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ABSTRACT

Data Exploration is an incremental process that helps users express

what they want through a conversation with the data. Reinforce-

ment Learning (RL) is one of the most notable approaches to auto-

mate data exploration and several solutions have been proposed.

We first summarize some RL solutions that were built for different

applications. In this context, various data exploration operators are

leveraged including traditional roll-up and drill-down operations

and text-based operations. An RL agent is trained to generate the

best policy according to a hand-crafted reward function.

The benefit of training RL policies for specific data exploration

tasks has been demonstrated more than once for exploring finding

a needle in a haystack, for serendipitous galaxy exploration, for

helping a customer land on a satisfactory product, for helping a

conference chair build a program committee in a stepwise fashion,

for summarizing large datasets, etc.

With the advent of Large Language Models and their ability to

reason sequentially, it has become legitimate to ask the question:

would LLMs and AI planning outperform an RL policy in data

exploration? More specifically, would LLMs help circumvent re-

training for new tasks and striking a balance between specificity

and generality? This led us to designing LLM-powered approaches

that introduce a new way of thinking about data exploration.
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1 DATA EXPLORATION

Data Exploration is the process of interacting with data to unveil

its content. It is incremental by nature because it should invite the

user to express what they want through a conversation with the

data. The ability to find useful data depends on two aspects: (1) data
and scenario complexity: searching for individual records ranges

from looking for "a needle in a haystack" to "scattered deposits" of

clustered records, and (2) human ability: some users may be very

familiar with the data, the tools, or the application domain, and

know how and where to search, others may not be able to express

their needs. Providing users with some automation to help them

uncover what the data contains is key to an effective and successful

exploration.

Automation is hard because full automation runs the risk of

encapsulating unwanted semantics, and little automation leaves the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.

doi:10.14778/3685800.3685913

burden of navigating in the data to users. Finding the right balance

is ill-defined and remains an unsolved question. This paper explores

the spectrum of automating data exploration with agents ranging

from intentionally constrained agents trained with Reinforcement

Learning (RL) to very free agents, a.k.a. Large Language Models

(LLMs). It ends with a discussion of new opportunities.

1.1 Use Cases
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Figure 1: Exploring The Sloan Digital Sky Survey (SDSS) Data

Exploring Galaxies. Today’s astrophysicists spend considerable

time writing and reformulating SQL queries over the SDSS Sky-

Server database
1
. Many discoveries happen "accidentally". That

was the case for the discovery of Green Pea galaxies that recently

gained attention in Astronomy as one of the potential sources that

drove cosmic reionization. What astronomers need is the ability to

search for subsets or supersets of objects (akin to drill-downs and

roll-ups), and search for galaxies with similar properties or similar

property distributions.

Figure 2: Examples of Uniform (top) and Non-uniform (bot-

tom) Galaxy Itemsets.

Take for instance the case of Sri, an astronomer who wants to

engage in finding as many Green Peas as possible, and possibly

other kinds of galaxies that are similar. She needs to explore the

data and refine her needs on-the-go. Figure 1 shows a sequence

of three steps that form an automated exploration pipeline. The

pipeline starts looking for familiar yet different objects: it first finds

1
See the query interface and logs produced here http://skyserver.sdss.org/log/en/traffic/

sql.asp
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Figure 3: Example of a three-step exploration. The user iteratively examines subsets of the reviewer and item tables. Links between selected

reviewer and item groups are aggregated as rating maps, showing the most “interesting" trends in the data.

neighboring objects, with similar colors as the Green Pea galaxies
and then it breaks down those objects into subsets of similar spectral
properties. These two steps result in more Green Peas. At this stage,

exploration becomes adventurous and returns different objects with
comparable distributions of relative ratios and strength of emission
lines at higher redshifts. As a result, Sri discovers that Green pea

galaxies are analogous to high redshift galaxies.

Consider now Max who is looking to summarize galaxy data.

A summary can be defined as a diverse set of 𝑘 sets of items each
of which is uniform, i.e., it contains items that are similar to each
other. Itemsets are different from each other, leading to a diverse

summary. Figure 2 shows examples of uniform and non-uniform

itemsets of galaxies derived from SDSS. One can see that uniform

itemsets are easier to interpret by humans. Users would benefit

from a multi-shot summarization approach that delivers 𝑘 uniform

and novel itemsets at each step until the full data has been explored.

Exploring Subjective Data. Exploring data on the social Web

is a common and tedious task that people rely on for decision

making. Consider for instance Mary who is looking for insights

on restaurants in New York City. Figure 3 summarizes a 3-step

exploration. Mary first examines the reviewers’ overall ratings and
sees no significant difference between age groups (upper histogram).

As a young adult, her next operation is to look deeper into that
group in Step II. She discovers that they gave the highest ratings

for restaurants in Williamsburg (upper histogram). She also finds

that on average, young women have given the lowest ambiance

rating (lower histogram). In Step III, Mary dives deeper into the
ratings of young women, and finds that programmers among them

provided the lowest overall ratings (upper histogram). She also sees

that those reviewers gave the highest service ratings to Japanese

restaurants (lower histogram). With only a few steps, Mary obtains

detailed insights on the opinions of people she relates to.

Consider now the case of Maya who wants to buy a high-quality

camera for his upcoming nature photo-shooting.Maya cannot form
a precise query to express her need, as she’s unsure what attributes
matter in his purchase. She needs to cherry-pick items and reviews to
make an informed decision.Maya starts browsing cameras in Ama-

zon that have a high optical view and processing power. Figure 4

depicts some exploration steps. Maya reviews the suggestions and

focuses on a Fujifilm X100V camera. The system then suggests a

representative set of reviews for the selected camera. This helps

Maya get a better understanding of the pros and cons of that prod-

uct, such as improved lens resolution and fragility of the camera.

A review on “autofocus issues” attracts her attention, as this is

important for capturing photos in nature. She intervenes and asks

the system for other reviews on the same topic. In the results, Maya

notices a review that suggests Canon cameras as better options for

autofocus. She selects that review and the system recommends a

few cameras related to that review among which Maya discovers a

Canon 6D as her final target.

In our examples, users must visit a large space of objects to make

an informed decision. Sometimes they need to refine their queries

or draw insights from unstructured text. This process is tedious and

prone to noise as it relies on one’s technical abilities and domain

knowledge.

1.2 Exploration Model

An exploration session is a sequence of iterations obtained by ap-

plying a generic exploration function defined as follows:

explore(𝑋,X, 𝑘) → 2
X

(1)

The exploration function encapsulates the semantics of various

exploration operators. It admits a set of object 𝑋 ∈ X that may be

a set of galaxies, products, reviews, and returns 𝑘 subsets of X that

act as input to the next iteration. For instance, explore(𝑋1,X, 5)
may return 5 subsets or supersets of 𝑋1, or the 5 most similar sets

of objects to 𝑋1.

2 LEVERAGING REINFORCEMENT LEARNING

Recent work in automating data exploration has led to frameworks

that leverage Reinforcement Learning (RL) to enhance the user

experience [3, 6, 14, 16, 17, 20]. These frameworks rely on the for-

malization of a Markov Decision Process (MDP) that captures states

representing subsets of the data being explored, actions represent-

ing operators used to navigate between states, transition probabili-

ties, and a reward function used to train an agent and produce an

optimal data exploration policy.

2.1 Modeling Exploration Processes

An exploration process is often modeled as an MDP comprising a

quadruple (𝑆 , 𝐸, 𝑃 , 𝑅) where:

• 𝑆 is a discrete set of exploration states;

• 𝐸 is a set of exploration actions, where each action instanti-

ates our function explore(𝑋,X, 𝑘) and enables a transition

between consecutive exploration states 𝑠𝑡 and 𝑠𝑡+1;
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Figure 4: Example of review-based item exploration.

• 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑒𝑡 ) are the probabilities that the exploration ac-

tion 𝑒𝑡 will change state 𝑠𝑡 ∈ 𝑆 to state 𝑠𝑡+1 ∈ 𝑆 ;
• 𝑅(𝑠𝑡+1 |𝑠𝑡 , 𝑒𝑡 ) are rewards for transitioning from state 𝑠𝑡 ∈ 𝑆

to 𝑠𝑡+1 ∈ 𝑆 by applying the exploration action 𝑒𝑡 .

The exploration state 𝑠𝑡+1 is obtained by applying action 𝑒𝑡 to

a previous state 𝑠𝑡 . The exploration process goes on by selecting

another action 𝑒𝑡+1. The probabilities 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑒𝑡 ) reflect the be-
havior of the environment when exploration actions are applied,

i.e., they represent what is displayed to the user in iteration 𝑡 + 1, if

𝑒𝑡 is applied. Usually, a model-free setting [23] is considered, where
the probabilities are not known a priori, and depend on a reward

function. An exploration policy 𝜋 is a mapping function from an ex-

ploration state 𝑠𝑡 to an action 𝑒𝑡 , where 𝜋 (𝑠𝑡 ) = 𝑒𝑡 . An exploration

session generated by 𝜋 is S𝜋 = [(𝑠1, 𝜋 (𝑠1)), . . . , (𝑠𝑛, 𝜋 (𝑠𝑛))].
The MDP is used to learn a policy of an agent with the goal to

maximize its expected reward such as:

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝐸 [𝑅𝜋 ] (2)

where 𝜋 is a policy and 𝑅𝜋 is the reward obtained by 𝜋 .

The choice of actions and reward is dictated by an application.We

provide an overview of different systems and their implementation

choices for the MDP states and rewards.

2.2 DORA The Explorer

dora the explorer was developed to explore very large galaxy

data in SDSS [16, 17]. Table 1 shows the operators in dora the

explorer. The second column depicts their equivalent definition

in the Region Connection Calculus 8 (RCC8) formalism [9, 19].

dora the explorer defines a target set of familiar objects 𝑇

and a reward function that is expressed as a linear combination
of familiarity and curiosity. Familiarity captures the proportion

of target objects found at each step [3, 11, 20]. This definition is

insufficient when target objects are "drowned" in very big sets such

as galaxies. Hence, the need to balance (extrinsic) familiarity and

(intrinsic) curiosity with the goal of rewarding newly encountered

states similarly to learning to play a game [15].

Table 1: Exploration operators. The initial data is represented

with a bold line and the destination results are represented

with dashed lines.

Operator RCC8 Formalism [19] Output description

by-facet(𝐷,𝐴) NTPPi returns as many subsets of 𝐷 as there

are combinations of values of attributes

in𝐴

by-superset(𝐷,𝑘 ) NTPP returns the 𝑘 smallest supersets of input

set 𝐷 (𝑘 is application-dependent)

by-distribution(𝐷 ) DC returns all sets that are distinct from the

input set 𝐷 and whose attribute value

distribution is similar to 𝐷

by-neighbors(𝐷,𝑎) EC returns 2 sets that are distinct from the

input set 𝐷 and that have the previous

(smaller) and next (larger) values for at-

tribute 𝑎
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Figure 5: Architecture of dora the explorer [17].

dora the explorer’s architecture is given in Figure 5. Data is

pre-processed to instantiate a set-based data model. Equi-depth

binning is applied to numerical attributes and the LCM closed fre-

quent pattern mining algorithm [27] generates itemsets. Model
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Figure 6: Architecture of EDA4Sum for multi-step summa-

rization [31].

training relies on a Tensorflow-based implementation of A3C
2
, a

parallelized and asynchronous Deep RL (DRL) architecture: multiple

actor-learners are dispatched to separate instances of the environ-

ment within which they interact, collect experiences and asyn-

chronously push their gradient updates to a central target network.

The combination of input set, operators, and parameters, yields

a large action space. That is handled by leveraging two actors.

The first actor selects on which set the next operator should be

executed and the second selects the operator and parameters. The

states the agent goes through are evaluated by a single critic model,

producing the advantages used to train both actors. The DRL agent

is trained with the environment parameters: (1) the Target Set; (2) a
Set Encoder that generates a feature vector for each set of objects.

The features are the set size, the set description, the number of

distinct values in the set, and the entropy of the values in the set,

and (3) a State Encoder that concatenates the encoded vectors of

every displayed set. For each training, the system chooses different

weights for intrinsic and extrinsic rewards. The outcome of training

is saved in a storage unit that contains several pre-trained models.

2.3 EDA4SUM

EDA4Sum was developed for multi-step large data summariza-

tion [18, 31]. Its data model is based on dora the explorer and its

reward is formulated as a weighted linear combination of uniformity,
diversity, and novelty of summaries produced at each step.

Figure 6 depicts the architecture of EDA4Sum. The offline phase

is based on dora the explorer [17] and is used to train multiple

DRL agents, each of which has different weights in the reward,

to summarize data. EDA4Sum generates summarization pipelines

following one of three modes: Manual, Partial Guidance and Full
Guidance. Pipeline execution starts with the SWAP algorithm [32]

that finds the 𝑘 most uniform and diverse itemsets. The next steps

are chosen by pre-trained agents.

The UI of EDA4Sum is depicted in Figure 7 (with the SPOTIFY

music dataset that includes 232𝐾 music tracks with 11 attributes).

The current 7-step pipeline is shown in the A zone and its results

in the B zone. The user investigates a dataset by specifying the

summarization mode, underlying agent, and possibly customizing

the weights of uniformity, diversity and novelty (C zone). InManual

2
https://github.com/marload/DeepRL-TensorFlow2/

Table 2: Review-based state-action features in GUIDES

Feature group Components

Input object 𝑥𝑡

object type (item or review, one feature), rating

(one feature for each 5-star rating scale), text word

count (one-hot), tag count (one-hot), and sentiments

and topics (10 features for each)

Output objects 𝑋𝑡
Same features as the ones for 𝑥𝑡 , for each

output object 𝑥 ∈ 𝑋𝑡
Exploration action 𝑒𝑡 textdiv(𝑋𝑡 ), numdiv(𝑋𝑡 ), coverage(𝑋𝑡 ), all one-hot encoded
Target T number of targets discovered in T in one-hot encoding

and Partial modes, the user can override the next operator and

its parameters (D zone). The user may want to store the current

pipeline or upload a previously stored one to execute it (E zone).

2.4 GUIDES

GUIDES was developed to help users make informed decisions

on e-commerce sites [17]. The set of objects it manipulates are

products and reviews. The reward of a state 𝑅(𝑠𝑡+1 |𝑠𝑡 , 𝑒𝑡 ) reflects
the utility of 𝑋𝑡+1. A positive reward is received every time some

objects belonging to a target set of products and reviews T are

discovered. To capture that, GUIDES uses a Reward Machine [7]
with three types of rewards: neutral, target, and similarity. If a set

of domain-dependent rules Ω is violated in 𝑠𝑡+1, a neutral reward
(e.g., 0) is given. If Ω holds and some of the target objects exist in

𝑋𝑡+1, a target reward (e.g., 1) is given. If Ω holds but no target is

reached, a similarity reward is given proportionally to the degree

of progression towards T :

𝑅(𝑠𝑡+1 |𝑠𝑡 , 𝑒𝑡 ) =

[0]K+1

if Ω(𝑠𝑡+1) = False
[|𝑋𝑡+1 ∩ T |]K+1

else if 𝑋𝑡+1 ∩ T ≠ ∅
utility(𝑋𝑡+1,T) otherwise

(3)

Reward is multi-valued because the utility function outputs a

vector of size K + 1. This is a natural representation as the tex-

tual content is identified with different exploration dimensions.

For instance, a review might have high utility in terms of its topic

dimension and a low utility when it comes to the sentiment dimen-

sion. This means reward maximization becomes a multi-objective

optimization problem, where each reward dimension acts as one

optimization objective.

GUIDES represents states and actions jointly in a fine-granularity
space by leveraging a set of data-dependent state-action linear fea-

tures ft (𝑠, 𝑒). These features enable the discovery of commonalities

in the state-action space and hence widen the scope of the learned

policy. Table 2 provides details of the features. GUIDES leverages

approximate control methods [23] to learn an approximation of the

action-value function �̂� (w, 𝑠, 𝑒) ≈ 𝑄 (𝑠, 𝑒) where w ∈ R𝑚 and𝑚 is

the number of features,𝑚 ≪ |𝑆 ×𝐸 |. We compute the approximated

action-value function as �̂� (w, 𝑠, 𝑒) = w⊤ft (𝑠, 𝑒). The weights w are

learned by the prediction network 𝜃 .

Figure 8 provides the overall architecture of GUIDES. The offline

training phase simulates a DRL agent to learn a policy. The agent

interacts with a prediction neural network (step 1) to update its

weights by performing actions on the environment (step 2).GUIDES
is equipped with a multi-valued reward mechanism that filters

actions with dominated rewards (step 3). These rewards are then

https://github.com/marload/DeepRL-TensorFlow2/


Figure 7: UI of EDA4Sum with SPOTIFY.

used (step 4) to optimize the policy (step 5). The optimal policy will

then be leveraged in an online context to recommend actions to

the user for effective decision-making.

GUIDES leverages a Deep RL (DRL) algorithm called Deep Q-

Networks (DQN) [13] as the learning component of GUIDES. DQN
was chosen among a variety of discrete-space DRL algorithms

because its architecture complies with compound targets. That

means that the target is spread throughout the exploration session.

GUIDES’ algorithm starts by initializing a buffer B and two neural

networks, the prediction network 𝜃 and the target network 𝜃𝑇 , and

then proceeds by updating them. It outputs an optimized explo-

ration policy which is represented in terms of 𝜃 ’s learned weights.

In DQN, the updates do not impact the neural network weights

right after each interaction with the environment. For more stability

in the training, each interaction is first pushed to a buffer B, and

then training is performed by sampling from B. Each interaction

stored in B is a tuple 𝜔𝑡 = ⟨𝑠𝑡 , 𝑒𝑡 , 𝑟𝑡 , 𝑠𝑡+1⟩, an experience tuple at
iteration 𝑡 , and the sampling process is an experience replay.

The prediction network 𝜃 is trained (using experience replays

from B) as a function approximator for the action-value function,

denoted as 𝑄 (𝑠, 𝑒;𝜃 ). To achieve learning stability, the parameters

of the prediction network are copied to the target network 𝜃𝑇 , every

𝜁 steps, where 𝜁 is a hyper-parameter. The internal architecture of

both prediction and target networks are often identical. In GUIDES,
the architecture used both networks consists of four layers of linear

transformation with width 1024 and rectifier non-linearity func-

tions (ReLU) in-between, and 𝜁 = 100. It also uses Adam [8] as the

optimizer with a learning rate 𝛼 = 0.0003.

Each step in the learning process begins by initializing a starting

state 𝑠𝑡 = ⟨𝑥0, 𝑋0⟩, picking an exploration action 𝑒𝑡 = get_action(𝜀)
using the 𝜀-greedy method, and then following an ensuing explo-

ration session until its termination. In each step of the session, first
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Figure 1: RL framework architecture. In the o✏ine
phase, the system iterates between steps 1 and 2
until it learns a policy (Algorithm 1). The policy
(step 3) is used online to recommend exploration
actions. In step 4, it is applied to any input seed
group and returns target users (Algorithm 2).

instead the group is too small, it would apply explore-around
at step i. Once a policy is learned, it is provided to a human
analyst who applies it during the online phase to generate
an interpretable exploration session that finds a PC for the
same venue at a following year, e.g., WebDB PC in 2018, or
for another venue, e.g., the SIGMOD PC in 2018.

4.2 Exploration model
We model EDA as a Markov Decision Process (MDP)

comprising a quadruple (S, E, P, R) where:

• S is a set of states of the process;

• E is a set of exploration actions that change the process
state;

• P (si+1|si, ei) are probabilities that action ei will change
state si 2 S to state si+1 2 S;

• R(si+1|si, ei) are rewards for transitioning from state si 2
S to state si+1 2 S by applying exploration action ei.

Each state si+1 is a tuple hgi+1, Gki+1i obtained by apply-
ing an exploration action ei to a previous state si = hgi, Gkii,
and for which an action ei+1 should be selected to continue
the exploration. The probabilities P (si+1|si, ei) character-
ize the behavior of exploration actions, i.e., they represent
what will be displayed next if ei is selected. These proba-
bilities are not known in advance and depend on the quality
and relevance functions of the exploration actions and on
properties of the dataset.

Reward design. The reward of a state R(si+1|si, ei) must
reflect the utility of group gi+1 for a set of target users Ut de-
fined in Section 3.3 (Equation 1). Reward design is known
to be a challenging issue, because a reward must capture

what a human analyst expects to achieve and a poorly spec-
ified reward may lead to counter-intuitive performance [9].
In our approach, the simulated RL agent is rewarded each
time it discovers new target users, i.e.,

R(si+1|si, ei) = g utility(gi+1, Ut)

It is important that the agent is rewarded only for targets
which have not been found so far, because otherwise it would
prefer to go back to the same target group [47]. This re-
ward signal does not capture the need to maximize the total
number of target users found in a session. It only prefers
discovering more targets sooner starting from the current
state. A reward that captures the overall utility of an ex-
ploration policy should be computed once at the end of the
exploration. However, learning from such a sparse reward is
too complex in our case. Therefore, we reward the agent at
each intermediate step.

4.3 Reformulating the guided EDA problem
Following our MDP model, our guided EDA problem is

reformulated as finding a policy ⇡ : S ! E, such that it
maximizes the discounted cumulative reward R̂:

R̂ =
X

i

�iR(si+1|si, ei)! max

where ei = ⇡(si) and � 2 [0, 1] is a discount factor.
Similarly to classical RL, given a policy ⇡, we use a value

function V⇡(s) and action-value function Q⇡(s, e):

V⇡(s) = E[
1X

k=0

�i+kR(si+k+1|si+k, ei+k)|si = s]

Q⇡(s, e) = E[
1X

k=0

�i+kR(si+k+1|si+k, ei+k)|si = s, ei = e]

The function V⇡(s) computes the expected cumulative re-
ward of the policy ⇡ gained after observing state s at step i.
The function Q⇡(s, e) captures the expected cumulative re-
ward that ⇡ gets from applying action e at state s. An opti-
mal policy ⇡⇤ always selects actions with the highest value
in the current state, thus maximizing expected reward. This
yields optimal functions V ⇤ and Q⇤ which satisfy the Bell-
man optimality equations [16]:

V ⇤
⇡ (s) = max

e
Q⇤(s, e)=

max
e

X

i

P (si+1|si = s, ei = e)[R(si+1|si = s, ei = e)+�V ⇤(si+1)]

Our goal is then to find ⇡⇤ which yields the best explo-
ration action at every exploration step.

4.4 RL framework
Reinforcement learning is a set of methods that find an op-

timal decision policy for an MDP when transition probabili-
ties are not given. The input to an RL model is (S, E, P, R)\
P . RL fits our context, because (i) we do not assume ex-
ploration logs, and (ii) transition probabilities between ex-
ploration actions are unknown and depend on the data.

To learn an optimal policy, we simulate interactions be-
tween an analyst and groups in the o✏ine phase. An RL
agent interacts with di↵erent states and gathers several sim-
ulated exploration sessions. At each state si = hgi, Gkii, the
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recommended action

TEDA application

Figure 8: Architecture of GUIDES [14] for Text-based Data

Exploration (TDE).

the chosen action is applied to obtain the reward 𝑟𝑡 and the next

state 𝑠𝑡+1, and then the experience tuple is formed to be pushed to

the buffer. Following that, an experience tuple �̄� is replayed from

B to update the parameters of the 𝑄 function approximator 𝜃 .

The DQN architecture is modified to account for the multi-

objective reward. Experience tuples are pushed into the buffer iff

they are not dominated by any other tuple, which means they be-

long to the Pareto front [25]. This ensures that the buffer always

contains non-dominated experiences.



3 LLMS: A NEW ERA FOR DATA

EXPLORATION?

LLMs have demonstrated impressive capabilities in natural lan-

guage understanding and generation, and they now extend their ca-

pabilities beyond language tasks. A recent trend leverages LLMs for

complex tasks [12]. This makes LLMs ideal candidates for automat-

ing data exploration tasks. While resolving complex tasks involves

decision-making at each step, it also requires reasoning capabilities.

Chain-of-Thought (CoT) [28] prompting has become a notable ad-

vancement in enhancing the reasoning capabilities of large LLMs.

This method involves guiding LLMs to break down complex prob-

lems into intermediate steps, improving their ability to solve multi-

step reasoning tasks. Language Agent Tree Search (LATS) [34]

specifically addresses the limitations of LLMs in decision-making

by adapting Monte Carlo Tree Search to help LLMs interact with

an external environment, providing them with external feedback,

and self-reflection for evaluating potential actions.

Multi-Agent Collaboration for LLMs. This approach leverages

teams of specialized LLMs to tackle complex tasks [24]. Each LLM

agent can be specialized for specific tasks and an intelligent com-

munication and collaboration (task division, information sharing)

enables efficient problem solving. The open-source framework Au-

toGen [29] exemplifies that by allowing to create applications with

multiple interacting LLM agents. Systems like LangChain [1] fur-

ther facilitate the coordination of multiple LLMs through Lang-

Graph [2], a specialized map for agent coordination. Each LLM

agent in LangChain can be customized with unique instructions

and access to specific tools. This is illustrated in AutoDev [26]

that uses a combination of agents and tools to facilitate automated

software development tasks.

We ask the question of whether we can leverage the decision-
making capabilities of LLMs to manage LLM agents, orchestrating
their collaboration for efficient data exploration using LangGraph.

Enhancing LLMs with RL for Data Exploration. One of the

concerns with leveraging LLMs for data exploration is the need

to constrain general-purpose LLMs appropriately and avoid hal-

lucinations. RL can play an important role in enhancing LLMs in

that direction. The REMEMBERER framework enhances LLMs with

an external memory component [33]. It integrates an RL-powered

memorywith an LLM, enabling decision-making based on past expe-

riences. REMEMBERER’s memory is updated through RL, yielding

high rewards. This allows the LLM to leverage past experiences

without the need for fine-tuning.

Enhancing RL with LLMs for Data Exploration. A critical

aspect of RL is defining rewards, where LLMs can play a role as a

self-refining reward function [22]. For instance, frameworks like

Eureka [10] show the capability of LLMs to achieve human-level

performance in designing reward systems. By dynamically adapting

the reward function based on feedback, Eureka allows RL agents

to learn more effectively in complex environments. Additionally,

methods like ELLM [5] explore the use of LLMs to guide the pre-

training phase of RL. In this approach, LLMs suggest goals for the

agent based on its current state, and the agent is then rewarded for

achieving these LLM-suggested goals. This highlights the potential

of LLMs to not only design rewards but to also directly influence

the exploration process within RL.

We ask the question of whether we can blend RL and LLMs ef-
fectively to benefit from the wide knowledge and power of LLMs to
specify actions and rewards while leveraging RL to constrain LLM
hallucinations.

4 INTELLIGENT AGENTS FOR DATA

EXPLORATION

In an attempt to address the questions asked in the previous section,

we designed an environment and four agents for data exploration:

RL, RawLLM, QValLLM, FeedbackLLM. These agents are used to ex-

plore products and reviews onAmazon. The variation between LLM-

enabled agents lies in how the supervisor determines which agent

will act next, each method representing a unique decision-making

strategy. Our four agents yield different ways for the decision-

making process within the workflow, each leveraging different

sources of information to guide the selection of the next agent.

4.1 The Environment

We have a set of objects 𝑂 . We use an Amazon dataset where each

object (product or review) has features such as tags, attributes,

sentiment, summary, and text.

A state is the result of an action, so it is defined as an input

object in 𝑂 , a set of k output objects in 𝑂 and an indicator of

the last action used. In practice this can be just ids. We can write

S = 𝑂1+𝑘 × (𝑖𝑑𝑎)𝑎∈A.
An action consists in picking an agent in (L𝑚)𝑚∈[1,𝑛] and the

id of an object in the state, and using this agent to get a new

list of objects. For each agent we have a prompt-builder function

𝑃𝑟𝑜𝑚𝑝𝑡𝑚 : S → T (which can be the same for all agents), and a state-

decoder function 𝑑𝑒𝑐𝑜𝑑𝑒 : T → S to transform the agent outputs

into a state (assuming that the agents’ output is a text). The result

of action m in state s is simply 𝑠′ = 𝑑𝑒𝑐𝑜𝑑𝑒 (L𝑚 (𝑃𝑟𝑜𝑚𝑝𝑡𝑚 (𝑆))).
Actions are defined over object features. Specifically, the tag

matcher retrieves the top 10 objects with the highest similarity

based on tags compared to an input object, while the attribute

matcher operates similarly but with attributes, and so forth. All

similarities are pre-computed. We use Voyage AI to build embed-

dings for our objects. Pairwise object similarities on text, sentiment,

attributes, tags and summaries, are pre-computed on with cosine

over the embedding vectors of the objects.

The reward function is defined based on a predefined target set of
objects𝑇 . We define 𝑅𝑇 as the Jaccard similarity between the set of

objects present in the states and the target set: 𝑅𝑇 ((𝑠0, 𝑠1, ..., 𝑠𝑘 )) =
𝐽 ({𝑠𝑖 |𝑖 ∈ [0, 𝑘]},𝑇 ).

The environment we introduced allows us to define one RL agent

and several multi-agent LLMs. The RL agent reflects a constrained

agent trained for a specific application. The multi-agent LLM work-

flow uses LangChain [1] to coordinate multiple LLMs through

LangGraph [2]. They define an LLM orchestrator/supervisor re-

sponsible for managing exploration and task logic, and multiple

LLM agents, one for each action. In LangChain, each agent is as-

signed to a particular exploration action. The supervisor LLM is in

charge of selecting the appropriate agent for the next action. The



agents reflect the tag matcher, attribute matcher, text matcher, sum-

mary matcher, and sentiment matcher. he tools are instrumental

and are used by the LLM agents to perform various tasks within

the defined workflow. We implemented five custom tools, each cor-

responding to a specific agent. These tools are functions that the

agent knows when to call according to the context. The first tool is

SimilarityByTag, the second one SimilarityByAttribute, the third

one SimilarityBySummary, the fourth one SimilarityByText and the

last one SimilarityBySentiment. Each tool admits one object and

generates the 10 most similar objects.

The supervisor decides which agent starts the process. Then,

the selected agent gathers 10 objects. Based on this outcome and

its parametric knowledge, the supervisor decides whether to con-

tinue with the next agent or to conclude the workflow and report

the findings. This step-by-step approach ensures that each agent’s

results guide the next steps in the process.

4.2 The Agents

𝑅𝐿𝐴𝑔𝑒𝑛𝑡 is defined with a trained Q-value function𝑄 : S → (A →
R) that assigns to each state a value for each action possible at that

state. This Q-function is trained to approximate the value function

𝑉 ∗, that verifies the Bellman equation:

𝑉 ∗ (𝑠) =
∑︁
𝑠′∈S

P(𝑠′ |𝑠, 𝜋 (𝑠))
[
𝑅(𝑠′) + 𝛾𝑉 ∗ (𝑠′)

]
so that

𝑄 (𝑠, 𝑎) ≈
∑︁
𝑠′∈S

P(𝑠′ |𝑠, 𝑎)𝑉 ∗ (𝑠′)

A policy 𝜋 : S → A is trained to always pick the action with

the highest estimated value: 𝜋 (𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈A𝑄 (𝑠, 𝑎). Since the
Q-function depends on the reward function, so does the agent.

The agent RawLLM is defined by a supervisor LLML𝑆𝑢𝑝 , a prompt-

builder function 𝑃𝑟𝑜𝑚𝑝𝑡 : S → T, and an action-decoder func-

tion Action. The policy 𝜋 : S → A is here defined as 𝜋 (𝑠) =

𝐴𝑐𝑡𝑖𝑜𝑛(L𝑆𝑢𝑝 (𝑃𝑟𝑜𝑚𝑝𝑡 (𝑆)))). In this case the policy will be gen-

erted by the supervisor LLM who will decide which agents and

tools to call to achieve what is asked of it.

The agent QValLLM is defined by a supervisor LLM L𝑆𝑢𝑝 : T →
T (where T as the set of possible texts, which are finite sequences of

tokens), a trained 𝑄 function, a prompt-builder function 𝑃𝑟𝑜𝑚𝑝𝑡𝑄 :

S → T, and an action-decoder function 𝐴𝑐𝑡𝑖𝑜𝑛 : T → A mapping

outputs to actions. The policy 𝜋 : S → A is here defined as 𝜋 (𝑠) =
𝐴𝑐𝑡𝑖𝑜𝑛(L𝑆𝑢𝑝 (𝑃𝑟𝑜𝑚𝑝𝑡𝑄 (𝑆)))). Since the Q-value depends on the

reward, so does the agent. The open question here is how to add

information from the Q-function to the prompt; i.e., how to define

𝑃𝑟𝑜𝑚𝑝𝑡𝑄 . A possibility would be to append the values associated

to possible actions in state 𝑠 according to 𝑄 .

The agent FeedbackLLM is defined by a feedback function im-

itating a reward 𝑅★ : S → R (but unlike the reward, it is avail-

able at inference time), a supervisor LLM L𝑆𝑢𝑝 , a prompt-builder

function 𝑃𝑟𝑜𝑚𝑝𝑡𝑅★ and an action-decoder function 𝐴𝑐𝑡𝑖𝑜𝑛 map-

ping outputs to actions. The policy 𝜋 : S → A is here defined as

𝜋 (𝑠) = 𝐴𝑐𝑡𝑖𝑜𝑛(L𝑆𝑢𝑝 (𝑃𝑟𝑜𝑚𝑝𝑡𝑅★ (𝑆)))). Similarly to 𝑄𝑉𝑎𝑙𝐿𝐿𝑀 , the

open question is to define 𝑃𝑟𝑜𝑚𝑝𝑡𝑅★ . A possibility would be for

𝑃𝑟𝑜𝑚𝑝𝑡𝑅★ to simulate the actions and compute the feedback of the

obtained states, then append these results to the prompt.

Figure 9: Exploration scenario of cosmetic products.

4.3 Prompt Construction

Both the agents and the environment require the construction

of prompts based on a state and other parameters. The general

methodology to build a prompt is to use a pre-defined instruction

schema 𝐼 ∈ T and a state descriptor 𝑑𝑒𝑠𝑐𝑟𝑖𝑏𝑒 : S → T. 𝑃𝑟𝑜𝑚𝑝𝑡 is
then defined by 𝑃𝑟𝑜𝑚𝑝𝑡 (𝑠) = 𝐼 · 𝑑𝑒𝑠𝑐𝑟𝑖𝑏𝑒 (𝑠).

For RawLLM one does not need to go from text to state and then

from state to text because all it needs is text (thus states could

actually be defined as texts). But for QValLLM and FeedbackLLM,

the state-decoder and the prompt-builder functions are applied.

In the case of QValLLM, the Q-table generated by RL is added to

the prompt. One solution is to calculate the local value function

𝑣𝑎𝑙𝑢𝑒𝑠 : A → R defined by 𝑣𝑎𝑙𝑢𝑒𝑠 (𝑎) = 𝑄 (𝑠, 𝑎), which would be

fully described by an operator 𝑡𝑜_𝑡𝑒𝑥𝑡 . We then have 𝑃𝑟𝑜𝑚𝑝𝑡𝑄 (𝑠) =
𝐼 · 𝑑𝑒𝑠𝑐𝑟𝑖𝑏𝑒 (𝑠) · 𝑡𝑜_𝑡𝑒𝑥𝑡 (𝑣𝑎𝑙𝑢𝑒𝑠 ) (to be more precise the instruction

is completed with the following texts, which may not be necessarily

concatenated at the end).

For FeedbackLLM we can do the same except that the local value

function is defined based on the feedback function𝑅★ by 𝑣𝑎𝑙𝑢𝑒𝑠 (𝑎) =∑
𝑠′∈S P(𝑠′ |𝑠, 𝑎)𝑅★(𝑠′) (but in practice we would only do one call

for each action with an MDP). Alternatively, if we want to avoid

simulating all actions, we can also exploit the components of 𝑅★ on

the local state. Let’s suppose 𝑅★ is defined by a relevance function

for individual objects 𝑟 and a quality function on the whole state 𝜙

(measuring things like the diversity of the object covered), linearly

combined in the following way:𝑅★(𝑠) = 𝜆𝑟 1

| |𝑂 | |
∑
𝑜∈0

𝑟 (𝑜)+𝜆𝜙𝜙 (𝑠)
(were 𝜆𝑟 and 𝜆𝜙 are real coefficients). Taking 𝑟𝑠 as the function 𝑟

restricted to the objects of the current state, 𝑃𝑟𝑜𝑚𝑝𝑡𝑅★ could be

defined by 𝑃𝑟𝑜𝑚𝑝𝑡𝑅★ = 𝐼 · 𝑑𝑒𝑠𝑐𝑟𝑖𝑏𝑒 (𝑠) · 𝑡𝑜_𝑡𝑒𝑥𝑡 (𝑟𝑠 ) · 𝜙 (𝑠).

4.4 Intelligent Agents in Action

We illustrate an exploration scenario in Figure 9 where Marie aims

to identify cosmetic products suitable for oily skin. A predefined

set of products and reviews from Amazon, aligning with Marie’s

criteria, was established. Subsequently, RLAgent trains a policy

using this target set, containing 50 cosmetic products suitable for

oily skin. RL also outputs a Q-table.

RL receives an initial state 𝑠0, containing a single randomly cho-

sen product from Amazon, the Dove Deep Moisture Body Wash. The
agent uses its Q-function to assess available actions. At stage 0, the

agent selects “search by tag similarity”. Thus, the agent explores the

database, identifying products with similar tags to the initial object.



Figure 10: Example of a LanGraph workflow (RawLLM): The supervisor calls the Attributes Matcher. This agent calls the

SimilarityByAttributes tool, and reports its findings to the Supervisor, that decides to call the Tag Matcher. This agent calls the

SimilarityByTag tool, and reports its findings to the supervisor that decides to end the workflow.

Guided by its learned policy towards the target set, the agent up-

dates the state 𝑠1, to incorporate these products and the previously

selected action. Using both the updated state 𝑠1 and Q-function

results, the agent selects the “search by attributes” action, leading

to the final state 𝑠2.

RawLLM begins with the same initial product as RL. However, the
supervisor does not rely on any contextual information to choose

the next action. It just uses its parametric knowledge and knows

that its purpose is explore data to reach a user’s information need

(finding face creams for oily skin in the example). Figure 10 depicts

the workflow of RawLLM implemented in LanGraph.

QValLLM receives the same initial state. The Q-function, trained

with RL, evaluates all potential actions. At stage 0, “search by tag

similarity” emerges as the action with the highest estimated value.

This action triggers the utilization of a tag matcher LLM that ac-

cesses a database containing object tags extracted from both item

descriptions and customer reviews. The tag matcher identifies 3

products sharing similar tags with the initial Dove Cleanser that
can be seen in state 𝑠1 in Figure 9. Among these products, Nivea
Rich Nourishing Night Cream Moisturizer and Neutrogena Hydro
Boost Water Gel are found to belong to the predefined target set

for oily skin. The supervisor randomly selects Cetaphil Daily Fa-
cial Moisturizer, one of the retrieved products from the target set,

and updates 𝑠1, to include this product along with the other two

retrieved products and the “search by tag similarity” action. Lever-

aging the updated 𝑠1 and the Q-function values, the supervisor

selects the next action, “search by attributes.” This action activates

the attribute matcher LLM, refining product recommendations and

identifying three additional products, all belonging to the target

set. With these new discoveries, the state transitions to 𝑠2, encom-

passing the attribute matching action and the last chosen products:

Cerave Foaming Facial Cleanser, La Roche-Posay Effaclar Purifying
Moisturizer, and Cetaphil Oil Absorbing Moisturizer.

FeedbackLLM begins with the same initial product. However, in-

stead of relying on theQ-function, all potential actions are evaluated

by the supervisor LLM, that utilizes its own parametric knowledge

and all the previous states. At 𝑠0, the supervisor LLM selects the

“search by tag similarity” action based on its acquired knowledge

and the input product. FeedbackLLM then employs a tag matcher

LLM to retrieve products, with the last two products belonging to

the predefined target set (see Figure 9). The supervisor randomly

selects Cetaphil Daily Facial Moisturizer and updates the state 𝑠1,

to include this product, the other two retrieved products, and the

“search by tag similarity” action. What distinguishes FeedbackLLM
from QValLLM is the incorporation of retrieved products belong-

ing to the target set within the state. In the absence of specific

training on the target set, a mechanism is necessary to guide the

LLM towards it. By explicitly identifying the retrieved objects from

the target set within the state, the model’s focus on the target set

is facilitated. Leveraging the updated state 𝑠1 and the initial state

𝑠0, the supervisor selects the next action, “search by attributes.”,

leading to the final state 𝑠2.

4.5 Results and Analysis

We want to compare the performance of our agents based on the

proportion of retrieved products that belong to a target set. We

defined two target sets of 255 objects: the 5 best-rated computer

products and their associated reviews (𝑇1), and the 5 best-rated

items from the photo and camera category with their associated

reviews (𝑇 2). To evaluate the efficiency of different agent variants

in discovering these target sets, we plotted the cumulative num-

ber of target items retrieved against the number of actions taken

(iterations), ranging from 0 to 50 actions. Each experiment was con-

ducted 10 times for both target sets and for each agent. The average

performance was computed to provide a robust comparison.

The comparison between different target sets ensures that the

agents are not only effective in a single context but can generalize

their exploration strategies to diverse environments. This approach

provides a comprehensive understanding of each agent’s strengths

and limitations, guiding the development of more adaptive and

robust exploration algorithms.

Our results do not report QValLLM simply due to lack of time.



Figure 11: Cumulative number of target objects found by

different agents across the number of actions (target set 𝑇 1)

Figure 12: Cumulative number of target objects found by

different agents across the number of actions (target set 𝑇 2)

Figure 11 illustrates the results for the first target set 𝑇 1 and 12

illustrates the results for the second target set 𝑇 2. RL achieves the

highest cumulative count of target objects retrieved consistently

throughout the action sequence. FeedbackLLM performs compara-

bly to RawLLM, maintaining a similar trajectory of target discovery,

with both agents showing a slower increase compared to RL.
RL consistently outperforms the LLM-based agents across both

target sets. The RL agent benefits from task-specific training (here,

it is trained for this specific target set) which allows it to develop

an optimal strategy for the exploration.

FeedbackLLM remains relatively close in performance to RawLLM
across both target sets. It suggests that the feedbackmechanismmay

need refinement or more substantial integration to significantly

impact performance.

RawLLM maintains a steady rate of target discovery, similarly to

FeedbackLLM. Its performance is consistent across different target

sets, demonstrating its general exploration capability. As a pre-

trained language model without task-specific training, RawLLM
relies on its inherent knowledge and general exploration abilities.

It performs adequately in discovering target items but lacks the

task-specific optimization seen in RL.

The results from multiple target sets shows that RL is doing

better due to its specialized training, which enables it to adapt and

optimize its exploration strategies effectively for specific target

sets. This leads to superior performance in discovering target items.

Meanwhile, the LLM-based agents, FeedbackLLM and RawLLM,

demonstrate good performance without specific training for ex-

ploration. However, the closeness of FeedbackLLM and RawLLM
suggests that while feedback can enhance performance, its impact

is limited and requires further investigation.

5 FUTURE DIRECTIONS

The comparison we provided of the agents developed in the pre-

vious section leads us to thinking that there is great potential for

blending RL and LLMs to benefit from the background knowledge

of LLMs and guide them through the exploration process without

incurring training costs required for RL. Unlike RL that needs to be

trained for each task, the training cost of an LLM can be amortized

across a variety of exploration tasks.

The comparison we provided on different target sets emphasizes

the trade-off between generalization and specialization. LLM-based

agents, although not specifically trained for exploration, provide

a reliable performance baseline that is consistent across varied

scenarios. In contrast, RL’s task-specific training leads to higher

performance in the trained contexts but requires retraining or ad-

justment in different environments. The limited performance boost

from FeedbackLLM suggests the need to refine the feedback and

subsequently the LLM. Further refinement in how feedback influ-

ences decision-making could enhance the agent’s ability to adapt

and improve its exploration strategies. This constitutes a new op-

portunity for leveraging new approaches for LLM refinement (e.g.,

[4, 30]).

Another aspect is validation that leverages human feedback.

While Large Language Models (LLMs) are increasingly used to

evaluate other LLMs, addressing their inherent biases and align-

ing them with human preferences remains a challenge. EvalGen

[21] is a system that tackles this by combining user input with

LLM capabilities. EvalGen iteratively refines evaluation criteria

through a feedback loop: users define desired LLM outputs, Eval-

Gen generates candidate evaluation methods (prompts or code),

users grade outputs based on these methods, and EvalGen uses this

feedback to improve the criteria. This approach acknowledges the

subjective and iterative nature of human evaluation, particularly

the phenomenon of "criteria drift". It refers to the phenomenon

where the human evaluators’ understanding of what constitutes a

good output evolves as they interact with the system, influencing

the evaluation criteria itself. EvalGen presents a promising direc-

tion for LLM evaluation assistants, underlining the importance of

incorporating human judgment throughout the process.

There is a need for a principled evaluation framework for explo-
ration policies by integrating user feedback and LLM capabilities.
This would pave the way to an evaluation system that refines itself
according to human preferences and feedback and truly accounts for
user needs in exploratory data analysis.
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