
HAL Id: hal-04728807
https://hal.science/hal-04728807v1

Submitted on 9 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending Hierarchical Partial-Order Causal-Link
Planning to Temporal Problem Solving

Nicolas Cavrel, Humbert Fiorino, Damien Pellier

To cite this version:
Nicolas Cavrel, Humbert Fiorino, Damien Pellier. Extending Hierarchical Partial-Order Causal-Link
Planning to Temporal Problem Solving. IEEE International Conference on Tools with Artificial In-
telligence, Oct 2024, Herndon, VA, United States. �hal-04728807�

https://hal.science/hal-04728807v1
https://hal.archives-ouvertes.fr

Extending Hierarchical Partial-Order Causal-Link
Planning to Temporal Problem Solving

1st Nicolas Cavrel
Univ. Grenoble Alpes, LIG

Grenoble, France
Nicolas.Cavrel@univ-grenoble-alpes.fr

2nd Humbert Fiorino
Univ. Grenoble Alpes, LIG

Grenoble, France
Humbert.Fiorino@imag.fr

3rd Damien Pellier
Univ. Grenoble Alpes, LIG

Grenoble, France
Damien.Pellier@imag.fr

Abstract—This paper introduces TEP (Temporal Event Plan-
ning), a novel POCL (Partial Ordered Causal Link) HTN
approach tailored for temporal Hierarchical Task Networks
(HTNs). TEP stands out for its capability to address the three
categories of temporal problems as categorized by Cushing,
distinguishing it from prevailing approaches that primarily tackle
the initial two categories. TEP accomplishes this by translating
temporal HTN problems into non-temporal counterparts and
excels in performance by leveraging heuristics developed in
non-temporal HTN planning to steer the search for temporal
solutions. This innovative strategy initiates by refining tasks into
instantaneous actions and relaxing duration constraints, ensuring
alignment with conventional search heuristics while upholding the
problem’s innate expressiveness.

Index Terms—AI Planning, HTN, Temporal Planning

I. INTRODUCTION

The Hierarchical Task Network (HTN) planning formalism
is designed to represent planning problems as sets of complex
tasks. Inline with the classical divide and conquer strategy,
these problems are solved by recursively breaking down com-
plex tasks into simpler ones until the problem consists solely
of indecomposable tasks, referred to as ”actions.”

While most HTN approaches primarily focus on non-
temporal HTN planning, e.g., [1]–[4]where actions are con-
sidered instantaneous, we delve into temporal HTN plan-
ning, where actions are defined over specific time intervals.
Considering temporal planning is essential when addressing
real-world problems, where time constraints play a pivotal
role, and synchronization among agents is imperative. On a
formal level, characterizing actions as durative introduces the
possibility of defining novel types of constraints on tasks,
such as Allen’s interval constraints. These constraints are
instrumental in representing temporal-specific limitations, like
the partial overlap of two actions or a set of requirements
that must be true throughout the entire duration of actions.
All these constraints significantly enhance the expressiveness
of planning problems and enable dealing with more realistic
scenarios.

The various approaches proposed for solving temporal
planning problems can be categorized by their capability to
address different categories of temporal problems as defined
by Cushing [5]. Cushing’s classification distinguishes three
categories of temporal planning problems. In the first category,
temporal problems have solutions consisting in sequential

plans: action concurrency is not required (non-concurrent so-
lutions). The second category encompasses temporal problems
where solution plans can potentially be concurrent, but sequen-
tial solutions are still valid (possibly concurrent solutions).
The third category comprises temporal problems where the
only feasible solution plans are inherently concurrent, and
sequential solutions are not possible (necessary concurrent
solutions).

On one hand, most of the literature approaches fall into
Cushing’s first two categories. This is the case of [6]–[8]
where temporal actions are preprocessed into sequences of
non-temporal tasks [6] or actions. One important advantage of
these approaches is their ability to leverage search heuristics
and algorithms developed within a non-temporal framework.
On the other hand, some approaches such as [9]–[11] do solve
all the Cushing’s categories, but they lack efficiency due to a
dearth of informative heuristics.

In this paper, we introduce TEP (Temporal Event Planning),
a novel POCL (Partial Ordered Causal Link) HTN planning
approach encompassing Partial Order Causal Link and HTN
methods, tailored for temporal HTN domains. Our contribution
lies in TEP’s ability to solve all of Cushing’s categories for
HTN problems, while utilizing heuristics developed for non-
temporal HTN planning. TEP starts by compiling temporal
HTN problems into non-temporal ones. It accomplishes this
by refining abstract tasks and durative tasks into instantaneous
non-temporal actions. Subsequently, it attempts to find a
solution plan by relaxing the duration constraints, solely by
checking constraint consistency. The resulting non-temporal
relaxed problem closely resembles a classical HTN problem,
making it compatible with non-temporal search heuristics.
Importantly, it maintains the required expressiveness to tackle
problems across all of Cushing’s categories. If a solution to
the relaxed problem is found, TEP proceeds by computing
timestamp assignments that satisfy the temporal constraints
with a CSP (Constraint Satisfaction Problem) solver.

The paper is structured as follows. Section 1 introduces
the temporal HTN planning formalism. In Section 2, the
TEP algorithm is presented. Section 3 demonstrates how TEP
solves HTN problems within Cushing’s third category. Section
4 examines in detail the heuristics adopted from non-temporal
planning and employed in TEP to address temporal HTN
planning. Finally, Section 5 evaluates TEP performance.

II. PROBLEM STATEMENT

In this section we propose a formalization that incorporates
temporal features in HTN planning. The notations are based
on [12] and [1].

A. Tasks, Task Network, Action and Methods

The key concepts in HTN planning and a fortiori in temporal
HTN planning are the tasks and task networks.

A task is given by a name and a list of parameters. We
distinguish three kinds of tasks: snap tasks, durative tasks and
abstract tasks. Unlike snap tasks that do change the states of
the world, durative tasks and abstract tasks do not. They are
names referring to other tasks (either snap, durative or abstract)
that must be achieved with respect to some constraints. Every
task has a start and an end time point. We refer to the start and
end time points of a task t with temporal variables denoted
respectively vst and vet . A snap task t is instantaneous, i.e.
vst = vet , thus we will simply refer to the time point of the
snap task t as vt. As usually in planning, a state s is defined
as a set of ground atoms.

A task network represents a partially ordered multi-set of
tasks. A task network w is a tuple (I, α,≺) where I is a set
of task identifiers, α : I 7→ T a mapping from task identifiers
to task names T , and ≺ is a set of ordering constraints over
the task identifiers in I . Ordering constraints are defined over
the start or the end time variables of the task identifiers I . The
possible ordering constraints are those from the classical point
algebra: <, ≤, >, ≥, = and ̸=. We allow also the constraints
of the form d = vet −vst to express task duration. For instance,
the temporal ordering constraint vst1 < vet2 expresses that the
start of the task t1 ∈ I must occur strictly before the end of
t2 ∈ I . Note that such a set of constraints C can be represented
as a constraint graph whose consistency can be checked by
computing its strongly connected components in polynomial
time O(|C|). Snap, durative and abstract tasks can be achieved
respectively by applying snap actions, durative actions and
methods defined below.

A snap action a is a tuple (name(a), pre(a), post(a), eff(a)),
where name(a) is the name of the task achieved by a and
pre(a), post(a) and eff(a) are sets of ground atoms. Let va be
the time point at which a is executed. A snap action has two
sets of conditions to satisfy to be executed: pre(a) that must
hold strictly before va (classical case in planning) and post(a)
that must hold strictly after va, i.e., in the state resulting of
the execution of a. post(a) is a novelty to express invariant
properties that must be satisfied over an interval of time,
and that will be used to solve Cushing’s 3rd category.

Finally, as in non-temporal planning, the execution of a
produces the effects eff(a) such that eff(a) = eff+(a)∪eff−(a)
and eff+(a) ∩ eff−(a) = ∅ where eff+(a) and eff−(a) are sets
of ground atoms, respectively true and false after the execution
of a.

A durative action a is a tuple (name(a), start(a), end(a),
inv(a), d): name(a) is the task achieved by a, start(a) and
end(a) are snap actions ; inv(a) is a set of ground atoms
that must hold after the execution of start(a) and until

timed = ve
a − vs

a

post

start(a)
effpre

vs
a

post

end(a)
effpre

ve
a

inv(a)

Fig. 1. Timeline of a durative action a application.

the beginning of end(a), i.e., on the interval]vsa, v
e
a[and

d = vea − vsa is the duration of a. We assume as in temporal
planning [13] that vsa < vea is true. Therefore the duration of a
is a strictly positive number. The timeline of a durative action
application is given in Figure 1.

A method m is a tuple (name(m), w), where name(m) is
the name of the task achieved by m and w the task network
that defines how name(m) must be decomposed into sub-tasks.

B. Partial Temporal Plans, Flaws and Threats

To deal with temporal features, we extend the definition of
a partial plan usually used in POCL HTN planning [1] and
in POCL planning [14] in order to handle the postconditions
of the snap actions as follows.

A partial temporal plan π is a tuple (w,C) where w =
(I, α,≺) is a task network that defines the tasks of π and its
ordering constraints, and C is a set of causal links of the form
⟨ti

p→ tj⟩ with ti and tj two identifiers of snap tasks in I , and
p a ground atom.

The purpose of a causal link is to assert that a precondition
or a postcondition p of a task tj is supported by another
task ti that produces p as effect. Two cases have to be
considered depending on whether ti supports a precondition
or a postcondition of tj . If ti supports a precondition of tj ,
i.e., p ∈ eff(ti) and p ∈ pre(tj) then (veti < vstj) ∈ ≺ (classical
case in POCL planning). If ti supports a postcondition of tj ,
i.e., p ∈ eff(ti) and p ∈ post(tj) then (veti ≤ vstj) ∈ ≺: in this
case, the ordering constraint is not strict.

By extension, a snap task tk in a partial temporal plan π
is a threat on a causal link ⟨ti

p→ tj⟩ depending on whether
ti supports a precondition or a postcondition p of tj . If ti
supports a precondition p of tj , then tk threats ⟨ti

p→ tj⟩ if
and only if tk has ¬p as effect, and {(veti < vstk), (v

e
tk

< vstj)}
are consistent with ≺ (the usual case in POCL). If ti supports
a postcondition p of tj , then tk threats ⟨ti

p→ tj⟩ if and only if
tk has ¬p as effect, and {(veti < vstk), (v

e
tk
≤ vstj)} are in ≺.

Here the ordering constraint between tk and tj is not strict.
A flaw in a partial plan π = (w,C) with w = (I, α,≺)

is either (1) an open condition, i.e., a precondition or a
postcondition of a task that is not supported by a causal link,
(2) a threat, i.e., a task that may interfere with a causal link,
or (3) a decomposition flaw, i.e., an abstract or a durative task
that is not decomposed into snap tasks.

C. Temporal HTN Problem and Solution

A ground temporal HTN planning problem P is a tuple
(L, T,A,M, s0, w0, g), where L is a finite set of ground atoms,
T is a set of tasks, A is a set of durative actions, M is the

set of methods, s0 is the initial state built over L, w0 is the
initial task network to carry out, and g is a set of ground atoms
defining the goal to reach.

The solution of a temporal HTN planning problem is a
partial temporal plan π obtained by refining an initial partial
plan π0 as in POCL planning into snap tasks by applying
durative actions and methods. The initial plan π0 is built with
w0 as task network and two special snap tasks t0 and t∞
ordered respectively as the first task and the last task of w0.
t0 has no precondition and the initial state as positive effects.
t∞ has the goal as precondition and no effects. Formally, a
partial temporal plan π = (w,C) is solution of a planning
problem P = (L, T,A,M, s0, w0, g) if and only if: (1) π is
a refinement of the initial partial temporal plan π0, (2) π is
executable in the initial state s0. Thus, (2.1) all the tasks in π
are snap tasks, (2.2) π has no flaws, i.e., no open precondition
or postcondition, and no threats, (2.3) for all t in π, vt is
assigned and satisfies the ordering constraints in w.

It remains to define how to refine a partial temporal plan
into a plan containing only snap tasks by using durative actions
and methods. First, consider the case of the refinement of a
durative task. To carry out this refinement it is first necessary to
slightly modify the definition of the two snap actions start(a)
and end(a) to translate the invariant properties inv(a) into the
POCL logic. This modification consists in, on the one hand,
adding inv(a) to the postconditions and the effects of start(a),
and, in the other hand, to the preconditions of end(a). It is
now possible to express the invariant properties of a durative
task by classical causal links between the effects of start(a)
and the preconditions of end(a) in accordance with PDDL 2.1
semantics, which constrain inv(a) to be checked on the interval
]vsa, v

e
a[.

Formally, let a = (name(a), start(a), end(a), inv(a), d) be
a durative action that refines a task identifier i of a plan π1 =
(w1, C1) with w1 = (I1, α1,≺1) such that i ∈ I1. Then, a
refines π1 into a plan π2 = (w2, C2) with w2 = (I2, α2,≺2)
and

I2 = (I1 − {i}) ∪ {is, ie}
α2 = (α1 − (i, name(a))) ∪ (is, start(a)) ∪ (ie, end(a))

≺2= {vsi < vei } ∪ {vei − vsi = d}
∪ {(v′i < vsi) | ∀(v′i < vi) ∈≺1}
∪ {(v′i ≤ vsi) | ∀(v′i ≤ vi) ∈≺1}
∪ {(vei < v′i) | ∀(vi < v′i) ∈≺1}
∪ {(vei ≤ v′i) | ∀(vi ≤ v′i) ∈≺1}

(1)

Finally, the last case is method refinement. Let m =
(tm, wm) be a method with a task network wm =
(Im, αm,≺m) that refines a task identifier i of a plan π1 =
(w1, C1) with w1 = (I1, α1,≺1) such that i ∈ I1. Then, m
refines π1 into a plan π2 = (w2, C2) with w2 = (I2, α2,≺2)
and

I2 = (I1 − {i}) ∪ Im

α2 =α1 ∪ αm − {(i, tm)}
≺2= ≺m ∪{(v′i < vsi) | ∀(v′i < vi) ∈≺1}

∪ {(v′i ≤ vsi) | ∀(v′i ≤ vi) ∈≺1}
∪ {(vei > v′i) | ∀(vi > v′i) ∈≺1}
∪ {(vei ≥ v′i) | ∀(vi ≥ v′i) ∈≺1}
∪ {(v′i ≥ vsi) | v′i ∈ Im)} ∪ {(v′i ≤ vei) | v′i ∈ Im)}
∪ {(vsi ≤ vei)}

C2 = C1

(2)
III. TEMPORAL EVENT PLANNER

In this section, we define the search procedure of TEP
(Temporal Planning Event). This procedure is built upon the
POCL planning procedure proposed by [1]. It deals with
the two sets of conditions that must hold to execute an
action: preconditions and postconditions. We show how TEP
is able to use the heuristics developed for non-temporal HTN
planning and how it can solve all the Cushing’s categories
[5] of temporal problems. It is important to emphasize that
the problems of Cushing’s third category are problems whose
solution plans necessarily require concurrency. To our best
knowledge, TEP is the only HTN planner capable of solving
this Cushing’s category.

A. Search Procedure

The key idea of TEP is to carry out the search for a
solution plan by interleaving two steps. The first step refines
an initial partial plan into a plan containing only snap tasks as
in POCL HTN planning while checking the consistency of the
task ordering constraints. Unlike POCL HTN planning, TEP
checks both the consistency of < and ≤ constraints. This first
step boils down to solve a non-temporal problem, allowing
the search to be guided by classical heuristics. We will detail
this point in the next section. The aim of TPE first step is to
verify the criteria 1, 2.1 and 2.2 of a solution plan. The second
step assigns a value to all timestamps in the snap tasks of the
refined plan with respect to the ordering constraints as well as
the duration constraints d = vea − vsa

1

The whole TPE search procedure is given in Algo. 1. It takes
as input a problem P = (L, T,A,M, s0, w0, g) and returns a
solution plan π as well as a set V of timestamp assignments for
each snap task if the procedure succeeds, and failure otherwise.
TPE starts (line 1) by expressing the initial state s0, the initial
task network w0 and the goal g as a partial plan to refine π0.
π0 has w0 as task network and two special snap tasks t0 and
t∞ ordered respectively as the first task and the last task of w0.
t0 has no precondition and the initial state as positive effect.
t∞ has the goal as precondition and no effects. Then (line 2)
π0 is pushed to the pending list of partial plans to be explored

1For reasons of simplicity, we limit ourselves here to this type of constraints,
bearing in mind that the CSP approach can be used to express more complex
constraints.

Algorithm 1: TEP(L, T,A,M, s0, w0, g)

1 π0 ← the inital plan built from s0, w0 and g
2 open← {π0}
3 while open ̸= ∅ do
4 π ← non-deterministically select plan in open
5 flaws← the set of flaws of π
6 if flaws = ∅ then
7 V ← search timestamp assignments for π
8 if V ̸= ∅ then return (π, V)
9 else continue

10 ϕ← arbitrarily select a flaw in flaws
11 open← open ∪ solveF law(π, ϕ)
12 return Failure;

and the first step of refinements starts. At each iteration a new
partial plan π is selected (line 4) and its flaws are computed
(line 5). If π contains flaws, one of them is selected (line 10).
Solving this flaw generates a new set of partial temporal plans
that are added to the pending list of partial plans to explore
(line 11). If a flawless plan is selected (line 7), TPE gets into
the second step, and uses a CSP solver to find the set V of
timestamp assignments for all the snap tasks of π. If the CSP
solver succeeds, π and V are returned, otherwise the procedure
keeps iterating in step one, and tries to refine a new partial
plan.

B. Repairing Flaws

The flaws in partial plans are very similar to the flaws in
non-temporal Task Networks. We have 3 different types of
flaws: (1) open conditions, i.e., preconditions or postconditions
of tasks that are not supported by a causal link, (2) threats,
i.e. tasks that may interfere with a causal link, or (3) decom-
position flaws, i.e., abstract or durative tasks that are not still
decomposed into snap tasks. Flaws are repaired as follows.

a) Open conditions: We distinguish two repair mech-
anisms for open conditions depending on whether an open
condition p of a task tj ∈ π is a precondition or a postcondition
(see Figure 2). If p is a precondition, then p is repaired
by adding to π a causal link ⟨ti

p→ tj⟩ and an ordering
constraint (ti < tj). If p is a postcondition, then p is repaired
by adding to π a causal link ⟨ti

p→ tj⟩ and an ordering
constraint (ti ≤ tj). In both cases, the added constraints
must be consistent with current ordering constraints in π.
Note that the repair of open preconditions is done as in non-
temporal POCL HTN planning whereas the repair of open
postconditions introduce ≤ constraints instead of <.

b) Threats: Suppose that a task tk threatens a causal link
⟨ti

p→ tj⟩. This threat can be solved in two different ways (see
Figure 3). The first one is to constrain tk strictly before the
task ti that produces p by adding (tk < ti) in the ordering
constraints. The second one is to constrain tk after or at the
same time of task tj by adding the constraint (tj ≤ tk) if p is
a precondition of tj , or strictly after if p is a postcondition of
tj . As always, adding ordering constraints to π must ensure

t0 8t

ti

tj

p	is	a	precondi,on	of	tj p	is	a	postcondi,on	of	tj

t0 8t

ti

tj
pre:	p

eff:p

t0 8t

ti

tj
post:	p

eff:p

eff:p

p	pre	or	post	?

Open	Condi3ons

Fig. 2. Open condition repair: A causal link ⟨ti
p→ tj⟩ is added to the

plan to support the open condition, and a precedence constraint (ti < tj) or
(ti ≤ tj) depending on whether the open condition is a precondition or a
postcondition.

t0 8t

ti

tk

Ordering	tk	before	ti Ordering	tk	a/er	tj

eff:p

Threats
tj

p	(pre	or	post)

eff:	not	p

t0 8t

ti

tk

eff:p
tj

p	(pre	or	post)

eff:	not	p

t0 8t

ti

tk

eff:p

tj
p	(pre	or	post)

eff:	not	p

if	p	is	pre	 else

Fig. 3. There are two ways of resolving a threat tk on a causal link ⟨ti
p→ tj⟩,

one can either order the threatening task strictly before ti or at the same time
(or after) the task tj depending on whether the supported open condition is
a precondition or a postcondition.

constraint consistency. The repair of a threat is very similar
to threat repair in POCL HTN planning except we allow non-
strict ordering constraints.

c) Decomposition Flaws: We distinguish two different
repair mechanisms depending on whether π = (w,C) contains
a durative or an abstract task t to decompose by applying
Equation 1 and 2 respectively. Figure 4 shows an example
of durative task decomposition (right) and abstract task de-
composition (left). For the durative task decomposition, we
assume that t is decomposed by a durative action a such
that ts = start(a) and te = end(a). We show in red the
modifications of the two snap tasks ts and te needed to
translate the invariant properties inv(a) into the POCL logic.
For the abstract task decomposition, we assume that t is
decomposed by a method m into three subtasks ti, tj , tk with
ti < tk. No other constraints bind ti, tj and tk.

C. An Example of Cushing’s third category

In this section, we illustrate how TPE deals with the third
category of Cushing’s classification where solution plans are
necessary concurrent.

Suppose that two durative tasks ta and tb can be decom-
posed by two durative actions a and b. The timelines of a and

t0 8t

t

t	is	a	dura)ve	task
(t	is	decomposable	by	a	dura)ve	ac)on	a)

t	is	an	abstract	task
(t	is	decomposable	by	a	method	m)

Decomposi,on	flaws

t0 8t

ts

te
pre:inv(a)

post:inv(a)
pre:pre(start(a))

eff:eff(start(a))

eff:eff(end(a))

eff:inv(a) t0 8t

ti tj

tk

pre:pre(end(a))

Fig. 4. The two possible ways of decomposing a task depending on whether
the task is durative (right) or abstract (left).

durative action a

timeda = db

post = ∅

tsa
eff = (doing a)pre = ∅

vs
a

post = ∅

tea
eff = ¬(doing a)pre = ∅

ve
a

inv(a) = (doing b)

durative action b

timedb = da

post = ∅

tsb
eff = (doing b)pre = ∅

vs
b

post = ∅

teb
eff = ¬(doing b)pre = ∅

ve
b

inv(b) = (doing a)

Fig. 5. The two durative actions of the Cushing’s problem

b are given in Figure 5: a and b have the same duration d.
Action a produces the ground atom (doing a) and has (doing
b) as invariant, and symmetrically, b produces the ground atom
(doing b) and has (doing a) as invariant. The problem has no
methods, and the initial state and the goal state of the problem
are empty. The initial task network of the problem contains
the tasks ta and tb with no ordering constraints. The partial
plan obtained by TEP after decomposing ta and tb into snap
tasks by applying the durative action a and b, is depicted in
Figure 6. The only solution to this problem is a concurrent
plan where ta and tb are executed at the same time.

Figure 6 depicts the partial plan obtained after decomposing
ta and tb with a and b. It has four flaws. Two flaws are
open conditions that must be supported by causal links: the
postcondition (doing a) of the task tsa and the postcondition
(doing b) of the task tsb . The two other flaws are threats: the
task tea threatens the causal link ⟨tsb

(doing a)−→ teb⟩ and the task
teb threatens the causal link ⟨tsa

(doing b)−→ tea⟩.
Assume that the open conditions are selected and resolved

first. To fix these two flaws, TEP must add to the partial
plan two causal links, the first one ⟨tsb

(doing b)−→ tsa⟩ to sup-
port the postcondition (doing b) of tsa and the second one
⟨tsa

(doing a)−→ tsb⟩ to support the postcondition (doing a) of tsb . In
addition to these two causal links, TPE must add two ordering

t0 8t

pre:	(doing	b)

post:	(doing	b)

eff:	(not	(doing	a))

eff:	(doing	a)	
						(doing	b)

tas

tae

pre:	

post:	
Task:	ta

pre:	(doing	a)

post:	(doing	a)

eff:	(not	(doing	b))

eff:	(doing	b)	
						(doing	a)

tbs

tbe

pre:	

post:	
Task:	tb

Fig. 6. Partial plan obtained in the Cushing’s problem after decomposing the
two durative tasks ta and tb by applying the durative actions a and b. The
dashed arrows represent causal links and the plain black arrows the ordering
constraints.

t0 8t

pre:	(doing	b)

post:	(doing	b)

eff:	(not	(doing	a))

eff:	(doing	a)	
						(doing	b)

tas

tae

pre:	

post:	
Task:	ta

pre:	(doing	a)

post:	(doing	a)

eff:	(not	(doing	b))

eff:	(doing	b)	
						(doing	a)

tbs

tbe

pre:	

post:	
Task:	tb

Fig. 7. The partial plan corresponding to the Cushing’s problem after the
resolution of the two open conditions and the two treats. Causal links and
ordering constraints in red depict the modification of the partial plan needed
to fix the open conditions, and in blue to fix the threats.

constraints indicating that tsa must be executed before or at the
same time as tsb since tsa now supports a postcondition of tsb ,
and conversely, that tsb must be executed before or at the same
time as tsa since tsb now supports a postcondition of tsa. The
resulting partial plan is depicted in Figure 7. The causal links
and the ordering constraints added are shown in red.

Finally, the threats have to be fixed. In the general case,
a threat is resolved by constraining the threatening snap task
either strictly before the threatened causal link, or strictly or
at the same time after the causal link depending on whether
the causal link support a precondition or a postcondition. In
our example, the only valid resolution is to constrain teb (resp.
tea) after or at the same time as tea (resp. teb). The resulting
partial plan is displayed on Figure 7. The ordering constraints
added are shown in blue. All the flaws are now resolved. TEP
returns the partial plan in Figure 7 as solution.

IV. TEP HEURISTICS

The main benefit of TEP is to exploit (with some adaptations
presented below) the heuristics developed for non-temporal

POCL HTN planning to solve temporal problems. TEP search
procedure (See Algo. 1) relies on two non deterministic
choices, which are in practice achieved by using two heuristic
functions. The first choice performs a non deterministic choice
over the set of pending partial temporal plans to explore, and
decides which one to explore first (line 4). The heuristic func-
tions guiding this choice are called plan selection heuristics
and greatly impact both the search performance (i.e., the time
required to find a solution plan) and the quality of the returned
plan (i.e., the number of actions in the solution plan).

The second choice (line 9) performs a non deterministic
choice over the flaws to be solved in the current partial plan.
The heuristic functions guiding this choice are called flaw
selection heuristics. Note that every flaw in the partial plan
has eventually to be solved in order to find a solution plan.
Hence, the admissibility of the TEP procedure only depends
on plan selection heuristics. However, the order in which the
flaws are resolved with respect to the flaw selection heuristics
greatly impacts the search performance of the procedure. In
the following, we present plan and flaw selection heuristics as
implemented in TPE.

A. Plan Selection Heuristics

Among plan selection heuristics in non-temporal POCL
HTN planning, e.g., [1], [15], the most effective are those
developed by [1]. Their principle is to estimate the number
of changes required to achieve a plan solution by counting
the number of flaws in the current partial plan. Bercher’s
idea was to extend this principle to POCL HTN planning by
estimating the number of flaws in a plan, more precisely by
taking into account the flaws that will be introduced by tasks
that have not yet been decomposed. This estimation is based
on a structure called Task Decomposition Graphs (TDG) that
encodes the decomposition of the hierarchical problem. In the
following section, we present (1) how TEP extends the concept
of TDG to encode not only abstract task decompositions but
also durative task decompositions in a new structure called
Temporal Task Decomposition Graphs (TTDG), and (2) how
classical heuristics for POCL HTN planning developed in [1],
[16] can be derived from a TTDG to solve temporal planning
problems.

a) Temporal Task Decomposition Graphs: A TTDG of
a planning problem P = (L, T,A,M, s0, w0, g) is a directed
AND/OR graph G = (VT , VM , VA, E), where VT is a set of
vertices consisting of snap, durative, and abstract tasks that
can be obtained by decomposing the initial partial plan π0

built from s0, w0, and g. VM and VA are respectively sets of
method vertices or durative action vertices that decompose an
abstract task or a durative task within VT . Finally, E is a set
of edges that link nodes from VT to VM or VA. For brevity,
the child nodes of a node v is child(v) = {vi|(v, vi) ∈ E}. A
TTDG is illustrated in Figure 8. In the general case, a TTDG
like a TDG can be a cyclic graph.

b) Heuristics: To generalize the different plan selection
heuristics developed in POCL HTN planning to temporal
planning, we first need to define two crucial estimates that

t0

m1 m2

t1 t2 t3

m6a2

t2s t2e

a8

t8s t8e

t7

m3 m4

t5

a5

t5s t5e

t6

a6

t6s t6e

m5

t8

a7

t7s t7e

a4

t4s t4e

t4

Fig. 8. A simple TTDG example depicted as a AND/OR graph. The symbols
t0, t1, t3 represent abstract tasks. t2, t4, t5, t6, t7, t8 represent durative tasks
and ts2, t

e
2, t

s
4, t

e
4, . . . snap tasks. m1, . . . ,m6 depict method vertices and

a5, . . . , a8 durative action vertices.

can be extracted from a TTDG: (1) an estimate of the number
of decompositions required to break down the plan into snap
tasks, and (2) an estimate of the open conditions to be
supported.

Both of these estimates rely on the concepts of mandatory
tasks and task cardinality. Mandatory tasks, denoted as M(t),
are ground tasks that appear in all decomposition methods or
durative actions associated with the same task t. In simpler
terms, the set of mandatory tasks M(t) includes tasks that
will unquestionably be included in a partial plan when task t
is decomposed. For example (refer to Figure 8 for context),
we have M(to) = M(t3) = M(t7) = {ts7, te7}, M(t1) =
M(t5) = {ts5, te5}, M(t4) = {ts4, te4}, M(t5) = {ts5, te5},
M(t6) = {ts6, te6}, and M(t8) = {ts8, te8}. The task cardinality
(TC) of a task t can be straightforwardly defined as the
number of tasks in its mandatory set, i.e., TC = |M(t)|.
This task cardinality serves as a lower bound for estimating
the effort required to decompose task t.Computing the first
estimate comes down to calculating TC. In practice, it is
determined from a TTDG as follows:

TC(v) =


1 if v ∈ VT and v is snap

min
vi∈child(v)

TC(vi) if v ∈ VT and v is abst.∑
vi∈child(v)

TC(vi) otherwise

The second estimate, known as MME (Minimal Modi-
fication Effort), represents the number of open conditions,
including both preconditions and postconditions, that must be
satisfied for each node. It can be determined from a TTDG as
follows:

MME(v) =


1 + |pre(v) ∪ post(v)| if v ∈ VT and v is snap∑
d∈Child

TC(d) if v ∈ VM .

1 + min
d∈Child

TC(d) if v ∈ VT and v is abst.

where pre(v) denotes the preconditions of a primitive node
and post(v) its postconditions.

Finally, we can expand the application of the four classical
heuristics proposed in [1], [16] to temporal plans π = (w,C)
as follows. Here, w = (I, α,≺) defines the tasks and their
associated constraints, while C represents the causal links
between the tasks within π, and F denotes its flaws.

hTC(π) = Σi∈I|α(i) is abtractTC(α(i))

hMME(π) = Σi∈IMME(α(i))

hTDGm(π) = hMME(π)− |C|
hTC + #F(π) = hTC(π) + |F |

Note that all the heuristics presented are admissible when
considering the number of modifications that will be intro-
duced into the plan, as mentioned in [16]. However, they do
not guarantee an optimal solution plan with respect to the
makespan.

B. Flaw selection heuristics

The most common strategy for selecting the order of flaws
is to choose the flaws with the fewest possible resolvers first,
meaning that the most constrained flaws are resolved first. This
strategy is known as LCFR (Least Cost Flaw Repair) [17].
While this flaw selection heuristics was originally developed
for non-hierarchical problems, it has been used in POCL
HTN planning by the state-of-the-art planner PANDA [1].
When adapting it to hierarchical planning, priority is given to
abstract task decomposition over other flaws to maintain the
completeness of the procedure. This is because the number of
resolvers for a flaw depends on the choice of decomposition.

TEP implements the same flaw selection strategy as
PANDA, giving priority to decomposition flaws and then
prioritizing the remaining flaws starting from the ones with
the fewest resolvers. The only difference here is that decom-
position flaws include not only abstract tasks but also durative
tasks that are not decomposed into snap tasks.

V. EXPERIMENTATION

In this section we will compare TEP and its heuristics
with the best-known and efficient timeline approach proposed
by FAPE. We choose the best FAPE configuration [11]. The
timeline approach is currently the sole approach for solving
hierarchical temporal problems in the third category of Cush-
ing. Thus, to our best knowledge, only the timeline approach
and TPE share the same expressiveness.

A. Experimental Setup

Both planners, TEP and FAPE, were tested on a single core
of an Intel Core i7-9850H CPU, with a 8GB RAM limit and
a time limit of 600 seconds. To ensure a fair comparison,
both planners were implemented by using the same library
PDDL4J [18], and utilized the same CSP solver, which is the
one provided by OR-Tools [19]. The assessment criteria are
(1) the solving time, which represents the time spent to solve a
problem, (2) the makespan of a solution plan, which represents
the overall length of the plan, meaning the time between the
initial task and the final task endpoints of a solution plan, and,
finally, (3) the coverage of each planner, meaning the number

of solved problems of each domain. Note that solving time
and makespan are presented as IPC (International Planning
Competition) scores2.

B. Planning benchmarks

There are currently no standard benchmarks available for
hierarchical and temporal planning. Hence, we propose a
set of benchmarks based on the HDDL2.1 language [12],
which aims at facilitating the comparison of both hierarchical
and temporal planners. Among these benchmarks, some are
adaptations of hierarchical non-temporal domains of the IPC
planning competitions. They have been modified by adding
durations to actions: Gripper, Satellite, and Rover. In the
Gripper domain, all solutions are sequential, and no temporal
concurrency is required (Cushing’s first category). In Satellite
and Rover domains, problems with multiple satellites or rovers
allow concurrency, but it is not mandatory. The planner can
choose to find either a simple non-concurrent plan, or a
concurrent one using multiple rovers. These problems belong
to Cushing’s second category. Additionally, some domains3

have been devised specifically to correspond to the Cushing’s
third category:

• Area Scan models a set of heterogeneous devices that
cooperate to scan areas. Area Scan has two versions: a
totally ordered version, where the abstract tasks of the
problems are totally ordered, and an unordered version
where concurrency can also be achieved through concur-
rent abstract tasks.

• Table Carriers is inspired by the Gripper domain. In
this domain, agents must cooperate to carry tables, with
tables requiring either one, two, or three persons to
simultaneously carry them successfully.

VI. RELATED WORK

The various approaches to temporal planning can be classi-
fied according to their ability to deal with Cushing’s categories
[5]. This classification can be applied to classical planning,
e.g., [20], [21], or to non-hierarchical planning. These cat-
egories outline three types of temporal problems: those ex-
clusively allowing sequential solutions, problems permitting
both sequential and concurrent solutions, and those demanding
only concurrent solutions without any option for sequential
planning. Many planners can solve problems falling into the
first two categories through diverse techniques. One popular
approach involves adapting non-temporal HTN planners to
manage temporal formalisms. For instance, PYHIPOP [22]
or SHOP (Simple Hierarchical Ordered Planner). [23] was
expanded to SHOP2 [6], [8] to incorporate actions with
durations. Further advancements, like GSCCB-SHOP2 [24],
handle intricate time and resource constraints. Another case
is SIADEX [7], which applies a forward-chaining method
akin to classical planning, tailored to a temporal context.

2https://ipc2023-htn.github.io/.
3For each domain, a set of problems was generated using a problem

generator and ranked in terms of difficulty using TEP with the MME
heuristics.

Gripper Satellite Rover AreaScan PO AreaScan TO TableCarriers Total
Time Span Cov. Time Span Cov. Time Span Cov. S. Time Span Cov. Time Span Cov. Time Span Cov. S. Time Span Cov.

TEP(TC) 6.72 7.00 7/10 6.21 6.50 8/9 4.96 5.43 10/10 19.99 21.83 22/22 19.93 21.97 22/22 7.13 8.33 9/10 64.94 71.05 78/83
TEP(MME) 6.81 7.00 7/10 7.09 6.71 8/9 6.62 7.41 9/10 17.64 21.62 22/22 20.25 21.74 22/22 8.57 9.34 10/10 66.99 73.82 78/83
TEP(TDGm) 4.09 6.00 6/10 5.24 7.38 8/9 8.56 7.63 9/10 18.67 21.62 22/22 21.71 21.74 22/22 4.64 9.77 10/10 62.90 74.14 77/83

TEP(TC + #F) 4.79 6.00 6/10 6.71 7.63 8/9 6.67 7.26 10/10 20.39 21.62 22/22 21.48 21.77 22/22 3.67 8.61 9/10 63.70 72.88 77/83

FAPE 1.52 6.00 6/10 2.74 5.88 6/9 3.64 7.99 8/10 10.00 18.92 19/22 13.69 21.72 22/22 2.73 7.00 7/10 34.31 67.51 68/83
TABLE I

Experimentation results for the different configurations in the form of IPC scores for both time, makespan, and coverage. The best configuration achieves an
IPC score of 1, with other configurations receiving a percentage based on their performance relative to the best one. To compute the score of a domain, we

sum the IPC scores obtained for each problem. Coverage refers to the number of problems solved within a domain.

It establishes meta-temporal actions that link sequentially to
craft a solution plan. Additionally, among planners addressing
the first two categories is the CHIMP planner [25]. CHIMP
translates temporal and hierarchical problems into constraint
satisfaction problems to derive temporal solution plans. While
these planners benefit from the efficiency of non-temporal
planning, their methodologies struggle to fully address the
complexity of temporal planning, making them inadequate
for problems involving concurrency and particularly solving
third category temporal problems as defined by Cushing.
Planners adept at addressing Cushing’s third category typically
utilize timeline-based methods, monitoring the status of each
proposition over time. Key examples include HSTS [26], later
refined into EUROPA [27], a CSP-based planner. Additionally,
IxTeT [28], a significant approach, is domain-independent and
proficient in managing intricate timelines. Its more recent
iteration, FAPE [11] and ARIES [29], adeptly manages the
complete range of necessary concurrency expressions.

VII. CONCLUSION

In this paper, we have presented TEP, an approach to
represent and solve both hierarchical and temporal problems.
It consists in relaxing temporal problems in non-temporal
problems so as to apply HTN search heuristics to them. We
have compared our approach with a timeline approach sharing
the same expressiveness in terms of Cushing’s categories.
We have shown that our approach outperforms it in terms
of runtime to find a solution, and that both approaches are
comparable with respect to makespan. One way to improve
the TEP approach would be to implement makespan-aware
heurisitics into TEP, in order to improve the quality of the
solution plans.

REFERENCES

[1] P. Bercher, S. Keen, and S. Biundo, “Hybrid Planning Heuristics Based
on Task Decomposition Graphs,” in SOCS, 2014, pp. 35–43.

[2] D. Nau, Y. Bansod, S. Patra, M. Roberts, and R. Li, “Gtpyhop:
A hierarchical goal+task planner implemented in python,” in HPlan
Workshop (ICAPS), 2021.

[3] N. Cavrel, D. Pellier, and H. Fiorino, “Efficient HTN to STRIPS
encodings for concurrent planning,” in ICTAI, 2023, pp. 962–969.

[4] A. Ramoul, D. Pellier, H. Fiorino, and S. Pesty, “Grounding of HTN
planning domain,” Int. J. Artif. Intell. Tools, vol. 26, no. 5, 2017.

[5] W. Cushing, “Evaluating Temporal Planning Domains,” in ICAPS, 2007,
pp. 105–112.

[6] T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. S. Nau, D. Wu,
and F. Yaman, “Shop2: An htn planning system,” J. Artif. Intell. Res.,
vol. 20, pp. 379–404, 2003.

[7] M. Asunción, L. Castillo, J. Fdez-Olivares, Garcı́a-Pérez, A. González-
Muñoz, and F. Palao, “Siadex: An interactive knowledge-based planner
for decision support in forest fire fighting,” AI Commun., vol. 18, pp.
257–268, 01 2005.

[8] R. Goldman, “Durative planning in htns,” in ICAPS, 2006, pp. 382–385.
[9] H. L. S. Younes and R. G. Simmons, “VHPOP: versatile heuristic partial

order planner,” J. Artif. Intell. Res., vol. 20, pp. 405–430, 2003.
[10] P. Bechon, M. Barbier, G. Infantes, C. Lesire, and V. Vidal, “Hipop:

Hierarchical partial-order planning,” in STAIRS, 2014, pp. 51–60.
[11] A. Bit-Monnot, M. Ghallab, F. Ingrand, and D. E. Smith, “FAPE:

a Constraint-based Planner for Generative and Hierarchical Temporal
Planning,” ArXiv, abs/2010.13121., 2020.

[12] D. Pellier, A. Albore, H. Fiorino, and R. Bailon-Ruiz, “HDDL 2.1:
Towards Defining an HTN Formalism and Semantics with Time,” 2023,
HPLlan Workshop (ICAPS).

[13] M. Fox and D. Long, “PDDL2.1: an extension to PDDL for expressing
temporal planning domains,” J. Artif. Intell. Res., vol. 20, pp. 61–124,
2003.

[14] D. A. McAllester and D. Rosenblitt, “Systematic nonlinear planning,”
in AAAI, 1991, pp. 634–639.

[15] B. Schattenberg, J. Bidot, and S. Biundo, “On the construction and
evaluation of flexible plan-refinement strategies,” in German Conference
on AI, 2007, pp. 367–381.

[16] P. Bercher, G. Behnke, D. Höller, and S. Biundo, “An Admissible HTN
Planning Heuristic,” in IJCAI, 2017, pp. 480–488.

[17] D. Joslin and M. E. Pollack, “Least-cost flaw repair: A plan refinement
strategy for partial-order planning,” in AAAI, 1994, pp. 1004–1009.

[18] D. Pellier and H. Fiorino, “PDDL4J: a planning domain description
library for Java,” J. Exp. Theor. Artif. Intell., vol. 30, no. 1, pp. 143–
176, 2018.

[19] L. Perron, F. Didier, and S. Gay, “The cp-sat-lp solver,” in CP, 2023,
pp. 3:1–3:2.

[20] J. Benton, A. J. Coles, and A. Coles, “Temporal planning with prefer-
ences and time-dependent continuous costs,” in ICAPS, 2012.

[21] S. J. Celorrio, A. Jonsson, and H. Palacios, “Temporal planning with
required concurrency using classical planning,” in ICAPS, 2015, pp.
129–137.

[22] C. Lesire and A. Albore, “PYHIPOP-Hierarchical Partial-Order Plan-
ner,” in International Planning Competition, 2021.

[23] D. S. Nau, T. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and
F. Yaman, “SHOP2: an HTN planning system,” J. Artif. Intell. Res.,
vol. 20, pp. 379–404, 2003.

[24] C. Qi, D. Wang, H. Muñoz-Avila, and P. Zhao, “Hierarchical task
network planning with resources and temporal constraints,” Knowledge-
Based Systems, vol. 133, pp. 17–32, 2017.

[25] S. Stock, M. Mansouri, F. Pecora, and J. Hertzberg, “Online task merging
with a hierarchical hybrid task planner for mobile service robots,” in
IROS, 2015, pp. 6459–6464.

[26] N. Muscettola, “HSTS: Integrating Planning and Scheduling,” Robotics
Institute, Camegie Mellon University, Tech. Rep., 2013.

[27] J. Barreiro, M. Boyce, M. Do, J. Frank, M. Iatauro, T. Kichkaylo,
P. Morris, J. Ong, E. Remolina, T. Smith et al., “Europa: A platform
for ai planning, scheduling, constraint programming, and optimization,”
2012.

[28] S. Lemai, “IXTET-EXEC: planning, plan repair and execution control
with time and resource management,” Ph.D. dissertation, INP Toulouse,
2004.

[29] A. Bit-Monnot, “Experimenting with Lifted Plan-Space Planning as
Scheduling: Aries in the 2023 IPC,” in International Planning Com-
petition, 2023.

