
HAL Id: hal-04728720
https://hal.science/hal-04728720v1

Submitted on 9 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Server and Route Selection Optimization for
Knowledge-defined Distributed Network Based on

Gambling Theory and LSTM Neural Networks
Son Duong, Nguyen Tuan, Hoang Nam-Thang, Tong Van, Tran Hai-Anh,

Nguyen Giang, Mellouk Abdelhamid, Tran Truong

To cite this version:
Son Duong, Nguyen Tuan, Hoang Nam-Thang, Tong Van, Tran Hai-Anh, et al.. Server and Route
Selection Optimization for Knowledge-defined Distributed Network Based on Gambling Theory and
LSTM Neural Networks. GLOBECOM 2023 - 2023 IEEE Global Communications Conference, Dec
2023, Kuala Lumpur, Malaysia. �hal-04728720�

https://hal.science/hal-04728720v1
https://hal.archives-ouvertes.fr

Server and Route Selection Optimization for
Knowledge-defined Distributed Network Based on

Gambling Theory and LSTM Neural Networks
Son Duong∗, Tuan Nguyen∗, Nam-Thang Hoang∗†, Van Tong†, Hai-Anh Tran† ,

Giang Nguyen†, Abdelhamid Mellouk‡, Truong Tran§
∗Faculty of Information Technology, Hanoi University of Civil Engineering, Vietnam

{son167464, tuan1553564, thanghn}@huce.edu.vn
†School of Information and Communication Technology, Hanoi University of Science and Technology, Vietnam

{vantv, anhth, giangnl}@soict.hust.edu.vn
‡University of Paris-Est Creteil, LISSI, Tinc-NET, F-94400, Vitry-sur-Seine, France, mellouk@u-pec.fr
§School of Science, Engineering, and Technology, Penn State University, USA, truong.tran@psu.edu

Abstract—Server and route selection (SARS) optimization is a
critical aspect of traffic engineering to allocate network resources
to meet diverse service requirements effectively. Existing studies
have primarily focused on finding profitable or optimal solutions
for the SARS problem within current time steps, considering
specific constraints. However, they often have failed to address the
dynamic and uncertainty of future network states. To address this
gap, this paper proposes an algorithm named GAL to optimize
server costs and response time while accounting for future
network dynamics. GAL combines a server selection inspired
by the gambling theory and a network routing based on Long
Short-Term Memory Networks (LSTM). The server selection
method is formulated as a gambling problem and solved using
the decision-making Tug-of-War (TOW) dynamic algorithm. The
routing mechanism is optimized based on predictions of future
network states made by LSTM neural networks, which excel
in capturing long-term dependencies. We have implemented
GAL through a distributed software-defined networking (SDN)
system and obtained good evaluation results regarding average
response time and server cost compared to benchmark methods.
These results demonstrate that GAL can effectively tackle the
SARS optimization problem by considering present constraints
and future network dynamics. This study can advance traffic
engineering and lays a foundation for more robust resource
allocation strategies in dynamic network environments.

Index Terms—SARS Optimization, Multi-armed Bandits, Soft-
ware Defined Networking, Distributed SDN, LSTM Networks.

I. INTRODUCTION
The optimization of Server and Route Selection (SARS)

is an important problem in computer networks [1]. Server
selection is the process of selecting a provisioning server
from a set of servers that provide heterogeneous services,
while routing determines how packets are delivered from the
source to the destination server by selecting the path for
packet transmission. An effective SARS scheme can shorten
the users’ waiting time, allocate traffic evenly into network
components, and provide high-quality services. If the SARS
scheme can optimize itself without any additional engineer-
ing effort, network operators may have more time for other

responsibilities while still enhancing the significant benefits
of automated network control [2]. Among other technologies,
software-defined networking (SDN) can enable dynamic and
automated network control better than traditional network
management. SDN offers flexibility and programmability by
separating the control plane of network devices from their data
plane, allowing centralized management of those devices via
automated scripts [2].

In SDN, the SARS problem has been studied extensively.
Among these studies, Tran et al. [3] proposed a server selection
method for a content delivery network (CDN) - a technology
that replicates content from the original server to replica nodes
closer to users). In that work, the server selection is based
on a multi-armed bandit solution, which chooses a replica
server regarding the idea that the longer a server has been
running, the less likely it is to be selected. After a long enough
time, through trial and error, an optimal replica server will
eventually be exploited. In [4], Kaur et al. utilized multiple
distributed servers with a load balancer acting as a gateway for
distributing requests. The load balancer is based on a round-
robin mechanism where each server is uniformly selected
according to a circular queue. The method is based on several
real-time metrics, such as server cost, hop count, and packet
overhead in real-time. In overall, the works mentioned above
mainly consider optimizing the SARS scheme based on the
current state of the network. However, due to the stochastic and
dynamic environment, the network metrics might constantly
change with unexpected high loads, traffic bottlenecks, or
deactivated links. Thus, it is necessary to design a solution
that considers future network states and optimizes long-term
network performance in an uncertain environment.

This paper proposes a hybridization of a gambling-
inspired server selection method and an LSTM-based
routing mechanism, namely Gambling and LSTM (GAL)
algorithm, to address the SARS problem, while considering
the future network’ uncertainty and stochastic charac-

teristic. Specifically, GAL aims to target the server cost
and server response time minimization in long-term network
performance. There are two key stages in our method. First,
we formulate the server selection as a multi-armed bandit
(MAB) problem - a gambling problem of choosing a profitable
machine from a set of machines that provide stochastic rewards
to maximize cumulative reward in the long term. Then, we
utilize a tug-of-war (TOW) dynamic algorithm that is inspired
by the game tug-of-war, to solve the MAB problem. The
reason for such a choice is because it is proved that the TOW
algorithm showed superior performance in many real-world
applications compared to other traditional MAB algorithms
(e.g., ε-greedy, UCB1, etc.) [5]. Second, we develop a routing
mechanism that is optimized based on the future network states
predicted by an LSTM model.

This work makes the following key contributions:

• We formulate server selection as an MAB gambling
problem and propose an algorithm to address it. Specif-
ically, we introduce TOW with a new reward function
that incorporates server cost and server response time.
Additionally, we propose a novel Q(.) function that
effectively estimates the quality of servers.

• We introduce GAL, a pioneering hybridization of a
gambling-inspired server selection approach and an
LSTM-based routing algorithm. GAL uses two vital
factors of server performance, namely response time and
server cost, as well as three key metrics for links: link
utilization, packet loss, and latency.

• We provide a comprehensive performance analysis of
GAL compared to different types of MAB methods,
including ε-Greedy, UCB1, and the original TOW algo-
rithm. The analysis focuses on their efficiency in terms of
response time and average server cost within a distributed
and heterogeneous SDN network utilizing ONOS and
RYU controllers.

These contributions can advance the field of server and
route selection optimization. By framing server selection as
a MAB gambling problem and introducing enhancements to
the TOW algorithm, our approach offers a novel perspective
on resource allocation. The GAL algorithm’s hybridization of
gambling-inspired server selection and LSTM-based routing
incorporates critical factors and metrics, leading to efficient
network resource utilization. Through a comprehensive eval-
uation, including comparisons with established methods, we
demonstrate the superior performance of GAL in terms of
response time and average server cost. This research provides
valuable insights for designing robust resource allocation
strategies in dynamic network environments, contributing to
the continued progress of traffic engineering.

The remainder of this paper is structured as follows. Section
II presents some related background. Section III describes
the formulation of the problem and our proposal to tackle
it. Section IV provides experimental scenarios and results.
Finally, Section V shows the conclusions of this research.

II. BACKGROUND

In this section, we provide a brief overview of the MAB
gambling problem and various popular methods for solving it.
Indeed, our proposed server selection method is inspired by
the MAB techniques.
A. Multi-Armed Bandits Theory

The MAB problem is a classic reinforcement learning
problem in which an agent has to choose between multiple
actions (e.g., slot machines or the one-armed bandits) in
order to maximize its cumulative rewards in the long-term
[5] through a series of choices, where the beginning payout
of each one-armed bandit is unknown. The MAB problem is
modeled as a tuple < A, T,R > where A = {a1, a2, ..., an} is
a set of actions, T is the total of rounds, and Rai(t) is a scalar
(reward) that an agent receives when selecting an action ai at
round t. Let denote Pv ∈ P as one playing policy (a sequence
of selected actions) after T rounds. The goal of an agent is to
find an optimal policy that maximizes the sum of cumulative
rewards:

P ∗ = argmax
Pv∈P

{ T∑
t=1

Rai(t)

}
(1)

As the reward distribution of each action is unknown, an
agent has to estimate the quality (goodness) of every action at
a current round to select an optimal action:

Qai(t) =
1

Nai

t∑
u=1

Rai(u) (2)

where Qai(t), referred as Q(.) function, is the expected reward
of an action ai at time slot t, and Nai is the number of times
an action ai that has been previously selected. However, Equa-
tion (2) raises an exploitation versus exploration dilemma of
whether an agent should keep choosing an action with the best
value of the Q(.) function (exploitation), or it should choose an
action that might not optimize the Q(.) function at the moment
(exploration). By exploring other sub-optimal actions, an agent
might learn more about their reward distribution that might be
superior in the future [6].
B. Multi-Armed Bandits Methods

There are a number of methods that balance the exploration
versus exploitation dilemma for solving the MAB problem.
Among them, the most widely used methods are ε−greedy,
UCB1, and TOW algorithms.
ε−Greedy. The ε−greedy is the simplest algorithm based

on the idea that an agent will exploit an action that maximizes
the Q(.) function at current time slot t (see Equation (2)) with
a probability 1− ε, otherwise exploring other random actions.

a∗(t) =

{
maxai(t)Q(.) with probability1− ε,
a random action ai(t) otherwise.

(3)
UCB1. UCB1, or Upper Confidence Bound 1, balances the

exploitation-exploration trade-off as it gathers more knowledge
about different actions [6]. The intuition behind UCB is as

follows: 1) an action with a high value of expected reward
should be more prioritized; 2) an action that has been selected
frequently in previous rounds should be less exploited. Math-
ematically, this strategy is expressed as:

a∗(t) = max
ai(t)

{
Q(.) +

√
2 ln(t)

Nai

}
(4)

where t is a current round. In Equation (4), the left–hand
side encourages exploitation: the higher the value of Q(.),
the greater the change of exploitation. On the other hand, the
right-hand side promotes exploration: If an action ai has not
been selected for a long time, Nai decreases. Consequently,
the right-hand side term increases and an action ai will be
more prioritized.

TOW. The TOW algorithm is inspired by the game tug-of-
war. In the context of MAB problem, for simplicity, suppose
that there are two teams (machines) a1, a2 ∈ A. Let denote
the variable Xk, k ∈ {1, 2} represents the displacement of the
endpoint k of the rope from their initial position when a team
ak pulls the rope. If X1 > X2, then the team a1 is the winner,
or we can assume that the machine a1 is chosen. Thus, the
displacement X1, or how much chance should we choose a
machine a1, is given as:

X1(t) = Q1(t− 1)−Q2(t− 1) (5)

Qk(t) = Qk(t− 1) +Rk(t) (6)

First, we choose a machine ak with the highest value of
Xk(t), k ∈ {1, 2} (see Equation (5)). Second, we receive
a reward Rk(t) from such a machine ak, and calculate its
Qk(t) function from Equation (6). It is noteworthy that Qk(t)
represents the quality (expected reward) of a machine ak based
on information on past experience accumulated until current
time t, and current reward obtained. This Qk(t) function at
time slot t will be an input for a new Xk(t + 1). In general,
the TOW algorithm can be extended with many teams to solve
the MAB with multiple slot machines [7].

III. METHODOLOGY
This section presents the SARS problem and the proposed

GAL algorithm that is composed of a gambling-inspired server
selection method and an LSTM-based routing mechanism.
A. SARS Optimization Problem

The server and route selection (SARS) problem is expressed
with the use of a global weighted graph G = (N,E) where
N = {H,S,D} is a set of nodes, and E = {(a, b),∀a, b ∈
N, a 6= b} is a set of links (edges) connecting all possible
nodes of N . The set H = {h1, h2, ..., hm} is a set of hosts
in the network, S = {s1, s2, ..., sn} is a set of servers, and
D = {d1, d2, ..., dv} is a set of possible forwarding devices
(switches in this case). Each link (a, b) is associated with a
non-negative scalar Ca,b, called link cost, that measures the
quality of this link. Ca,b can be a representation of different
metrics (e.g., latency, packet loss rate, etc.) on the link (a, b).

Let consider P = {ho, d1, d2, ..., si} is one possible route
(path) from a host ho ∈ H to a chosen server si ∈ S.

Our aim is to break the SARS problem into two successive
subproblems: first selecting an optimal server, second, routing
traffic data between hosts and servers. Thus, the following
conditions should be taken into account:

Server selection optimization:
• Minimize the average server response time for every

user’s request. This ensures smooth and seamless user
experiences during the long-term period [8].

• Minimize the average server cost. This guarantees allo-
cating a large number of concurrent requests evenly into
various servers, thus enhancing resource usage [8].

Routing optimization:
• Minimize the link cost values of all links over a selected

route where each link cost value can be a function of dif-
ferent metrics. Reducing the cost means complying with
certain quality of service (QoS) metrics and requirements
(e.g., less hop-count, reduced latency, etc.) [9].

• Express the link cost Ca,b as a combination of three QoS
metrics. As mentioned in our study [10], many applica-
tions’ performance mainly depends on QoS metrics (e.g.,
link utilization, packet loss, etc.)

B. GAL: Gambling and LSTM Algorithm for SARS
1) GAL: Server Selection
We define the problem of server selection as an MAB

problem as follows. When a user (host) ho ∈ H requests a
service, multiple servers can respond. The promising server si
is selected as follows:

Xsi(t) = Qsi(t− 1)− 1

n− 1

n∑
s′i 6=si

Qs′i(t− 1) (7)

s∗(t) = max
si∈S

Xsi(t) (8)

Equation (7) is an extended version of a TOW algorithm
explained in Section II, for n > 2, where n is the number of
servers, and Xsi(t) represents the confident level of choosing
a server si. After choosing an optimal server si (see Equation
(8)), the reward Rsi(t) is proposed as:

SCsi(t) =
Tsi(t)

Csi
(9)

Rsi(t) = 1− arctan(SCsi(t)) + arctan(RTsi(t))

π
(10)

Equation (9) shows that the server cost metric SCsi(t) of a
server si is calculated by dividing its current traffic Tsi(t)
to the maximum capacity Csi (e.g., Mbit/s, etc.) of a link
that is a direct connection between such a server and a
switch (endpoint). Equation (10) indicates that the reward of
a server si, Rsi(t) is measured by its server cost SCsi(t),
and server response time RTsi(t). It is noteworthy that
arctan(SCsi), arctan(RTsi) >

π
2 ∀SCsi , RTsi > 0, thus

the numerator ∈ [0, π], consequently Rsi(t) ∈ [0, 1]. The one
minus operator is required since the GAL algorithm aims to
maximize its reward.

After obtaining Rsi(t), the Q(.) function is calculated as:

Qsi(t) = Qsi(t− 1) +Rsi(t) (11)

Equation (11) shows that the quality (expected reward) of
a server si is based on past experiences and current gained
reward. However, as the server metrics change dynamically, a
parameter referred to as the forgetting ratio γ ∈ [0, 1] is pro-
posed to reduce the impact of past experiences. Subsequently,
Equation (11) is proposed to be rewritten as:

Qsi(t) =

{
γQsi(t− 1) +Rsi(t) t ≤ k,
γ
∑t

j=t−k Qsi
(j)

k +Rsi(t) otherwise.
(12)

where k ∈ Z+ is the number of past experiences. When
the γ is close to 1, Qsi(t) are largely influenced by past
experiences; for γ close to 0, Qsi(t) is not significantly
affected by past experiences. This Q(.) function will then be
an input for a new confidence level Xsi(t+ 1).

GAL utilizes a convergence test to decide whether the
algorithm should be terminated or not:

CV (A) =
σ(A)

E(A)
=

1
Tr
∗
∑t
u=t−Tr

(A(u)−
∑t
u=t−Tr

A(u)
Tr

)2∑t
u=t−Tr

A(u)
Tr

(13)
where A is a list of RT or SC values stored from the t− Tr
to the t connection times, and Tr is the length of a sliding
window. If CV (A) < ThCV (threshold convergence value),
then the convergence test is satisfied.

2) GAL: Routing Optimization
This section introduces the future link costs (network states)

predictions and the process for finding the optimal path from
a host to a selected server.

Let xa,b = (x1, x2, ..., xm)T is a features vector for one
specific link (a, b) in the network, an entry xi ∈ R is a
feature of the link, and m ∈ Z+ is the number of features.
We constrain the link features to three QoS metrics (m = 3):
link utilization (LU), packet loss rate (PL), and delay (DL).
The link cost Ca,b of a link (a, b) is calculated as:

Ca,b = (xa,b)
Tθ =

(
xLU xPL xDL

)θLUθPL
θDL

 (14)

where θ = (θLU , θPL, θDL)
T is a weight vector that repre-

sents the relationship of three QoS metrics: LU, PL, and DL.
The first objective of the GAL routing process is to predict

the link cost value Ca,b of any link xa,b at time step H via a
series of H−1 historical QoS feature-vectors of that link. We
use an LSTM network model to perform the prediction based
on one of our previous works as in [11]. Figure 1 provides a
general view of the LSTM models with stacked LSTM layers
and feed-forward neural networks (FFN).

The primary goal of GAL routing is to find the host-server
path that has the minimum total link costs. After the link cost

Fig. 1: Link cost prediction using stacked LSTM combined
with multiple FFNs. The output of the last LSTM layer is
then fed into multiple FNNs which perform prediction.

predictions phase, the link costs of all links at a future time
step are predicted. Then GAL routing process will utilize the
Dijkstra algorithm to determine the shortest route from a host
to the selected server (which has been selected using the GAL
Server Selection stage as in Section III-B1).

C. Intergration of the Proposed GAL Algorithm into Dis-
tributed Network

Figure 2 depicts the flowchart of the GAL algorithm and
its integration into a knowledge-defined distributed network
architecture (KDN), which includes three planes: Control,
Data, and Knowledge planes. The KDN architecture, derived
from the original of SDN architecture, is explained in our
previous study [11]. The SARS problem is solved at the top
of the Knowledge plane.

Fig. 2: Flowchart of the proposed GAL algorithm integrated
into Knowledge-defined distributed network.

The red frame for our GAL algorithm for solving the SARS
for every new request is described as follows.
• 1. Assumption of the value t = 0.
• 2. Receiving a service request with a set S of servers that

can possibly provide the service.
• 3. Verifying whether the time slot t is greater than 0 or

not. If so, move to 4; otherwise, move to step 5.
• 4. Server selection phase: choosing an optimal server

with the highest Xs∗(t) Equation (8), which has been
calculated at t− 1.

• 5. Server selection phase: randomly selecting a server at
t = 0.

• 6. Routing optimization phase: Finding a path from a host
to the selected server s∗ using the Dijkstra algorithm on
the distributed graph with the weights stored in a local
database (as shown in the black frame).

• 7. Generating a set of actions (forwarding rules) and
installing them into the Core Service in the Control Plane
(module 13) for directing actual traffic data.

• 8. Receiving server cost and server response time of a
selected server s∗, at t.

• 9. If the CV (SC) and CV (RT) based on Equation (13)
in the sliding window length Tr is less than the threshold
convergence value ThCV, then the GAL algorithm is
considered to converge; otherwise, go to step 10.

• 10. GAL updates the reward and expected quality func-
tions of the selected server s∗ according to Equation (10),
(12) respectively.

• 11. GAL calculates the value of confident level at the next
time for Equation (7) and continues to select an optimal
server and route for a new request.

In the black frame, the Networking monitoring (module
14) is responsible for capturing the metrics of the links from
OpenFlow switches (module 12) in the Data plane, and these
values are fed into an LSTM model (module 15) that is
designed to generate predictive link weights of the graph.
Furthermore, these predicted link costs are transmitted to the
local database and broadcast to other SDN network domains
to ensure information consistency between distributed domains
in the Consistency module (module 16). At the same time, the
Knowledge Updating module (module 17) is used to receive
the predicted link costs from other domains before these costs
are stored in the local database.

IV. EXPERIMENTAL RESULTS

This section conducts simulations to validate the effective-
ness of the proposed GAL algorithm in terms of server cost
and server response time. We also compared our proposed
GAL with other SARS benchmarks.
A. Experimental Setup

The SDN controllers are implemented using ONOS and
RYU, two widely known SDN controller platforms. Mininet
is used to create the network topology, involving a large
number of switches and replica servers. The topology Viatel,
taken from the Internet Topology Zoo database [12], is chosen
to validate the scalability of the proposed GAL algorithm.

Sharing common characteristics with a real-world network,
Viatel is composed of 92 OpenFlow switches (abbreviated
as 92N topology), and it acts as a bridge between many
European countries (e.g., France, Italy, Belgium, etc.). The
network configurations are summarized in Table I. Every
link capacity is uniformly set to 800 Mbps, and the amount
of traffic generation is set to be between 80-500 Mbps by
a simple HTTP server tool. To verify the proposed GAL
algorithm’s ability to handle dynamic networks, the network
configurations, including random deactivating and activating
links, are modified stochastically.

TABLE I: Simulation parameters

Parameters Values
Number of servers [18, 30, 50]
Number of switches 92
Link delay (ms) Random [25, 50, 75, 100]
Link packet loss (%) Random [0.1, 1, 3, 5]
Link capacity (Mbps) 800
Request counts (per second) Range [10, 200]
Traffic generation tool Simple HTTP server
Traffic range (Mbps) Random [80, 500]

B. Benchmarks
We compare our proposal GAL algorithm in terms of server

cost and server response with three MAB variations (ε-greedy,
UCB1, and original TOW) and LCP-WAC [11]. The ε-greedy,
UCB1, and original TOW are the benchmarks for the server
selection method, which are explained in Section II. For a fair
evaluation, these benchmarks also use a Dijkstra algorithm for
finding the shortest path between a host-server pair with the
link weights predicted by an LSTM model.

The LCP-WAC benchmark (presented in our previous study
[11]) utilizes the same LSTM-based Dijkstra algorithm; how-
ever, it identifies each possible shortest path for each possible
server and chooses the server with the lowest server cost
instead of choosing a server according to traditional MAB
methods mentioned in Section II. Indeed, this LCP-WAC
benchmark takes up a high computational cost.
C. Performance Analysis

In this experiment, we test the length of a sliding window Tr
considered on different instances: 1200, 6000, 12000, 18000,
and 24000 with 10, 50, 100, 150, and 200 requests per second
respectively. Also, the threshold convergence values in server
cost and response time are fixed at 0.02 and 0.005 respectively
to determine system dwell time.

As illustrated in Figure 3, the proposed GAL algorithm
considers real-time statistics about the past experience and the
current experience simultaneously to optimize the procedure of
allocating users’ requests, where the forgetting ratio γ is 0.1,
0.5, 0.85, and 1.0. GAL (γ = 0.85) has better performance
in the server cost and the server response time, achieving
approximately 0.15ms and 55% respectively at 200 requests
per second. Conversely, when γ is 0.1 or 1.0, it means that
because the value of the reward function can either completely
forget or consider past experiences, thus the proposed GAL
algorithm is hardly adaptable to dynamic environments.

Fig. 3: Number of requests vs. server performance, where there
are 92 nodes and 18 servers.

Figure 4 illustrates the relation between the number of
servers and the RT and SC respectively. This simulation has 10
replica servers and 10 requests per second. The forgetting ratio
γ is set to 0.85. The benchmark LCP-WAC’s response time
significantly increased to over 1.75 ms. This can be explained
that as the number of servers increases, the benchmark PLC-
WAC algorithm has to calculate all the shortest paths to every
possible server before choosing the server with a minimum
server cost, thus requiring more computational cost and pro-
cessing time. However, the response time of MAB algorithms
(ε-greedy, UCB1, TOW, and the proposed GAL) only changes
slightly, since their server selection method is simply about
choosing the server with the highest expected reward (as
shown in Section II, and III). In contrast, when the number of
servers increase from 18 to 50 replica servers, the LCP-WAC
benchmark witnessed a remarkable decrease in server cost
value, plummeting from around 20% to a mere 2%. Besides,
the proposed GAL algorithm has better performance in server
cost with the second-lowest ranking, regardless of the number
of servers. The reason is that the proposed forgetting parameter
can reduce the impact of past experiences, thus making the
method more adaptable in a stochastic environment.

Fig. 4: Number of servers vs. server performance, where there
are 92 nodes and 10 requests per second.

V. CONCLUSION
This paper has introduced GAL algorithm as a new ap-

proach to tackle the server and route selection problem uti-
lizing the Gambling method and LSTM neural networks. The
algorithm aims to minimize server cost and server response
time over an extended time while considering the dynamic
future of network states. GAL comprises two essential phases:
server selection and routing optimization. The server selection

phase is formulated as a gambling problem and addressed
using a modified tug-of-war (TOW) algorithm inspired by
the game of tug-of-war. This adaptation incorporates a new
reward function that combines server cost and response time
and a new approach to estimating the quality of servers using
the Q(.) function. The routing optimization phase leverages a
Dijkstra algorithm with link weights predicted by an LSTM
network. The integration of LSTM-based routing mechanisms
enables GAL to effectively account for future network states
and make informed routing decisions. To test the efficiency
of the proposed GAL algorithm, we conducted extensive tests
within a distributed multi-domain software-defined networking
environment. The results demonstrate that GAL outperforms
other state-of-the-art benchmarks, exhibiting superior average
server response time and server cost. GAL can contribute to
advancing the SARS optimization study. The hybrid approach
of combining gambling-inspired server selection with LSTM-
based routing enhances the effectiveness in addressing the
long-term objectives while adapting to dynamic network con-
ditions. These findings highlight the potential of GAL for im-
proving resource allocation in complex network environments
for more efficient and cost-effective network management
strategies.

REFERENCES
[1] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, C. Wang, and Y. Liu, “A survey

of machine learning techniques applied to software defined networking
(sdn): Research issues and challenges,” IEEE Communications Surveys
& Tutorials, vol. 21, no. 1, pp. 393–430, 2018.

[2] F. Fitzek, F. Granelli, and P. Seeling, Computing in Communication
Networks: From Theory to Practice. Academic Press, 2020.

[3] H.-A. Tran, S. Souihi, D. Tran, and A. Mellouk, “Mabrese: A new
server selection method for smart sdn-based cdn architecture,” IEEE
Communications Letters, vol. 23, no. 6, pp. 1012–1015, 2019.

[4] S. Kaur, K. Kumar, J. Singh, and N. S. Ghumman, “Round-robin based
load balancing in software defined networking,” in 2015 2nd inter-
national conference on computing for sustainable global development
(INDIACom). IEEE, 2015, pp. 2136–2139.

[5] S.-J. Kim, M. Aono, and E. Nameda, “Efficient decision-making by
volume-conserving physical object,” New Journal of Physics, vol. 17,
no. 8, p. 083023, 2015.

[6] N. H. Nguyen, P. Le Nguyen, H. Dinh, T. H. Nguyen, and K. Nguyen,
“Multi-agent multi-armed bandit learning for offloading delay minimiza-
tion in v2x networks,” in 2021 IEEE 19th International Conference on
Embedded and Ubiquitous Computing (EUC). IEEE, 2021, pp. 47–55.

[7] J. Ma, T. Nagatsuma, S.-J. Kim, and M. Hasegawa, “A machine-learning-
based channel assignment algorithm for iot,” in 2019 International
Conference on Artificial Intelligence in Information and Communication
(ICAIIC). IEEE, 2019, pp. 1–6.

[8] H. Zhong, Q. Lin, J. Cui, R. Shi, and L. Liu, “An efficient sdn load
balancing scheme based on variance analysis for massive mobile users,”
Mobile Information Systems, vol. 2015, 2015.

[9] P. Sossalla, “Investigation of reinforcement learning strategies for routing
in software-defined networks,” 2019. [Online]. Available: https://cn.ifn.
et.tu-dresden.de/wp-content/uploads/2022/11/DA Sossalla Peter.pdf

[10] L. Amour, V. Tong, S. Souihi, H. A. Tran, and A. Mellouk, “Quality
estimation framework for encrypted traffic (q2et),” in 2019 IEEE Global
Communications Conference (GLOBECOM). IEEE, 2019, pp. 1–6.

[11] N.-T. Hoang, V. Tong, H. A. Tran, C. S. Duong, and T. L. T.
Nguyen, “Lstm-based server and route selection in distributed and
heterogeneous sdn network,” Journal of Computer Science and
Cybernetics, vol. 39, no. 1, p. 79–99, Mar. 2023. [Online]. Available:
https://vjs.ac.vn/index.php/jcc/article/view/17591

[12] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in Com-
munications, vol. 29, no. 9, pp. 1765–1775, 2011.

