Selected configuration interaction using a transcorrelated Hamiltonian

A. Ammar¹, Y. Damour¹, E. Giner², P-F. Loos¹, <u>A. Scemama¹</u> 08/10/2024

¹Laboratoire de Chimie et Physique Quantiques, Univ. Toulouse/CNRS ²Laboratoire de Chimie Théorique, Univ. Paris Sorbonne/CNRS

Objective

The most accurate possible approximation to the solution of the Schrödinger equation for (small) molecules, with a reasonable energy footprint.

- 1. Reaching the full configuration interaction (FCI) accuracy
- 2. Going beyond FCI

Exact solution of $\hat{H}\Psi = E\Psi$ in a given N-electron basis

• All possible ways to put N_{\uparrow} electrons in M orbitals and N_{\downarrow} electrons in M orbitals:

$$\Psi = c_1 \begin{pmatrix} --\\ --\\ +\psi \end{pmatrix} + c_2 \begin{pmatrix} --\\ +-\\ -\psi \end{pmatrix} + c_3 \begin{pmatrix} +-\\ --\\ -\psi \end{pmatrix} + c_4 \begin{pmatrix} --\\ -\psi \\ +- \end{pmatrix} + c_5 \begin{pmatrix} --\\ +\psi \\ -- \end{pmatrix} + c_6 \begin{pmatrix} +-\\ -\psi \\ -- \end{pmatrix} + c_7 \begin{pmatrix} -\psi \\ --\\ +- \end{pmatrix} + c_8 \begin{pmatrix} -\psi \\ +-\\ -- \end{pmatrix} + c_9 \begin{pmatrix} +\psi \\ --\\ -- \end{pmatrix}$$

Exact solution of $\hat{H}\Psi = E\Psi$ in a given N-electron basis

• All possible ways to put N_{\uparrow} electrons in M orbitals and N_{\downarrow} electrons in M orbitals:

$$\Psi = c_1 \begin{pmatrix} --\\ --\\ +\psi \end{pmatrix} + c_2 \begin{pmatrix} --\\ +-\\ -\psi \end{pmatrix} + c_3 \begin{pmatrix} +-\\ --\\ -\psi \end{pmatrix} + c_4 \begin{pmatrix} --\\ -\psi \\ +- \end{pmatrix} + c_5 \begin{pmatrix} --\\ +\psi \\ -- \end{pmatrix} + c_6 \begin{pmatrix} +-\\ -\psi \\ -\psi \end{pmatrix} + c_7 \begin{pmatrix} -\psi \\ --\\ +- \end{pmatrix} + c_8 \begin{pmatrix} -\psi \\ +-\\ -- \end{pmatrix} + c_9 \begin{pmatrix} +\psi \\ --\\ -- \end{pmatrix}$$

• Variational optimization of c_i

Exact solution of $\hat{H}\Psi = E\Psi$ in a given N-electron basis

• All possible ways to put N_{\uparrow} electrons in M orbitals and N_{\downarrow} electrons in M orbitals:

$$\Psi = c_1 \begin{pmatrix} --\\ --\\ +\psi \end{pmatrix} + c_2 \begin{pmatrix} --\\ +-\\ -\psi \end{pmatrix} + c_3 \begin{pmatrix} +-\\ --\\ -\psi \end{pmatrix} + c_4 \begin{pmatrix} --\\ -\psi \\ +- \end{pmatrix} + c_5 \begin{pmatrix} --\\ +\psi \\ -- \end{pmatrix} + c_6 \begin{pmatrix} +-\\ -\psi \\ -\psi \end{pmatrix} + c_7 \begin{pmatrix} -\psi \\ --\\ +- \end{pmatrix} + c_8 \begin{pmatrix} -\psi \\ +-\\ -- \end{pmatrix} + c_9 \begin{pmatrix} +\psi \\ --\\ -- \end{pmatrix}$$

- Variational optimization of c_i
- Intractable : $\mathcal{O}(N!)$ scaling of parameters (Quantum computing?)

$$N_{det} = \left(rac{M!}{N_{\uparrow}!(M-N_{\uparrow})!}
ight) imes \left(rac{M!}{N_{\downarrow}!(M-N_{\downarrow})!}
ight)$$

Full Configuration Interaction (FCI)

- Exact solution of $\hat{H}\Psi = E\Psi$ in a given N-electron basis of Slater determinants
- The determinant basis is derived from the 1-electron basis set
- Only approximation of FCI : 1-electron basis-set incompleteness

Full Configuration Interaction (FCI)

- Exact solution of $\hat{H}\Psi = E\Psi$ in a given N-electron basis of Slater determinants
- The determinant basis is derived from the 1-electron basis set
- Only approximation of FCI : 1-electron basis-set incompleteness

All post-HF methods are approximations to FCI within the same basis set

- FCI is the reference for benchmarking post-HF methods (not experiment!)
 - Configuration Interaction (CI): Use *not all* possible determinants: variational optimization of *c_i*
 - Coupled Cluster (CC): Use *all* possible determinants: non-variational optimization of a reduced number of parameters *t_i*
 - Perturbative methods: Direct approximation of c_i in one shot

Water molecule

Caffarel et al, doi:10.1063/1.4947093

Basis	E(FCI)	Err (mE _h)	Corr energy
cc-pCVDZ	-76.28214	156.8	58.1 %
cc-pCVTZ	-76.38829	50.7	86.5 %
cc-pCVQZ	-76.41932	19.6	94.8 %
cc-pCV5Z	-76.42855	10.4	97.2 %
Est. exact	-76.43894	0.	100.0 %

Basis set incompleteness error

Water molecule

Caffarel et al, doi:10.1063/1.4947093

Basis	E(FCI)	Err (mE _h)	Corr energy
cc-pCVDZ	-76.28214	156.8	58.1 %
cc-pCVTZ	-76.38829	50.7	86.5 %
cc-pCVQZ	-76.41932	19.6	94.8 %
cc-pCV5Z	-76.42855	10.4	97.2 %
Est. exact	-76.43894	0.	100.0 %

Basis set incompleteness error

Good news: Error cancellation is large in energy *differences*

Pople diagram

Obtaining the FCI energy within a given basis set

Extrapolation

- Extrapolating: CISD, CISDT, CISDTQ, ...
- Extrapolating: CCSD, CCSDT, CCSDTQ, ...

Obtaining the FCI energy within a given basis set

Extrapolation

- Extrapolating: CISD, CISDT, CISDTQ, ...
- Extrapolating: CCSD, CCSDT, CCSDTQ,

Brute force

- Propane/STO-3G: 26 electrons in 23 MOs (Gao et al doi:10.1021/acs.jctc.3c01190)
 - 1.3 10¹² Slater determinants
 - 113 hours on 256 nodes (10 240 cores)

Obtaining the FCI energy within a given basis set

Extrapolation

- Extrapolating: CISD, CISDT, CISDTQ, ...
- Extrapolating: CCSD, CCSDT, CCSDTQ,

Brute force

- Propane/STO-3G: 26 electrons in 23 MOs (Gao et al doi:10.1021/acs.jctc.3c01190)
 - 1.3 10¹² Slater determinants
 - 113 hours on 256 nodes (10 240 cores)

Sparse approaches

- 1. FCI-QMC: Stochastic solution of FCI equations (Booth *et al*, doi:10.1063/1.3193710)
- 2. Selected CI: CIPSI or SHCI

Algorithm

1. Start with a single determinant in the set \mathcal{D}_0 : $\Psi_n = \begin{pmatrix} --\\ --\\ + \downarrow \end{pmatrix}$.

Algorithm

- 1. Start with a single determinant in the set \mathcal{D}_0 : $\Psi_n = \begin{pmatrix} --\\ --\\ \pm \pm \end{pmatrix}$.
- 2. Among all other determinants, estimate with perturbation theory (PT2) which one will be the most important, and add it to the space \mathcal{D}_{n+1} .

Algorithm

- 1. Start with a single determinant in the set \mathcal{D}_0 : $\Psi_n = \begin{pmatrix} --\\ --\\ \pm \pm \end{pmatrix}$.
- 2. Among all other determinants, estimate with perturbation theory (PT2) which one will be the most important, and add it to the space \mathcal{D}_{n+1} .

$$\forall \left| lpha
ight
angle \in \{ \hat{T}_{\mathrm{SD}} | \Psi_n
angle \} \setminus \{ \mathcal{D}_n \}, \text{ compute } e_lpha = rac{\langle lpha | \mathcal{H} | \Psi_n
angle^2}{E(\Psi_n) - \langle lpha | \mathcal{H} | lpha
angle},$$

and select $|\alpha\rangle$ with the largest $|e_{\alpha}|$: $\mathcal{D}_{n+1} = \mathcal{D} \cup \{|\alpha\rangle\}$.

Algorithm

- 1. Start with a single determinant in the set \mathcal{D}_0 : $\Psi_n = \begin{pmatrix} --\\ --\\ \pm \pm \end{pmatrix}$.
- 2. Among all other determinants, estimate with perturbation theory (PT2) which one will be the most important, and add it to the space \mathcal{D}_{n+1} .
- 3. Estimate with PT2 the energy contribution coming from all the other determinants:

$$E_{\mathsf{PT2}}(\Psi_n) = \sum_{|lpha
angle
otin \mathcal{D}_n} e_lpha, \quad ext{and} \quad E_{\mathsf{FCI}} = E(\Psi_n) + (1+\epsilon_n) E_{\mathsf{PT2}}(\Psi_n)$$

Algorithm

- 1. Start with a single determinant in the set \mathcal{D}_0 : $\Psi_n = \begin{pmatrix} --\\ --\\ \pm \pm \end{pmatrix}$.
- 2. Among all other determinants, estimate with perturbation theory (PT2) which one will be the most important, and add it to the space \mathcal{D}_{n+1} .
- 3. Estimate with PT2 the energy contribution coming from all the other determinants:
- 4. Minimize the energy $E(\Psi_{n+1})$ over the space \mathcal{D}_{n+1} , and obtain a new wave function and energy: $\Psi_{n+1} = c_1 \begin{pmatrix} --\\ --\\ + \downarrow \end{pmatrix} + c_2 \begin{pmatrix} --\\ + \downarrow\\ -- \end{pmatrix}$.
- 5. Go back to step 2.

Algorithm

- 1. Start with a single determinant in the set \mathcal{D}_0 : $\Psi_n = \begin{pmatrix} --\\ --\\ \pm \downarrow \end{pmatrix}$.
- 2. Among all other determinants, estimate with perturbation theory (PT2) which one will be the most important, and add it to the space \mathcal{D}_{n+1} .
- 3. Estimate with PT2 the energy contribution coming from all the other determinants:
- 4. Minimize the energy $E(\Psi_{n+1})$ over the space \mathcal{D}_{n+1} , and obtain a new wave function and energy: $\Psi_{n+1} = c_1 \begin{pmatrix} --\\ --\\ +\downarrow \end{pmatrix} + c_2 \begin{pmatrix} --\\ +\downarrow\\ -- \end{pmatrix}$.
- 5. Go back to step 2.

Output

Wavefunctions Ψ_n Variational energies $E(\Psi_n)$ PT2 corrections $E_{PT2}(\Psi_n)$

N_2 , aug-cc-pVTZ+3s3p3d

 \mathcal{H}

Important

- When all possible the determinants have been included in the space:
 - The FCI solution is obtained
Important

- When all possible the determinants have been included in the space:
 - The FCI solution is obtained
 - $E_{\text{PT2}} = 0$ because of the condition $|\alpha\rangle \notin \mathcal{D}_n$ in the summation

Extrapolated FCI energy with CIPSI iterations

Important

• CIPSI is not a *method*, it is a sparse algorithm to solve iteratively a CI problem

Important

- CIPSI is not a *method*, it is a sparse algorithm to solve iteratively a CI problem
 - Every CI problem can be solved with this algorithm
 - Excited states can be obtained

Excited states

CIPSI extrapolation

• SCI data — 3-pt linear fit

Loos et al, doi:10.48550/arXiv.2402.13111

Method	Energy (E _h)	Error wrt FCI
CCSD	-117.098 767	1.36 mE _h
CCSD(T)	-117.099 708	0.41 mE _h
CCSDT	-117.099 942 158	0.18 mE _h
CCSDTQ	-117.100 120 230	2.45 μE _h
CIPSI	-117.100 115 87	6.81 μE _h
CIPSI+PT2	-117.100 122 19	0.49 µE _h
exFCI	-117.100 122 67(1)	0.01 µE _h
FCI	-117.100 122 681 461	-

Brute force

- 1.3 trillion determinants \implies 19 TB storage
- 113 hours on 256 nodes (10 240 cores) \Longrightarrow 1.1 million CPU hours

Brute force

- 1.3 trillion determinants \implies 19 TB storage
- 113 hours on 256 nodes (10 240 cores) \Longrightarrow 1.1 million CPU hours
- 10 MWh energy:
 - a house for 2.2 years
 - 60 000 km with an electric car

CIPSI

- Error vs FCI: 3 10⁻⁶ hartree
- 2 million determinants \implies 5 GB storage
- 14 minutes on 1 node (36 cores) ⇒ 8.4 CPU hours

CIPSI

- Error vs FCI: 3 10⁻⁶ hartree
- 2 million determinants \Longrightarrow 5 GB storage
- 14 minutes on 1 node (36 cores) ⇒ 8.4 CPU hours
- 74 Wh energy:
 - playing on a PlayStation5 for 20 minutes
 - 500 m with an electric car

Caffarel et al, doi:10.1063/1.4947093

Quest database: Excited states

"The QUEST project aims to provide to the community a large set of highly-accurate excitation energies for various types of excited states"

- ▶ #1: JCTC 14 (2018) 4360
- #2: JCTC 15 (2019) 1939; arXiv:2403.19597
- ▶ #3: JCTC 16 (2020) 1711
- ▶ #4: JCTC 16 (2020) 3720
- ▶ #5: WIREs 11 (2021) e1517
- ▶ #6: JCTC 17 (2021) 3666
- ▶ #7: JPCA 125 (2021) 10174
- ▶ #8: JCTC 19 (2023) 8782

Correlation energy of Benzene/cc-pVDZ

Eriksen et al, doi:10.1021/acs.jpclett.0c02621

Correlation energy of Benzene/cc-pVDZ

Loos et al, doi:10.1063/5.0027617

Correlation energy of Benzene/cc-pVDZ

Loos et al, doi:10.1063/5.0027617

Problems with larger systems

Orbital optimization

Number of determinants	Number	of	determinants
------------------------	--------	----	--------------

Orbitals	$ imes 10^{6}~{ m dets}$	Time
Natural orbitals	44	31 h
Localized orbitals	7	5 h
Optimized orbitals	1	20 min

- Optimized orbitals: Same energy with $100\times$ less Wh than NO
- Not enough to treat much larger systems

The Coulomb hole

Quantum Monte Carlo

• Introduce a Jastrow factor $J(r_1, r_2, \ldots, r_N)$ in the wave function, such that

$$\frac{\partial J}{\partial r_{12}}\Big|_{r_{12}\to 0} = \frac{1}{2} \qquad \text{for example: } J = \frac{1}{2}\sum_{i< j}\frac{r_{ij}}{1+b\,r_{ij}}, \qquad \Phi = \Psi e^J = \sum_i c_i\,D_i\,e^J$$

Quantum Monte Carlo

• Introduce a Jastrow factor $J(r_1, r_2, \ldots, r_N)$ in the wave function, such that

$$\frac{\partial J}{\partial r_{12}}\Big|_{r_{12}\to 0} = \frac{1}{2} \qquad \text{for example: } J = \frac{1}{2}\sum_{i< j}\frac{r_{ij}}{1+b\,r_{ij}}, \qquad \Phi = \Psi e^J = \sum_i c_i\,D_i\,e^J$$

• Optimize the parameters of the Jastrow factor, and obtain a lower *variational* energy:

$$E = \frac{\langle \Phi | \mathcal{H} | \Phi \rangle}{\langle \Phi | \Phi \rangle} = \frac{\langle \Psi e^{J} | \mathcal{H} | e^{J} \Psi \rangle}{\langle \Psi e^{J} | e^{J} \Psi \rangle}$$

Quantum Monte Carlo

• Introduce a Jastrow factor $J(r_1, r_2, \ldots, r_N)$ in the wave function, such that

$$\frac{\partial J}{\partial r_{12}}\Big|_{r_{12}\to 0} = \frac{1}{2} \qquad \text{for example: } J = \frac{1}{2}\sum_{i< j}\frac{r_{ij}}{1+b\,r_{ij}}, \qquad \Phi = \Psi e^J = \sum_i c_i\,D_i\,e^J$$

• Optimize the parameters of the Jastrow factor, and obtain a lower *variational* energy:

$$E = \frac{\langle \Phi | \mathcal{H} | \Phi \rangle}{\langle \Phi | \Phi \rangle} = \frac{\langle \Psi e^{J} | \mathcal{H} | e^{J} \Psi \rangle}{\langle \Psi e^{J} | e^{J} \Psi \rangle}$$

- Non-orthogonal basis: $\langle D_i e^J | e^J D_j \rangle \neq \delta_{ij}$
- Involves 3N-dimensional integrals \implies Monte Carlo integration

Transcorrelated (TC) Hamiltonian

• Introduce a Jastrow factor $J(r_1, r_2, ..., r_N)$ in the Hamiltonian, with a similarity transformation:

$$\tilde{\mathcal{H}} \longrightarrow e^{-J} \mathcal{H} e^{-J}$$

- The exact energy is obtained in a complete basis set
- Involves up to three-electron integrals

Transcorrelated (TC) Hamiltonian

• Introduce a Jastrow factor $J(r_1, r_2, ..., r_N)$ in the Hamiltonian, with a similarity transformation:

$$\tilde{\mathcal{H}} \longrightarrow e^{-J} \mathcal{H} e^{J}$$

- The exact energy is obtained in a complete basis set
- Involves up to three-electron integrals
- Non-Hermitian operator

• Right- and Left- eigenvectors :
$$\begin{cases} \tilde{\mathcal{H}} |\Psi_k\rangle &= \tilde{E}_k |\Psi_k\rangle \\ \tilde{\mathcal{H}}^{\dagger} |\chi_k\rangle &= \tilde{E}_k |\chi_k\rangle \end{cases}$$

• Bi-orthonormal eigenvectors: $\langle \chi_i | \Psi_j \rangle = \delta_{ij}$, but $\langle \Psi_i | \Psi_j \rangle \neq \delta_{ij}$ and $\langle \chi_i | \chi_j \rangle \neq \delta_{ij}$

Transcorrelated (TC) Hamiltonian

• Introduce a Jastrow factor $J(r_1, r_2, ..., r_N)$ in the Hamiltonian, with a similarity transformation:

$$ilde{\mathcal{H}} \longrightarrow e^{-J} \mathcal{H} e^{J}$$

- The exact energy is obtained in a complete basis set
- Involves up to three-electron integrals
- Non-Hermitian operator
 - Non-variational energy:

$$\tilde{E} = \frac{\langle \chi | \tilde{\mathcal{H}} | \Psi \rangle}{\langle \chi | \Psi \rangle} = \frac{\langle \chi | e^{-J} \mathcal{H} e^{J} | \Psi \rangle}{\langle \chi | \Psi \rangle} = \frac{\langle \chi e^{-J} | \mathcal{H} | e^{J} \Psi \rangle}{\langle \chi e^{-J} | e^{J} \Psi \rangle}$$

• Orthogonal determinant basis: $\langle D_i e^{-J} | e^J D_j \rangle = \langle D_i | D_j \rangle = \delta_{ij}$

Technical details

Implementation in Quantum Package

- 1,2,3-e Integrals involving the Jastrow factor
- Modified Slater-Condon rules
- Modified PT2 contributions using

$$\frac{\langle \chi_n | \tilde{\mathcal{H}} | \alpha_r \rangle \langle \alpha_l | \tilde{\mathcal{H}} | \Psi_n \rangle}{\tilde{\mathcal{E}}(\Psi_n) - \langle \alpha_l | \tilde{\mathcal{H}} | \alpha_r \rangle}$$

- Non-Hermitian Davidson diagonalization
- TC-SCF: left and right bi-orthonormal molecular orbitals \Longrightarrow different left and right determinant bases

Ammar et al, doi:10.1063/5.0115524, doi:10.1063/5.0163831 and doi:10.1021/acs.jctc.3c00257

Improved energies

FIG. 9. Error (in mE_h) in the total energy of H₂O computed at the FCI, TC-FCI, and FN-DMC levels with the cc-pCVXZ family of basis sets with respect to the estimated exact energy ($-76.4389 E_h$). The shaded yellow region corresponds to $1.5 mE_h$ accuracy.

TABLE III. Total energies (in $E_{\rm h}$) computed at the FCI, TC-FCI, and FN-DMC levels of theory for the water molecule in the cc-pCVXZ family of basis sets. The estimated exact energy is $-76.4389 E_{\rm h}$.¹⁴⁹

	$\mathrm{FCI}^{\mathbf{a}}$	$\mathrm{TC}\text{-}\mathrm{FCI}^{\mathrm{b}}$	$\mathrm{FN}\text{-}\mathrm{DMC}^{\mathrm{c}}$
cc- $pCVDZ$	-76.2829	-76.3884	-76.41571(20)
cc- $pCVTZ$	-76.3902	-76.4286	-76.43182(19)
cc- $pCVQZ$	-76.4212	-76.4365	-76.43622(14)
cc-pCV5Z	-76.4311		-76.43744(18)

Acceleration of the convergence

H₂O@cc-pVQZ

Acceleration of the convergence

 $H_2O@cc-pVQZ$

Ionization potentials

FIG. 10. Error (in eV) in the IP of H_2O computed at the FCI and TC-FCI levels with the cc-pVXZ family of basis sets with respect to the CBS estimate (12.80 eV). The shaded yellow region corresponds to $1.5 \text{ m}E_{\rm h}$ accuracy.

- Less energy-consuming algorithm than brute-force FCI
- The Hilbert space grows exponentially fast with tiny contributions
- Current limit for chemical accuracy is close to benzene/cc-pVDZ

- Less energy-consuming algorithm than brute-force FCI
- The Hilbert space grows exponentially fast with tiny contributions
- Current limit for chemical accuracy is close to benzene/cc-pVDZ

Beyond CIPSI

- Necessity to:
 - accelerate the convergence of CIPSI

- Less energy-consuming algorithm than brute-force FCI
- The Hilbert space grows exponentially fast with tiny contributions
- Current limit for chemical accuracy is close to benzene/cc-pVDZ

Beyond CIPSI

- Necessity to:
 - accelerate the convergence of CIPSI
 - reduce the size of the Hilbert space

- Less energy-consuming algorithm than brute-force FCI
- The Hilbert space grows exponentially fast with tiny contributions
- Current limit for chemical accuracy is close to benzene/cc-pVDZ

Beyond CIPSI

- Necessity to:
 - accelerate the convergence of CIPSI
 - reduce the size of the Hilbert space
- Using the TC Hamiltonian shows promising results
• FCI energies can be routinely obtained for small systems

Full CI

- FCI energies can be routinely obtained for small systems
 - FCI not as precise as we think: basis set errors are large

Full CI

- FCI energies can be routinely obtained for small systems
 - FCI not as precise as we think: basis set errors are large
 - Is quantum computing really going to be a game-changer for quantum chemistry?

Full CI

- FCI energies can be routinely obtained for small systems
 - FCI not as precise as we think: basis set errors are large
 - Is quantum computing really going to be a game-changer for quantum chemistry?

Energy minimization

• 500 000 CPU hours \equiv electricity needed by a house for 1 year

Full CI

- FCI energies can be routinely obtained for small systems
 - FCI not as precise as we think: basis set errors are large
 - Is quantum computing really going to be a game-changer for quantum chemistry?

- 500 000 CPU hours \equiv electricity needed by a house for 1 year
 - So many points on curves?

Full CI

- FCI energies can be routinely obtained for small systems
 - FCI not as precise as we think: basis set errors are large
 - Is quantum computing really going to be a game-changer for quantum chemistry?

- 500 000 CPU hours \equiv electricity needed by a house for 1 year
 - So many points on curves?
 - Do we need all those digits?

Full CI

- FCI energies can be routinely obtained for small systems
 - FCI not as precise as we think: basis set errors are large
 - Is quantum computing really going to be a game-changer for quantum chemistry?

- 500 000 CPU hours \equiv electricity needed by a house for 1 year
 - So many points on curves?
 - Do we need all those digits? ⇒ Sparse approaches (SCI, DLPNO-CCSD, Stochastic methods)

- FCI energies can be routinely obtained for small systems
 - FCI not as precise as we think: basis set errors are large
 - Is quantum computing really going to be a game-changer for quantum chemistry?

- 500 000 CPU hours \equiv electricity needed by a house for 1 year
 - So many points on curves?
 - Do we need all those digits? => Sparse approaches (SCI, DLPNO-CCSD, Stochastic methods)
 - Do we really need double precision?

- FCI energies can be routinely obtained for small systems
 - FCI not as precise as we think: basis set errors are large
 - Is quantum computing really going to be a game-changer for quantum chemistry?

- 500 000 CPU hours \equiv electricity needed by a house for 1 year
 - So many points on curves?
 - Do we need all those digits? ⇒ Sparse approaches (SCI, DLPNO-CCSD, Stochastic methods)
 - Do we really need double precision?
 - Do we really need to do always larger simulations?

- FCI energies can be routinely obtained for small systems
 - FCI not as precise as we think: basis set errors are large
 - Is quantum computing really going to be a game-changer for quantum chemistry?

- 500 000 CPU hours \equiv electricity needed by a house for 1 year
 - So many points on curves?
 - Do we need all those digits? ⇒ Sparse approaches (SCI, DLPNO-CCSD, Stochastic methods)
 - Do we really need double precision?
 - Do we really need to do always larger simulations?
 - Propane: removing 2 hydrogens \Longrightarrow 15× less determinants