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Abstract 38 

Many caves in Sicily have been shown to have a sulfuric acid or other hypogenic origin. We studied 39 

three caves (Palombara, Scrivilleri, Monello) near Syracuse (eastern Sicily), in an area that was strongly 40 

uplioed and faulted, creaKng mulKple Pleistocene marine terraces. Mineralogy, stable isotopes and 41 

daKng methods (paleomagneKsm, U/Th) were used to characterize cave sediments, some of which 42 

were related to the iniKal hypogenic phase (Fe and Mn oxides, calcite spar), others were introduced by 43 

surface runoff later. Many other sediments are the result of in situ weathering, such as lime sands 44 

produced by condensaKon-corrosion processes on the calcarenite walls. Phosphates, kaolinite and 45 

montmorillonite are related to bat guano decay. Stable isotopes show that the speleothems derive 46 

from surface seepage with temperatures similar to the present, with no evidence of a hydrothermal 47 

origin. Other deep sources of aggressivity are also excluded. We obtained an age of 603 ka (+285/-91) 48 

for a marine notch deposit near Palombara, as well as a possible paleomagneKc inversion (>780 ka) for 49 

clasKc allogenic sediments. These ages are discussed, raising the quesKon of the reliability of 50 

calculaKons extrapolated from marine terrace daKng and the possibility that the caves may be older 51 

than expected.  52 

Cave morphologies clearly indicate a hypogenic phase, with aggressive ascending flows creaKng the 53 

typical Morphologic Suites of Rising Flow (MSRF). The bubble trails and acid notches are formed by 54 

carbonic degassing and subsequent acidificaKon in more or less closed aerated environments at the 55 

water table. CO2 probably derived from both the bedrock and the oxidaKon of surface-derived organic 56 

carbon at the density boundaries of the freshwater lens. We propose a mixed Flank Margin Cave and 57 

hypogenic speleogenesis model, where dissoluKon was concentrated in areas of greater CO2 58 

concentraKon, producing phreaKc maze paRerns recording past sea-level posiKons. We suggest that 59 

aggressiveness of the rising fluids could have partly originated at a shallow depth, in the mixing zone 60 

between fresh and salt water. 61 

 62 

Keywords 63 

Carbonic degassing, hypogenic speleogenesis, Flank Margin Caves, Palombara Cave, Scrivilleri Cave, 64 

Monello Cave 65 

 66 

Highlights 67 

• Caves near Syracuse, Sicily, are in Miocene calcarenites and are hypogenic 68 

• A Flank Margin Cave (FMC) model is proposed, showing marine terrace correlaKon 69 

• CO2 aggressivity comes from the freshwater lens and underlying saltwater body 70 

• Stable isotopes suggest an organic carbon contribuKon, without hydrothermalism 71 
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• Morphologic Suites of Rising Flow, bubble trails and acid notches record acid upflow  72 
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INTRODUCTION 73 

Over the last twenty years karstologists worldwide have discussed the origin of caves and are now 74 

widely considering two types of karst: epigenic and hypogenic. Epigenic karst is unconfined, and water 75 

is recharged from the directly overlying land surface. Hypogenic karst, on the contrary, is generally 76 

confined and water enters the soluble units from below (Klimchouk et al., 2000; Ford & Williams, 2007). 77 

Hypogenic waters can derive from truly deep sources (e.g., magmaKc fluids) but more commonly can 78 

also be deeply looping surface-derived waters that have since long lost most of their typical epigenic 79 

geochemical imprint. Klimchouk (2007) defines hypogenic speleogenesis as “the formaKon of caves by 80 

water that recharges the soluble formaKon from below, driven by hydrostaKc pressure or other sources 81 

of energy, independent of recharge from the overlying or immediately adjacent surface”. Palmer (2000) 82 

gives a broader definiKon: “hypogenic speleogenesis involves water in which the aggressiveness has 83 

been produced at depth beneath the surface, independent of surface or soil CO2 or other near-surface 84 

acid sources”, or “involves epigenic acids rejuvenated by deep-seated processes” (Palmer, 1991). 85 

According to Klimchouk’s definiKon flank margin caves created by the mixing of saline and fresh water 86 

in coastal sexngs would not be truly hypogenic, nor would the caves formed by oxidaKon of sulfides 87 

by descending waters, as in both cases there is no exclusively rising flow involved. Palmer’s definiKon 88 

works well in most rocks, whereas Klimchouk’s vision is based more on hydrological concepts rather 89 

than on the chemistry involved. 90 

An increasing body of evidence suggests that many caves formed by hypogenic processes, implying the 91 

upward recharge from a deep route rather than epigenic input (Klimchouk, 2007), or the formaKon of 92 

renewed aggressivity at depth (Palmer, 2000). Generally, these rising fluids are rich in CO2 and/or H2S, 93 

and can be sourced from deep hydrothermal acKvity (De Waele & GuKérrez, 2022).  94 

Flank margin caves (FMC) are dissoluKon caves in carbonate rocks developing along many coastal karst 95 

areas. They are characterized by morphological indicators of diffuse flow, such as cupolas, smooth 96 

ceiling channels, thin rock parKngs, random connecKon between adjacent rooms, and spongework 97 

morphologies (Klimchouk et al., 2014). Following Palmer’s definiKon these can be classified as 98 

hypogene karst, since diffusely flowing water acquires its aggressivity by mixing of different fluids, 99 

below the surface, isolated from direct hydrologic connecKon with surface hydrology (Mylroie & 100 

Mylroie, 2009). FMC form by mixing dissoluKon processes in the distal margin of the freshwater lens, 101 

under the flank of the enclosing landmass (Mylroie & Carew, 1990), and by the producKon (or arrival) 102 

of CO2 and/or H2S from both more or less distant surface and/or deep sources (BoRrell et al., 1993; 103 

Gulley et al., 2015; Gázquez et al., 2020; Breithaupt et al., 2022). Their development is controlled by 104 

the posiKon of the fresh water lens, which in turn, is connected to sea-level elevaKon (Fratesi, 2013; 105 

Mylroie, 2013). 106 
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FMC were iniKally described from diageneKcally immature young carbonate coasts such as those 107 

occurring in the Bahamas (Mylroie & Carew, 1990). The high primary porosity of these rocks favors 108 

diffuse flow and the formaKon of irregular globular rooms, dead-end passages, and phreaKc slow-flow 109 

morphologies (spongework). FMC also develop in diageneKcally more mature and crystalline carbonate 110 

rocks, and water flow is guided mainly by the most permeable pathways, determined by joints, faults, 111 

and bedding planes (Mylroie et al., 2008; Otoničar et al., 2010; Mylroie & Mylroie, 2013; Ruggieri & De 112 

Waele, 2014; D’Angeli et al., 2015). Morphologies of cave passages indicate slow flow condiKons (e.g., 113 

absence of scallops), and most sediments are autogenic (absence or very scarce presence of allogenic 114 

deposits).  115 

We describe three cave systems in the Syracuse area eastern Sicily, with disKnct morphologies 116 

indicaKve of rising flow, sea-level sKllstands, and upwelling CO2. The aim is to understand their 117 

relaKonships with the marine terraces, their relaKve age, and their speleogeneKc framework. 118 

 119 

Synthesis of previous works in Sicilian hypogenic caves 120 

The hypogenic caves of Sicily have been the subject of several publicaKons by the authors of this arKcle. 121 

These papers were synthesized in VaRano et al. (2017). Acqua Fitusa (San Giovanni Gemini, Agrigento 122 

province) and Acqua MinKna (Butera, CaltaniseRa province) caves are outstanding examples of sulfuric 123 

acid speleogenesis (VaRano et al., 2012; De Waele et al., 2016; Lugli et al., 2017; D’Angeli, 2019; 124 

D’Angeli et al., 2019a); Eremita and Cocci caves (Mt. Inici, Castellammare del Golfo, Trapani province) 125 

owe their origin to rising hydrothermal flow (VaRano et al., 2012; Audra et al., 2012; Di Maggio et al., 126 

2012; VaRano et al., 2013a; De Waele et al., 2014). Monte Kronio System is sKll acKvely evolving 127 

through thermal vapor (VaRano et al., 2013b; Badino & Torelli, 2014; Di Piazza et al., 2017; Vattano et 128 

al., 2017). Vento shao (Abisso del Vento, Isnello, Palermo province), which is also probably a hypogenic 129 

cave (VaRano et al., 2017) has typical red residual material (Aricò & VaRano, 2007). Personaggi Cave 130 

displays the typical Morphologic suite of rising flow (MSRF), sensu Klimchouk (2007, 2009), with a maze 131 

paRern, feeders, rising channels, cupolas, etc. (Audra et al., 2015; VaRano et al., 2015). Most caves 132 

show late stages of significant passage enlargement and reshaping through condensaKon-corrosion 133 

ooen related to sulfuric processes and/or the presence of strong thermal gradients. In addiKon, the 134 

presence of bat colonies and guano strongly enhance condensaKon-corrosion and cave expansion 135 

(Cailhol et al., 2019; Audra et al., 2021). Guano decay produces a large variety of minerals, mainly 136 

phosphates and secondary sulfates such as gypsum (Audra et al., 2019), with a special mineralogy in 137 

salt-water influenced FMCs (Onac et al., 2001). Sulfate minerals from sulfuric speleogenesis have been 138 

widely invesKgated, making it possible to date speleogenesis phases, to determine uplio rates, and to 139 

analyze geomorphic evoluKon (Polyak et al., 1998; Piccini et al., 2015, D'Angeli, 2019; D'Angeli et al., 140 

2018, 2019b; Polyak et al., 2022; Temovksi et al., 2023; De Waele et al., 2024). Among the Sicilian caves, 141 
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those from the Syracuse area were the least invesKgated hypogenic caves, with the excepKon of one 142 

cave menKoned in VaRano et al. (2017). As background, the caves of this area are described as 143 

speleological objects in a detailed study by the Centro Ibleo di Ricerche Speleo-Idrologiche (CIRS) 144 

(Ruggieri & Amore, 2000; Ruggieri & Zocco, 2000; Ruggieri et al., 2000). 145 

 146 

Syracuse caves 147 

Most of the caves in the Syracuse area develop in Miocene calcarenites and appear to be correlated 148 

with Pleistocene marine terraces. These caves feature a subhorizontal maze paRern interspersed with 149 

a few short verKcal tracts, both constrained by the fracture network and lithologic differences. 150 

Furthermore, they are not directly linked to surface water infiltraKon or rapid flow, and do not contain 151 

corresponding fluvial sediments. On the contrary, these caves display phreaKc morphologies typical of 152 

slow upward flows, and wall features associated with CO2 degassing. For these reasons, they resemble 153 

hypogenic caves, and the context suggests that they could be abandoned Flank Margin Caves (FMC) 154 

associated with the former mixing of fresh and salt waters draining surface flow towards ancient sea 155 

levels evidenced by marine terraces. In this arKcle, we study the geologic and geomorphologic sexng 156 

of the karsKfied calcarenites of the Syracuse area subject to strong uplio, as well as the morphology 157 

and sediments of these atypical caves, in order to deduce the types of speleogenesis and the sexng in 158 

which they may have formed. 159 

 160 

GEOLOGY 161 

Sicilian structural se]ng 162 

Sicily lies in the convergence zone of the African and Eurasian plates, one of the most acKve zones in 163 

the Mediterranean. While most of the island belongs to the Eurasian plate, represented by the south-164 

verging nappe stacks of the Sicilo-Maghrebian chain, to the SE the Hyblean Plateau belongs to the 165 

Pelagian Block, or Malta Pla|orm (LenKni & Carbone, 2014), the northernmost emergent part of the 166 

African foreland plate (Fig. 1A). The load of the SE-verging Sicilian thrust belt flexed this foreland, 167 

leading to subsidence and sedimentaKon. The collision with Northern Sicily began in the Lower 168 

Miocene, leading to the progressive uplio of the Hyblean Plateau. During the Pleistocene, this uplio 169 

became more pronounced, with the Plateau Klted to the SE, then fragmented by NW-SE subsident 170 

basins (Pavano et al., 2022). Uplio accelerated during the Middle Pleistocene, resulKng in NNW-SSE 171 

faulKng along the eastern coast (i.e., Avola fault). This coastline is thus bounded by acKve normal faults, 172 

extending offshore through the Hyblean-Maltese escarpment, and culminaKng in the Siculo-Calabrian 173 

Rio Zone, whose current extension rate reaches 3.6 mm yr-1 (Catalano et al., 2010). This acKve zone is 174 

responsible for numerous destrucKve historical earthquakes and tsunamis, as well as for the intense 175 

acKvity of Mount Etna (De MarKni et al., 2012). 176 
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 177 

 178 

 179 
Fig. 1. Geologic sexng. A) Sicilian plate tectonic map. The red arrow shows the study area (Modified 180 

from Catalano et al., 2010). B) StraKgraphic-structural scheme of the Hyblean plateau (Distefano et al., 181 

2021, adapted from LenKni & Carbone, 2014). The red frame indicates the study area shown in Figure 182 

2. 183 

 184 

Geologic structure of the Syracuse area 185 

The study area is located at the eastern foot of the Hyblean Plateau bordering the Ionian Sea (Fig. 1). 186 

The Augusta and Floridia basins correspond to Pleistocene grabens, bounded by NW-SE normal faults 187 

(MonK ClimiK Fault, N. and S. Syracuse Faults, Spinagallo Fault; Fig. 2). These basins are separated by 188 

horsts: to the N the MonK ClimiK - Belvedere - Santa Panagia horst, forming an isthmus of the Hyblean 189 

carbonate plateau Klted to the ESE, and to the S. beyond the Floridia basin is the Canicaxni-Cassibile 190 

horst (Catalano et al., 2010). The laRer borders the coastal plain and is bounded to the SE by the Avola 191 

Fault (shown in Figure 1B). The NW-SE faults delimiKng the basins were acKve in the Plio-Pleistocene 192 

before about 400 ka ago, forming escarpments, 170 m high and degraded by erosion for the E. ClimiK 193 

Fault, 300 m for the W. ClimiK Fault, and 150 m for the Spinagallo Fault (Catalano et al., 2010). On the 194 

other hand, the NE-SW Avola Fault, which borders the coastal plain with a "fresh" escarpment up to 195 

290 m high displaying trapezoidal facets, indicates more recent acKvity, mostly post-daKng 400 ka. The 196 

Avola Fault is associated with the offshore acKvity of the Malta escarpment parallel to the coastline, 197 

epicenter of the destrucKve 1693 earthquake (M7) (Piatanesi & TinK, 1998; Bianca et al., 1999). 198 

 199 
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 200 
Fig. 2. Geologic map of the Syracuse area with the 3 studied caves (large red triangle) and 2 menKoned 201 

caves (small triangles). Colored areas show lithologic outcrops; hatchings show marine terraces with 202 

corresponding Marine Isotope Stage (MIS) and their age in thousands of years (ka). Rose diagrams 203 

correspond to the fracture frequency measured in caves and are shown close to the corresponding 204 

caves. Profile to the NW is shown on Figure 3. Geology aoer Grasso et al. (1987); marine terraces aoer 205 

Catalano et al. (2010), Pavano et al. (2019). 206 

 207 

 208 
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  209 
Fig. 3. Geologic profile showing the Miocene sediments at the foot of MonK ClimiK (modified from 210 

LenKni & Carbone, 2014). Same keys as in Figure 2. The profile locaKon is shown in Figure 2. Scrivilleri 211 

cave extension is shown in red. 212 

 213 

Lithology 214 

The Hyblean Plateau corresponds to the emerged part of the foreland domain. It comprises the Meso-215 

Cenozoic sedimentary cover of the African margin, starKng with Triassic rocks encountered only in 216 

boreholes (LenKni & Carbone, 2014). In the eastern Hyblean area, Upper Cretaceous volcano-217 

sedimentary deposits outcrop, followed by Cretaceous-Oligocene pla|orm and margin carbonates, and 218 

by an Oligo-Miocene lagoonal carbonate sequence ending in Tortonian volcanics (Figs. 1, 2, 3). This last 219 

carbonate sequence, the MonK ClimiK Fm. (Mc in Figures 2 and 3), in which the studied caves are 220 

located, is over 300 m thick. It consists of the Melilli Member at the base, which is a white calcarenite 221 

that becomes more marly at the top, followed by the Syracuse Limestone Member, an algal calcarenite 222 

with bryozoans and echinoderms. The sequence conKnues through the Tortonian limestones with the 223 

first signs of volcanic rocks and ends in the Lower Messinian with the marly-limestone of the Monte 224 

Carrubba Fm. The area emerged during the Messinian Salinity Crisis, and remained in conKnental 225 

condiKons during the Pliocene lacking deposiKon of the blue marine marls of the Trubi Fm. Only the 226 

basins, formed by verKcal movements in the Upper Pliocene, were filled with Quaternary deposits, 227 

mainly composed of calcarenites and marine silts. 228 

 229 

Series of marine terraces 230 

Due to the strong and conKnuous regional uplio of the eastern Hyblean coastline (Antonioli et al., 231 

2006), the posiKon of past sea levels has been recorded by a series of stepped marine terraces, making 232 

Sicily an excepKonal model for quanKfying Quaternary uplio rates. The highest terrace, Klted and now 233 

perched between 450 and over 600 m in alKtude, is considered to be a wavecut pla|orm. 234 

In the Syracuse area, as on the enKre Sicilian east coast and as far as Calabria, the marine terraces are 235 

well-marked in the form of gently sloping abrasion pla|orms delimited landward by paleo-cliffs that 236 
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are clearly visible in the landscape, or by stacked notches along fault escarpments, as in the Spinagallo 237 

Cave. Overall, the maximum uplio is recorded further NE of Sicily, on the northern Kp of Mount Etna, 238 

notably by the MIS 5 terraces (Antonioli et al., 2006; Bonforte et al., 2015; Pavano et al., 2019; Meschis 239 

et al., 2020). Uplio tends to decrease towards the South, reaching stability around Capo Passero at the 240 

SE Kp of Sicily.  241 

Early work at the foot of the MonK ClimiK and in the Quaternary Floridia basin established a relaKve 242 

chronology of marine terraces on the Syracuse isthmus (Carbone et al., 1982 ; Di Grande & Raimondo, 243 

1982). Subsequent studies used Electron Spin Resonance (ESR), Amino Acid RacemizaKon 244 

(AAR)/Isoleucine EpimerizaKon (IE), radiocarbon (14C), and U-series (U/Th) daKng, on various materials 245 

including paleontological remains, marine and fluvial sediments, and submerged speleothems (data 246 

and discussion in Bada et al., 1991; Bianca et al., 1999; Marziano & Chilardi, 2005; Antonioli et al., 2006; 247 

Scicchitano et al., 2008; DuRon et al., 2009; Catalano et al., 2010; Spampinato et al., 2011; Bonfiglio et 248 

al., 2022; Meschis et al., 2022). The main dated landmarks are located between 30 and 130 m above 249 

sea level: 250 

- the shoreline of Contrada Fusco, W of the city of Syracuse at +32 m, dated by ESR at 115 ka and 251 

aRributed to MIS 5.3, at ca. 100 ka; 252 

- the Coste di Gigia, at +34 m, at the foot of Melilli, paleontologically dated by IE at 200 ±40 ka. 253 

- The MIS 5 terrace, characterized by the fossil markers of Strombus bubonius, located at about +90 254 

to +100 m in the area studied;  255 

- the Spinagallo cave, between +120 and +130 m, on a notch of the Avola fault scarp at the intersecKon 256 

with the Spinagallo fault, which forms the SW border of the Floridia basin. This cave is famous for its 257 

dwarf elephant remains, partly responsible for the origin of the Cyclops legend, and elephant teeth 258 

were dated by IE at 455 ±90 ka. The cave appears thus related to MIS 13 at 520 ka. 259 

The ages of the other marine terraces are calculated by interpolaKon/extrapolaKon from this limited 260 

panel of absolute ages, whose quality and interpretaKon remain controversial, but whose technical 261 

assessment makes it possible to aRribute a certain robustness to the age models as a whole. 262 

For the Syracuse area, age models based on dated controls, yield by extrapolaKon uplio rates (in m ka-263 
1) on the order of 0.3 in the Floridia Basin, 0.6 at the foot of the MonK ClimiK, and 0.7 in the Augusta 264 

Basin (Catalano et al., 2010). These values are approximately doubled towards the interior of the 265 

plateau due to the eastward Klt (Pavano et al., 2022). The minimum value (0.3) is aRributed to regional 266 

uplio, the rest to posiKve movements of fault escarpments (Bianca et al., 1999). According to these 267 

authors, these uplio rates can vary slightly depending on the assignment of terraces to a given isotopic 268 

stage, the significance of the dated material (marine vs. conKnental), and the specificiKes of the daKng 269 

methods. However, they agree on the overall magnitude and on local variaKons (see discussions in 270 

Antonioli et al., 2006; Catalano et al., 2010; Pavano et al., 2022). 271 
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 272 

THE STUDIED CAVES  273 

Three caves were studied (Palombara, Scrivilleri, Monello), with entrances between 100 to 150 m 274 

above present sea level, plus one cave (Spinagallo) from which we used published data. All are located 275 

in the calcarenites and algal calcirudites of the MonK ClimiK Fm., in the upper Syracuse Member 276 

(Burdigalian-Serravallian), on the horsts on either side of the Floridia basin. Their main data is shown 277 

in Table 1 and their locaKon in Figure 2. 278 

 279 

Table 1. LocaKon of the 3 studied sites and caves and other menKoned caves, with the alKtude of their 280 

entrances and of horizontal drains, ages calculated from age models and daKng. Speleometric data 281 

from the NaKonal Cadaster of Italian Caves [hRps://speleo.it/catastogroRe] and from the Sicilian 282 

Region [hRp://www.federazionespeleologicasiciliana.it/fsrs/catasto/catasto.html] 283 

 284 

Cave 

/surface 

site 

Speleological 

cadaster no. 

Depth 

(m) 

Length 

(m) 
Lat. (°) Long. (°) 

Alt. 

entrance 

(m) 

Alt. 

main 

drain(s) 

(m) 

Alt. of 

corresponding 

Terrace (m) 

MIS 

Age (ka) 

from Age 

model 

[Catalano et 

al., 2010] 

Age (ka) 

[this study, or 

ref.] 

Palombara 7001SI-SR -80 700 37.106288 15.194233 143 100 110 (Eurialo) 7.3/7.5 240 
>780 

(paléomag.) 

Paleo-cliff    37.106443 15.189533   ≈ 140 (notch) 9.1 305 
603 +285/-91 

(U/Th) 

Scrivilleri 7003SI-SR -35 >2000 37.141278 15.159957 152 
120, 

140  
150-160 9.1 305 

<780 

(paléomag.) 

Spinagallo 7006SI-SR -15 30 37.003367 15.181433 125 125 125 13 
520 [Pavano 

et al., 2022] 

455 ±90 

(U/Th) 

[Pavano et al., 

2022] 

Monello 7007SI-SR ≈ -40 200 37.017974 15.165145 100 
90, 77, 

60 
90 9.3 

330 [Pavano 

et al., 2022] 

<780 

(paléomag.) 

Chiusazza 7004SI-SR ≈ -15 190 37.026338 15.159486° 107 90 90 9.3 
330 [Pavano 

et al., 2022] 
 

 285 

The Palombara Cave (cave register no. 7001SI-SR) is accessed at an alKtude of 143 m, on a marine 286 

terrace. Its age varies according to whether it is assigned to MIS 7.5 (240 ka) (Bianca et al., 1999) or 287 

MIS 9.1 (305 ka) (Catalano et al., 2010). This is the deepest cave in the Syracuse area (-80 m), with a 288 

total length of 700 m (Ruggieri et al., 2000). It mainly consists of a main passage, which branches off 289 

near the end. The cave opens through a verKcal collapse shao leading to an inclined gallery, followed 290 

by a series of narrow horizontal tubes and rios at around 100m a.s.l., which finally open onto an internal 291 

shao. Its sloping floor leads to the "Vase Chamber", named aoer a calcified ceramic, leo under a guRer 292 
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by Neolithic people. This chamber corresponds to the lowest point of the cave at -80 m, at the boRom 293 

of a U-loop. A slippery slide leads up, back to the horizontal level at 100 m, then to the Guano Chamber, 294 

home to a large colony of bats. From here, two horizontal branches diverge at the same alKtude. Three 295 

20-m-deep shaos open along the Geode Branch. 296 

 297 

 298 
Fig. 4. Survey of Palombara Cave (redrawn aoer Ruggieri et al., 2000). Rose diagram, sampling sites, 299 

and hypogenic flow indicators are shown. 300 

 301 

 302 

The Scrivilleri Cave (cave register no. 7003 SI-SR) is entered through an ancient arKficial shao near the 303 

homonymous Masseria (Farmhouse), at the foot of MonK ClimiK horst, 152 m a.s.l. It is located on a 304 

marine abrasion pla|orm, in the northern extension of the terrace aRributed to MIS 9, with an age of 305 

around 300 ka. It develops close to the base of the upper Syracuse Member (Fig. 3). The entrance part 306 

has been known for ages for its iniKal parts. It has been considerably extended since 1992, to become 307 

the longest cave on the Hyblean Plateau, with over 2 km of length, for a depth of 35 m (Arena et al., 308 

2013). It is characterized by a maze paRern, dominated by long and high NW-SE and WSW-ENE fractures 309 

and connected by narrow sinuous conduits following the dip (Fig. 5). 310 

 311 

 312 
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313 

 314 

Fig. 5. Survey of Scrivilleri Cave. Plan view redrawn aoer Arena et al. (2013), profile courtesy of G. 315 

Spitaleri and G. Guidice. Rose diagram, sampling sites, and hypogenic flow indicators are shown. 316 

 317 

The Monello Cave (cave register no. 7007 SI-SR) is entered at an alKtude of 100 m a.s.l., on the southern 318 

edge of the Floridia basin, close to the NW-SE Spinagallo fault escarpment, which bounds the 319 

Canicaxni-Cassibile horst further south, and at the mouth of a canyon descending from the plateau. It 320 

is located on a marine abrasion pla|orm aRributed to MIS 9, with an esKmated age of around 330 ka. 321 

The cave is 200 m long and around 40 m deep. It is mainly made up of horizontal passages at different 322 

alKtudes, arranged as staircases (Fig. 6). The passages are widened into a room close to the entrance, 323 

followed by high and narrow passages along fractures, before turning to a tube-like profile in the gallery 324 

at -25 m. To the South, a series of shaos along fractures leads to the lowest point at about -40 m 325 

(Ruggieri & Amore, 2000). 326 

 327 
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 328 

Fig. 6. Survey of Monello Cave (redrawn aoer Ruggieri & Amore, 2000). Rose diagram, sampling sites, 329 

and hypogenic flow indicators are shown. 330 

 331 

SEDIMENT PROFILES AND SAMPLES 332 

Palombara Cave 333 

All sampling sites are located on Fig. 4 and are described from the entrance. AnalyKc results are 334 

summarized in Tables 2, 3, and 4. 335 

Sampling site PA.26 is located in a labyrinthic zone along the trend of the inclined entrance gallery. The 336 

secKon consists of a white layer, several cm-thick (not sampled) covered with a black layer with some 337 

thin white laminaKons, with bat guano sprinkled on top (Fig. 7A). 338 

P.1-4 sampling site is located on top of the shao opening to the Vase Chamber. It consists in a colored, 339 

laminated, fine fluvial sequence. From boRom to top, 6 levels can be visually differenKated (Fig. 7B). 340 

BoRom: grains of homogeneous light-colored sand from calcarenite bedrock disaggregaKon (not 341 

sampled); P.4: beige laminated clay deposit; P.3: black laminated clay deposit; P.2 : whiKsh laminated 342 

clay deposit; P.1: orange laminated clay; P.0: old, soo guano. 343 

Sample PA.20 is located shortly beyond the low point at -80 at the start of the climb, on the right-344 

hand side of the wall. It is a sample of the bedrock, including bubble trails. 345 

Sample site PA.21-25 consists of two laterally connected bodies, in the horizontal passage between the 346 

top of the Slide and the Guano Chamber (Fig. 7C). PA.21-22 is located 2 m down on the right, in a feeder, 347 

on the leo wall. PA. 23-25 is located at the mouth of the feeder where it intersects the horizontal 348 
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passage. There are 4 main layers of contrasKng color, resKng on the rocky base. From boRom to top: a 349 

laminated red clay more than 30 cm thick (PA.21-22); an aerated white sand with a few black beds 350 

(PA.24); a mulKcolored black-white-orange clay layer (not sampled here), very similar to P.1-4 described 351 

above; a thick, old, soo guano deposit (PA.25); a thin purple crust locally covering the edge of the old 352 

guano (PA.23). White disaggregaKon sand is sprinkled over everything. 353 

 354 

Palombara marine cliff 355 

Palombara Cave is located on a promontory-shaped marine abrasion pla|orm aRributed to MIS 9, 356 

surrounded by a paleocliff of MIS 7 (Fig. 2). To the W, overlooking the Floridia basin, the marine notch 357 

of the paleocliff contains cemented veneers of allogenic, transported gravels and carbonate sands, both 358 

with shell debris, however without any foraminifers (Fig. 7D). A small tube-shaped conduit at the base 359 

of the notch represents an ancient liRoral spring and contains limestone pebbles over 10 cm long. 360 

 361 

362 
Fig. 7. Sediments in Palombara Cave, with locaKon on Fig. 4. A) SecKon and sample PA.26 (photo. M. 363 

VaRano). B) Sample site P.1-4 (photo. Ph. Audra). C) StraKgraphy of sampling site for PA.21-25, the 364 

white squares indicate a possible inverse magneKc orientaKon (photo. M. VaRano). D) Paleocliff of MIS 365 

7 surrounding the marine terrace of MIS 9 at Palombara located above, with MonK ClimiK in the 366 

background. Insets: liRoral shell deposits, consisKng of carbonate sands (top) and allogenic gravels 367 

(boRom) (photo Ph. Audra). 368 

 369 

Scrivilleri Cave and Quarry 370 

In addiKon to Scrivilleri Cave (samples marked SC and located on Figure 5), the nearby quarry showed 371 

evidence of karsKficaKon, with sediment-filled channels (samples marked SQ for Scrivilleri Quarry). 372 

SC.6 is located in the First Fracture, along the leo wall. It is a rock sample close to a bubble trail. 373 

SC.1-4 is located in a deep side passage of the First Fissure chamber. This 25-cm-thick sequence rests 374 

on 3 cm of weathered rock, made of loose grains of calcarenite (not sampled) (Fig. 8A). SC1-2 is a brown 375 

laminated clay at the base of the sequence. It is covered by several layers of clay, lime sand or a mixture 376 
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of the two (not sampled). SC.4 is a thin black layer of old guano which has been altered into phosphate 377 

minerals. SC.3 is again a thick layer of lime sand. The surface is covered by a dusKng of lime sand from 378 

the disintegraKon of the overlying wall, and guano. 379 

A nearby quarry to the N of Scrivilleri Cave exposes karst features, mainly spongy vugs and channels 380 

filled with sediments. The S part of the quarry face is doRed with highly altered spongy voids where 381 

the walls of the conduits can be disKnguished aoer removal of sediment consisKng in thick white calcite 382 

layers interbedded in sandy-clay deposits. 383 

SQ.1-2 is located on the N quarry face, at the foot of the first terrace (Fig. 8B). A void is filled by a layer 384 

of calcite spar (SQ.1), resKng on the weathered substrate, and covered by a thick black indurated layer 385 

(SQ.2). The whole package is covered by a hardened platy lime layer (not sampled). 386 

SQ.3-4 is located in the middle of the first quarry face, on the W side. A former conduit along a fracture 387 

is filled by a layer of brown-black clay (not sampled), topped by loose lime sands (SQ.3), then by highly 388 

indurated lime silts (SQ.4) (Fig. 8C). SQ.8 basal calcite is in the same straKgraphic posiKon as SQ.1, filling 389 

the lower part of tubes. 390 

 391 

 392 
Fig. 8. Sediments in Scrivilleri Cave and Quarry. A) StraKgraphy of SC.1-4 profile, located on Figure 5. 393 

The black squares indicate a normal magneKc orientaKon. The view is 20 cm high (photo D. Cailhol). B) 394 

StraKgraphy of SQ.1-2 profile. The image shows a sequence approximately 20 cm thick (photo Ph. 395 

Audra). C) StraKgraphy of SQ.3-4 profile. The image shows a sequence approximately 50 cm thick 396 

(photo Ph. Audra) 397 

 398 

Monello Cave 399 

The upper level of the cave contains mainly breakdowns covered with flowstone. In the entrance of the 400 

southern series, laminated lime sand about 50 cm-thick, is covered with a 30-cm-thick white calcite 401 

flowstone. In the deepest part aoer the shaos, when entering the gallery to the right, the MO.1-3 fluvial 402 

sequence was sampled (Fig. 9A). From the boRom to top, it consists of: loose coarse lime sand from 403 

calcarenite disaggregaKon (not sampled); a 5-cm-thick layer of brown plasKc clay (MO.1-2); a mixture 404 
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of well-laminated clay and lime sand (not sampled); a 2-3 cm thick flowstone (not sampled); a series of 405 

laminated clays about 10 cm thick (not sampled); ending with about 5 cm of very compact lime silts 406 

(MO. 3). All these layers are finely laminated.  407 

Various types of calcite were sampled (Fig. 9B, 9C). MO.12 is a vein of symmetric calcite from a fault on 408 

the roof of the gallery with numerous feeders. MO.13 is flowstone covered with lime sand, and brown 409 

clay or guano. MO.15 is a calcite vein on the wall from the first room, close to the path. 410 

 411 

 412 
Fig. 9. Sediments in Monello Cave, with locaKon on Figure 6. A) StraKgraphy of MO.1-3 profile. The 413 

image shows a sequence approximately 50 cm thick. The black squares indicate a normal magneKc 414 

orientaKon (photo D. Cailhol). B) MO.13 flowstone covered with lime sand and brown material (clay or 415 

guano) (photo M. VaRano). C) MO.15 symmetric calcite vein cut by the cave passage (photo M. 416 

VaRano). 417 

 418 

METHODS 419 

Cave sediments were sampled for mineralogical analysis. Samples were analysed by X-ray powder 420 

diffracKon (XRPD) on a Philips diffractometers (40 kV and 20 mA, CoKα radiaKon, Graphite filter) at the 421 

CEREGE – CNRS, Aix-Marseille University, France. Carbonate content was calculated by decarbonaKon 422 

aoer HCl treatment. A carbonate sandy deposit attached to the coastal notch of the Palombara marine 423 

terrace was sampled for U/Th dating at the Institute for Global Environmental Change, University of 424 

Xi’an Jiaotong, China. AcKvity raKos were determined using a NU Plasma MC-ICP-MS following the 425 

procedure of Cheng et al. (2013). For paleomagneKsm of clasKc sediments, the magneKc remanence 426 

was invesKgated with alternaKng field (AF) demagneKzaKon in the paleomagneKc laboratory at the 427 

University of Montpellier, France (for details see Montheil et al., 2023). Measurements of carbon and 428 

oxygen stable isotope composiKon of carbonates were carried out at the University of Almeria, Spain 429 

(for details see Gázquez et al., 2018) and at the InsKtute for Nuclear Research (ATOMKI) in Debrecen, 430 

Hungary. The analyses at ATOMKI were done on an automated GASBENCH II sample preparaKon device 431 

aRached to a Thermo Finnigan DeltaPLUS XP isotope raKo mass spectrometer. The results are reported 432 
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as δ13C and δ18O values relaKve to Vienna Pee-Dee Belemnite (VPDB). AnalyKcal precision was ±0.08 433 

‰ for both. 434 

 435 

RESULTS 436 

Microscopic descripAon 437 

Lime sands were examined under an opKcal microscope and compared with the host calcarenite. The 438 

MonK ClimiK calcarenite (PA20) was sampled along the cave wall. It is a grain-supported calcarenite 439 

with foraminifers, echinoderms, and bryozoans allochems. The outer surface shows corrosion of the 440 

small crystals of the matrix, leaving coarse grains in relief. All lime sands are almost exclusively 441 

composed of carbonates (from 93 to more than 99%) (Tab. 2). They are made of coarse grains of 442 

transparent calcite (SQ.3 = 200-500 µm; SQ. 4 = 100-300 µm), with angular clasts (SC.3, SQ.4, MO.3). 443 

In these coarse samples, we systemaKcally find stalks of crinoids (SC.3, PA.24, Fig. 10). These two 444 

samples do not show any layered structure, the grains have not been transported. Other samples of 445 

finer grain size (SQ.4) may show slight rounding of the grains (SQ.3) and clear laminaKon (SQ.4), 446 

resulKng from a very short transport before deposiKon. Sample MO.3 has the finest parKcle size (5 µm) 447 

corresponding to sorKng then deposiKon by very slow flows, such as in decantaKon basins or overbank 448 

deposits. The samples that are not completely composed of carbonates (SC.3) are accompanied by a 449 

minor detrital assemblage (clay, Fe oxides, quartz, feldspars, etc.). SC.3 also shows an alteraKon, with 450 

corrosion of the grains in the form of sharpened edges of crystals and corrosion pits. Some grains are 451 

covered with a thin brown coaKng, probably Fe oxides. 452 

The hard black layer of the Scrivilleri Quarry pockets (SQ.2) consists of a fine black matrix. Hollow 453 

crinoid tubes can also be observed (300 µm–2 mm), coated by secondary calcite crystals that appear 454 

in relief, together with fibrous filaments (some µm, up to 50 µm). 455 

 456 
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 457 
Fig. 10. Lime sand. Angular calcite grains resulKng from disaggregaKon of the calcarenite walls through 458 

condensaKon-corrosion processes (PA.24 sample). Crinoid bioclasts are indicated by arrows. Black dots 459 

are bat guano parKcles. The image is 3 cm wide. 460 

 461 

Mineralogical determinaAon by XRPD 462 

The results of mineralogical analysis by X-ray powder diffracKon (XRPD) are summarized in Table 2. 463 

Several samples contain phosphates derived from the mineralizaKon of bat guano. Common 464 

phosphates such as hydroxylapaKte and fluorapaKte result from interacKon with the carbonate host 465 

rock. Taranakite, a potassium-aluminum phosphate found at Palombara, results from the reacKon 466 

between acidic guano leachates and allogenic clasKc sediments, notably clay (Audra et al., 2019). 467 

Robertsite is a manganese phosphate. Mn is present also in Palombara as an oxide, todorokite. The 468 

goethite present at Scrivilleri also results from the alteraKon of clasKc sediments by acid guano 469 

leachates. 470 

The second group of minerals is of clasKc origin, with quartz, mica (muscovite) and Ktanium oxide 471 

(anatase). These minerals are not present in the host rock, and come from allogenic contribuKons 472 

carried into caves by runoff and deposited by decantaKon in the form of fine laminated sediments. 473 

Clays such as kaolinite and montmorillonite are partly derived from the alteraKon of these fluvial 474 

sediments by guano-derived acids (Audra et al., 2021). 475 

 476 

Table 2. Mineralogical composiKon of cave sediments. (*) : published in Audra et al. (2019) 477 

Sample no. Cave Observation CaCO3 (%) XRPD 
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SC.3 Scrivilleri Weathering sand on top 93% 

Goethite, kaolinite, anatase, 

quartz, montmorillonite, 

muscovite 

SC.4 * Scrivilleri Black guano layer  

Calcite, carbonate 

fluorapatite, kaolinite, quartz, 

goethite 

SQ.2 Scrivilleri Quarry 
FeOx 

 

Strong 

effervescence 

to HCl 

Quartz, goethite 

SQ.3 Scrivilleri Quarry Carbonate sand 97.5%  

SQ.4 Scrivilleri Quarry Fine hardened silt >99% No residue 

P.1 Palombara Irregular yellowish laminae  Kaolinite, quartz 

P.2 Palombara Thin dark yellow laminae  Kaolinite, quartz 

P.3 Palombara 
Grey laminas (some on yellow 

material) 
 Quartz, kaolinite 

P.4 Palombara Thin light hazel laminae  Quartz, kaolinite 

PA.23 * Palombara Violet crust, phosphate  Hydroxylapatite, robertsite 

PA.24 Palombara White carbonate sand >99%  

PA.26 Palombara Black laminae  Calcite, kaolinite, todorokite  

MO.3 Monello White compact “clay” on top >99%  

 478 

Radiometric daAng of calcite (U/Th) 479 

The U/Th-dated calcitic sandy deposit of the coastal notch younger than the Palombara marine terrace 480 

yielded an age of 603 ka (+285/-91), i.e. between 513 and 889 ka. The carbonate sand had a high 238U 481 

concentration (1.3 ppm), however the 230Th/232Th atomic ratio is moderate, suggesting some detrital 482 

contamination (Table S1). Open system conditions for part of the calcite might have occurred, but the 483 

calcite grains appeared to be mostly primary. Despite these possible limitations, the age can be 484 

considered a good estimate. However, the margin of error of ca. 180 ka remains relatively large. 485 

Consequently, considering that these marine terraces have to be attributed to high relative sea levels, 486 

this notch could correspond to MIS 17, or to one of the high levels between MIS 11 and 19. The 487 

Palombara terrace at the top of the cliff would correspond to an older stage, such as MIS 19 (761-790 488 

ka) or older. 489 

 490 

PaleomagneAsm of fluvial deposits 491 

PaleomagneKsm was measured for decanted clay layers located at the base of the fluvial sequences of 492 

the 3 studied caves, namely SC.1-2 (Scrivilleri), PA.21-22 (Palombara), and MO.1-2 (Monello). The most 493 

diagnosKc Zijderveld diagrams are shown in Figure 11, all diagrams are reported in the supplementary 494 

material (Fig. S1 to S4). The interpreted chronology in Table 3. SC.1-2 displays a remagneKzaKon of 495 
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undetermined origin, possibly an Isothermal Remanent MagneKzaKon (IRM) due to sampling or 496 

storage, but with a primary component of stable normal polarity. Polarity is definitely normal, therefore 497 

the sample is younger than 780 ka. PA.21-22 displays a strong remagneKzaKon in the normal field, and 498 

a component of reverse polarity at very low intensity appears at the end of demagneKzaKon. The 499 

polarity at the Kme of deposiKon is inverse, i.e. older than 780 ka, unless it corresponds to one of the 500 

geomagneKc excursions during the Brunhes Chron. MO.1-2 displays a weakly magneKzed, normal 501 

primary component, showing a normal polarity, and should therefore be younger than 780 ka. 502 

 503 

504 

Fig. 11. Zijderveld diagrams of an inverse sample (PA.21) and a normal sample (SC.2). All diagrams can 505 

be viewed in the supplementary material (Fig. S1). 506 

 507 

Table 3. PaleomagneKc polarity interpretaKon 508 

Sample 

no. 
Alt. (m) Polarity 

Age 

attribution 

(ka) 

SC.1-2 ≈ 125 m NORM. < 780 

PA.21-22 100 m Probably INV. > 780 

MO.1-2 ≈ 70 m Probably NORM. < 780 

 509 

Carbonate stable isotopes  510 

The stable isotopes of 13C and 18O have been measured on the following samples: calcite fibers along a 511 

fault (MO.12), calcite in a vein (MO.15), speleothems (SQ.1, MO13) and host rock (SC.6, SQ.5, PA.20). 512 

The results are summarized in Table 4 and are ploRed in Figure 12. 513 
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The secondary calcite samples have disKncKvely lower δ13C and δ18O values (-11.2 to -7.9‰ and -5.0 514 

to -3.4‰, respecKvely) compared to the calcarenite bedrock (-2.7 to 1.5‰ and -2.4 to 1.3‰, 515 

respecKvely). 516 

 517 

Table 4. Stable isotopes of carbonates (rock and calcite speleothems).  518 

Sample 

no. 
Cave / location Material 

Sample code 

(lab) 

δ13C  

(V-PDB) 

‰ 

δ18O  

(V-PDB) 

‰ 

SC.6 Scrivilleri Calcarenite (bedrock)  -2.3 -1.3 

SQ.1 Scrivilleri Quarry Thick basal calcite spar  -8.1 -3.5 

SQ.5 Scrivilleri Quarry Calcarenite (bedrock) SC12 -2.7 -2.4 

SQ.8 Scrivilleri Quarry Calcite flowstone SC11 -7.9 -3.4 

PA.20 Palombara Calcarenite (bedrock) PA20 (n=10) -1.5 -2.2 

MO.12 Monello Fault calcite SC8 -9.6 -4.0 

MO.13 Monello Calcite crust SC9 -11.2 -4.6 

MO.15 Monello Calcite vein SC10 -10.8 -5.0 

 519 

 520 

Fig. 12. Isotopic crossplot (δ18O vs. δ13C values) of carbonate host rock and calcite speleothems. 521 

 522 

Cave pacerns 523 

Plan views do not show the typical dendriKc paRerns corresponding to epigenic caves, with a 524 

downstream convergence of tributaries toward a main drain (Audra & Palmer, 2013). This might also 525 

be due to an exploraKonal bias, but recent speleological acKvity in all three caves, and our own 526 

fieldwork, do indicate that most explorable cave passages have indeed been surveyed. In contrast, 527 
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Palombara main drain diverges downstream (Fig. 4), Monello subdivides downstream into three 528 

branches (Fig. 6), and Scrivilleri develops into a labyrinth (Fig. 5). These paRerns are clearly constrained 529 

by local fracturing (Ruggieri & Amore, 2000; Ruggieri et al., 2000): the faults bordering the MonK 530 

ClimiK, the Floridia basin, and the Spinagallo and Avola faults, for Scrivilleri, Palombara, and Monello, 531 

respecKvely (Fig. 2). At the scale of the networks, dip has generally very liRle influence, with the 532 

excepKon of short segments of conduits. In Scrivilleri however, part of the cave paRern is controlled by 533 

bedding planes (Fig. 5). 534 

In profile, the paRerns are organized in horizontal segments connected by inclined or subverKcal 535 

segments. These horizontal segments cannot be considered as stages marking disKnct speleogeneKc 536 

phases, as they are linked by the non-horizontal segments, with apparent morphological conKnuity, 537 

such as in Monello. Although successive phases are probable (i.e. oscillaKng sea level), on the whole 538 

the paRerns can be considered monogeneKc, with only subsequent local phases of adjustment 539 

(collapses, sedimentaKon, etc.) leaving the general organizaKon. Horizontal levels can only be 540 

considered as privileged flow zones within a given alKtudinal range (Tab. 1). Only Palombara has an 541 

undeniable horizontal level 40 m below the surface at an alKtude of 100 m, marked by a series of 542 

characterisKc notches (see below); the entrance zone results from collapses connecKng at depth to the 543 

main drain, while the loop at -80 corresponds to a deep passage in the phreaKc zone, with the 544 

descending shaos also connected to this horizontal level. In addiKon, Scrivilleri paRern seems to be 545 

partly controlled by a Ker at about 140 m a.s.l. (Fig. 5). However, its complex maze paRern probably 546 

includes other types of control that remain to be invesKgated. 547 

 548 

Speleogens 549 

Speleogens are the features produced by dissoluKon of the host rock, which are characterisKc of their 550 

environment, especially the type of flow. In this study this mainly includes rising flow and late stage 551 

(bio)condensaKon-corrosion. 552 

Recharge features (feeders), visible as small subverKcal conduits, impenetrable at close range, are 553 

evidence of rather short but clearly ascending flows. They are grouped in series (Fig. 4, 5, 6), generally 554 

on one side of a fault-aligned gallery (Scrivilleri, Monello), at the base of a series of shaos (Palombara, 555 

Monello), extended into a ceiling channel (Scrivilleri) or in a chimney (Palombara), forming a typical 556 

Morphologic Suite of Rising Flow (MSRF; Klimchouk, 2007) (Fig. 13). 557 

 558 
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 559 

Fig. 13. Morphologic Suite of Rising Flow (MSRF) showing flow rising from depth from Kny feeders and 560 

converging toward a ceiling channel, while bubble trails form as the deep-seated water rises and loses 561 

CO2 (see Monello and Scrivilleri Caves). 562 

 563 

Bubble trails refer to rising soluKonal grooves developed on overhanging walls and caused by corrosive 564 

fluids or CO2 degassing bubbles under phreaKc condiKons as a result of a drop in pressure during the 565 

rise of deep-seated water carrying carbon dioxide in soluKon (Chiesa & ForK, 1987). They are typical of 566 

hypogenic caves (Audra et al., 2009a and references therein; López-Mar�nez et al., 2020). Bubble trails 567 

are present in all the studied caves, in deep zones near feeders or along major fractures (Figs. 4, 5, 6). 568 

These rising channels converge upwards in branching structures of increasing size, passing to ceiling 569 

channels, then to ceiling cupolas where the gas accumulates. They appear in the wall, in massive, 570 

unfractured rock (Figs. 13, 14). These morphologies resulKng from carbonic degassing from the rock 571 

mass, typical of porous rocks, have also been menKoned in Miocene calcarenites on the Mallorca island 572 

caves in Spain (Fornós et al., 2011). 573 

 574 
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 575 
Fig. 14. A) bubble trails from Monello Cave emerging from porous rock (1), leading to diffuse corrosion 576 

of the overhanging wall (2) and merging upward (3). B) Dense bubble trails emerging from porosity in 577 

First fracture wall in Scrivilleri Cave ; the largest one emerges from a small hole (1) (Photo. M. VaRano) 578 

 579 

When corrosion is renewed by significant aggressive input, such as sulfuric or carbonic acid, cave pools 580 

remain extremely corrosive. The aggressive water body causes lateral corrosion, which is visible as a 581 

notch with a flat top, corresponding to the surface of the pool (Audra et al., 2009b). These acid notches 582 

are different from watertable notches developed along calm rivers where small oscillaKons of the water 583 

table create half-ellipKcal cross-secKons. Acid notches are present in Monello, on a block detached 584 

from the ceiling (Figs. 6, 15), and in Palombara, in a side passage above the Vase Chamber shao (Fig. 585 

4). Both record the corresponding alKtudes of the water table, at around 90 m and 100 m, respecKvely. 586 

The laRer corresponds exactly to the horizontal level along which Palombara Cave extends. 587 

 588 
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  589 
Fig. 15. Notch with flat roof formed above a corrosive pool, Monello Cave. The block detached from 590 

the ceiling has slightly rotated and Klted the notch, which is no longer perfectly horizontal. Bubble 591 

trails, developing perpendicular to and above the notch, correspond to a previous phase with higher 592 

water table. The brown deposits are recent apaKte crusts resulKng from bat guano mineralizaKon 593 

(photo D. Cailhol). 594 

 595 

Aoer drainage, the caves changed from a phreaKc to an atmospheric environment. Few modificaKons 596 

occurred with original morphologies generally preserved, except in areas inhabited by large bat 597 

colonies and subject to biocorrosion. All caves show clear signs of late-stage condensaKon-corrosion 598 

and biocorrosion features. 599 

Small pockets associated with the iniKal phreaKc stage develop perpendicular to the walls, following 600 

the fracturing, if any (Fig. 16). In contrast, biocorrosion cupolas, linked to the condensaKon-corrosion 601 

process due to air circulaKon and the presence of bat colonies, develop verKcally upwards, 602 

independent of the fractures, in the form of hemispherical domes or cylindrical bell holes (Audra et al., 603 

2016, 2017; Barriquand et al., 2021). These bat-mediated features overprint earlier cupolas and 604 

pockets of phreaKc origin. 605 

 606 
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607 
Fig. 16. Ceiling pockets. A) PhreaKc pockets in Monello Cave, smaller in size and with main axis roughly 608 

perpendicular to the walls, i.e. not verKcal. B) Biogenic cupola in Guano Chamber, Palombara Cave. 609 

CondensaKon-corrosion process associated with the presence of a large bat colony creates verKcal 610 

upward development of large cupolas. Note large guano heap below the cupola (photos M. VaRano). 611 

 612 

In Palombara Cave, several chambers host bat colonies, which are responsible at least for the verKcal 613 

development of large cupolas (see above) (Fig. 17). In the last chamber, remnants of a series of water-614 

table notches and proto-conduits are visible on the walls of a dome-chamber. They are located at 100 615 

m a.s.l., at the same alKtude as the acidic notch with the flat ceiling above the Vase Chamber in the 616 

same cave (see Figure 4). However, the notches and proto-conduits in this last chamber have been cut 617 

and smoothed by condensaKon-corrosion due to the presence of a bat colony and a large guano pile. 618 

The chamber has been extended upwards to form a condensaKon dome, and laterally expanded by 619 

biocorrosion. 620 

 621 

 622 
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Fig. 17. Acid notches and protoconduits in Palombara Cave. Due to the presence of bat colonies the 623 

chamber expanded by biocorrosion, integrated the proto-conduits, and smoothed the notches. 624 

 625 

CondensaKon-corrosion processes, amplified by the presence of bats exhaling vapor and CO2, and by 626 

the mineralizaKon of guano, produce locally pronounced wall alteraKons (Barriquand et al., 2021). In 627 

Palombara, walls subjected to biocorrosion have retreated in some places by several cenKmeters, as 628 

shown by the insoluble phosphate crusts remaining in place. Angular blocks of a scree have been 629 

completely rounded by aggressive convecKons (Audra et al., 2016, 2017). Close to Monello, 630 

speleothems in Chiusazza Cave were heavily planed, intersecKng growth laminae. 631 

In this environment of soo calcarenites, the intergranular cement is easily dissolved, leading to the 632 

detachment of large calcite grains and the progressive disaggregaKon of the walls (Zupan-Hajna, 2003). 633 

The parKcles accumulate in deposits several cenKmeters thick, at the foot of the walls forming loose 634 

heaps (samples PA.24, base of profiles SC.1-4 and MO.1-3), or are reworked by local flows and 635 

accumulated in laminated deposits of more or less fine material, depending on the sorKng carried out 636 

during transport (samples SC.3, SQ.3-4, MO.3). These deposits are given the name “lime sands” in this 637 

publicaKon (Figs. 7B, 7C, 8, 10, 11, 13). 638 

CondensaKon water seeping down the ceiling is concentrated in drips from pendants. In the presence 639 

of bat colonies, the atmosphere is relaKvely concentrated in CO2 and H2S and condensaKon moisture 640 

may become highly corrosive. Acidic percolaKon literally drills the rocky ground and boulders with drip 641 

holes a few cenKmetres wide, but several tens of cenKmeters deep. The walls of these drip holes are 642 

smooth or corroded, perfectly cylindrical, tapering slightly downwards into an inverted cone. They 643 

illustrate the power of corrosive substances derived from guano (Audra et al., 2016), as do the drip 644 

holes of acKve hypogenic caves produced in ultra-acidic atmospheres derived from CO2 or H2S 645 

emanaKons (Plan et al., 2012; De Waele et al., 2016). In Monello, two main sites show a large density 646 

of drip holes (Figs. 6, 18, 19). The speleothems are cut, indicaKng a major change from oversaturaKon 647 

to aggressivity in the dripping water, possibly linked to a “recent” installaKon of the bat colony following 648 

the opening of the cave to the outside. However, the CO2 concentraKon in the atmosphere, measured 649 

during our surveys, is only 4300 ppm (i.e. 0.4%). When acid percolaKon hits a subverKcal wall, it 650 

corrodes a half-cylinder, here , 3-4 cm in diameter (Fig. 19B). The upper part of the drip holes is jagged, 651 

while the lower part is relaKvely smooth. When the boRom is occupied by water, it is shaped like a 652 

smooth hemispherical bowl. All indicaKons confirm that they are acKvely forming. The surface above 653 

the cave is covered with a rather disturbed Mediterranean scrubland vegetaKon, and soils are very thin, 654 

making present soil-derived acidity a minor contribuKon to drip water chemistry. The density and depth 655 

of these drip holes make Monello an excepKonal cave. 656 

 657 
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 658 
Fig. 18. Drip holes in Monello Cave acKvely developing through acid dripping due to the presence of 659 

bats. A) change in the chemistry of the dripping water, which became extremely corrosive and cuts a 660 

stalagmite dome. B) When the dripping water hits a subverKcal wall, it corrodes half-cylinders. C) The 661 

drip holes at the foot of the person are 70 cm deep and pierce the enKre limestone boulder (photos D. 662 

Cailhol (A-B), M. VaRano (C)). 663 

 664 

 665 

Fig. 19. Fragment of rock pierced by an acidic drip hole. A) lateral view of the sample cut verKcally 666 

showing half of the cylindrical drip hole, 3-4 cm in diameter. B) view from above. The 3D model can be 667 

viewed at hRps://sk�.ly/oUKHD 668 

 669 

DISCUSSION 670 

Cave sediments  671 

Sedimentological and mineralogical analyses revealed 4 types of sediment filling the caves. 672 

Hypogenic sediments are not common. At most, the basal level of calcite spar from Scrivilleri Quarry 673 

(SQ.1), overlain by a compact ferruginous level, might be considered hypogenic. The Monello calcite 674 

vein (MO.13) could also represent an iniKal hypogenic stage. Isotopic analyses did not show any specific 675 

signature, indicated the spar is similar to recent meteoric speleothems. The ferruginous layer of 676 

https://skfb.ly/oUKHD
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Scrivilleri Quarry (SQ.2) could also be a precipitate resulKng from the neutralizaKon of deep waters 677 

iniKally loaded with reduced iron. The manganese detected could also be associated with the same 678 

origin. 679 

Detrital allogenic sediments are derived from the surface, have been transported underground by 680 

disperse infiltraKon routes, and have accumulated at low levels by seRling down as finely laminated 681 

clay layers interbedded with lime sands (profiles P.1-4, PA.21-22, SC.1-2, SC.3, clay below SQ.3-4, MO.1-682 

2). The mineralogy of profile P.1-4 consists mainly of quartz and kaolinite. Kaolinite may be detrital and 683 

surface-derived like quartz, but may possibly be a secondary mineral resulKng from in-situ alteraKon 684 

of detrital deposits under the influence of soil acidificaKon during guano mineralizaKon, as observed 685 

where these detrital-guano associaKons exist (Audra et al., 2021, 2023). 686 

The sediments weather in situ by physical and biogenic processes. Lime sands come from the 687 

weathering of soo calcarenite walls, producing a residue of the bedrock, as aRested by fragments of 688 

marine fossils and coarse calcite grains derived from the disaggregaKon of the walls. They result from 689 

differenKal corrosion of the walls, dissolving the carbonate cement and releasing the coarse calcite 690 

grains, which break away by gravity and accumulate at the foot of the walls. This process is clearly 691 

acKve at many sites, where accumulaKons of fine carbonates are present at the foot of the walls and 692 

cover recent bat guano. The disintegraKon proceeds in atmospheric (dewatered) environments, due to 693 

condensaKon, linked to air exchanges with the surface and is considerably increased by the presence 694 

of bat colonies. In the laRer case, condensaKon-corrosion is referred to as biocorrosion (Barriquand et 695 

al., 2021). Part of these lime sands has remained intact without reworking, producing porous, aerated, 696 

and unconsolidated deposits (base of profiles P.4, SC.1-2 and MO.1-2, PA.24). Another part has been 697 

reworked by vadose runoff, sorted, and deposited as bedded accumulaKons of compact silts 698 

interbedded with clay deposits (SC.3, SQ. 3-4, consolidated deposits overlying SQ.2, MO.3). They make 699 

up a significant proporKon of the clasKc deposits observed in the studied caves. Opening of these caves 700 

to the surface has probably occurred rather recently (some tens to liRle over 100 ka), as the fresh 701 

nature of the weathered hostrock appears to indicate. Secondary cave minerals result from the 702 

weathering of the carbonate bedrock or of detrital allogenic sediments, parKcularly under the influence 703 

of acidic leachates produced by the decay of bat guano (Audra et al., 2019). Phosphates, such as 704 

hydroxylapaKte and fluorapaKte, result from the interacKon between guano and the carbonate 705 

bedrock (SC.4, PA.23). Robertsite, a manganese phosphate (PA.23), and todorokite, a manganese oxide 706 

(PA.26), could result from the concentraKon of metals along redox boundaries via the metabolism of 707 

fungi involved in guano mineralizaKon under anaerobic condiKons (Burford et al., 2003). The source of 708 

Mn can be related to either surface soils or diffuse input of hypogenic fluids. Clays such as kaolinite 709 

(SC.3-4, P.1-4, PA.26) and montmorillonite (SC.3), associated with phosphates and weathered detrital 710 

deposits, are most likely part of such weathering processes through guano leachates. 711 
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 712 

The age of the marine terraces and the corresponding caves studied 713 

Assigning an age to a given cave using marine terraces is a complex issue, requiring assessment of the 714 

following chronological arguments: the accuracy of the marine terrace age in which it develops; the 715 

relaKonship between the cave (its main drain) and its morphological environment (the marine terrace); 716 

the accuracy of cave daKng; and the chronological significance of dated objects in relaKon to the main 717 

period of acKvity of the cave in quesKon. 718 

The marine terraces dated in the Palombara tectonic compartment are the ones at +32 m at Contrada 719 

Fusco near Syracuse and at +60 m at Belvedere, whose ages obtained by ESR are esKmated at 80-100 720 

ka and 120-143 ka, respecKvely, which would give an uplio rate of about 0.65m/ka (not considering 721 

the, probably rather slow (<0.1 mm/a), denudaKon rate of the terraces in the study area, which would 722 

lower these uplio rates). In fact, the age of the Palombara terrace at +150-160 m would be about 230-723 

245 ka. With a lower uplio rate of 0.53 m/ka (Catalano et al., 2010), its age would be older, about 305-724 

330 ka. Scrivilleri is located 5 km NW of Palombara at a similar alKtude and possibly on a contemporary 725 

terrace. The Palombara Cave notches, located at 100 m a.s.l., would thus have an age of about 210 ka. 726 

Similarly, the Scrivilleri Kers, at 140 and 120 m a.s.l. would range in age between 265 and 225 ka. 727 

For Monello Cave, located in another tectonic compartment, the marine notch close to Spinagallo Cave 728 

at +120-130 m is dated using paleontological remains by IE at 455 ka, and the corresponding marine 729 

level would be that of MIS 13 at 520 ka. Monello Cave, opening at a lower alKtude, around +100 m and 730 

associated with the +90 m terrace, would therefore correspond to MIS 9.3 at 330 ka (Pavano et al., 731 

2022). In short, based on the chronologies obtained from the marine terraces, Palombara would be 732 

approximately 210 ka old, Scrivilleri 225-265 ka, and Monello 330 ka. 733 

However, from marine sediments from the Palombara marine notch at +140 m a.s.l., we obtained a 734 

radiometric age of 603 ka (+285/-91) (note large uncertainty and possible open system condiKons of 735 

the calcite grains), i.e. around 350 ka older than the expected age calculated from the terraces. 736 

Moreover, in the Palombara Cave, some sediments have shown reverse magneKc orientaKons, so are 737 

most probably > 780 ka. 738 

These apparent contradicKons show that several hypotheses can be considered, alone or in 739 

combinaKon: 740 

- marine sands dated by U/Th could rework older carbonate sand grains, whose mean age would not 741 

be significant; 742 

- the paleomagneKc inversion could correspond to a younger geomagneKc incursion during the 743 

Brunhes Chron, and the Palombara sediment deposit would therefore be <780 ka. However, such 744 

situaKon has a low probability; 745 
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- In the Palombara compartment, the marine terraces are dated from a few points around +30 m a.s.l., 746 

and by the Strombus bubonius benchmark of MIS 5 located around +90 m. Clearly, extrapolaKons to 747 

higher and older terraces must be treated with cauKon; 748 

- daKng contains uncertainKes. For example ESR on marine terraces is linked to the determinaKon of 749 

the equivalent and the annual dose. For AAR on paleontological remains, the age depends on 750 

temperature and water content history, and recent microbiological processes may introduce "fresh" 751 

amino acids. Such method of daKng is now generally abandoned. Whatever the quality of the analyKcal 752 

protocol and the environment considered, the error bars may be greater than given, and the ages 753 

always remain debatable; 754 

- finally, it may be possible that the caves have developed mainly during the glacial low-stands, when 755 

the climate in these southern Mediterranean regions was weRer (Columbu et al., 2020); in that case, 756 

the marine terraces would contain older caviKes. 757 

We do not pretend to quesKon the chronologies acquired previously and by other methods, we simply 758 

point out that their use, by extrapolaKon to higher and older terraces, is not very reliable, and that the 759 

age of the caves contained in these terraces could be older than a simple age/alKtude model would 760 

suggest. 761 

 762 

Speleothem isotopes 763 

The secondary calcite samples have disKncKvely lower δ13C and δ18O values compared to the 764 

calcarenite bedrock. Their relaKvely low δ13C values indicate organic sourced carbon. Assuming they 765 

formed under isotopic equilibrium, we can esKmate the formaKon temperature from their carbonate 766 

δ18O values, and using -5.5±1.0‰ δ18OVSMOW values for the paleowater, based on the isotope 767 

composiKon of modern groundwater in the region (Schiavo et al., 2009). Using the formula of Daëron 768 

et al. (2019), the esKmated formaKon temperatures range between 7°C and 24°C, and indicate that the 769 

speleothems formed at relaKvely normal (i.e. mean annual surface) temperatures, without a significant 770 

hydrothermal component. At Scrivilleri Quarry, the calcite spar SQ.1 has an almost idenKcal isotopic 771 

composiKon to the calcite flowstone, suggesKng formaKon from fluids with similar composiKon. 772 

Nevertheless, the straKgraphy at SQ.1, which is below a thick iron oxide layer, may indicate a phreaKc 773 

origin, possibly related to the earlier speleogeneKc phases. The samples from Monello Cave (MO.12, 774 

13,15) have a somewhat lighter isotopic composiKon. Their δ18O values (-4.0 to -5.0‰) might reflect 775 

somewhat higher temperature or lower paleofluid δ18O values. They have lower δ13C values (-9.6 to -776 

11.2‰) than at Scrivilleri Quarry, which might be due to higher water-rock interacKon at the laRer. 777 

However, with liRle available data, we cannot exclude that they formed due to vadose percolaKon with 778 

soil-sourced carbon, following the formaKon of the cave. Considering the small difference (0.5 to 1.5 779 

‰) in groundwater δ18O values between the Last Glacial and late Holocene esKmated for Southern 780 
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Europe and the Mediterranean (Jasechko et al., 2015), and the 1‰ uncertainty used for the paleowater 781 

in our calculaKon, we think our esKmaKon for the temperature range of calcite formaKon is reasonable, 782 

and does not indicate hydrothermal condiKons. In short, the δ18O values do not support a significant 783 

hydrothermal source, and likely reflect normal (non-thermal) temperature waters, whilst the δ13C 784 

values suggest organic sourced carbon. 785 

 786 

PotenAal acidic sources 787 

In the absence of any evidence of sulfuric corrosion in the form of secondary replacement gypsum 788 

deposits, the most likely source of aggressiveness is carbonic acid, contained in fluids rising through 789 

feeders, and locally from bubble trails draining the bedrock. These rising fluids mixed in the phreaKc 790 

conduits with meteoric water, produce a highly corrosive environment, as evidenced by the flat ceiling 791 

notches (Palombara), and the scarcity of underwater calcite deposits associated with the iniKal phreaKc 792 

phase. Indeed, ancient speleothems are few and rarely cover the enKre walls, while the entrance halls 793 

at Monello are only covered with what look like recent stalagmites developed on collapsed blocks. 794 

The only speleothems idenKfied as possibly associated with the iniKal phreaKc phase are the calcite 795 

flowstone spar from the Scrivilleri Quarry (SQ.1) covered by a layer of iron oxides, and the calcite vein 796 

(MO.15) intersected by the conduit in Monello. The stable isotope values of these calcites are similar 797 

to those of more recent speleothems associated with meteoric infiltraKon and soil-derived CO2 (Fig. 798 

12), suggesKng a contribuKon from meteoric water with organic-derived CO2. InteresKngly, also more 799 

recent speleothems, certainly associated with meteoric infiltraKon and soil-derived CO2 have similar 800 

values (Fig. 12). 801 

Other possible deep-seated sources have been considered. Although the present-day volcanism of Etna 802 

is nearby (around 60 km to the N), and even more closer the Plio-Quaternary volcanic districts of the 803 

Scordia-LenKni basin (25 km to the NW), a volcanic CO2 source is unlikely, since the δ13C values of the 804 

calcite are more negaKve than those for volcanic CO2 (D'Alessandro et al., 1997). If hydrocarbons from 805 

the marly beds of the Ragusa Fm. migrated during tectonic episodes as claimed by Aureli (2000), no 806 

isotopic or mineralogical evidence supports such a source. Finally, Pavano et al. (2022) suggest possible 807 

upwelling along the extending Avola fault at the end of each relaxaKon cycle. This fault is associated 808 

with a hot mantle intrusion, and its Pleistocene and recent acKvity is aRested. Similarly, there is liRle 809 

evidence for such a source. 810 

We cannot overlook bubble-trails that significantly predate speleothems and thus could be related to 811 

some (past) environmental condiKons that are not reflected in the isotopic values of the speleothems. 812 

However, while morphological evidence (feeders, bubble trails…) aRests to upwelling fluids, the origin 813 

of aggressivity has yet to be precisely determined. We exclude injecKon of soil-derived CO2 at depth, 814 

because diffuse infiltraKon into the porous limestone is expected to be rapidly neutralized by the 815 
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slowness of the flow, and to be ineffecKve in producing dissoluKon at depth. Organic carbon, on the 816 

other hand, can be transported deep into the aquifer, gexng “trapped” along density boundaries (such 817 

as the salt-fresh water boundary, or that between the infiltraKng freshwater and resident 818 

groundwater). In presence of oxygen this organic carbon can produce CO2 and create renewed 819 

aggressiveness. Also sulfate-reducing bacteria can reduce sea-water sulfates, forming H2S that, upon 820 

oxidaKon, can parKcipate in the speleogeneKc processes. This laRer process, however, if acKve at some 821 

Kme, did not leave convincing evidence in the invesKgated caves (e.g. replacement pockets, secondary 822 

gypsum deposits). This might easily be explained by the presumable age of caves (between 210 and 823 

330 ka old): sulfuric acid speleogenesis signs might have been lost by successive processes (infiltraKng 824 

waters, condensaKon corrosion). We believe that the main source of aggressiveness lies in the 825 

freshwater lens on top of the salty water, but this has yet to be demonstrated. 826 

ContribuKons from aggressive deep-seated fluids with upflowing along major normal faults during 827 

phases of tectonic acKvity, cannot be excluded and should be further invesKgated. 828 

 829 

Hypogenic speleogenesis related to CO2 degassing 830 

Apart from a few recent modificaKons linked to epigenic evoluKon (localized introducKon of surface 831 

sediments by runoff and reworking of lime sands, biocorrosion by bats, and recent localized 832 

speleothems), the studied caves show predominantly phreaKc morphologies due to slowly moving 833 

waters, characterisKc of hypogenic acKvity. The usual epigenic features, such as scallops and 834 

accumulaKons of fluvial sediments linked to the concentrated runoff from surface water, are lacking. 835 

The morphologies aRest to rising flows (feeders, verKcal phreaKc conduits on fractures, wall and ceiling 836 

channels, domes) corresponding to the Morphologic Suite of Rising Flow (MSRF, Klimchouk, 2007, 837 

2009). Some deposits, such as massive iron oxides and traces of manganese, could be linked to the 838 

transport of metal ions by reduced deep fluids precipitated in contact with meteoric waters due to 839 

changing redox condiKons. Bubble trails aRest to aggressive fluids drained from the bedrock towards 840 

the conduits or, more likely, to CO2 degassing, the origin of which is not deep, as suggested by stable 841 

isotopes. These bubble trails are preferenKally located along major fractures and in the deeper parts 842 

of the caves, where they are responsible for the modificaKon of voids in a late phreaKc stage. This 843 

contribuKon of conKnuous aggressiveness is aRested by acid notches with a flat upper surface and the 844 

absence of underwater speleothems associated with supersaturated water. These observaKons suggest 845 

the existence of aggressive ascending fluids which may have formed the caves. The caves have paRerns 846 

typical of hypogenic flow: no dendriKc structure suggesKng the convergence of surface tributaries, but 847 

rather maze networks with shaos aligned along fractures, connected by subhorizontal cave fragments 848 

someKmes rising along the dip or guided by major fractures, as well as perfectly horizontal levels 849 
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related to the water table in relaKon to a stable base level. Given the regional context, such a base level 850 

fits well with the corresponding marine level. 851 

Based on the example of Palombara Cave, we propose a speleogeneKc model of these karst caves in a 852 

coastal area, comparable to flank margin caves (FMC; Fig. 20) (Mylroie & Mylroie, 2007). This model 853 

implies the presence of a conduit along major local disconKnuiKes (faults and bedding planes at the 854 

contact of contrasKng lithologies), draining meteoric waters diffusely infiltrated into the carbonate 855 

matrix, and whose aggressiveness at the beginning of conduit development comes from diffuse input 856 

from the matrix (bubble trails) or previously concentrated along fractures (feeders). The flow constraint 857 

determined by sea level determines an oblique, upward flow converging towards one or several 858 

outlets. The cave paRern thus combine localized zones of verKcal or oblique phreaKc transfer along 859 

fractures terminaKng upwards in blind chimneys, connected by oblique phreaKc conduits along the 860 

dip, of reduced size and someKmes anastomosed, as well as horizontal conduits at the water table, all 861 

resulKng in a maze paRern. Such a configuraKon falls in the hypogenic type in the sense of Klimchouk 862 

(2007). 863 

These are monogenic hypogenic caves due to rising CO2, with elongated cave development at shallow 864 

depth below the water table, recording the posiKon of the fresh water lens and hence sea-level posiKon 865 

and correlated with marine terraces.  866 

 867 

868 

Fig. 20. Flank margin cave (FMC)-type coastal speleogenesis model developed in the shallow phreaKc 869 

zone, from sources of carbonic aggressivity probably caused by the mixing of waters and oxidaKon of 870 

organic carbon in the mixing zone between fresh and salt water, resulKng in a complex cave paRern 871 

combining verKcal upwellings along fractures, oblique conduits along the dip or fractures, and 872 

horizontal conduits at the water table whose alKtude is controlled by the contemporary sea level 873 

(inspired from Palombara Cave).  874 
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 875 

CONCLUSIONS 876 

The calcarenite karst of the Syracuse area, experienced a major Pleistocene uplio, is sculpted by 877 

stepped marine terraces that record the posiKon of past sea levels. The studied caves (Palombara, 878 

Scrivilleri, Monello) show a clear relaKonship with these ancient coastal landforms. They present 879 

evidence of slow, upward phreaKc flows at shallow depths, associated with CO2 degassing, thus 880 

characterisKc of a hypogenic origin. Sediment analysis (mineralogy, stable isotopes) associates Fe and 881 

Mn oxide layers with these hypogenic flows, as do calcite spars. For the laRer, stable isotopes show a 882 

contribuKon from organic carbon, with formaKon temperature comparable to the present, thus ruling 883 

out any hydrothermal contribuKon, as well as any deep-seated aggressive input associated with nearby 884 

sources, whether volcanic, hydrocarbon or mantle fluids expelled during regional fault moKon. Other 885 

types of sediment are related to late speleogeneKc phases when caves were exposed by erosion to the 886 

surface. These include fine allogenic materials introduced by runoff and deposited in low-lying areas, 887 

speleothems formed by supersaturated infiltraKon, and minerals (phosphates, kaolinite and 888 

montmorillonite) derived from the acid decay of bat guano reacKng with the host rock and allogenic 889 

clays. Added to this are thick deposits of lime sand, resulKng from the disaggregaKon of calcarenite 890 

walls by biocorrosion-acKvated condensaKon, directly at the foot of the walls or reworked into 891 

straKfied accumulaKons by run-off. AcKve drip holes cuxng into speleothems and boulders up to 70 892 

cm deep aRest to the power of biocorrosion (based on the fact there are large quanKKes of guano and 893 

bats in the cave, and soil cover is very reduced). 894 

The morphology of these caves aRests to slow ascending flows, entering low points and rising verKcally 895 

along fractures or obliquely along straKgraphic interfaces, shaping typical Morphologic Suites of Rising 896 

Flow (MSRF), with from boRom to top: feeders, wall and ceiling channels, and domes. These hypogenic 897 

flow morphologies are complemented by features typical of CO2 degassing: in the deep zones, bubble 898 

trails and acid notches at the top of the water table. The caves are organized in a maze paRern, 899 

alternaKng verKcal or oblique conduits guided by fractures and gently rising galleries following 900 

straKgraphic interfaces. Some perfectly horizontal conduits, where the acid notches are found, record 901 

the precise posiKon of the water table, itself dependent on the contemporary sea level. For all these 902 

reasons, we propose a speleogeneKc model for these hypogenic caves of the Flank Margin (FMC) type, 903 

whose aggressiveness would be mainly produced by the mixing of fresh and salt waters, the oxidaKon 904 

of surface-derived organic carbon in the freshwater lens density interfaces, and the possible bacterially-905 

mediated reducKon of marine sulfates into H2S (which oxidaKon creates sulfuric acid, which reacts with 906 

limestone to produce extra CO2). Diffuse water flow in the calcarenites would then transport the solutes 907 

from the onshore plateaus to the sea. 908 
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At Palombara Cave, U/Th daKng of sediments sealing a nearby marine notch, as well as clay sediments 909 

bearing paleomagneKc inversions, yielded ages of 603 ka (+285/-91) and >780 ka, respecKvely. These 910 

ages are significantly older than those calculated by extrapolaKon from earlier daKng of lower alKtude 911 

marine terraces. Beyond the reliability of the ages we have obtained, the discussion raises the quesKon 912 

of the chronology of the high marine terraces derived from extrapolaKon of age models, but also of 913 

the age of the coastal FMC, which could have been established at periods of earlier low marine levels. 914 

Future studies will need to address these complex chronological aspects, as well as characterizing the 915 

generaKon of carbonic aggressivity in the mixing zone of the coastal groundwater and its role in the 916 

speleogenesis of such FMC. 917 
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Supplement material 1226 

 1227 

Tab. S1. 230Th dating results. The error is 2σ.  1228 

U decay constants: l238 = 1.55125x10-10 (Jaffey et al., 1971) and l234 = 2.82206x10-6 (Cheng et al., 2013). 1229 

Th decay constant: l230 = 9.1705x10-6 (Cheng et al., 2013). 1230 

*d234U = ([234U/238U]activity – 1)x1000. ** d234Uinitial was calculated based on 230Th age (T), i.e., d234Uinitial = 1231 

d234Umeasured x el234xT.  1232 

Corrected 230Th ages assume the initial 230Th/232Th atomic ratio of 4.4 ±2.2 x10-6. Those are the values 1233 

for a material at secular equilibrium, with the bulk earth 232Th/238U value of 3.8. The errors are 1234 

arbitrarily assumed to be 50%. 1235 

***B.P. stands for “Before Present” where the “Present” is defined as the year 1950 A.D.  1236 
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(ppb) 
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(measured) 
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230Th Age (yr) 

(uncorrected) 

230Th Age 

(yr) 

(corrected) 

d234UInitial** 
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230Th Age 

(yr BP)*** 

(corrected ) 

Palombara 
1 292,5 

±4,6 

273 134 

±5547 

82 

±2 

36,3 

±2,1 

1,0476 

±0,0045 

608 714 

±209 279 
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603 379 

±182 457 
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Fig. S1. Zijderveld diagram of SC.1 sample 1241 
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 1244 
Fig. S2. Zijderveld diagram of PA.22 sample 1245 
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Fig. S3. Zijderveld diagram of MO.1 sample 1248 
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 1250 
Fig. S4. Zijderveld diagram of MO.2 sample 1251 


