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This manuscript describes the derivation of systems of equations for weakly nonlinear gravity
waves in the presence of constant vorticity. The derivation is based on a multi-layer generalization
of the traditional columnar Ansatz. A perturbative development in a nonlinear parameter and a
dispersive parameter allow us to obtain sets of equations able to describe propagation of weakly
nonlinear and dispersive surface waves moving in water with some prescribed initial constant vortic-
ity. We have shown that vorticity can add or remove nonlinearity, dispersion or nonlinear dispersion
where before only were pure eulerian dispersion and nonlinear dispersion. An explicitly steady solu-
tion of the system corresponding to strong vorticity is obtained. It corresponds to a solitary wave.
Evolution of the soliton celerity, amplitude and width for nill, low, normal and strong vorticity are
discussed.
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I. INTRODUCTION

When propagating in coastal waters, surface waves often encounter currents. These currents, with intensities ranging
from weak to very strong are generated though various mechanisms, such as oceanic circulation, tides, wind action or
wave breaking. Given these generation processes, the currents are often observed to vary with depth, and result in an
underlying vorticity. Such background vorticity, included within strong tidal currents [1] or in wind driven currents [2]
could be important and should be taken into account in modeling the propagation of water waves [3]. This underlying
vorticity is especially observed in shallow water environments. For instance, strong currents, linearly sheared, were
observed in the surf zone, in strong rip currents, in situ [4] or in laboratory experiments [5]. More recently, a similar
vertical structure of the current was observed over coral reefs [6].
From a theoretical point of view the role played by constant or variable vorticity constitutes a vast and classical
subject in fluid mechanics. Da Silva and Peregrini have studied[7] steady surface waves in water of finite depth with
constant vorticity. In references [8–12]. Constantin et al. have developed a complete study of exact steady periodic
water waves with vorticity. Castro and Lannes [13] investigated fully nonlinear long-waves under the action of vorticity
with a Green-Naghdi equation. Numerical studies of this problem can be found in references Ko and Strauss [14, 15]
and Milewski, Vanden-Broeck and Z. Wang[16] However very few works have been consacrated to modeling nonlinear
dynamics of long surface waves in finite depth under the actions of a sheared current. The pioneering work in this
domain was that of Benjamin [17] who generalized the classical solitary wave theory to surface waves under the action
of vorticity. Freeman and Johnson [18] derived a Korteweg de Vries equation in a flow of arbitrary vorticity. Choi has
derived the Green-Naghdi equation and the associated Boussinessq equation for small amplitude wave. In reference
[19] Johnson studied the problem of two-way propagation as described by the Boussinesq equation and derived a new
Boussinesq-type equation valid for constant vorticity. The solitary-wave solution for this new equation is exhibited.
The Camassa–Holm equation for water waves with constant vorticity and its solitary-wave solution were described.
Kharif, Abid and Touboul have studied the action of vorticity on the rogue waves dynamics [20]. More recently
Kharif and Abid [21] have studied the role played by constant vorticity on surface waves using a generalized Whitham
equation [22].

The main objective of this work is to derive higher order evolution equations for weakly nonlinear long surface gravity
waves in the presence of constant vorticity beyond all orders in nonlinearity, dispersion and nonlinear dispersion. The
employed method is based on the Johnson’s work [23]. A generalized columnar pattern Anzats is introduced, together
with the two perturbative parameters : the nonlinear parameter α = a/h < 1 and the dispersive parameter δ = kh < 1,
where h refers to the constant depth of the fluid while a and k are a typical amplitude and wavenumber of the wave
being studied. This generalization is based on two main hypothesis. Firstly, the horizontal velocity of the fluid is
represented by means of an infinite series in powers of z2δ2. Secondly, the conservation of vorticity is enforced, which
provides a consistent closure of the problem. This results in a generalized Serre-Green-Naghdi model with vorticity
equivalent to a multi-layer model in place of the single-layer model (see Kim et al. [24, 25]). An interesting advantage
of this approach is that it provides an inter-comparison of the terms describing frequency dispersion, and nonlinear
dispersion, even when they involve vorticity. The main result in relation to previous studies is that Ω can add or
remove nonlinearity, dispersion or nonlinear dispersion, associated with the superimposed shear, where before only
were pure eulerian dispersion and nonlinear dispersion. The role of vorticity can thus be discussed, considering no
vorticity, weakly, normal or strong vorticity. Only the case of strong vorticity is analytically and numerically studied
in this letter. Nil, weakly and normal vorticity are only studied numerically.

II. THE COMBINATED ACTION OF VORTICITY, WEAKLY NONLINEARITY, DISPERSION, AND
NONLINEAR DISPERSION ON LONG WATER WAVES

We consider the water particles to be located relative to a two-dimensional Cartesian coordinate system with origin
0 and axes x, z with z being the upward vertical direction. The governing equations are the Euler equations and
the equation of mass conservation in x, z and t (time) completed with appropriate surface and bottom boundary
conditions. Before perturbations the fluid lies between the impermerable bottom at z = 0 and the still water free
surface at z = h with h constant. The undisturbed initial state is incompressible, inviscid, with zero surface tension
and with a superimposed current profile in the x direction and depending only linearly on z i.e ~U = Ωz~ex with
~ex the unitary vector in the x direction. The perturbations to the free surface, horizontal and vertical velocities
and pressure (relative to the hydrostatic pressure in the undisturbed initial state) are η(x, t), u(x, z, t), w(x, z, t)
and p(x, z, t) respectively. The governing equations are nondimensionalized as follow (primes mean dimensionless
variables): z′ = z/h, x′ = kx, t′ = kt

√
gh, η′ = η/a, u′ = 1/

√
ghu,w′ = kh

√
gh,Ω′ = Ω/k

√
gh, with k an average or a

typical wavenumber, a the amplitude and g the gravity. This step introduces the two parameters strictly smaller than
1; α = a/h < 1 and δ = kh < 1, familiar and fundamental in the study of the classical surface water waves problem.
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The final form of the governing equations require to scale u′ and w′ with α. As a result we obtain for 0 ≤ z ≤ 1 +αη
and dropping the primes

ux + wz = 0, ut + (δΩz + αu)ux + w(δΩ + αuz) + px = 0, wt + (αΩz + αu)wx + αwwz + pz
δ2 = 0 (1)

p = η and ηt + [δΩ(1 + αη) + αu] ηx − w = 0, on z = 1 + αη; and w = 0, on z = 0. (2)

Linearizing the system (1-2) we obtain the linear solutions for the horizontal and vertical velocities uL and wL as:
uL(x, z, t) = 2aiδ exp{iθ(x, t)} cosh δz and wL(x, z, t) = 2a exp i{θ(x, t)} sinh δz with exp{iθ(x, t)} = exp{i(x− σt)}
and σ the linear frequency of expression

σ = δΩ− Ω
2 tanh δ ±

{
Ω2 tanh2 δ

4 + tanh δ
2

} 1
2

. (3)

Now we assume that the nonlinear horizontal velocity can be expanded as u(x, z, t) =
∑∞
n=0 u2nδ

2nz2n, u2n =
u2n(x, t),∀n. The Johnson derivation of the single-layer model equations (in reference [23]) means, from a physical
mathematical point of view, the lower order in δ of the linear horizontal velocity solution uL proportional to exp iθ(x, t)
is replaced by an unknown function u(x, t) which is supposed to bring an approximate solution of the entire nonlinear
problem. Our approach can be viewed as a generalisation of this columnar hypothesis where each one of the orders
δ0z0 exp{iθ(x, t)}, δ2z2 exp{iθ(x, t)}, δ4z4 exp{iθ(x, t)}, . . . are replaced by u0(x, t), δ2z2u2(x, t), δ4z4u4(x, t), . . . From
the continuity equation and the boundary condition w = 0 on z = 0 it follow that w(x, z, t) = −

∑∞
n=0 u2n,x

δ2nz2n+1

2n+1 .

Substituting u(x, z, t) and w(x, z, t) in the equation for wt integrating for z ∈ [z, 1+αη] and using p = η at z = 1+αη
we obtain p(x, z, t). Using the expression of p in ut and integrating for z ∈ [0, 1 + αη] lead to

u0,t + αu0u0,x + ηx = δ2

3(1 + αη)

{[
(1 + αη)3 (

u0,xt + αu0u0,xx − αu2
0,x
)]
x
− (1 + αη)3 (u2,t + α(u0u2,x − u2u0,x)

}
− δ3Ω

{
(1 + αη)3

(u2,x

6 − u0,xxx

4 − αu0,xxηx (1 + αη)−1
)}

+O
(
Ωδ5, δ4) .

(4)

Finally equation for η(x, t) using u(x, z, t) and w(x, z, t) at z = 1 + αη gives

ηt + (1 + αη) δΩηx + [u0 (1 + αη)]x + δ2

3

[
u2 (1 + αη)3

]
x

+O
(
δ4) = 0. (5)

Expressions (4) and (5) are a system of two coupled equations in three fields (and theirs derivatives): u0, u2 and η. In
order to reduce this system to only two fields u0 and η we use the vorticity equation: ωt + (δΩz+αu)ωx +αwωz = 0,
with ω = |~ω|, ~ω =

(
δ
αΩ + uz − δ2wx

)
~ey, and ~ey the unitary vector in the y direction. Hence we obtain u2n+2 =

− u2n,xx
(2n+1)(2n+2) , n = 0, 1, 2, . . . This recurrence allows us to reduce (4) and (5), at any degree of approximation, in a

system in u0, η and derivatives. The α parameter in (4) and (5) is only a non-dimensionalization parameter. So
theses equations can be viewed as strongly nonlinear evolution equations with weakly linear and non linear dispersion
(δ < 1).

III. THE VORTICITY NUMBER Ω

Expressions (4) and (5) were derived assuming (implicitly) that Ω is order zero in δ. In fact, the amplitude of Ω can
dramatically change not only the orders δ in (4) and (5) but the very nature of the physical origin of dispersion and
nonlinear dispersion themselves. Table I shows, in its two columns, the successive degrees in dispersion (rows of the
left column) and nonlinear dispersions (rows of the right column) of some equations which can be obtained from (4)
retaining only terms of order one in α. The successive degrees in linear dispersion are (δ2), (Ωδ3; δ2), . . . , while the
corresponding successive degrees in nonlinear dispersion are (αδ2), (αΩδ3;αδ2), (. . . ) . If we take Ω large i.e. Ω = Ω0/δ
(Ω0 order zero in delta) the associated equation with the first row exhibits not only pure dispersive and nonlinear
dispersive terms i.e.; orders δ2 and αδ2 but it also contains a new dispersive term Ω0δ

2 and a new nonlinear dispersive
term Ω0αδ

2 both involving vorticity. In equation (5) the δ dependence of Ω changes the coefficients of the terms of
linear velocity and nonlinearity. Thus the choice of the δ dependence of Ω has consequences over every one of the
equations. Therefore we can think about Ω as a dimensionless vorticity number the value of which can add or remove
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Linear dispersion Nonlinear dispersion
δ2 α δ2

Ωδ3, δ2 α(Ωδ3, δ2)
δ4, Ωδ3, δ2 α(δ4, Ωδ3, δ2)
Ωδ5, δ4, Ωδ3, δ2 α(Ωδ5, δ4, Ωδ2, δ2)
. . . . . .

TABLE I. Dispersion and nonlinear-dispersion

nonlinearity, dispersion or nonlinear dispersion associated with the superimposed shear. In our example we see that
strong vorticity brings dispersion and nonlinear dispersion whose physically origin is the fluid vorticity. Consequently
we proposed the following scaling for Ω: Ω = Ω0δ

n with Ω0 order zero in δ and n = 0, 1, 2, . . . . Substituting u2(x, t)
in function of u0(x, t) and rearranging the terms we have

u0,t + αu0u0,x + ηx −
δ2

2

{
(1 + αη)2 (

u0,xt + αu0u0,xx − αu2
0,x
)}

x

−δ3Ω
{

1
3(1 + αη)3u0,xxx + α(1 + αη)2u0,xxηx

}
+O

(
Ωδ5, δ4) = 0, (6)

ηt + (1 + αη)δΩηx + [u0 (1 + αη)]x −
δ2

6

[
u0,xx (1 + αη)3

]
x

+O
(
δ4) = 0. (7)

In this work, we analyze four cases: the irrotational case with Ω = 0, the normal case with Ω = Ω0, the weak vorticity
cases with Ω = Ω0δ, and the strong vorticity case with Ω = Ω0δ

−1. In all cases me make a further simplification and
will only consider nonlinearity of order α, dispersion of order δ2 and nonlinear dispersion of order αδ2. The balance
between these factors are represented by soliton solutions for u0(x, t) and η(x, t). In this letter analytical expressions
of u0(x, t) and η(x, t) are only given for the strong vorticity case. The cases of nil, normal and weak vorticity can be
easily obtained from the strong case through the transformations Ω0 → 0, Ω0 → Ω0δ

−1 and Ω0 → Ω0δ
2.

A. The strong vorticity case, Ω = Ω0δ
−1

The vorticity in this case is order δ−1 and we have the system

u0,t+αu0u0,x + ηx −
δ2

2
{
u0,xt + αu0u0,xx − αu2

0,x + 2αηu0,xt
}
x
−Ω0δ

2
{
u0,xxx

1 + 3αη
3 + αηxu0,xx

}
= 0 (8)

ηt +(1 + αη)Ω0ηx + u0,x + α(u0η)x −
δ2

6 u0,xxx −
αδ2

2 (u0,xxη)x = 0. (9)

The effects of the strong vorticity on non linearity, dispersion and nonlinear dispersion can be viewed in both u0 and
η dynamics. Now we suppose progressive solutions in r = x− ct going to zero for |x| → ±∞ and c the soliton velocity
to be determined. Integrating (9) in r we obtain η(r) and substituting its expression in (8) we have

η = cu0 −
1
2αu

2
0 + αδ2

(
1
2 − c

2 + cΩ0

)
u0u0,rr −

1
2αδ

2u2
0,r − δ2

(
−1

3Ω0 + 1
2c
)
u0,rr, (10)

u0(1− c2 + Ω0c) + αu2
0

(
3
2c+ Ω0

2 c2 − Ω0

2

)
− 1

2αδ
2u2

0,r(Ω0 − c)− δ2u0,rr

[
1
6 + (Ω0 − c)

(
1
3Ω0 + 1

2c
)]

+αδ2u0u0,rr

[
1
2(Ω0 − c) + (c− Ω0)2c− (Ω0c+ 1)

(
1
3Ω0 + 1

2c
)
− c

2

]
= 0 (11)

From the linear and dispersionless equation associated with (11) it follows that the critical positive velocity c0 is
c0 = Ω0

2 +
√

1 + Ω2
0

4 . Now we look for a solitary wave solution u0(r) in the form: u0(r) = Asech2(pr) + αBsech4(pr),
with c a super critical velocity defined by c = c0 + αV . The constants B, p and V must be determined in fonction of
A. We have obtained

V = Ac0
3 + Ω2

0
3(2c0 − Ω0) , p = 1

2δ

√
αAc0(3 + Ω2

0)
Ω2

0 − c20 + 2

[
1 + αAc0(3 + Ω2

0)
2(2c0 − Ω0)(Ω2

0 − c20 + 2)(5Ω0

6 − c0)
]
, (12)

B = 3A2

20

[
Ω2

0c0 + 6Ω0 + c0
Ω2

0 − c20 + 2

]
. (13)
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FIG. 1. Comparison of the free surface elevation η (a) and the mean velocity u0 (b) obtained with the four model equations.
The red squares correspond to the case without any vorticity (Ω = 0), the green lines are the model with weak vorticity
(Ω = O(Ω0δ)), the blue lines describe the model with unit vorticity (Ω = O(Ω0)), and the yellow lines correspond to the strong
vorticity case (Ω = O(Ω0/δ)). The parameters used are α = 0.6, and δ = 0.5.

So the expressions of soliton solutions u0(x, t) and η(x, t) read

u0(x, t) = Asech2[p(x− ct)] + α
3A2

20

[
Ω2

0c0 + 6Ω0 + c0
Ω2

0 − c20 + 2

]
sech4[p(x− ct)], (14)

η(x, t) = c0Asech2[p(x− ct)] + c0(3 + Ω2
0)
(

1
3(2c0 − Ω0) + 2Ω0 − 3c0

6(Ω2
0 − c20 + 2)

)
αA2sech2[p(x− ct)]

+ 3c0
Ω2

0 − c20 + 2

(
Ω2

0c0 + 6Ω0 + c0
20 + (3 + Ω2

0)(3c0 − 2Ω0)
12 − 1

6
Ω2

0 − c20 + 2
c0

)
αA2sech4[p(x− ct)] (15)

The parameter α = a/h is by definition the dimensionless amplitude of η. The maximum of η is for x − ct = 0 so
taken α = η(0), A is determined (in fonction of α) as the positive solution of the quadratic polynome

A2{ c0(3 + Ω2
0)

3(2c0 − Ω0) −
c0(3 + Ω2

0)(2Ω0 − 3c0)
12(Ω2

0 − c20 + 2) + 3c0(Ω2
0c0 + 6Ω0 + c0)

20(Ω2
0 − c20 + 2) − 1

2}α+ c0A− α = 0. (16)

B. Effect of the vorticity on the soliton properties

The purpose of this section is to describe the influence of vorticity magnitude on the properties of solitary waves.
Fig. 1 presents the main characteristic of the solitary waves obtained for all cases of vorticity. Fig. 1 (a) corresponds
to the water elevation η, while Fig. 1 (b) illustrates the distribution of the mean horizontal velocity u0 induced by
the perturbation. In both subfigures, non dimensional parameters are chosen such as α = 0.6, δ = 0.5. In every case
considered the reference vorticity Ω0 is chosen to be unity. In these figures red lines describe the results obtained when
no vorticity is considered. Green lines correspond to the weak vorticity case, the blue lines are the result obtained
with the normal vorticity, while the yellow lines describe the results obtained when the vorticity is strong. Since the
value of α is prescribed, the four curves describing water elevation (Fig.1 (a)) present the same maximum values.
Differences appearing only concern the waves width, and thus the local slopes. The four curves presented in Fig. 1 (a)
show a similar tendency. Solitary waves are narrower in the presence of vorticity. Indeed, if the curves obtained with
no vorticity, and with weak vorticity are almost perfectly superimposed, one can notice that the model involving a
unit vorticity describes a slightly narrower wave. The effect of vorticity when considering these two vortical conditions
is almost insignificant, in terms of wave width. On the other, when considering the model assuming strong vorticity,
the wave obtained is clearly narrower than the previous ones. The trend observed previously emphasized, and is more
visible here. When considering the average velocity u0, differences are much more significant induced by the solitary
wave. These velocities are presented in Fig. 1 (b). From this figure, it clearly appears that the maximum velocity
induced by the free surface disturbance is strongly affected by the magnitude of the vorticity. Namely, the stronger
is the vorticity, the weaker is the fluid disturbance. It appears that the maximum of the velocity disturbance can be
reduced up to 40% when the vorticity becomes strong. From equation (8) we observed that strong vorticity adds a
negative dispersive term and a negative nonlinear dispersive term which read: −Ω0δ

2 {u0,xxx
1+3αη

3 + αηxu0,xx
}
. It

is responsible for the trend leading to the weakest solitonic profil downstream propagating for strong vorticity. The
effects on u0(x, t) of normal and weak vorticities occur only through η(x, t). For strong vorticity u0(x, t) directly
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FIG. 2. Evolution of the wave velocity (a), and the wave width (b) as a function of the vorticity. The red squares correspond to
the case without any vorticity (Ω = 0), the green lines are the model with weak vorticity (Ω = O(Ω0δ)), the blue lines describe
the model with unit vorticity (Ω = O(Ω0)), and the yellow lines correspond to the strong vorticity case (Ω = O(Ω0δ

−1)). The
parameters used are α = 0.6, and δ = 0.5.

depends on Ω through the new dispersive and nonlinear dispersive term. The evolution of the fluid velocity, observed
in previous figures has to be related with the kinematic properties of the solitary wave. The evolution of its velocity
and width are depicted in Fig. 2. On Fig. 2(a), the evolution of the wave celerity c of the solitary wave is plotted as
a function of the vorticity Ω, for the four models. Here again, the nonlinear and dispersive parameters (α, δ) are set
equal to (0.6, 0.5), while Ω varies. Since the models do not cover the same range of values for Ω, four colors are used, in
order to distinguish the area described by each model. Obviously, the model without vorticity corresponds to a single
point in this diagram, while the green line correspond to the model with weak vorticity, the blue line is the model of
vorticity of order unity, and the yellow line is the strong vorticity assumption. The first result observed is an opposite
trend to the behaviour shown by the fluid disturbance velocity u0. Namely, the celerity of the wave increases with
vorticity, while the components of the fluid disturbance decreases with vorticity. For the parameters considered, the
celerity is increased by about 85%. Another interesting remark, here, is to notice the relative continuity exhibited by
the four models. Indeed, they have been derived independently, under various asymptotic assumptions, but present
very compatible trends, and values. In figure 2 (b), the evolution of the width of the wave, λ, defined as λ = 1/p, is
presented versus vorticity Ω for the four models. This figure confirms the trend forebode on Fig. 1 (a). Here again,
the four models are juxtaposed, where the model without vorticity corresponds to a single point, a red square, in this
diagram, the green line correspond to the model with weak vorticity, the blue line is the model of vorticity of order
unity, and the yellow line is the strong vorticity assumption. The three models involving vorticity present a similar
trend, the width decreasing when vorticity increases. The behaviour of λ(Ω) is quite difficult to analyse from the
soliton expressions of u0(x, t) and η(x, t). However this becomes possible with soliton solutions of the Korteweg-de
Vries equations associated to the system (6)-(7). Lets have a look at λ(Ω) of the soliton solutions of KdV equations
for u0(x, t) in the two extreme cases Ω = 0 and Ω = Ω0δ

−1. Using asymptotic methods (see [22]) in (8-9) we obtain
u0,t for these two extreme cases. They read

u0,t + 3
2αu0u0,x + δ2

6 u0,xxx = 0, Ω = 0, (17)

(Ω2
0 + 4) 1

2u0,t + c0(Ω2
0 + 3)αu0u0,x + δ2

6 (c20 − Ω2
0)u0,xxx = 0, Ω = Ω0/δ, c0 = 1

2[Ω0 + (Ω2
0 + 4)1/2]. (18)

The soliton solutions of (17) and (18) read

u0 = Assech2[ 1
2δ (3αAs)

1
2 (x− Asα

2 t)], u0 = Assech2{ 1
2δ (3αAs)

1
2 [c0(3 + Ω2

0)
3(c20 − Ω2

0) ] 1
2 [x− (αAsc0(3 + Ω2

0)
3(4 + Ω2

0) )t]}, (19)

with As an arbitrary constant amplitude. The associated soliton widths read

λ(Ω = 0) = 2δ
(3αAs)

1
2
, λ(Ω = Ω0

δ
) = 2δ

(3αAs)
1
2

[ c20 − Ω2
0

c0(1 + Ω2
0

3 )
] 1

2 . (20)

From expressions (20) (taken Ω0 = 1) we obtain λ(Ω= 1
δ )

λ(Ω=0) ∼ 0, 5 < 1, and (19) in the case Ω = Ω0δ
−1 is a downstream

wave narrower than in the case Ω = 0. So for downstream propagation the stronger the vorticity the narrower the
width. This is a very well known result not only for KdV but also for the Boussinesq equation and the Camassa-Holm
equation (see [23]).
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FIG. 3. Evolution of the width of the wave as a function of the dispersive parameter δ and the nonlinear parameter α. (a)
Ω = 0, (b) Ω = O(Ω0δ), (c) Ω = O(Ω0), (d) Ω = O(Ω0δ

−1)).

C. Effect of α and δ on the soliton properties

Another interesting aspect of this approach is to allow comparisons of the influence of the parameters α and δ on
the wave properties. Following that purpose, Fig. 3 describes the evolution of the wave width λ in the parameter
map (α, δ). Sub-figure (a) corresponds to the behaviour of a solitary wave propagating in the absence of vorticity,
sub-figure (b) is the weak vorticity case, sub-figure (c) is the unit vorticity model, while sub-figure (d) is the strong
vorticity configuration. First, it has to be emphasized that these figures present very different colour scales, confirming
the trends observed in Fig. 2. In the meantime, it is striking to notice that the qualitative dependence on both the
nonlinear and the dispersive parameters are very similar. Oppositely, Fig. 4 illustrates the evolution of the wave
celerity in the parameter map (α, δ). Sub-figure (a) corresponds to the behaviour of a solitary wave propagating in
the absence of vorticity, sub-figure (b) is the weak vorticity case, sub-figure (c) is the unit vorticity model, while sub-
figure (d) is the strong vorticity configuration. It is interesting to notice that, in the absence of vorticity, the travelling
celerity does not depend on the dispersive parameter δ, which confirms classical behaviour of travelling solitary waves
in the absence of vorticity. Noteworthingly, this result does not hold when vorticity is involved. Indeed, it is interesting
to notice that, when weak or unit vorticity are considered, the wave celerity exhibits a strong dependence on α and δ.
However, the respective influence of α and δ on this quantity is not completely similar. In the weak vorticity model,
the dispersive parameter δ seems to play a less significant role than in the unit vorticity approach. Finally, when
considering the strong vorticity case, the celerity becomes constant again with respect to δ. This asymptotic case
exhibits characteristics very similar to those observed in the absence of vorticity.

IV. CONCLUSIONS AND PERSPECTIVES

We have introduced a new hierarchy of weakly nonlinear equations for surface gravity in finite depth in the presence
of constant vorticity Ω. The members of the hierarchy are systems of equations for the z-integrate horizontal velocity
u(x, z, t) and the wave amplitude η(x, t). They involve weak nonlinearities, dispersion and nonlinear dispersion and
are characterized by the powers of two perturbative parameters α and δ (nonlinearity and dispersion) and their
products (nonlinear dispersion). The vorticity Ω appears in the equations of motion in factors Ωδs (s = 1, 3, . . . ), so
we have scaled Ω as Ω = Ω0δ

q with Ω0 ∼ O(δ0) and q integer. The negatives values of q must be chosen such that
the neglected term O(Ωδ5, δ4) in equation (4) remains negligeable. A remarkable finding is that the physical origin of
dispersion and nonlinear dispersion for u0(x, t) can be associated or not with the vorticity Ω. In the η(x, t) dynamics,
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FIG. 4. Evolution of the wave celerity as a function of the dispersive parameter δ and the nonlinear parameter α. (a) Ω = 0,
(b) Ω = O(Ω0δ), (c) Ω = O(Ω0), (d) Ω = O(Ω0δ

−1).

vorticity is never directly associated with nonlinear dispersion.
In order to analyse some physical-mathematical consequences while remaining relatively simple in formalism, we have
only discussed equations at orders α, δn and αδn with n = 1, 2 . We have studied analytically and numerically the
case of strong vorticity. The cases of nill, normal and weak vorticity were only numerically analyzed. Non zero cases
clearly shown that vorticity changes linearity, nonlinearity, dispersion and nonlinear-dispersion in relation to the zero
vorticity case. Normal vorticity adds a nonlinear term and changes the linear associated equation for η(x, t) as the
equation for u0(x, t) does not change. Weak vorticity has nearly the same effects: changes in η(x, t) are the same but
weaker and the equation for u0(x, t) does not change. For strong vorticity the changes in η(x, t) are the same but
order δ0 and the changes for u0(x, t) are very large because new dispersive and nonlinear terms appear. For each case
we have numerically analyzed theirs solitonic solutions (celerity, amplitude and wave width).
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