ChemNanoMat

Supporting Information

Efficient Electrocatalysts for Alkaline Oxygen Evolution Reaction from Wolframite Derived Heteroatom Materials

Linghui Li^[a], Sandrine Tusseau-Nenez^[b], Clément Marchat^[b], and Cédric Tard*^[a]

[a]	L. Li, C. Tard
	Laboratoire de Chimie Moléculaire (LCM), CNRS
	École Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
	E-mail: cedric.tard@polytechnique.edu
[b]	S. Tusseau-Nenez, C. Marchat
	Laboratoire de Physique de la Matière Condensée (PMC), CNRS
	École Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France

Table S1. Chemical composition by EDX of the Ni_XMn_{1-X}WO₄ series.

Element	Atomic percentage					
Formula	Ni _{0.9} Mn _{0.1} WO ₄	Ni _{0.75} Mn _{0.25} WO ₄	Ni _{0.6} Mn _{0.4} WO ₄	Ni _{0.5} Mn _{0.5} WO ₄	Ni _{0.4} Mn _{0.6} WO ₄	Ni _{0.25} Mn _{0.75} WO ₄
Ni	91,45	78,99	62,31	50,61	42,18	20,11
Mn	8,55	21,01	37,69	49,39	57,82	79,89
Δ%	1,45	3,99	2,31	0,61	2,18	4,89

EDX measurements of Ni and Mn composition for samples of different formula content x (0.9 to 0.25). The results are averaged values from spectra done on 1 to 3 area of each sample. The quantification was done using the Phi-Rho-Z model without standard. The samples surfaces were not flat surface as expected by the model but a layer of nanosized particles. For such surface and without standard, significant experimental error on the quantification have been observed in the literature.^[1] We considered a conservative absolute experimental error of 5 %. The observed differences between the measured and theoretical compositions (Δ %) of the samples ranged from 0.61 % to 4.89 % which is within the 5 % experimental error.

Table S2. Chemical composition by EDX of the Ni_XMn_{1-x}WO₄ series.

Element	Atomic percentage					
Formula	Ni _{0.3} Mn _{0.1} WO ₄	Ni _{0.75} Mn _{0.25} WO ₄	Ni _{0.6} Mn _{0.4} WO ₄	Ni _{0.5} Mn _{0.5} WO ₄	Ni _{0.4} Mn _{0.6} WO ₄	Ni _{0.25} Mn _{0.75} WO ₄
Ni	91,45	78,99	62,31	50,61	42,18	20,11
Mn	8,55	21,01	37,69	49,39	57,82	79,89
Δ%	1,45	3,99	2,31	0,61	2,18	4,89

Table S3. The overpotential value of $M1_xM2_{(1-x)}WO_4$ at different current densities.

Samples	Overpotential (v vs. RHE) at 1 mA·cm ⁻²	Overpotential (v vs. RHE) at 5 mA-cm ⁻²	Overpotential (v vs. RHE) at 10 mA·cm ⁻²
Fe _{0.5} Ni _{0.5} WO ₄	1.71	2.35	2.42
Co _{0.5} Mn _{0.5} WO ₄	1.94	2.31	2.79
Fe _{0.5} Co _{0.5} WO ₄	1.75	2.03	2.48
Ni _{0.5} Mn _{0.5} WO ₄	1.63	1.75	1.83

Table S4. The overpotential value of $Ni_XMn_{1\text{-}X}WO_4$ at different current densities.

Samples	Overpotential (v vs. RHE) at 1 mA·cm ⁻²	Overpotential (v vs. RHE) at 5 mA·cm ⁻²	Overpotential (v vs. RHE) at 10 mA·cm ⁻²
NiWO ₄	1.85	2.58	2.68
Ni0.9Mn0.1WO4	2.19	2.61	2.71
Ni _{0.75} Mn _{0.25} WO ₄	2.26	2.74	2.87
Ni0.6Mn0.4WO4	1.75	2.23	2.29
Ni0.5Mn0.5WO4	1.61	1.76	1.83
Ni0.4Mn0.6WO4	1.61	2.14	2.25
Ni _{0.25} Mn _{0.75} WO ₄	1.97	2.60	2.76
MnWO₄	2.02	2.60	2.71

Table S5. Comparison of the onset potential, overpotential and Tafel plot of samples

Samples	Overpotential (v vs. RHE) at 10 mA·cm ⁻²	Tafel plot (mv·dec ⁻¹)
NiWO4	2.68	399
$Ni_{0.9}Mn_{0.1}WO_4$	2.71	380
Ni _{0.75} Mn _{0.25} WO ₄	2.87	322
Ni _{0.6} Mn _{0.4} WO ₄	2.29	264
$Ni_{0.5}Mn_{0.5}WO_4$	1.83	247
Ni _{0.4} Mn _{0.6} WO ₄	2.25	252
Ni _{0.25} Mn _{0.75} WO ₄	2.76	379
MnWO ₄	2.71	373

Figure S1. Rietveld plot for $Ni_{0.5}Mn_{0.5}WO_4$ sample.

Figure S2. XRD patterns for selected $Ni_xMn_{1-x}WO_4$ samples

Figure S3. Chemical composition by EDX of the $Ni_xMn_{1-x}WO_4$ series. Comparison of theoretical (black line) and measured (red square) nickel proportion for $Ni_xMn_{1-x}WO_4$ series. The experimental error bar is represented by the red line.

References

[1] Shirley, B., Jarochowska, E. Chemical characterisation is rough: the impact of topography and measurement parameters on energy-dispersive X-ray spectroscopy in biominerals. *Facies* **68**, 7 (2022). https://doi.org/10.1007/s10347-022-00645-4