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ABSTRACT
To know phase diagrams is a time saving approach for developing novel materials. To 
efficiently construct phase diagrams, a machine learning technique was developed using 
uncertainty sampling, which is called as PDC (Phase Diagram Construction) package [K. 
Terayama et al. Phys. Rev. Mater. 3, 033802 (2019).]. In this method, the most uncertain point 
in the phase diagram was suggested as the next experimental condition. However, owing to 
recent progress in lab automation techniques and robotics, high-throughput batch experi
ments can be performed. To benefit from such a high-throughput nature, multiple conditions 
must be selected simultaneously to effectively construct a phase diagram using a machine 
learning technique. In this study, we consider some strategies to do so, and their performances 
were compared when exploring ternary isothermal sections (two-dimensional) and tempera
ture-dependent ternary phase diagrams (three-dimensional). We show that even if the sugges
tions are explored several instead of one at a time, the performance did not change drastically. 
Thus, we conclude that PDC with multiple suggestions is suitable for high-throughput batch 
experiments and can be expected to play an active role in next-generation automated material 
development.
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1. Introduction

Phase diagrams provide valuable guidelines for devel
oping novel materials. Through experiments, phase 
diagrams have been determined in various spaces, 
such as between processes, external fields, and compo
sitions. In the materials informatics field [1–5], some 
tools focusing on phase diagrams have been developed 
using machine learning (ML) [6–9]. Among these tools, 
we developed and released an ML method based on 
uncertainty sampling (US) [10] to efficiently construct 
phase diagrams, which is called PDC (Phase Diagram 
Construction) package [11,12]. The method evaluates 
the uncertainty based on an ML model trained under 

some conditions in which the phase domains have 
already been identified; it then suggests the most uncer
tain point in the phase diagram as the next experimen
tal condition. Based on this suggestion, an experiment 
is performed, and the corresponding phase domain is 
identified. Subsequently, the number of known points 
is increased, and the next condition is suggested using 
the updated ML model. By applying PDC to well- 
known phase diagrams, we demonstrated that this 
iteration process enables us to rapidly construct accu
rate phase diagrams and find new phase domains [11]. 
For further verification, PDC was applied to construct 
a new diagram to obtain Zn-Sn-P films by molecular 
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beam epitaxy [13]. In this study, PDC-assisted experi
ments detected a new phase that was not observed in 
the initial stage, and detailed phase boundaries were 
rapidly determined. Thus, the usefulness of PDC was 
proven in the case in which one condition is suggested 
by ML and one experiment is performed in each itera
tion. In addition, by incorporating Gibbs’ phase rule, 
further acceleration can be realized [14].

Several systems for high-throughput batch experi
ments, where many experiments can be simultaneously 
performed, have been developed and many successful 
results have been reported [15–17]. ML has also been 
utilized to efficiently characterize the results obtained 
from high-throughput batch experiments [18–20]. 
Furthermore, high-throughput batch experiments 
based on laboratory automation techniques and robotics 
have recently gained attention as a method for develop
ing innovative materials. Therefore, a combination of 
high-throughput batch experiments and ML-based 
methods to suggest the next experimental conditions is 
required for next-generation automated materials devel
opment. To achieve this, multiple conditions must be 
simultaneously proposed using the ML model [21,22]. 
For example, to optimize material properties, batch 
suggestions are obtained using Bayesian optimization 
tools, such as GPyOpt, COMBO, and PHYSBO 
packages [23–25]. The use of multiple suggestions can 
reduce the total number of iterations, reducing the time 
required for material development. Conversely, the total 
number of experiments should be increased in general, 
which corresponds to the cost of material development 
[25,26]. Thus, multiple suggestions by the ML model do 
not always yield better performance. In particular, if the 
cost of a single experiment is high, the total cost would 
become unrealistic when multiple conditions are sug
gested by Bayesian optimization.

In this study, we investigated the efficiency of the 
PDC package when multiple suggestions were explored 
at a time (see Figure 1). Based on practical considera
tions, strategies to select multiple conditions were con
sidered, and their performances were compared. Here, 
the target was a Cu-Mg-Zn ternary alloy. Both isother
mal sections of this system (two-dimensional) and its 
temperature-dependent phase diagram as a whole 
(three-dimensional) were considered. We show that 
PDC is suitable for high-throughput batch experiments 
to efficiently construct phase diagrams. The develop
ment of autonomous experimental systems for alloy 
systems, which are the subject of this study, is in pro
gress [27,28]. To accomplish this objective, in addition 
to the development of ML-based suggestion methods, 
synthesis and characterization must be automated, and 
these attempts are being actively investigated [29–33]. 
Our proposed method can be commonly implemented 
in such autonomous systems as ‘brain’.

2. PDC with multiple suggestions

Before considering multiple suggestions at each itera
tion, the conventional PDC, in which one condition is 
suggested at a time, is introduced in Sec. 2.1. In Sec. 2.2, 
four strategies for multiple suggestions are considered.

2.1. Iterations to consider one suggestion using 
conventional PDC

In PDC, the following iterations are performed to 
construct a phase diagram.

(i) We discretize the phase diagram to be deter
mined, and the position vectors of N discre
tized points are prepared as xif gi¼1;...;N . Here, 
vector xi can have any dimension correspond
ing to the dimension of the phase diagram.

(ii) The initial data points are randomly selected 
from xif gi¼1;...;N , and for each point, the phase 
domain is identified through experiments. 
The label of the detected phase domain is p ¼
1; . . . ; P if P types of phase domains are iden
tified in the initial step. Thus, the initial data
set D ¼ xj; pj

� �

j¼1;...;M is prepared, in which 
the number of initial data points is M.

Figure 1. Iteration cycles to construct a phase diagram by 
high-throughput batch experiments with ML. The key to 
effective construction is an appropriate suggestion of multiple 
experiments in each cycle.
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(iii) The probability distribution PðpjxÞ of the 
phase domain labeled by p at each point 
x estimated by a semi-supervised learning 
method using training data D. Here, label 
propagation (LP) [34] or label spreading (LS) 
[35] methods are useful for evaluating PðpjxÞ.

(iv) The uncertainty score u xð Þ is calculated using 
PðpjxÞ. Three types of scores [11] are imple
mented in the PDC package: 

Least Confident LCð Þ :

u xð Þ ¼ 1 � maxpP pjxð Þ
(1) 

Margin SamplingðMSÞ :

uðxÞ ¼ 1 � ½Pðp1jxÞ � Pðp2jxÞ�
(2) 

Entropy � based ApproachðEAÞ :

uðxÞ ¼ 1 �
X

p
PðpjxÞlogPðpjxÞ (3) 

where P p1jxð Þ and P p2jxð Þ in Equation (2) are 
the highest and second-highest probabilities, 
respectively, at x.

(v) The most uncertain point where x� ¼
argmaxxu xð Þ is selected as the next experi
mental condition.

(vi) The experiment is performed according to the 
selected conditions, and the phases are identi
fied. If a new phase is detected, a new label, 
P þ 1, is attached to x�. Then, the training 
data are increased as D ¼ xj; pj

� �

j¼1;...;Mþ1.
(vii) Steps (iii)-(vi) where one condition is sug

gested by ML are iterated.

2.2. Multiple suggestions

We consider four types of strategies to select multiple 
conditions instead of step (v) in the conventional 
PDC, referring to the senses of experimentalists as 
follows. Here, we select L experimental conditions in 
one cycle, and the suggested points are x�l

� �

l¼1;...;L. 
The features and disadvantages of each strategy are 
summarized in Table 1.

2.2.1. Only US ranking
The most straightforward approach involves selecting 
L experimental conditions in decreasing the order of 
the uncertainty score u xð Þ. We refer to this strategy as 
the only US ranking.

2.2.2. Neighbor exclusion
If the proposed points are too close to each other, 
the process would be inefficient because experi
ments for neighboring conditions are likely to be 
irrelevant. Thus, we consider the selection of the 
next set of experimental conditions such that the 
proposed points are not too close to each other. In 
other words, the experimental conditions are cho
sen in decreasing order of the uncertainty score, 
but any neighboring points are excluded. In this 
strategy, a hyperparameter exists that determines 
the extent to which two points are considered 
neighboring. Here, we use the distance between 
the kth nearest neighbor points in xif gi¼1;...;N , 
which is defined as Δk ¼kxi � xjkj¼kth neighbor of i. 
Thus, depending on the value of k, the suggested 
points are x�l

� �

l¼1;...;L with x�l � x�l0 >Δk for 
"l; l0 ¼ 1; . . . ; L. We refer to this strategy as neigh
bor exclusion.

2.2.3. Same combination exclusion
Selecting numerous experimental conditions near 
the same predicted phase boundary or invariant 
point may be inefficient. To avoid such selection, 
the probability distribution PðpjxÞ at each point is 
useful. If several suggestions have the same combi
nation of phase domains with a large probability, 
PðpjxÞ, it is sufficient to select the experimental 
condition with the highest uncertainty score from 
these points. For example, let us consider the case 
in which only one experiment is selected from all 
suggestions associated with the same three most 
likely phase domains. At each point, the three 
phase domains with the highest probability are 
denoted as p1, p2, and p3. Then, the experimental 
conditions are selected in decreasing order of 
uncertainty score u xð Þ such that each suggestion 
has a unique combination of p1; p2; p3½ �. This strat
egy helps realize the selection in which we do not 
chose more than one experimental condition near 
the same predicted invariant point. In this study, 

Table 1. Features and disadvantages of four types of strategies to select multiple conditions.
Only US ranking Neighbor exclusion Same combination exclusion Proactive selection

Selection Points with higher 
u(x)

Points with higher u xð Þ except 
for neighbor points

Points with higher u xð Þ except for around 
the same predicted boundaries

Predicted proactive 
uncertain points

Calculation time Short Short Long Long
Hyperparameters None Distance determining 

neighbor points
Number of phases determining boundaries Number of proactive steps

Disadvantage Neighbor points may 
be suggested.

None The number of proposals may not be 
sufficient.

The number of proposals 
may not be sufficient.
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since the target phase diagrams are two- or three- 
dimensional, we consider the top three phase 
domains for combination to exclude the sugges
tions, although this number of phases is arbitrary. 
Note that the number of combinations is limited; 
therefore, it may not be possible to select L points 
using this strategy. We call this strategy as the same 
combination exclusion.

2.2.4. Proactive selection
Using a possible phase domain predicted by ML as 
a label for the selected condition with the highest uncer
tainty score, we can proceed to the next step in the PDC 
iterations. In the next step, we obtain another experi
mental condition suggested by ML, depending on the 
phase domain label used in the previous step. By repeat
ing this procedure, the number of suggested conditions 
can be increased. However, the points that are useful 
among these conditions should be considered. These 
can be selected using the probability distribution. These 
can be selected using the probability distribution P(P|x). 
In the first step, the value of P(P|x) can be regarded as 
the probability that label P is chosen under the selected 
condition. In the second step, we can estimate the next 
probability distribution by ML; however, since we need 
to consider the probability of the first step, the product 
of the probabilities of the first and second steps will be 
useful for the next selected condition in the second step. 
In further steps, the product of probabilities is evaluated 
for each suggested condition. The experimental condi
tions are then selected in decreasing order of products 
of the probabilities. However, if the number of proactive 
steps is large, the computation time will drastically 
increase; therefore, we decided to consider up to three 
steps ahead. In addition, only the top three phase 
domains were considered as the possible labels for 
selected point. Therefore, notably, cases in which L 
points cannot be selected can exist. We refer to this 
strategy as the proactive selection.

3. Target dataset

To investigate the performance of PDC when multiple 
suggestions are explored simultaneously, CALPHAD 
calculations of the Cu-Mg-Zn phase diagram were 
performed based on the description in Ref. [36]. 
Phase equilibria data were retrieved between 500 

K and 1500 K with steps of 5 at.% and 50 K using 
the high-throughput calculation function of the 
Pandat software [37]. Regardless of the number of 
coexisting phases, a label was created for each unique 
phase domain. We focused on three different targets: 
the 500 K and 900 K isothermal sections (two- 
dimensional) and a temperature-dependent phase dia
gram as a whole (three-dimensional). The numbers of 
phase domains and discretized points for each target 
are summarized in the Table 2.

4. Results

In this study, we used the Macro f1 score [38] to 
evaluate the efficiency of the proposed method. 
This score evaluates the agreement between the 
true phase diagram and the phase diagram pre
dicted by ML when the training data available at 
that time are used. When the Macro f1 score 
becomes 1, both phase diagrams are perfectly 
equivalent. Thus, if we can obtain a large Macro 
f1 value with a small number of cycles and experi
ments, it implies that PDC can be efficiently used 
to construct a phase diagram. As the results 
depend on the data selected initially, 10 indepen
dent iterations with different randomly prepared 
initial data were performed, and the Macro f1 
scores for each iteration were averaged. The num
ber of randomly selected initial data was fixed at 
10. As a typical example, LP was used for the ML 
method to calculate the probability distributions, 
and LC was used to evaluate the uncertainty score. 
In the Supplementary Material, some results from 
other ML models and uncertainty scores are 
summarized.

In Figure 2, we show the results for ternary 
isothermal sections, depending on the strategies 
for suggestions explained in Sec. 2.2. Different 
numbers of suggestions to be explored in each 
cycle were considered, and a case in which 
a single suggestion is randomly selected was pre
sented for comparison. For neighbor exclusion, the 
value of k was fixed at one. From the viewpoint of 
the number of cycles (upper panels in Figure 2), 
this can be reduced by increasing the number of 
suggestions, regardless of which of the four meth
ods is used. In the case of proactive selection, even 
if the number of suggestions was set to 20, there 
were cases in which 20 suggestions were not 
obtained, and the result was almost the same as 
that in the case of 10 suggestions. When several 
PDC suggestions were explored simultaneously 
instead of one at a time, the number of cycles 
(i.e. the time) required to construct an accurate 
phase diagram could be reduced.

Table 2. Numbers of phase domains and discretized points for 
each target of the Cu-Mg-Zn ternary system.

Number of  
domains

Number of  
discretized points

Isothermal section at 500 K 59 231
Isothermal section at 900 K 30 231
Temperature dependent 

ternary phase diagram
138 4851
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However, the total number of experiments 
required to obtain an accurate phase diagram is 
an important factor when multiple conditions are 
suggested. The results are shown in the lower 
panels of Figure 2. Interestingly, the number of 
experiments did not significantly increase, even 
when the number of suggestions considered in 
each cycle increased. In particular, when using 
neighbor exclusion, the results with one suggestion 
and two, five, and ten suggestions were within the 
error bars for both the 500 K and 900 K sections. 
Furthermore, the results of the same combination 

exclusion and proactive selection were less satisfy
ing than those of the other two methods (see 
Figure S1), despite the long calculation time 
required for selection. The Macro f1 scores when 
different ML models and uncertainty scores were 
used, depending on the number of cycles and 
experiments, are summarized in Figures S2-S6. 
These results imply that LP+LC is useful for both 
multiple-suggestions and single-suggestion cases 
[11]. However, the results of PDC with the four 
types of multiple-suggestion strategies remain bet
ter than those of random selection.

Figure 2. Target isothermal sections of the Cu-Mg-Zn ternary system and Macro f1 scores depending on the numbers of cycles and 
experiments for (a) 500 K and (b) 900 K. The four types of multiple-suggestion techniques (only US ranking, neighbor exclusion with 
k ¼ 1, same combination, and proactive selection) with different numbers of suggestions at each cycle are compared with random 
selection. Training was performed by LP, and the uncertainty score was evaluated by LC. Ten independent runs were performed, 
and the line and shaded region represent the mean and error, respectively.
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Next, we considered the dependence of hyper
parameter k in neighbor exclusion. Figure 3 sum
marizes the number of cycles and the number of 
experiments required to obtain the value of 0.8 for 
a Macro f1 score depending on the value of k in 
neighbor exclusion. As a reference, the result 
obtained using the only US ranking strategy is 
shown. The number of cycles steadily decreased 
as the number of suggestions increased in all 
cases, whereas the required number of experi
ments slightly increased with the number of sug
gestions. However, up to approximately ten 
suggestions, the results with k ¼ 1 at 500 K and 
k ¼ 1; 2; 3 at 900 K were within the error bar when 
the number of suggestions was only one (the left
most point). This result supports the idea that 
multiple suggestions by neighbor exclusion are 
effective in high-throughput batch experiments. 
The reason why the performance of neighbor 
exclusion is better at 900 K than at 500 K is that 
the areas of each phase domain are relatively large. 

For the 500 K section, nearby candidate points 
belong to different phase domains because of the 
existence of many small phase domains, and large 
k cases are not inefficient.

To address the case of a three-dimensional 
phase diagram, the next target is the temperature- 
dependent phase diagram of the Cu-Mg-Zn tern
ary system. In Figure 4, we show the Macro f1 
score depending on the number of suggestions 
explored at each cycle based on only US ranking 
and neighbor exclusion with k ¼ 1 and 5. Even in 
the three-dimensional space, PDC reduces the 
number of cycles as the number of suggestions 
increases. In addition, regarding the number of 
experiments, the results with one, ten, and twenty 
suggestions showed better agreement when k ¼ 5. 
Thus, PDC with multiple suggestions is useful in 
constructing a three-dimensional phase diagram. 
Furthermore, Figure 5 summarizes the number of 
cycles and experiments required to obtain a Macro 
f1 score of 0.8. In this case, as in the case of the 

Figure 3. Number of cycles and number of experiments required to obtain a value of 0.8 for the Macro f1 score depending on the 
number of suggestions for isothermal ternary phase diagrams at (a) 500 K and (b) 900 K. The selection strategies of only US ranking 
and neighbor exclusion with k ¼ 1; 2; 3; and 4 are used.
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two-dimensional sections, the results for up to ten 
suggestions are included in the error bars of the 
single-suggestion case, and twenty suggestions 
show better efficiency. From another viewpoint, 
neighbor exclusion with k ¼ 5 shows better results 
up to approximately fifty suggestions, but when 
the number of suggestions reaches 100, the results 
become worse. This indicates that if the distance 
for exclusion is too large, exclusion itself is prior
itized over the ranking of the US score, and we 
cannot obtain effective suggestions. For the same 
reason, k ¼ 10 was sufficiently large for this pro
blem setting. However, neighbor exclusion shows 
better results than only US ranking, and thus 
neighbor exclusion is an effective multiple- 
suggestion strategy if k is determined appropri
ately. Note that a thousand experiments would 
be impractical for the construction of phase dia
grams. To avoid this, discretization must be 
devised to reduce the number of discretized can
didate points. Furthermore, by incorporating 
Gibbs’ phase rule, we can further reduce the num
ber of experiments [14].

An appropriate value of k strongly depends on 
the target phase diagram (i.e, the dimension and 
number of phase domains) and the discretization 
method. This depends on the number of sugges
tions. However, based on the results of this study, 
k ¼ 1 or 2 would be sufficient when we discretize 
one parameter into approximately twenty parts 
and the number of suggestions is smaller than 
twenty. If finer discretization is to be considered, 
it would be better to increase the value of k (see 
Figure S7).

5. Discussion and summary

For high-throughput batch experiments, to con
struct a phase diagram with multiple suggestions 
using ML, we addressed the efficiency of the US 
method called PDC. Based on practical considera
tions, four strategies for selecting multiple condi
tions were considered. We showed that the number 
of cycles corresponding to the time needed to 
accurately determine a phase diagram can be 
reduced by exploring multiple suggestions for 

Figure 4. Target temperature-dependent Cu-Mg-Zn phase diagram and Macro f1 scores depending on the numbers of 
cycles and experiments. The two types of multiple-suggestion techniques (only US ranking and neighbor exclusion with 
k ¼ 1 and 5) with different numbers of suggestions are compared with random selection. Training was performed by LP, 
and the uncertainty score was evaluated by LC. Ten independent runs were performed, and the line and shaded region 
show the mean and error, respectively.
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each cycle for all the considered strategies. 
Furthermore, even if the number of suggestions 
for each cycle was increased, the total number of 
experiments did not drastically change. This result 
implies that PDC with multiple suggestions is sui
table for high-throughput batch experiments to 
efficiently construct phase diagrams. In particular, 
among the four methods considered, we conclude 
that the strategy in which the proposed points do 
not include the neighboring points is useful. This 
neighbor exclusion strategy was used to create 
a temperature-composition phase diagram of 
a crosslinked polymer, and its usefulness was con
firmed [39]. This work on polymers highlights that 
PDC can be applied to a variety of materials and is 
not limited to metals that are the focus of the 
present study. Furthermore, PDC can also be uti
lized to determine the boundaries of a region 
within a material search space or a process space, 
even when it is not a ‘phase’. Thus, we updated the 
PDC package to suggest multiple conditions using 
two strategies called only US ranking and neighbor 
exclusion [40].

By combining PDC with lab automation techniques 
and a robotics system, accurate phase diagrams can be 
automatically determined at a high speed and low cost. 
Thus, we believe that PDC can be expected to play an 
active role in next-generation automated material devel
opment using high-throughput batch experiments.
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