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BOUNDARY RIGIDITY OF CAT(0) CUBE COMPLEXES

JÉRÉMIE CHALOPIN AND VICTOR CHEPOI

Abstract. In this note, we prove that finite CAT(0) cube complexes can be reconstructed
from their boundary distances (computed in their 1-skeleta). This result was conjectured by
Haslegrave, Scott, Tamitegama, and Tan (2023). The reconstruction of a finite cell complex
from the boundary distances is the discrete version of the boundary rigidity problem, which
is a classical problem from Riemannian geometry. In the proof, we use the bijection between
CAT(0) cube complexes and median graphs, and corner peelings of median graphs.

1. Introduction

A natural question, arising in several research areas, is whether the internal structure of an
object can be determined from distances between its boundary points. By a classical result
in phylogeny by Buneman [6] and Zareckii [26], trees can be reconstructed from the pairwise
distances between their leaves. In Riemannian geometry, the notion of reconstruction from a
distance function on the boundary is well-established and related to boundary rigidity questions.
A Riemannian manifold (M, g) is said to be boundary rigid if its metric dg (defined on all
pairs of points, including the interior) is determined up to isometry by its boundary distance
function. Michel [17] conjectured that any simple compact Riemannian manifold with boundary
is boundary rigid. The case of 2-dimensional Riemannian manifolds was confirmed by Pestov
and Uhlmann [16]. In higher dimensions, the conjecture is wide open and has been established
only in two cases by Besson, Courtois, and Gallot [4] and by Burago and Ivanov [7]. The
discrete version of boundary rigidity was suggested by Benjamini (see [12, 13]) who asked if
any plane triangulation in which all inner vertices have degrees at least 6 can be reconstructed
from the distances between its boundary vertices. This was answered in the affirmative by
Haslegrave [12], who also proved a similar result for plane quadrangulations in which all inner
vertices have degrees at least 4. Haslegrave, Scott, Tamitegama, and Tan [13] generalized the
second result of [12] and proved that any finite 2-dimensional CAT(0) cube complex and any
finite 3-dimensional CAT(0) cube complex X with an embedding in R3 can be reconstructed
from its boundary distances. They conjectured (see [13, Conjecture 20]) that all finite CAT(0)
cube complexes can be reconstructed up to isomorphism from their boundary distances. In the
papers [12] and [13] the boundary ∂X of X is defined combinatorially (independently of the
embedding of X in some Rk), and the input information is the set of all pairwise distances in
the graph (1-skeleton) G(X) of the complex X between all vertices of G(X) belonging to ∂X.
In this note, we confirm the conjecture of [13] and prove the following theorem.

Theorem 1. Let X be a finite CAT(0) cube complex. Then X is determined up to isomorphism
by the distances between the vertices of ∂X in the 1-skeleton of X. Consequently, the class of
finite CAT(0) cube complexes is boundary rigid.

In the proof, we use the bijection between CAT(0) cube complexes and median graphs and
corner peelings of median graphs. CAT(0) cube complexes are central objects in geometric
group theory; see Sageev [22, 23] and Wise [25]. They have been characterized by Gromov [11]
as simply connected cube complexes in which the links of vertices are simplicial flag complexes.
The systematic investigation and use of CAT(0) cube complexes in geometric group theory
started with the paper by Sageev [22]. Soon after, it was proved by Chepoi [10] and Roller [21]
that 1-skeleta of CAT(0) cube complexes are exactly the median graphs. Median graphs are
central objects in metric graph theory; they were introduced by Nebeský [20] and investigated
in numerous papers, see for example the papers by Mulder [18, 19] and the survey by Bandelt
and Chepoi [2].
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2. Preliminaries

In this section, we recall the boundary rigidity problem for cell complexes. We also recall
some definitions and basic facts about CAT(0) cube complexes and median graphs.

2.1. Graphs. All graphs G = (V (G), E(G)) considered in this paper are finite, undirected,
connected, and contain neither multiple edges, nor loops. For two distinct vertices v, w ∈ V (G)
we write v ∼ w when there is an edge connecting v with w. The subgraph of G induced by a
subset A ⊆ V (G) is the graph G[A] = (A,E′) such that uv ∈ E′ if and only if uv ∈ E(G).
A square uvwz is an induced 4–cycle (u, v, w, z). Equivalently, a square is a graph that is
isomorphic to the 1-skeleton of a unit Euclidean square in the plane. More generally, a cube
Qn of dimension n is a graph isomorphic to the 1-skeleton of the n-dimensional unit Euclidean
cube. Alternatively, Qn is a graph whose vertices can be labeled by the subsets of a set of size
n and such that two vertices are adjacent if and only if the corresponding sets A,B differ in a
single element, i.e., if |A△B| = 1. The distance d(u, v) = dG(u, v) between two vertices u and
v of a graph G is the length of a shortest (u, v)–path. An induced subgraph H = G[A] of a
graph G is an isometric subgraph of G if dH(u, v) = dG(u, v) for any two vertices u, v ∈ A. The
interval I(u, v) between u and v consists of all vertices on shortest (u, v)–paths, that is, of all
vertices (metrically) between u and v: I(u, v) = {x ∈ V (G) : d(u, x) + d(x, v) = d(u, v)}. An
induced subgraph of G is called convex if it includes the interval of G between any pair of its
vertices. An induced subgraph H (or the corresponding vertex set of H) of a graph G is gated if
for every vertex x outside H there exists a vertex x′ in H (the gate of x) such that x′ ∈ I(x, y)
for each y of H. Gated sets are convex and the intersection of two gated sets is gated.

2.2. Cube complexes and boundary rigidity. All cube complexes considered in this paper
are finite cell complexes whose cells are unit Euclidean cubes and whose gluing maps are isome-
tries (see the book of Hatcher [14]). The dimension dim(C) of a cell C is the dimension of the
cube C. The dimension dim(X) of X is the largest dimension of a cell of X. If C is a cell of
X of dimension k, then all cells of X contained in C and having dimension k − 1 are called the
facets of C. Cells of X are called maximal if they are maximal by inclusion, and non-maximal
otherwise. For a cube complex X, we denote by X(k) the k–skeleton of X consisting of all cubes
of dimension at most k. We use the notations V (X) = X(0) for the set of vertices (0-cubes)
of X and G(X) := X(1) for the 1-skeleton of X; the graph G(X) will be always endowed with
the standard graph distance dG. An abstract simplicial complex ∆ on a finite set V is a set of
nonempty subsets of V , called simplices, such that any nonempty subset of a simplex is also a
simplex. The clique complex of a graph G is the abstract simplicial complex having the cliques
(i.e., complete subgraphs) of G as simplices. A simplicial complex X is a flag simplicial complex
if X is the clique complex of its 1–skeleton. In a cube complex X, the link Link(x) of a vertex
x is the simplicial complex whose vertices are the edges of X containing x and whose simplices
are given by the collections of edges belonging to a common cube of X.

We will use a slightly weaker version of the definition of combinatorial boundary given by
Haslegrave et al. [13]. For a finite cube complex X, the combinatorial boundary ∂X is the
downward closure of all non-maximal cells of X such that each of them is a facet of a unique cell
of X. The definition of [13] is similar but instead of maximality by inclusion the maximality by
dimension is considered: in [13], the combinatorial boundary of a cube complex X of dimension
k is the downward closure of all cells of X of dimension less than k belonging to at most one
cell of dimension k. Obviously, the boundary of a cube complex X defined in our way is always
contained in the boundary of X defined as in [13]. The two boundaries are different as soon as
the cube complex X contains maximal cells of different dimensions.

The boundary distance matrix of a finite cube complex X is the matrix whose rows and
columns are the vertices of ∂X and whose entries are the distances in G(X) between the corre-
sponding vertices of ∂X. A class C of finite cube complexes is called boundary rigid if for any
two complexes X,Y ∈ C that have the same boundary distance matrices up to a permutation σ
of the rows and the columns (σ can be seen as an isometry between ∂X and ∂Y ), then X and
Y are isomorphic via an isomorphism σ̃ extending σ.
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2.3. CAT(0) cube complexes and median graphs. In this subsection, we recall the defini-
tions of CAT(0) cube complexes and median graphs, and the bijection between them.

Let (X, d) be a metric space. A geodesic joining two points x and y from X is a map ρ
from the segment [a, b] of R1 of length |a − b| = d(x, y) to X such that ρ(a) = x, ρ(b) = y,
and d(ρ(s), ρ(t)) = |s − t| for all s, t ∈ [a, b]. A metric space (X, d) is geodesic if every pair of
points in X can be joined by a geodesic. A geodesic triangle ∆ = ∆(x1, x2, x3) in a geodesic
metric space (X, d) is defined by three points in X (the vertices of ∆) and three arbitrary
geodesics (the sides of ∆), one between each pair of vertices x1, x2, x3. A comparison triangle for
∆(x1, x2, x3) is a triangle ∆(x′1, x

′
2, x

′
3) in the Euclidean plane E2 such that dE2(x′i, x

′
j) = d(xi, xj)

for i, j ∈ {1, 2, 3}. A geodesic metric space (X, d) is a CAT(0) space [11] if all geodesic triangles
∆(x1, x2, x3) of X satisfy the comparison axiom of Cartan–Alexandrov–Toponogov: If y is a
point on the side of ∆(x1, x2, x3) with vertices x1 and x2 and y′ is the unique point on the
line segment [x′1, x

′
2] of the comparison triangle ∆(x′1, x

′
2, x

′
3) such that dE2(x′i, y

′) = d(xi, y) for
i = 1, 2, then d(x3, y) ≤ dE2(x′3, y

′). A geodesic metric space (X, d) is nonpositively curved if it
is locally CAT(0), i.e., any point has a neighborhood inside which the CAT(0) inequality holds.
CAT(0) spaces can be characterized in several different natural ways and have many strong
properties, see for example the book by Bridson and Haefliger [5]. In particular, a geodesic
metric space (X, d) is CAT(0) if and only if (X, d) is simply connected and is nonpositively
curved. For CAT(0) cube complexes, Gromov [11] gave a beautiful combinatorial analog of this
result, which can be also taken as their definition:

Theorem 2 ([11]). A cube complex X endowed with the ℓ2-metric is CAT(0) if and only if X
is simply connected and the links of all vertices of X are flag simplicial complexes.

A graph G is called median if the interval intersection I(x, y)∩I(y, z)∩I(z, x) is a singleton for
each triplet x, y, z of vertices. Median graphs are bipartite. Basic examples of median graphs are
trees, hypercubes, rectangular grids, and Hasse diagrams of distributive lattices and of median
semilattices [2]. Any two cubes of a median graphs are either disjoint or intersect in a cube.
Therefore, replacing each cube of G by a solid unit cube of the same dimension, we obtain a
cube complex Xcube(G). We continue with the bijection between CAT(0) cube complexes and
median graphs:

Theorem 3 ([10,21]). Median graphs are exactly the 1-skeleta of CAT(0) cube complexes.

The proof of Theorem 3 presented in [10] is fact establishes the following local-to-global
characterization of median graphs:

Theorem 4 ([10]). A graph G is a median graph if and only if its cube complex Xcube(G) is
simply connected and G satisfies the 3-cube condition: if three squares of G pairwise intersect
in an edge and all three intersect in a vertex, then they belong to a 3-cube. Furthermore, if X
is a CAT(0) cube complex, then X = Xcube(G(X)), i.e., X can be retrieved from its 1-skeleton
G(X) by replacing each graphic cube of G(X) by a solid cube.

3. Boundary rigidity of CAT(0) cube complexes

In this section, we describe a simple method to reconstruct a CAT(0) cube complex X from
boundary distances. By Theorem 4, it suffices to reconstruct the 1-skeleton G(X) of X, because
we know that X = Xcube(G). Our method of reconstructing G(X) uses the fact that median
graphs admit corner peelings; see the paper by Chalopin, Chepoi, Moran and Warmuth [9]. Let
X be a CAT(0) cube complex, ∂X be its combinatorial boundary, and G(X) be the 1-skeleton of
X. For simplicity, we will denote G(X) by G. We denote by ∂G ⊆ V (X) the vertices (0-cubes)
of X belonging to ∂X. Recall that the input of the reconstruction problem is the boundary ∂G
and the distance matrix D = (d(x, y))x,y∈∂G, where d(x, y) is computed in G. Therefore, two
vertices x, y of ∂G are adjacent in G if and only if d(x, y) = 1.

3.1. Facts about median graphs. We recall the main properties of median graphs used in
the reconstruction. These results can be found in the papers by Mulder [18, 19] and are now a
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part of folklore for people working in metric graph theory. From now on, G is a finite median
graph. The first property follows from the definition.

Lemma 5 (Quadrangle Condition). For any vertices u, v, w, z of G such that v and w are
adjacent to z and d(u, v) = d(u,w) = d(u, z) − 1 = k, there is a unique vertex x adjacent to v
and w such that d(u, x) = k − 1 (see Fig. 1).

z z

=⇒

v w

u u

v
x

w

k k
k − 1

Figure 1. Quadrangle condition

The next lemma follows from the fact that convex subgraphs of median graphs are gated and
that cubes are convex subgraphs:

Lemma 6 (Cubes are gated). Cubes of median graphs are gated.

Let z be a basepoint of a median graph G (z is a fixed but arbitrary vertex of G). For a vertex
v, Λ(v) consists of all neighbors of v in the interval I(z, v). A graph G satisfies the downward
cube property with respect to z if for each vertex v, all its neighbors from Λ(v) together with
v itself belong to a unique cube C(v) of G. In this case, we denote by v the unique vertex of
the cube C(v) opposite to v. That median graphs satisfy the downward property was proved
in [18]. We provide a simple proof of this result from the paper by Bénéteau, Chalopin, Chepoi,
and Vaxès [3]:

Lemma 7 ( [18])(Downward Cube Property). Let G be a median graph and fix an arbitrary
basepoint z of G. Then G satisfies the downward cube property with respect to z. Moreover, for
each vertex v of G, the vertex v is the gate of z in the cube C(v).

Proof. Fix a basepoint z, pick any vertex v, and let Λ(v) = {u1, . . . , ud}. We prove that v and
any subset of k vertices of Λ(v) belong to a unique cube of dimension k. We prove this result
by induction on d(z, v) and on the number k of chosen neighbors. The assertion holds in the
base case d(z, v) = 2: since median graphs are K2,3-free, z and v have one or two common
neighbors. The assertion also holds in another base case when k = 2: by the quadrangle
condition, the two neighbors of v in Λ(v) have a unique common neighbor one step closer to z,
yielding a 2-cube. Now pick v and the k ≥ 3 neighbors u1, . . . , uk and assume that v and any
2 ≤ k′ < k neighbors of v in Λ(v) belong to a unique k′-cube. By the quadrangle condition,
for each 2 ≤ i ≤ k, there exist a unique common neighbor zi of u1 and ui one step closer to z.
Since median graphs are K2,3-free, the vertices z2, . . . , zk are distinct neighbors of u1 in Λ(u1).
By induction hypothesis, u1 and z2, . . . , zk belong to a unique (k − 1)-cube R′. Analogously,
v and its neighbors u2, . . . , uk ∈ Λ(v) belong to a unique (k − 1)-cube R′′. We assert that the
subgraph of G induced by the vertices of R′ ∪ R′′ is a k-cube of G. For each i = 2, . . . , k, the
set Λ(ui) consists of the vertex zi and the k − 2 neighbors in R′′ other than v. By induction
hypothesis, ui, zi, and the neighbors of ui in R′′ other than v define a (k−1)-cube Ri of G. This
implies that there exists an isomorphism between the facet of R′ containing zi and not u1 and
the facet of R′′ containing ui and not containing v. Since R′ and R′′ are gated and thus convex,
this defines an isomorphism between R′ and R′′ which maps vertices of R′ to their neighbors in
R′′. Hence R′ ∪R′′ defines a k-cube of G. The unicity of R′ and R′′ ensures that R′ ∪R′′ is the
unique k-cube of G containing v and u1, . . . , uk, finishing the proof of the first assertion. Since
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all vertices of Λ(v) are closer to z than v and the cube C(v) is gated, the gate of z in C(v) is
necessarily the vertex v. □

3.2. Corner peelings of median graphs. A corner of a graph G is a vertex v of G such that v
and all its neighbors in G belong to a unique cube of G. A corner peeling of a finite graph G is a
total order v1, . . . , vn of V (G) such that vi is a corner of the subgraph Gi = G[v1, . . . , vi] induced
by the first i vertices of this order. If v1, . . . , vn is a corner peeling of G, then each level-graph
Gi (i = n, . . . , 1) is an isometric subgraph of G. A monotone corner peeling of G with respect to
a basepoint z is a corner peeling v1 = z, v2, . . . , vn such that d(z, v1) ≤ d(z, v2) ≤ · · · ≤ d(z, vn).
That median graphs admit monotone corner peelings follows from [9, Proposition 4.9] (which
was proved in a more general setting but with respect to a particular basepoint). We need a
stronger version of this result:

Proposition 8. For any finite median graph G and any basepoint z, any ordering v1 =
z, v2, . . . , vn of V (G) such that d(z, v1) ≤ d(z, v2) ≤ · · · ≤ d(z, vn) is a monotone corner peeling
of G. Furthermore, C(vi) is the unique cube of Gi containing vi and the neighbors of vi in Gi.
The vertex vi opposite to vi in C(vi) is the gate of z in Ci (in G and in Gi).

Proof. Pick any vertex vi. Since d(z, v1) ≤ d(z, v2) ≤ · · · ≤ d(z, vi) ≤ · · · ≤ d(z, vn) holds,
for any neighbor vj of vi in Gi we have d(z, vj) ≤ d(z, vi). Since G is bipartite, we must have
d(z, vj) < d(z, vi). Consequently, all neighbors of vi in Gi belong to the interval I(z, vi) and
thus to the set Λ(vi). Conversely, for any vertex vj of Λ(vi) we have d(z, vj) < d(z, vi), thus
vj belongs to Gi. Consequently, the set of neighbors of vi in Gi coincides with Λ(vi). By
Lemma 7, vi and the set Λ(vi) of all neighbors of vi in Gi belong to a unique cube C(vi) of
G. We assert that C(vi) is a cube of Gi. Indeed, by the second assertion of Lemma 7 the
vertex vi opposite to vi in C(vi) is the gate of z in C(vi). Since C(vi) is the cube induced by
I(vi, vi) and d(vi, z) = d(vi, vi)+ d(vi, z), for any vertex vj ∈ C(vi) other than vi we obtain that
d(vj , z) < d(vi, z). Consequently, all vertices of C(vi) belong to Gi, hence vi is a corner of Gi

and C(vi) is the unique cube of Gi containing vi and its neighbors in Gi. The last assertion now
follows from the second assertion of Lemma 7. □

Remark 9. The level-graphs Gi (i = n − 1, . . . , 1) are not necessarily median graphs. Notice
also that since the cube complexes of graphs with a corner peeling are collapsible, this provide
an alternative proof of the result of Adiprasito and Benedetti [1] that CAT(0) cube complexes
are collapsible.

Let z be an arbitrary fixed vertex of ∂G and let v1 = z, v2, . . . , vn be a monotone corner
peeling of G defined as in Proposition 8. For all i = n, . . . , 1 denote by ∂Gi the set of vertices
belonging to the boundary of the cube complex Xi = Xcube(Gi). Notice that Gn = G and thus
∂Gn = ∂G. As in Proposition 8, for each vertex vi we denote by Ci = C(vi) the unique cube of
Gi containing the vertex vi and the set Λ(vi) of all neighbors of vi in Gi.

Let ui denote the opposite vertex ui = vi of vi in the cube Ci. From the second assertion of
Proposition 8 we know that ui is the gate of z in the cube Ci. Then V (Ci) = I(vi, ui), where
the interval I(vi, ui) is considered in G or in Gi.

From the definition of a corner it immediately follows that all corners of a median graph G
belong to the boundary ∂G. In fact, the following lemma shows that for any corner v of G, any
vertex of C(v) belongs to ∂G except possibly v.

Lemma 10. All vertices of the cube Ci belong to the boundary ∂Gi of Gi, except possibly ui.

Proof. Since in Gi all neighbors of vi belong to the cube Ci, any facet of Ci containing vi is not
properly contained in any other cube of Gi. Since all vertices on such facets belong to ∂Gi and
any vertex of Ci except ui belong to such a facet, we conclude that every vertex of Ci different
from ui belongs to ∂Gi. □

Set S(Gn) to be the set ∂Gn = ∂G and iteratively define the set S(Gi−1) to be S(Gi) \ {vi}∪
{ui} (i = n− 1, . . . , 2). We will call S(Gi) the extended boundary of Gi; the name is justified by
the following result:
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Lemma 11. For all i = n, . . . , 2, we have ∂Gi−1 ⊆ ∂Gi ∪ {ui} and ∂Gi ⊆ S(Gi).

Proof. We first prove that any vertex from ∂Gi−1 belongs to ∂Gi ∪ {ui}. Suppose not and
let x ∈ ∂Gi−1 \ ∂Gi. Since x ∈ ∂Gi−1, there exists a non-maximal cube C containing x and
contained as a facet in a unique cube C ′ of Xi−1 = Xcube(Gi−1). On the other hand, since
Xi−1 ⊂ Xi and x is not a boundary vertex of Xi, the cube C is a facet of yet another cube C ′′ in
Xi. The cube C ′′ of Xi is not present in Xi−1, and consequently vi is a vertex of C ′′. Since all
cubes of Gi containing vi are included in Ci, we know that x is a vertex of Ci. From Lemma 10
and since x /∈ ∂Gi, necessarily x = ui. This establishes the inclusion ∂Gi−1 ⊆ ∂Gi ∪ {ui}.

We now prove that ∂Gi ⊆ S(Gi) by decreasing induction on i = n, . . . , 1. For i = n, we
have S(Gn) = ∂Gn. Suppose now that the assertion holds for Gi and consider the graph
Gi−1. Since vi /∈ Gi, by the first assertion of the lemma, and by induction hypothesis, we have
∂Gi−1 ⊆ ∂Gi \ {vi} ∪ {ui} ⊆ S(Gi) \ {vi} ∪ {ui} = S(Gi−1). □

3.3. Reconstruction via corner peeling. To reconstruct a median graph G from the pairwise
distances between the vertices of the boundary ∂G we proceed in the following way. We first
describe the objects that the reconstructor keeps track of during the reconstruction algorithm.
It first picks an arbitrary vertex z ∈ ∂G as a basepoint that is fixed during the whole execution
of the algorithm. During the execution of the algorithm, the reconstructor knows a set S of
vertices that is initially ∂G as well as the distance matrix D between the vertices of S computed
in the graph G (if u, v ∈ S, then D[u, v] contains the distance dG(u, v)). It constructs a graph Γ
that is initially isomorphic to the subgraph of G induced by the boundary ∂G and will ultimately
coincide with G.

In order to analyze the algorithm, we consider the intermediate values Si of the set S, Di of
the distance matrix D, and Γi of the graph Γ at the beginning of the ith step of the algorihm.
In order to have similar notations as in the definition of monotone corner peelings, we denote
the initial values of S, D, and Γ respectively by Sn, Dn, and Γn (even if the algorithm does not
know n), and at each step, we decrease the values of i. For the analysis of the algorithm, we
also consider the graphs Gi (unknown to the algorithm), where Gn = G.

We now give an outline of the reconstruction algorithm. The goal is to reconstruct the graph
G = Gn from the set Sn = ∂G and its distance matrix Dn. The graph Γn induced by ∂G can
be computed from Dn: two vertices u and v of Sn are adjacent in Γn if and only if Dn[u, v] = 1.
At step i, the reconstructor picks a vertex vi of Si furthest from the basepoint z, identifies the
vertex ui opposite to vi in the unique cube Ci of G containing vi and its neighbors in Si, removes
vi from Si, and adds ui to Si unless it is already in Si. The resulting set is denoted by Si−1.
From Di, we compute the distance matrix Di−1 between the vertices of Si−1; the main point is
to compute the distances from ui to the vertices of Si−1 since the other distances are already
known. If ui ∈ Si, then Γi−1 is Γi. Otherwise, Γi−1 is obtained by adding to Γi the vertex ui
and the edges between ui and its neighbors in Si−1∪{vi}. The algorithm ends when Si becomes
empty. We will show that the graph Γ0 obtained when Si = ∅ is isomorphic to G.

Now, we present the invariants that are maintained at each step i of the reconstruction
algorithm. Let Gi be the subgraph of G obtained from G by removing the vertices vn, . . . , vi+1.
Notice that the subgraph Gi is not known to the reconstructor. Furthermore, suppose that the
removed vertices vn, . . . , vi+1 and the possibly added vertices un, . . . , ui+1 satisfy the following
inductive properties:

(1) d(z, vn) ≥ · · · ≥ d(z, vi+1) ≥ d(z, v) for any vertex of v of Gi.
(2) Each vertex vj with n ≥ j ≥ i+ 1 is a corner of the graph Gj .
(3) For each n ≥ j ≥ i + 1, either all neighbors of vj in Gj are in Sj or uj is the unique

neighbor of vj in Gj ; in both cases, uj ∈ Sj−1.
(4) Si coincides with the extended boundary S(Gi) of Gi, Di is the distance matrix of S(Gi)

in G, and Γi = G[
⋃

n≥j≥i Sj ].

The next result explains how to find a corner of the graph Gi (without knowing Gi) from the
distances from z to the vertices of Si = S(Gi).
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Lemma 12. Let vi be a vertex of Si maximizing d(z, vi). Then d(z, vi) ≥ d(z, v) for any vertex
v of Gi and thus vi is a corner of Gi.

Proof. Suppose by way of contradiction that there exists a vertex u of Gi such that d(z, vi) <
d(z, u) and assume without loss of generality that u maximizes d(z, u) among all vertices in
Gi. Since d(z, vn) ≥ · · · ≥ d(z, vi+1) ≥ d(z, v) for any vertex of v of Gi by invariant (1),
from Proposition 8 we conclude that there exists a monotone corner peeling of G starting with
the vertices vn, . . . , vi+1, u. Consequently, u is a corner of Gi and therefore u belongs to ∂Gi.
Since ∂Gi ⊆ S(Gi) by Lemma 11 and S(Gi) = Si by invariant (4), the vertex u belongs to Si,
contradicting the definition of vi. Consequently, vi is a vertex of Gi maximizing d(z, vi) and
hence a corner of Gi. □

Suppose that we have performed the steps n, . . . , i+1 of the algorithm. Let vi be a vertex of
Si = S(Gi) maximizing d(z, vi), and assume that vi ̸= z. Since vi is a corner of Gi by Lemma 12,
vi and its neighbors in Gi belong to a unique cube Ci of Gi. The dimension of Ci is the number
of neighbors of vi in Gi. Let ui be the vertex of Ci opposite to vi. By Lemmas 10 and 11 and
invariant (4), V (Ci) \ {ui} ⊆ ∂Gi ⊆ S(Gi) = Si. If ui /∈ Si, then ui will be added to Si−1.

Additionally, the distances from ui to all other vertices x of Si \ {vi} should be computed.
If dim(Ci) = 1, then ui is an articulation point separating vi from all other vertices of Gi, and
thus d(ui, x) = d(vi, x)−1. Now suppose that dim(Ci) ≥ 2 and let N(ui) be the set of neighbors
of ui in Ci. Since Ci is gated in G, we can consider the gate x′ of x in Ci. We assert that
x′ = ui if and only if all vertices of N(ui) are at the same distance from x. Indeed, if x′ = ui,
then all vertices of N(ui) are at distance d(ui, x) + 1 from x. Conversely, if all vertices of N(ui)
are at the same distance from x, then either x′ = ui or x′ = vi. However, the second case is
impossible because vi is a corner of Gi and x ∈ Si \ {vi} ⊆ V (Gi) \ {vi}. Suppose now that
x′ ̸= ui (for an illustration, see Figure 2). By the previous assertion, there exist vertices in N(ui)
that are at different distances from x. Since the vertices of N(ui) are pairwise at distance 2, we
have d(x, ui) = min{d(x, u) : u ∈ N(ui)} + 1 = max{d(x, u) : u ∈ N(ui)} − 1. Consequently,
independently of the dimension of Ci and the position of x′ in Ci, the distance d(x, ui) can be
computed via the following formula:

Lemma 13. For any x ∈ Si−1, d(x, ui) = max{d(x, u) : u ∈ N(ui)} − 1.

vi

uix

x′

z

Ci

Gi

Figure 2. Illustration of step i of the reconstruction algorithm

We now describe step i of the algorithm. First we define the set Si−1. The reconstructor
picks a vertex vi in Si maximizing d(z, vi). If z = vi, then the algorithm stops and return Γi.
So, suppose that vi ̸= z. The reconstructor computes the set Li of neighbors of vi in Si using
the distance matrix Di. If |Li| ≥ 2, then by iteratively applying the quadrangle condition, it
identifies all vertices of the cube Ci except possibly ui. Let Ni be the set of neighbors of ui in
Ci. The reconstructor can detect if the vertices of Ni have a common neighbor in Si closer to
z. If yes, then this vertex is necessarily ui, otherwise ui does not belong to Si. If |Li| ≤ 1, then
dim(Ci) = 1, and ui ∈ Si if and only if |Li| = 1, in which case, Li = {ui}. In this case, let
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Ni = {vi} (as in the previous case, Ni is the set of neighbors of ui in Ci). If ui ∈ Si, then let
Si−1 = Si \ {vi} and if ui /∈ Si, then Si−1 is obtained by adding a new vertex ui to Si \ {vi}.

The reconstructor then derives the distance matrix Di−1 of Si−1 from Di. It first removes
the row and the column of Di corresponding to vi. Additionally, if ui /∈ Si, it adds a row and a
column for ui where Di−1[ui, x] = Di−1[x, ui] = max{Di[u, x] : u ∈ Ni}−1, for each x ∈ Si\{vi}.

Finally, the graph Γi−1 is Γi if ui ∈ Si. Otherwise, Γi−1 is obtained from Γi by adding the
vertex ui, all edges in {uiw : w ∈ Si−1 and d(ui, w) = 1}. If dim(Ci) = 1, then the edge uivi is
also added to Γi−1. This ends the description of step i of the algorithm: from the set Si, the
distance matrix Di, and the graph Γi, the reconstructor has computed Si−1, Di−1, and Γi−1.

Now we prove that the invariants (1), (2), (3), (4) are satisfied after step i. Invariants (1)
and (2) follow from Lemma 12 and the definition of vi. Invariant (3) follows from the definition
of ui and Lemmas 10 and 11. Since Si = S(Gi), and by the definitions of vi and ui, we have
Si−1 = Si \{vi}∪{ui} = S(Gi)\{vi}∪{ui} = S(Gi−1). By Lemma 13, the distances from ui to
all vertices of Si−1 have been correctly computed at step i, and thus, by induction hypothesis,
Di−1 is the distance matrix of Si−1 = S(Gi−1). If ui ∈ Si, then Γi−1 = Γi = G[

⋃
n≥j≥i Sj ] =

G[
⋃

n≥j≥i−1 Sj ]. If ui /∈ Si, then V (Γi−1) = V (Γi) ∪ {ui} =
⋃

n≥j≥i−1 Sj . Moreover, for each
neighbor w ∈ Si−1 ∪ {vi} of ui in G, the edge wui is in E(Γi−1). If ui has another neighbor w
in G belonging to V (Γi−1), then w = vj with j > i. However, since ui /∈ Sj , this implies by
invariant (3) that ui ∈ Sj−1 and thus ui ∈ Si, a contradiction. Therefore, Γi−1 is the subgraph
of G induced by

⋃
n≥j≥i−1 Sj . This establishes invariant (4).

Lemma 14. The graph Γ0 returned by the reconstructor is isomorphic to G.

Proof. By invariant (1) of the algorithm, z is the last vertex removed from S. By Lemma 12,
when z is considered by the algorithm, all vertices of G have been already processed. This implies
that each vertex x ∈ V (G) belongs to some Si and thus to V (Γ0), establishing V (Γ0) = V (G).
By invariant (4), Γ0 is an induced subgraph of G and is thus isomorphic to G. □

Lemma 14 and Theorem 4 imply the main result of the paper:

Theorem 1. Let X be a finite CAT(0) cube complex. Then X is determined up to isomorphism
by the distances between the vertices of ∂X in the 1-skeleton of X. Consequently, the class of
finite CAT(0) cube complexes is boundary rigid.

Remark 15. The key property of our algorithm is that the vertex vi chosen at step i is a corner
of the graph Gi, as established in Lemma 12. Note that this lemma holds for any set of vertices
containing ∂Gi, in particular for any set containing Si.

Suppose that instead of starting with Sn = ∂G, we start the algorithm with a set of vertices
S′
n containing Sn, the distance matrix D′

n of S′
n in G, and the subgraph Γ′

n of G induced by
S′
n. Then executing precisely the same algorithm and considering the intermediate values S′

i,
D′

i, and Γ′
i of S, D, and Γ, one can show by induction on i that Si ⊆ S′

i holds for any step i.
Thus our algorithm reconstructs G from S′

n and D′
n.

In particular, since our definition of combinatorial boundary is weaker than the one of Hasle-
grave et al. [13], our algorithm also reconstruct G(X) starting from the combinatorial boundary
of X defined as in [13].

4. Final remarks

In this note, we proved that finite CAT(0) cube complexes are boundary rigid. This generalizes
the results of Haslegrave, Scott, Tamitegama, and Tan [13] and settles their main Conjecture
20. Our method uses the fact that any ordering of vertices of the 1-skeleton G(X) of a CAT(0)
cube complex X by decreasing the distances to a basepoint z is a corner peeling.

In our approach, it was important to assume that G(X) is a median graph, i.e., that X is
a CAT(0) cube complex. For example, consider the square complex consisting of three squares
with a common vertex v0 and pairwise intersecting in edges incident to this vertex. The 1-
skeleton of this complex is the graph Q−

3 (the 3-cube minus one vertex). This graph is the
6-cycle C = (v1, v2, v3, v4, v5, v6) and the vertex v0 incident to three vertices of C. There are
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two ways to connect v0 to C, either with v1, v3, v5 or with v2, v4, v6, leading to two isomorphic
square complexes X ′ and X ′′ with respective 1-skeletons G′ and G′′. The graph G′ has v2, v4, v6
as corners and the graph G′′ has v1, v2, v3 as corners. Both G′ and G′′ have the cycle C as the
boundary, furthermore there is an isometry between the two boundaries ∂G′ and ∂G′′. However
this isometry cannot be extended to an isomorphism between the graphs G′ and G′′ and between
the complexes X ′ and X ′′. Therefore, any class of finite cube complexes containing the square
complex X ′ ⋍ X ′′ as a member is not boundary rigid. This example also shows that without
any additional information we cannot decide which vertices of C are corners of G. The graph
Q−

3 admits a monotone corner peeling if we order the vertices of Q−
3 by distance to a vertex z

of degree 3. Consequently, the existence of monotone corner peelings is not sufficient to ensure
boundary rigidity if we are not able to identify the corners. By Proposition 8, in median graphs,
any ordering of the vertices by distance to an arbitrary vertex z gives a corner peeling. Thus,
we can choose an arbitrary vertex on the boundary as a basepoint.

In order to prove that our algorithm effectively reconstructs the 1-skeleton G of a cube complex
X from its boundary, it is sufficient to establish the following properties:

(a) the cubes of G are gated;
(b) one can find a basepoint z ∈ ∂G such that any ordering of the vertices of G by distance

to z gives a corner peeling.
Condition (a) holds for all partial cubes, i.e., graphs which can be isometrically embedded

into hypercubes. In [9], Chalopin, Chepoi, Moran, and Warmuth proved that every conditional
antimatroid G (conditional antimatroids form a superclass of median graphs and convex ge-
ometries and a subclass of partial cubes) admits a monotone corner peeling with respect to a
specific basepoint z, corresponding to the empty set in the set-theoretical encoding of G. How-
ever, conditional antimatroids do not always satisfy condition (b). Indeed, Q−

3 is a conditional
antimatroid, and thus the class of conditional antimatroids is not boundary rigid. As explained
above, even if there exists a monotone corner peeling of Q−

3 with respect to a basepoint on
∂Q−

3 , one cannot identify it by knowing only the boundary of Q−
3 . Moreover, there also exist

conditional antimatroids where the specific basepoint z does not belong to ∂G. However, if, in
addition to the distance matrix of ∂G, the specific basepoint z of a conditional antimatroid G
is given as well as the distances from z to all vertices of ∂G, then, proceeding as in the case of
median graphs, we can reconstruct Xcube(G).

Haslegrave [12] presented a plane CAT(0) triangle-square complex, that cannot be recon-
structed from its boundary distance matrix. Haslegrave et al. [13] asked for conditions under
which a class of finite simplicial complexes is boundary rigid. It will be interesting to investi-
gate this question for clique complexes of bridged and Helly graphs, which are well-studied in
metric graph theory [2, 8, 10]. Groups acting on them have recently been extensively studied in
geometric group theory. These simplicial complexes are not CAT(0) but are considered to have
combinatorial nonpositive curvature; see the papers by Januszkiewicz and Świątkowski [15] and
Chalopin, Chepoi, Hirai, and Osajda [8].
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