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Abstract

This paper tackles the concept-based explanation
of neural models in computer vision, building
upon the state of the art in Multi-Criteria Deci-
sion Aid (MCDA). The novelty of the approach is
to leverage multi-modal embeddings from CLIP to
bridge the gap between pixel-based and concept-
based representations. The proposed Cut the Black
Box (CB2) approach disentangles the latent repre-
sentation of a trained pixel-based neural net, re-
ferred to as teacher model, along a 3-step pro-
cess. Firstly, the pixel-based representation of
the samples is mapped onto a conceptual repre-
sentation using multi-modal embeddings. Sec-
ondly, an interpretable-by-design MCDA student
model is trained by distillation from the teacher
model using the conceptual sample representa-
tion. Thirdly, the alignment of the teacher and
student latent representations spells out the con-
cepts relevant to explaining the teacher model. The
empirical validation of the approach on ResNet,
VGG, and VisionTransformer on Cifar-10, Cifar-
100, Tiny ImageNet, and Fashion-MNIST show-
cases the effectiveness of the interpretations pro-
vided for the teacher models. The analysis re-
veals that decision-making predominantly relies on
few concepts, thereby exposing potential bias in the
teacher’s decisions.

1 Introduction

Deep Neural Network (DNN) models, renowned for their im-
pressive performance across various domains [Dargan et al.,
20201, involve large and complex neural architectures. How-
ever, black-box models undermine user confidence in their
results [Rudin, 2019]. The growth of the explainable Al
(XAI) field [Craven and Shavlik, 1995; Kim et al., 2018;
Goebel et al., 2018; Carvalho et al., 2019; Molnar, 2020;
Samek et al., 2022; Bodria et al., 2023] is motivated by the
fact that explaining DNNSs is crucial to trusting, debugging or
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certifying them.

Given a DNN f, the state of the art in XAI aims to ex-
plain its outcome f(z) for any particular sample x (post-
hoc explanation) or explain f itself. Three main directions
have been considered in the literature (Section 2). Along
a first direction, the model is explained from the features
most contributing to the decision (determined from the gra-
dient of f(z) [Ribeiro er al., 2016] or from Shapley val-
ues [Lundberg and Lee, 2017; Wang et al., 2021]), and vi-
sualized through e.g. saliency maps [Selvaraju er al., 2017].
A second direction leverages external information on the
application domain, represented through concepts and il-
lustrative samples thereof, and searches for the impact of
these concepts in the latent space of the model [Kim er al.,
2018]. A third direction aims to characterize sample pat-
terns generally associated with a class [Chen et al., 2019;
Fel et al., 2023].

Independently, the field of Multi-Criteria Decision Aid
(MCDA) has long been interested in characterizing and devel-
oping models for high-stakes decision-making. MCDA mod-
els are transparent-by-design, and they are meant to capture
sophisticated decision preferences and strategies from experts
/ users [Zopounidis et al., 2015; Bresson et al., 2020]. Tt is
fair to say that such models hardly deal with low-level, high-
dimensional representations.

The approach presented in this paper, called Cut the Black
Box (CB2), aims to leverage the strengths of both DNN and
MCDA fields in computer vision.! CB2 builds upon multi-
modal embeddings that map textual and visual information
on the same real-valued representation [Radford et al., 2021;
Ramesh et al., 2021; Saharia et al., 2022]. Such multi-modal
embeddings, made public, are so efficient that they come to
be used to define new evaluation metrics [Hessel et al., 2021;
Chen et al., 2022; Fan et al., 2023]. The Contrastive
Language-Image Pre-training (CLIP) embeddings [Radford
et al., 2021], trained to align related textual and visual infor-
mation, are used in this paper.

CB2 is a three-stage process (Section 3). In the first step,
CLIP embeddings are used to map pixel-based samples into

'Code available at https://github.com/natixx14/CB2
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Figure 1: The CB2 framework: The teacher model (top) is explained from the student model (bottom). The student, composed of 2-HCI
models (see text) takes as input conceptual samples x¢ constructed from pixel-based samples z, multi-modal embeddings ¢; and ¢, and
conceptual dictionary C. The student is trained by distillation from the teacher (loss Lq;sti11), ensuring that his results match the teacher’s
predictions. In addition, aligning the teacher’s latent representation with the student’s latent representation (loss La;:¢n) ensures that the
student produces the same results as the teacher for the same reasons, i.e. follows similar computational paths. The alignment of z and sz is
achieved by means of an auto-encoder, disentangling the concepts involved in each coordinate of z.

a conceptual space derived from a dictionary of the applica-
tion domain. In the second step, the trained DNN model,
called feacher model, is used to train, by distillation [Bucila
et al., 2006; Hinton et al., 2015], a student model, which is
an MCDA model built on the conceptual representation. In
the third step, the intermediate concepts of the student model
are aligned with the latent space of the teacher model: this
alignment cuts the black box in the sense that they explain
the similarity of two examples (and their same label) w.r.t.
the teacher latent space from the concepts involved in these
examples.

The behavior of CB2 is studied experimentally in Section
5. Three black-box teacher models representative of vari-
ous neural architectures are considered: ResNet [Simonyan
and Zisserman, 2015], VGG [He et al., 2016] and Vision-
Transformer [Dosovitskiy et al., 2020]. Student models are
trained from these teachers on the Cifar-10, Cifar-100, Tiny
ImageNet and Fashion-MNIST benchmarks. Performance in-
dicators include the difference in predictive accuracy between
the teacher and student models and the alignment quality be-
tween their latent spaces. The explanation provided by CB2
is evaluated qualitatively based on the three or four main con-
cepts associated with each class, and its sensitivity to the dic-
tionary related to the application domain is examined. The
paper concludes by discussing the approach’s limitations and
presenting some perspectives for further research.

Notations. The training set is denoted D = {(x;,¥;),% =
1...n}, where x; € RP denotes the real-valued pixel-based
representation of the i-th sample, and y; € {1,...,L} the
associated class. The latent representation associated with a
trained neural network is defined as its penultimate hidden
layer of dimension d, denoted z.

2 Related Work

After a brief overview of the XAI domain, this section intro-
duces the field of MCDA for the sake of self-containedness.

XAIL The state of the art in the rapidly evolving field of
XAI [Craven and Shavlik, 1995; Lundberg and Lee, 2017,
Goebel et al.,, 2018; Adadi and Berrada, 2018; Ribeiro
et al., 2016; Gilpin et al., 2018; Carvalho et al., 2019;
Murdoch et al., 2019; Molnar, 2020; Samek et al., 2022;
Bodria et al., 2023] is briefly discussed, focussing on the ap-
proaches most related to CB2. As said, one of the main direc-
tions in XAl relies on external resources involving concepts
related to the application domain and examples illustrating
these concepts. This direction is pioneered by the Concept
Activation Vector (CAV) framework [Kim et al., 2018]. Con-
sidering a given black box model f and its latent representa-
tion z, a specific concept such as ‘striped’ is associated with a
classifier learned from the given positive and negative exam-
ples of ‘striped’, expressed using the latent z representation.
The sensitivity of f to the ‘striped’ concept is evaluated by
calculating how the classification of a training sample (e.g.
‘zebra’) is affected on average by intervening on this sample
to make it ‘less striped’. This process enables us to measure
the causal effect of the concept ’striped’ on the ‘zebra’ pre-
diction.

Extensions have been proposed to overcome the limitations
of CAV. [Crabbé and van der Schaar, 2022] relax the assump-
tion of linear classifiers using the kernel trick. [Bahadori and
Heckerman, 2021] incorporate a causal prior graph to account
for confounding factors and provide debiased interpretations.
[Kusters er al., 2020] extend the approach to time series data.
Overall, the main limitation of CAV seems to be the set of
domain concepts potentially relevant to explain f and the ex-
istence of positive and negative examples for each concept.
Another limitation is that CAV establishes that certain con-
cepts are necessary to identify a given class (showing that
zebra’s probability decreases when the stripe property disap-
pears). However, it does not guarantee that these concepts
are sufficient to establish the prediction; we shall come back
to this question in Section 5.1.

Another important direction in XAI has been proposed
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by [Chen et al., 2020], which disentangles latent represen-
tation using the so-called concept whitening (CW) operator.
Like CAV, this approach assumes the definition of a set of po-
tentially relevant low-level concepts (e.g. ‘blue background’
and ‘silver objects’) and the availability of samples illustrat-
ing each concept. CW is used to decorrelate and normalize
the latent representation by aligning it with the axes corre-
sponding to the concepts. This makes it interpretable insofar
as the z coordinates reflect the importance of the concepts,
e.g. the ‘airplane’ class is seen as linked to ‘silver objects’
on a ‘blue background’. Building on conceptual bottleneck
methods [Koh et al., 20201, the Post-hoc Concept Bottleneck
Method alleviates the need for concepts and their associated
samples by transferring concepts from other datasets or nat-
ural language concept descriptions via multimodal models
[Yuksekgonul et al., 2023].

A third type of approach, proposed by [Fel et al., 2023],
aims to characterize the patterns associated with a class visu-
ally. It involves cropping sub-images of the training samples,
rescaling them and clustering them based on their Euclidean
distance in the model latent space z. These clusters are con-
sidered to correspond to typical patterns of the class (e.g., the
beak of a bird). The label predicted for an image is then ex-
plained from the clusters visited by its sub-images.

Multi-Criteria Decision Aid. In high-stakes decision-
making fields, models are developed to help human users
make decisions; nevertheless, human users must have the fi-
nal say on these decisions. Transparent models are, there-
fore, needed to enable users to assess the extent to which
the current case corresponds to the model’s premises. Given
the high-level descriptive characteristics, specific formalisms
have been developed to express these transparent and con-
sistent models, either designed in collaboration with do-
main experts or learned from data [Sobrie er al., 2016;
Martyn and Kadziriski, 2023]. The approach presented fo-
cuses primarily on Choquet’s integral formalism [Choquet,
1953] that can be learned from data [Tehrani er al., 2012;
Herin et al., 2023]. Specifically, CB2 is built upon its hi-
erarchical extensions (HCI; more in 3.2) for their properties
of monotonicity and Lipschitz continuity, facilitating model
interpretation. As [Bresson ef al., 2020] shows, neural archi-
tectures can be defined so that the neural search space coin-
cides with 2-additive HCIs, when the hierarchical structure is
known. Even more interestingly, the HCI formalism can be
used to calculate the Shapley value measuring the impact of
any particular feature on the final decision, using a closed-
form expression [Labreuche et al., 2016]. Note that Shapley
values are also used in XAI to explain a class from the fea-
tures with the best Shapley values [Lundberg and Lee, 2017;
Wang et al., 2021; Rozemberczki et al., 2022].%

Discussion. The key problem in the interpretation of black-
box models in computer vision can be seen as an ground-
ing problem: even though the explanation sought can be for-
mulated in terms of concepts (‘striped’, ‘blue background’),

2 After [Huang and Marques-Silva, 2023], the use of Shapley val-
ues in the XAl context is irrelevant when the target concept is best
explained by the absence of a property. However, this limitation is
of little importance in computer vision.
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these concepts must be linked to the internal representation of
the model. In [Kim et al., 2018; Chen et al., 20201, these con-
cepts are defined a priori and illustrative examples are pro-
vided; their grounding is formulated using classifiers learned
at the top of z. In [Fel er al., 2023], the grounding prob-
lem is overcome by forming clusters from sub-images, using
Euclidean distance based on z; these clusters can be visual-
ized instead of named. In the MCDA methods, the grounding
problem is assumed to be solved before the learning phase,
i.e. learning examples are directly expressed using the rele-
vant concepts. The proposed approach aims to reconcile the
above trends: multimodal embeddings map the pixel-based
sample representation onto a conceptual one, addressing the
grounding problem. An MCDA model, learned by distilla-
tion on the top of this conceptual representation, is aligned
with the black-box teacher model and makes it possible to in-
spect the latent representation of the teacher. The proposed
approach aims to reconcile the approaches mentioned: mul-
timodal embeddings map the pixel-based representation of
the sample into a conceptual representation, thus solving the
grounding problem. It is also aligned with the teacher’s latent
representation and thus enables the inspection of the teacher’s
support for decisions. An MCDA model is built on this con-
ceptual representation by distilling the black-box teacher. It is
also aligned with the teacher’s latent representation, enabling
inspection of the elements leading the teacher to a decision.

3 Overview of CB2

As indicated, CB2 is a three-step process (Fig. 1): 1, Pixel-
based training samples are transposed into a conceptual rep-
resentation (Section 3.1). 2, Using this representation, an
MCDA model of the student is learned by distillation from
the teacher model (Section 3.2). By design, this model en-
ables the impact of each concept on the model’s results to
be characterized in closed form (Section 3.3). 3. The stu-
dent’s model is aligned with the teacher’s model, enabling the
teacher’s latent to be interpreted through the student’s trans-
parent latent (Section 3.4).

3.1 Conceptual Representation

A set of K concepts C = {ci,...,ck } relevant to the appli-
cation domain is selected a priori; class names are excluded
to avoid tautological explanations. The sensitivity of the ap-
proach to the choice of C will be examined in Section 5.

Like [Yuksekgonul et al., 2023], CB2 performs ground-
ing of selected concepts using multi-modal embeddings (as
opposed to exploiting ad hoc samples representative of each
concept and using them to learn a classifier i, on the top of
the latent representation z as in [Kim et al., 2018]).

Specifically, we use a publicly available instance of the
CLIP model [Radford et al., 2021], made of two frozen map-
pings denoted ¢, and ¢, that respectively map visual and
textual information on the same pivotal representation space
R™ (¢, : RP s R™; ¢; : text —+ R™). These mappings are
trained using massive data formed of pairs (image x, caption
y) by optimizing the alignment of ¢, (z) and ¢;(y).

The conceptual representation of a sample x € R”, de-
noted X¢, is defined as a real vector of dimension K, whose
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i-th coordinate expresses the relevance of the concept ¢; for

image X:
((60(x), 1)
XC‘( T8l >c M

As suggested in [Radford et al., 2021], x¢ is standardized
using a softmax so that its coordinates are positive and the
sum equals 1.

3.2 The MCDA Student Model

In MCDA, the (normalized) value of each attribute is inter-
preted as the utility of this attribute, or criterion score, for
the sample. The overall utility of the sample, or sample pref-
erence score, is obtained by aggregating the criteria scores.
The aggregation function is monotonic w.r.t. each criterion
(the higher the score, the better the utility). The conceptual
representation corresponds well to the MCDA framework by
considering the i-th coordinate of x¢ (Eq. 1) as the ‘utility’ of
concept ¢; for the sample x.

In this paper, the selected MCDA model space is that of
2-additive hierarchical Choquet integrals (2-HCI, detailed be-
low) for the sake of their representational power and because
they can be learned using back-propagation [Bresson er al.,
20201.

Definition 1 (2-additive Choquet integral [Grabisch, 1997]).
A 2-additive Choquet Integral function CI on R* associates
to each sample u = (u1, ..., u;) € R¥ the sum of the pair-
wise aggregations of its coordinates u;:

k k .
Cl(u) =3 i au; + Zl:i<j bi,j min(u;, u;)
k
+ Zl:i<j Ci,j max(ui, uj) )
s.t. (17];€7 bi,ja Ci,j ke ]R+; i
Doic1 @it big i =1

parameterized from its weights a;, b; j, c; ;. The fact that

these weights are positive and sum to 1 guarantees that CI(u)
k

is monotonic and lies in [0, 1] foru € [0,1]".

A 2-additive Choquet integral, can represent two types of
interaction between criteria Eq. (2): complementarity (both
criteria must be well satisfied to produce a contribution, rep-
resented by a min function) and substitutability (it suffices
for one of the two criteria to be well satisfied to produce a
contribution, represented by a max function) [Grabisch and
Labreuche, 2010].

The 2-HCI function is defined as a 2-layer tree-structured
connection graph (Fig. 2), where each node is a Choquet
integral function.? Each CI node produces the aggregation of
its children nodes, and the tree root node denoted H produces
the global result.

The CB2 MCDA student model takes Xx¢ as input, where
each coordinate x¢ ; reflects the relevance of concept ¢; for
x. It involves L 2-HCI models, where model H; stands for
the score of the j-th class (j = 1...L). Hj involves a first
layer made of CI nodes (each one aggregating the utility of its

3In the MCDA literature, the connection graph specifying how
the coordinates/utilities are gradually aggregated is defined from
expert knowledge. InCB2, we consider a random, balanced tree-
structured connection graph.
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Figure 2: 2-HCI H; predicting the j-th class, where the input fea-
tures x¢, to xe, are first aggregated in three CI nodes CI; to CIs,
that are eventually aggregated to yield prediction H;(xc). The
tree-structured connexion graph facilitates the interpretation of each
node.

children) and produces an overall utility H,(xc), interpreted
as the utility of the j-th class for x.

This student model is learned by distillation of the teacher
model, building on the fact that a neural network can exactly
represent a k-dimensional CI Choquet function [Bresson et
al., 2020]. Constraints on the weights (Eq. (2)) are satis-
fied by characterizing the weights a;, b; ;, ¢; ; as the softmax
of a parameter 6 of dimension k2, and this parameter vec-
tor is optimized by gradient back-propagation, minimizing
the distillation loss [Hinton ef al., 2015]. Formally, mod-
els H; to Hy, are jointly trained from the conceptual dataset
De = {(Xic,¥(x:),i = 1...n}, with y(x;) the vector of
teacher logits for the i-th sample, using a cross-entropy loss:

L —_—
Laistin(H) =371 D2 (x, yi)ep Hj(xi.¢)log(y; (x:))
+(1 = Hj(xic))log(1 — y;(x;))
— 3)
where y; (x;) stands for the j-th logit output of the teacher for

the ¢-th training sample. The set of all CI nodes in the MCDA
student is denoted sz.

3.3 Interpretation in Closed Form

In the XAl litterature, one option is to explain the sample la-
bel based on the impact of each feature on the label (feature
attribution) [Ribeiro et al., 2016; Guidotti et al., 2018]. Some
authors use the Shapley values to estimate the feature impact
[Lundberg and Lee, 2017; Wang et al., 2021]. Shapley val-
ues originate from Cooperative Game Theory (CGT), which
is used to distribute the commonwealth gained by all players
fairly; formally, the Shapley value associated with one player
averages his contribution to any coalition of players he par-
ticipates in.

The parameters of the Choquet integral can be expressed
as a set in CGT form, so the Shapley value naturally provides
the average importance of each variable in this model.

Definition 2 (Shapley value in a Choquet integral [Grabisch
and Labreuche, 2010]). The Shapley value of the i-th feature
in Choquet node CI, noted Shap(Cl, 1) is 0 if CI does not

involve the i-th feature; otherwise, it reads :

k
Shap(CL ) = a; + % > (bij+eiy) 4)
j=i+1

In the context of a 2-HCI model, however, Shapley values
might be inconsistent as the importance of a node is not nec-
essarily the sum of the importance of its children [Labreuche
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and Fossier, 2018], and a preferred alternative is to use Win-
ter values [Winter, 2001]. Formally, the Winter value associ-
ated with the i-th leaf node of the 2-HCI model H; is defined
as the product of the Shapley values of all nodes on the path
from ¢ to the root node of H; (Fig. 2) [Labreuche and Fossier,
2018]:

Wint(H;, 1) = Shap(CI, i) x Shap(H;,CI), 5)
where Cl is the parent of node ¢ in Hj;.

Visual Local Interpretation. A 2-additive Choquet inte-
gral can be visualized using a pie chart (Fig. 4b), where all
slices represent all terms in Eq. (2): an individual term wu;,
or the complementarity min(u;, u;) between utilities u; and
uj, or their substitutability term max(u;, u;). The coefficient
of the term (respectively a;, b; ; or ¢; ;) are depicted by the
width of the slide.

3.4 Aligning the Teacher and the Student Models

The student model, trained from the teacher, reproduces its
output by design. It remains, however, to ensure that the stu-
dent delivers the same predictions as the teacher for the same
reasons, that is, that the internal representation sz formed of
all Choquet nodes consistently captures the same information
as the latent representation z of the teacher.

This alignment is enforced by requiring a good approxi-
mation of z to be learned on the top of sz (being reminded
that each node in sz is understandable by design). Likewise,
a good approximation of sz is to be learned on the top of z,
i.e. using an Auto-Encoder (AE) architecture (Fig. 1). The
trained AE expresses each coordinate in z as a function of
the Choquet nodes, thus disentangling this coordinate into the
(few) concepts in the dictionary involved in these Choquet
nodes.

Letting e and [3 respectively stand for the encoder and the
decoder of the AE, the alignment loss is defined as:

> llsz(xe) = B(z(x)]]”+1]2(x) — asz(xc)) ||
(X,y)eD
(6)

L:align =

3.5 CB2 Loss and Hyper-Parameters

Overall, the MCDA student model is learned by minimiz-
ing the sum of the distillation and the alignment losses. It is
jointly trained with encoder « and decoder 3 using the com-
pound loss:

L=a Edistill +b Ealign (7)
where weights a and b are hyperparameters of the model.

As said, the importance of a concept for the teacher is as-
sessed from the Winter values associated with this concept
in the MCDA student. Interestingly, the bias of the teacher
model can be inspected by a lesion study, comparing the stu-
dent learned with the alignment (Eq. 7) and without the align-
ment (setting b = 0). If a concept is associated with a high
Winter value for a class both with and without alignment, we
conclude that this concept is both relevant and taken into ac-
count by the teacher. On the contrary, if the Winter value is
higher with than without the alignment loss, the teacher may
pay more attention to this concept than it should, and the ex-
pert might want to inspect for such discrepancies.
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4 Experimental Setting

This section describes the experimental setting used to com-
paratively assess CB2. All experiments are performed on 8
Tesla V100 16GB GPUs.*

4.1 Goals of Experiments

The aim of the experiments is to provide experimental an-
swers to the following four questions:

Q1: What are the relevant concepts to explain the teacher’s
classifications?

Q2: How do these concepts differ from those used by
the MCDA (transparent) student, i.e., is there a bias in the
teacher’s latent representation?

Q3: How do the answers to the above questions depend on
the set C of selected concepts (dictionary) ?

Q4: How does the performance of the MCDA student com-
pare with that of the teacher (due, for example, to the dif-
ference in representation and architecture)? Specifically, we
are looking to see how well the student matches the teacher
(making consistent predictions, regardless of accuracy) and
how well it matches the ground truth labels of the samples.

4.2 Teachers, Datasets and Resources

Teachers. Three black-box teachers with different archi-
tectures are considered (Table 1): a ResNet [He et al.,
2016], a VGG [Simonyan and Zisserman, 2015] and a vision-
transformer [Dosovitskiy et al., 2020]. All models are pre-
trained on Imagenet and fine-tuned on each dataset. They are
publicly available on the Pytorch hub [Paszke et al., 2019].

Datasets. Four well-known computer vision datasets are
considered: Cifar-10, Cifar-100, Tiny Imagenet and Fashion-
MNIST [Xiao et al., 2017]. Cifar-10 and Cifar-100 are used
to compare CB2 explanations against the state of the art [Yuk-
sekgonul er al., 2023]. Tiny Imagenet is used to evaluate the
scalability of CB2 in relation to the number of classes and
the diversity of concepts. Fashion-MNIST (black and white
clothing images) is selected to evaluate the robustness of the
CB2 approach when confronted with a different image dis-
tribution from CLIP. The standard training/test distribution is
used for each dataset to train and test MCDA students.

Dictionary. The dictionary C is generally chosen by the ex-
pert [Kim et al., 2018; Koh et al., 2020]. In the experiments,
two types of dictionary were selected for each dataset (set
of classes): class-related concepts derived from the Concept-
Net open-source ontology [Speer et al., 2017], augmented
with the K most frequent nouns and adjectives from the
English dictionary [Miller, 1995] (called COCA concepts);
class-related concepts after a Large Language Model [Brown
et al., 2020], mimicking common knowledge (called CK con-
cepts). Class proper names and synonyms, as defined by
WordNet, are removed from dictionaries to avoid tautologi-
cal explanations (more details in code repository).

“Further details are provided and included in the code repository
at the following address https://github.com/natixx14/CB2.
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ResNetl8 Vgg VitB16 \ clipVitL14
64 512 284 | 768

Table 1: Size of the teacher latent representation z (number of nodes
in penultimate layer). The dimension m of the pivotal representa-
tion used for the CLIP embeddings is reported for comparison in the
rightmost column.

4.3 CB2 Setting

Conceptual Representation. The CLIP embeddings [Rad-
ford et al., 2021] used to build the conceptual representation
xc¢ for each data sample x are a ViT-L/14 Transformer archi-
tecture for images and a masked self-attention Transformer
for concepts. These embeddings, referred to as clipVitL14,
are publicly available.’

Learning the Student Model. The architecture of the stu-
dent model (Fig. 2) is determined by the ¢ number of ICs,
which governs the representational and explanatory power of
each 2-HCI head. The implementation is carried out in Py-
Torch using the NeurHCI framework [Bresson et al., 2020].
The size of the transparent sz representation is ¢ x L, with L
the number of classes. Alignment between the latent teacher
and sz is achieved by an auto-encoder, implemented as a fully
connected neural network (more details in code repository).

Hyper-Parameters. The learning criterion in CB2 (Eq. 7)
involves three hyperparameters, respectively controlling the
weight of the distillation term and the two reconstruction
terms of the auto-encoder. The weights of these terms are
determined by a grid search to obtain an optimal compro-
mise between the adaptation of the teacher’s result (distilla-
tion loss) and the teacher’s latent representation (reconstruc-
tion loss). (see details in code repository). Learning hyper-
parameters (including the learning rate adapted using Adam
[Kingma and Ba, 2015] and the patience determining search
stop after a plateau) are also determined after a grid search
(details of hyperparameter adjustment for each dataset and
teacher are provided in the code repository).

4.4 Performance Indicators

Q1-Q2. For each class and dictionary, the concepts relevant
to explaining the class are sorted according to their Winter
values (Eq. 4). According to the teacher, the importance of
the concept for a class is determined by training the MCA
student using the global loss CB2 (Eq. 7). The potential bias
in the teacher’s treatment of the various concepts is assessed
using a lesion study, comparing the initial Winter values with
those obtained when training the MCDA student and setting
the alignment weight to 0.

Q3. The impact of the dictionary is assessed by comparing
the most influential concepts for each class (after their Winter
value) and manually detecting whether any outlier concepts
appear when considering the more general COCA dictionary
rather than the CK dictionary.

>https://huggingface.co/openai/clip- vit-large-patch14
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Figure 3: Explanation of the ResNet18 model trained on Cifar-10
with the CK dictionary. For each class (row), the concepts with the
best Winter values are listed in rectangles; the area of the rectangle
is proportional to the concept’s Winter value.

Q4. The student is assessed by reporting: 1) its faithfulness
w.r.t. the teacher (the percentage of test samples where the
student has the same label as the teacher); ii) its accuracy
(the percentage of test samples where the student delivers the
ground truth label). These performance indicators are com-
pared with those reported by [Yuksekgonul ef al., 2023] and
those of a naive decision tree based on the conceptual repre-
sentation for the Cifar-10 dataset.

5 Experimental Results

This section reports on and discusses the experimental results;
further details are included in the code repository.

5.1 Conceptual Interpretation of Teacher
Decisions

Global Explanation. The model is explained from the con-
cepts with the highest Winter value (Eq. 5) for each class.
For instance (Fig. 3), the fruck class in Cifar-10 is explained
from four concepts according to ResNet: delivery branding,
truck cab, trailer and heavy-duty tyres, that together explain
circa 75% of the decision. The area of the so-called residual
rectangle, representing all the other concepts, measures the
incompleteness of the explanation: the residual part for the
deer class is less than 20% while it is circa 60% for the cat
class.

Explanation also gives an indication of whether a predic-
tion is sound or shallow. For example, the fact that the pre-
diction deer is essentially supported by the concept grazing
raises doubts as to whether the image of a deer on the beach
will always be accurately classified.

Post-Hoc Explanation The decision for a given sample x
can also be directly explained by the MCDA student. For
instance, the MCDA model for the ¢-shirt class in Fashion-
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- v neck
4] _- short sleeves residual

0.0 0.2 0.4 0.6 0.8 1.0
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(c) Explaining szo and sz4 with concepts’ Shapley values.

Figure 4: Explaining teacher ResNetl8 ¢-shirt prediction for in-
stance X (a). The decision is explained in terms of latent aggre-
gations sz, reporting their weights and their values for x (b). Fi-
nally, each sz can be explained and related with the concepts with
top Shapley values (c).

MNIST reads (Fig. 4b):

Hygnin(xc) = 0.86 max(sz4(xc);sz2(xc))
+ 0.07 sz4(x¢) + 0.02 max(sz4(Xc);Sz5(xc))
+ 0.04 max(sz3(xc);sz4(xc)) + r(Xc).

with r(x¢) corresponding to the remaining terms of the Cho-
quet integral, whose total contribution is insignificant (less
than 1%). As indicated (section 3.3), this HCI can be visu-
alized in the form of a pie chart (Fig. reffig:pie). The an-
gle of each slice reflects the coefficient associated with the
corresponding HCI term, and its radius indicates the associ-
ated score for the sample. Finally, the score Hygnire(Xc) cor-
responds to the total filled surface of the pie, showing the de-
cisive impact of szo V sz4 for the sample under consideration.

Such a graphical representation can be proposed for each
2-HCI and sz composing the MCDA student model.

5.2 Inspecting the Teacher Biases

The second aim of the experiments is to identify teacher bias.
These are highlighted by a lesion study, comparing the dif-
ference in Winter value for the same concept depending on
whether the student is aligned with the teacher or not. This
lesion study is made possible because 2-HCI models are very
stable; the variance of Winter values calculated from models
learned during different runs (with same connection graphs)
is very moderate.

As illustrated in Fig. 5 for three classes of Fashion-MNIST
for the VGG and ViT teachers, for some concepts, the student
alignment with the teacher model results in a higher Winter
value (in blue), suggesting that the teacher might be overlook-
ing this concept. For example VGG might be overlooking the
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(d) t-shirt ViTB16 decision

Winter values

(c) t-shirt VGG16 decision

pea coat design [ gy long sleeve HoOT
crew neckline H:ﬂ—( mesh fabric }—D]—{
dress shirt ... [k dress shirt ... [ H
ribbed collar [} sweater style | |—
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(e) pullover VGG16 decision (f) pullover ViTB16 decision

Figure 5: Inspecting the teacher biases w.rt. three classes of
Fashion-MNIST: (a)-(b): coat; (c)-(d): t-shirt; (e)-(f): pullover.
Left: VGG teacher. Right: ViT teacher. In each case, the decision
is linked to the concepts with top Winter value. In the case where
the concept has more impact for the aligned student (and thus for the
teacher) than for the non-aligned student, the positive difference is
indicated with a blue box. In the opposite case, the negative differ-
ence is indicated with an orange box.

waistband concept for the coat class. For some other con-
cepts, the student alignment results in a lower Winter value
(in orange), suggesting that the teacher might be underlook-
ing the concept; for instance, ViT might be underlooking the
sweater style for the pullover class.

Overall, this lesion study highlights teacher reasoning bi-
ases, showing for example that the concepts v-neck and long
sleeves are neglected by the ViT teacher for the prediction of
the t-shirt and pullover classes respectively (Fig. 5). Con-
versely, screw neckline is not sufficiently taken into account
by the teacher.

Interestingly, these results also enable users to select the
models best suited to their interests. Typically, if an end-user
is not interested in sleeve size when classifying shirts, he or
she might opt for the Vision Transformer model rather than
the VGG model.

5.3 Accuracy / Explainability Trade-Off and
Impact of the Concept Dictionary

The predictions of the student model CB2 with the CK dic-
tionary are evaluated on Cifar-10, comparing favorably with
those of the teacher model ResNet, the state-of-the-art PCBM
and PCBM-h baselines (results reported by [Yuksekgonul et
al., 2023]) and a classical decision tree based on the same
representation as the student (Table 2). The fact that the stu-
dent outperforms the teacher is attributed to the quality of the
CK dictionary and the fact that CLIP grounding is effective
on Cifar-10 (as opposed to Fashion-MNIST see below).

An extract of the CB2 results, considering the four datasets,
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PCBM PCBM-h CB2 Decision tree Teacher
CLIP concepts  CLIP concepts  Expert concepts  Expert concepts  ResNet-18
Cifar-10 ~ 0.77 £ 0.01 0.87+ 0.01 0.91 +0.01 0.81 £0.01 0.89

Table 2: Predictive accuracy of CB2 MCDA student on Cifar-10,
compared to PCBM and PCBM-h [Yuksekgonul er al., 2023], the
Resnet-18 teacher and a decision tree based on the same conceptual
representation as the student.

Model Cifar-10 Cifar-100  Fashion-MNIST Tiny ImageNet
random 0.1 0.01 0.1 0.005
ResNet-18 0.89 - 0.93

CB2-R18-CK 0.91 + 0.01 - 0.56 +0.02

CB2-R18-COCA  0.37 £ 0.02 - 0.43 +£0.01

VGG 0.85 0.43 0.91

CB2-VGG-CK 0.70 +£0.07 0.10 £ 0.02 0.40 + 0.02

ViT-B-16 0.95 0.78 0.88 0.80
CB2-ViTB16-CK  0.85+£0.04 0.27 £0.02 0.47 £ 0.03 0.21 £0.01

Table 3: Overall results for CB2 on Cifar-10, Cifar-100, Fashion-
MNIST and Tiny ImageNet (columns 2 to 5), for teachers ResNet,
VGG and ViT. For each teacher, student performance is indicated
with the dictionary (CK or COCA). For comparison, the first row
shows the accuracy of a random classifier, determined by the number
of classes: 10 for Cifar-10 and Fashion-MNIST, 100 for Cifar-100
and 200 for Tiny ImageNet.

three teachers and two dictionaries, is given in Table 3.6
As might be expected, the student’s accuracy is highly
dictionary-dependent: a huge performance loss (from 91% to
37%) is observed when considering the general purpose con-
cepts (most common English nouns and adjectives; COCA
dictionary) as opposed to the set of concepts associated with
the classes after common knowledge (CK dictionary) on
Cifar-10. The CB2 explanations also heavily depend on the
dictionary: typically, a concept with very high Winter value
for the cat class (and also for the dog class), though moder-
ately informative, is the cute concept.

The student’s performance also depends on the teacher and
the size of its latent space: in the most favorable case (good
teacher with a small latent space and few classes, i.e. ResNet
on Cifar-10), the student outperforms the teacher. When the
number of classes increases, as with Cifar-100 or Tiny Ima-
geNet, the student’s performance deteriorates considerably.
This is due to the inadequacy of the dictionary, which is
hardly capable of fine discrimination.

The student’s poor performance on Fashion-MNIST is at-
tributed to the CLIP image embedding, trained on a different
distribution of images than Fashion-MNIST. It is interesting
to note, however, that the student’s lower predictive accuracy
does not seem to affect the relevance of the explanations.

6 Conclusion and Perspectives

The Cut the Black Box approach aims to explain a feacher
neural network by learning a surrogate student model. A first
novelty compared to previous XAl approaches is that the stu-
dent model uses a conceptual representation space, thanks to

%Only those pairs (dataset, teacher) for which the predictive ac-
curacy is deemed satisfactory have been taken into account, in order
to present meaningful results.
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the multi-modal embeddings provided by CLIP [Radford et
al.,2021]. A second novelty is that the student can be directly
interpreted and visualized in terms of the concepts used in the
dictionary, thanks to the Choquet integral formalism.”

Experimental validation of CB2 shows the merits and lim-
itations of the approach for various models and data sets. On
the one hand, CB2 efficiently and quantitatively identifies a
few concepts explaining the prediction of each class, accord-
ing to their Shapley value. Interestingly, it also measures the
proportion of the prediction explained by the concepts found;
it can thus evaluate its performance autonomously.

One of the main limitations of the approach is that the rel-
evance of the explanations depends on the dictionary consid-
ered and the multimodal embeddings. When considering a
general-purpose dictionary, the explanations sometimes in-
volve erroneous concepts reflecting the biases of the CLIP
corpus (for example, linking the concept cute to the class
cat). CB2 also encounters certain difficulties when the num-
ber of classes increases beyond a few dozen; the deterioration
in performance is explained by the fact that more refined con-
cepts would be required to discriminate between neighbour-
ing classes.

The main research perspective opened up by CB2 is to au-
tonomously find the dictionary of appropriate concepts, par-
ticularly in domains involving rare classes. A shorter-term
perspective is to consider a more complex MCDA student
model, for example by increasing the number of levels in the
Choquet hierarchy and recovering stable concept associations
during random variation of the hierarchical tree.
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