

signature may thus aid differential diagnosis and provide insight into the neuropsychological profiles of 709 

patients. The SIS may for instance help to distinguish bvFTD from other neurodegenerative or 710 

neuropsychiatric conditions with different core symptoms. The differential diagnosis of Alzheimer’s 711 

disease and bvFTD can in particular be challenging. Using neuromarkers such as the SIS in cases of 712 

diagnostic uncertainty potentially impacting the choice of treatment could therefore be highly valuable 713 

67 and should be an avenue for future studies. Moreover, the SIS could become a useful tool to 714 

disentangle the phenotypic heterogeneity within bvFTD population 68. The characterization of different 715 

clinical and behavioral profiles within the bvFTD spectrum could help to better understand the 716 

pathology, and to better adapt treatments according to patients’ specific needs. 717 

Despite holding promises for future clinical applications, we note that our results also point at 718 

challenges in generalizing the brain signature to other independent samples of healthy adults. We 719 

were successful at predicting delay discounting from whole-brain grey matter in a first rather 720 

homogenous sample of healthy adults (male participants, controlled experimental conditions) showing 721 

significant variability in terms of impulsivity and a positive correlation between the discounting rate and 722 

urgency. In a second independent sample of healthy adults with lower variance of impulsivity and a 723 

slightly negative correlation between the discounting rate and urgency, we could not replicate the 724 

association with measured discounting rates but found evidence of the conceptual validity (i.e., a link 725 

with the urgency trait) of brain-based predictions. This suggests that the variance captured by the SIS 726 

developed in the first sample is more reliably related to individual differences in urgency than to 727 

individual differences in discounting. The fact that urgency was slightly negatively correlated with the 728 

discounting rate in the second healthy sample questions the idea that delay discounting necessarily 729 

captures individual differences in impulsivity. These two constructs overlap but are not equivalent and 730 

previous studies have already reported an absence of link between delay discounting and some 731 

psychometric measures of impulsivity (e.g., 69,70). Discounting rate is also a state-dependent variable 732 

71 and depends on situational factors such as cultural and social context 72. In addition, the links 733 
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between personality and discounting rates may depend on participants’ cognitive abilities 73. 734 

Therefore, association between delay discounting and other measures of trait impulsivity may vary 735 

according to samples and studies. A promising approach for future studies would therefore be to 736 

predict latent variables that underlie different observed variables related to the same concept of 737 

impulsivity (instead of only one observed variable such as the discounting rate), which might achieve 738 

better performance in terms of replicability and generalizability 9. Although multivariate brain 739 

signatures can be replicable with moderate sample sizes 74, future studies aiming to develop brain 740 

signatures of impulsivity could also benefit from using larger and more diverse samples 75. More 741 

generally, we note that our results suggest a relatively small contribution of interindividual variability in 742 

brain structure to interindividual variability in impulsivity among healthy adults. Effect sizes of 743 

associations between predicted and observed impulsivity are however in line with those reported for 744 

most brain signatures of behavioral individual differences using structural features 9. Moreover, like 745 

variability in brain structure, variability in genotype accounts for a rather small part of the variance of 746 

impulsivity 76. The magnitude of associations between brain structure and behaviors may be limited in 747 

the general population but these associations might be more salient within populations with a marked 748 

variability of both brain and behavior such as patients with neurodegenerative conditions.  749 

In conclusion, our results advance our knowledge of the association between impulsivity and 750 

brain structure in healthy adults and in patients with bvFTD. They also point at inherent challenges in 751 

developing replicable and generalizable brain signatures of individual differences based on brain 752 

structure. By identifying a structural network associated with individual differences in discounting rates, 753 

our results provide insight into the potential neurobiological bases of trait impulsivity (and in particular 754 

its urgency component). The good performance of the SIS among patients with bvFTD suggests a 755 

possible continuum of brain-impulsivity relationship across healthy and clinical conditions. Most 756 

noteworthy, the SIS separates bvFTD patients from controls with high accuracy, pointing at the 757 

potential clinical value for the diagnosis of bvFTD, in particular for the purpose of stratifying this 758 

heterogenous condition. MRI can be instrumental to confirm an FTD diagnosis 67 and the SIS only 759 

requires a preprocessed T1-weighted scan to reach a prediction. It holds promise as a phenotypic 760 

marker in patients with neurodegenerative or psychiatric conditions associated with high impulsivity. 761 

Future studies could test its clinical potential and whether this brain signature could be used in a real-762 

life patient workflow.  763 
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A. General analytic approach

B. Delay discounting paradigms and prediction validity assessment
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meta-analytic maps

B. Spatial similarity of the brain pattern with meta-analytic maps
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Study 1: Spatial distribution of weights in the structural brain pattern predicting delay discounting
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Study 3: Spatial distribution of brain regions contributing to higher predicted 
delay discounting in bvFTD patients 
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