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Abstract Diversifying recommendations on a sequence

of sets (or sessions) of items captures a variety of appli-

cations. Notable examples include recommending on-

line music playlists, where a session is a channel and

multiple channels are listened to in sequence, or recom-

mending tasks in crowdsourcing, where a session is a set

of tasks and multiple task sessions are completed in se-

quence. Item diversity can be defined in more than one

way, e.g., as a genre diversity for music, or as a func-

tion of reward in crowdsourcing. A user who engages

in multiple sessions may intend to experience diversity

within and/or across sessions. Intra session diversity

is set-based, whereas, Inter session diversity is natu-

rally sequence-based. This novel formulation gives rise

to four bi-objective problems with the goal of minimiz-

ing or maximizing Inter and Intra diversities. We prove

hardness and develop efficient algorithms with theoret-

ical guarantees. Our experiments with human subjects
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on two real datasets show that our diversity formula-

tions do serve different user needs, and yield high user

satisfaction. Our large scale experiments on real and

synthetic data empirically demonstrate that our solu-

tions satisfy our theoretical bounds and are highly scal-

able, compared to baselines.

Keywords Recommendation systems · Diversity

algorithms

1 Introduction

Diversity aims to improve user experience by address-

ing the problem of over-specialization, where a user re-

ceives recommendations that are often too similar to

each other. To create online music playlists, users or-
ganize songs into channels and listen to a few songs

within the same channel before switching to the next

channels to listen to other artists in the same genre, or

to experience different music styles. On crowdsourcing

platforms, workers complete a small set of tasks at a

time (session) and sequences of sessions within a finite

time (for example, half a day). Diversifying recommen-

dations inside (Intra) and across (Inter) sessions is nat-

ural for such applications to improve user satisfaction

and engagement.

Recommending playlists during a long-drive may

need to minimize both Intra and Inter session diver-

sities to generate songs by the same artist within a

channel and similar beats across channels. Contrarily,

designing playlists for a theme party is best done by

composing songs from the same period within a chan-

nel (90’s, 60’s, etc) and different styles across chan-

nels (thereby minimizing Intra diversity on release date

within a session and maximizing Inter diversity on style

across sessions). Similarly, in crowdsourcing, it may be
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ideal to recommend tasks requiring similar skills within

a session and different completion times across sessions.

Whereas, workers who have multiple expertise may be

recommended tasks with different skills in a session and

different rewards across sessions. More generally, appli-

cations may require minimization or maximization of

Intra and Inter diversities.

These aforementioned scenarios have three things in

common: first, diversity needs to be accounted for in the

design of a sequence of sets of recommendations. Sec-

ond, both minimization and maximization of diversity

are meaningful. Finally, the dimensions on which In-

tra and Inter session diversities are expressed are item

features that may not be related - hence they cannot

be combined. We present a framework that satisfies all

three requirements focusing purely on diversity and as-

suming that the items consumed by the framework are

always suitable (relevant) to the user.

Our goal is to develop an algorithmic framework

for Inter and Intra session diversities in tandem with

the goal to recommend k sessions to a user, with a

small number l of relevant items in each, yielding a

total of N = k × l items 1. Intra and Inter diversi-

ties can be either minimized or maximized which gives

rise to a bi-objective formalism to express four problem

variants (Section 2.2). We also study the relaxed ver-

sion of our proposed framework where the sessions are

of varying lengths and the total number of items rec-

ommended to the user is a subset of N items. To the

best of our knowledge, our work is the first attempt to

combine set and sequence diversities, two problems ex-

tensively studied individually in search and recommen-

dation [2, 6, 13, 22, 28, 29, 34, 37–39, 45, 48–51].

Our second contribution is theoretical. We first study

each of the Intra and Inter diversity optimization prob-

lems individually and find that irrespective of mini-

mization or maximization, the Inter problem is NP-

hard (Section 2.3). We also prove that the Intra min-

imization problem can be optimally solved in polyno-

mial time. However, the complexity of each bi-objective

problem remains NP-hard (because Inter optimization

is NP-hard).

Our third contribution is algorithmic (Section 3).

We design principled solutions with provable guarantees

for Intra and Inter problems individually. Algorithm

Ex-Min-Intra runs in O(NlogN) time and produces an

exact solution of the Min-Intra problem. For Min-Inter

and Max-Inter, algorithms Ap-Min-Inter and Ap-Max

-Inter achieve 4 − 2/k- and 1
2 -approximation factors,

respectively. We also design an efficient 1
2−1/k -approxim-

1 A preliminary version of this work has got accepted in
The Web Conference, 2021 [20].

ation algorithm Ap-Max-Intra to solve the Max-Intra

problem.

Additionally, we investigate an alternative formula-

tion (Section 2.4) of all four problems to a correspond-

ing constrained optimization problem, with the goal of

obtaining one point from the Pareto front. The idea is

to optimize Inter diversity, subject to constraining Intra

diversity. The constraint on Intra is obtained by solv-

ing the Intra optimization first. There exists more than

one benefit to this approach. First, in one of the two

cases (i.e., Minimization) Intra is tractable and easier

to solve, therefore, finding the optimal constraint value

is computationally efficient. More importantly, the con-

strained optimization problem aims at finding one point

in the Pareto front, which is perfectly acceptable, as

the points in the Pareto front are qualitatively indis-

tinguishable (unless further information is available).

When Inter problems are optimized subject to con-

straining Intra, the combined solutions hold guarantees

for 2 out of the 4 problems (Section 3.4). Tables 2 and

3 summarize our theoretical and algorithmic results.

Our last contribution is experimental. We consider

two real world applications and conduct multiple exper-

iments involving 400 human subjects, as summarized in

Table 4, for music and task recommendation. We ad-

ditionally perform large scale experiments using real

and simulation data to validate the properties of our

designed algorithms. In music recommendation (Sec-

tion 4.1), our results highlight, with statistical signifi-

cance, that user satisfaction is higher when playlists are

recommended considering diversity and the preferred di-

versity scenario depends on the underlying context. In
task recommendation, our results show the benefit of

diversification in task sessions across different session

gaps or time intervals between sessions. Our algorithms

achieve higher quality and worker satisfaction with sta-

tistical significance, than a baseline with No diversity in

all the specified session gaps.

(Section 4.2) investigates approximation factors

and the scalability of our algorithms against several

non-trivial baselines. We observe that in most cases,

our algorithms produce approximation factors that are

very close to 1. For the cases where the approximation

factor is slightly worse, the solution is close enough. Fi-

nally, we also observe that our approach is faster and

highly scalable when varying the number of items and

the number of sessions considering different data distri-

butions.

We present related works in Section 5, and conclude

in Section 6.
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Task Skill Reward Task Skill Reward Task Skill Reward
t1 0.5 0.3 t2 0.51 0.4 t3 0.54 0.49
t4 0.59 0.50 t5 0.6 0.23 t6 0.63 0.4
t7 0.69 0.1 t8 0.7 0.60 t9 0.79 0.36
t10 0.8 0.12 t11 0.89 0.55 t12 0.93 0.34

Table 1 Task Skill and Reward

2 Formalism and Problem Analysis

For the purpose of illustration, we describe a simple

running example on recommending task sessions in crowd-

sourcing. Same example could be used for the streaming

music.

Example 1 Consider a set of N = 12 tasks, which are

most relevant to a specific worker. Table 1 shows two

dimensions of these tasks. The first dimension is the

skill requirement of the task as provided by the re-

quester. The second dimension is the task reward. We

want to recommend 4 (=k) sessions, each containing 3

(=l) tasks.

2.1 Data Model

Item. An item has a set of dimensions. tdi represents

the d-th dimension of the i-th item. Using Example 1,

task t1 is represented by two dimensions, < 0.5, 0.30 >.

In the case of a song, examples of dimensions are artist,

vibe, genre, etc.

Session. A session s consists of a set of l items that

can be consumed in any order.

Sequence. A sequence of sessions is an ordering

of k sessions S =< s1, s2, . . . , sk > where sessions are

presented to a user one after another.

Intra Diversity. Given a dimension d, the diversity

of a set of items in a single session s is referred to as

Intra and defined by capturing how each item in that

session deviates from the average, considering d, and

taking an aggregate over l items as follows:

Intrad(s) =

l∑
i=1

(tdi − µds)2 (1)

where tdi is the value of dimension d of item ti and

µds is the average of d values of items in session s. In-

tra essentially captures variance of a set of items for

a dimension d. Following Example 1, if the session s1
consists of {t1, t3, t5}, then Intraskill(s1) = 0.005.

Inter Diversity. The diversity of items between

two consecutive sessions is referred to as Inter and is

defined for two consecutive sessions for a dimension d

as follows:

Interd(si, si+1) = (µdsi − µ
d
si+1

)2 (2)

which captures the difference between the average of

two consecutive sessions. Given S =< {t1, t3, t5}, {t2, t4,
t6}, {t7, t8, t9} >, InterReward(S) = (0.34 − 0.433)2 +

(0.433− 0.35)2 = 0.015 using Example 1 .

Changing the aggregation function from square to

exact definition of variance (i.e., divide it by the num-

ber of items in the session), taking square root of the

current definition, or changing the solutions to stan-

dard deviation will not require any changes in the so-

lution and approximation factor, because these defini-

tions are technically equivalent. In fact, the approxi-

mation factors remain unaltered for many popular dis-

tance functions that are part of the Minkowski fam-

ily, such as, L1, L2, and L∞. Other set-based [2] and

sequence-based [51] definitions could be considered in

future work.

For the simplicity of illustration, we use one dimen-

sion at a time to model diversity. For all practical pur-

poses, both Intra and Inter dimensions could be de-

signed to reflect multiple attributes by combining them

and allowing overlap.

We explicitly chose to handle one attribute at a time

because we believe that diversity becomes more difficult

to perceive by users when combining several attributes.

That is further exacerbated by the fact that users have

to perceive Intra and Inter diversities at once. The use

of a single attribute for Intra and for Inter allowed us to

focus on the algorithmic and theoretical contributions.

There is however a workaround to reduce any number

of dimensions to one for each type of diversity by com-

bining their values with a weighted linear function as

in MMR [11].

2.2 Problem Definitions

We formalize our problems and propose to do that in

two stages: we first focus on producing Fixed Length

Sessions that consume all input items (Section 2.2.1),

we then relax our problem to produce Variable Length

Sessions that consume only a subset of input items (Sec-

tion 2.2.2). This allows us to study Fixed and Variable

Length Sessions in conjunction to consuming all versus

some input items. The problems of Fixed Length Ses-

sions with all input items and the problem of Variable

Length Sessions with subset of input items are omitted

as they are subsumed by the ones formalized in this

paper.

2.2.1 Fixed Length Sessions

Given N items, we are interested in finding a sequence

S =< s1, . . . , sk > of k sessions, each consisting of l
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items. We consider 4 problem variants all of which are

instances of a general problem formalized as follows:

Optimize-Intra, Optimize-Inter. Given a set of

N items with two dimensions of interest d and d′ on

Intra and Inter respectively, we are interested in cre-

ating a sequence S =< s1, ..., sk > of k sessions, each

containing l items, s.t. N = k × l and

optimize
S

k∑
i=1

(Intrad(si))

optimize
S

k−1∑
i=1

(Interd
′
(si, si+1))

s.t.

|S| = k, |si| = l, N = k × l

(3)

2.2.2 Variable Length Sessions

Given N items, we are interested in finding a sequence

S =< s1, . . . , sk > of k sessions, with length L =<

l1, . . . , lk > s.t. li ≤ l; ∀i = 1, . . . , k. We consider 4

problem variants all of which are instances of a general

problem formalized as follows:

Optimize-Intra, Optimize-Inter. Given a set of

N items with two dimensions of interest d and d′ on

Intra and Inter respectively, we are interested in rec-

ommending a subset of items by creating a sequence

S =< s1, ..., sk > of k sessions with length L =<

l1, . . . , lk > s.t. li ≤ l; ∀i = 1, . . . , k, and N = k × l

optimize
S

k∑
i=1

(Intrad(si))

optimize
S

k−1∑
i=1

(Interd
′
(si, si+1))

s.t.

|S| = k, |si| = li, li ≤ l,
∑
∀i

li < N, N = k × l

(4)

We refer to Section 4.2.5 for further details.

2.3 Analysis of the Problems Considering Fixed

Length Sessions

We analyze the complexity of Intra and Inter diversi-

ties. This exercise allows us to analyze the nature of

these problems and sheds light on designing principled

solutions.

2.3.1 Intra Diversity Optimization

Theorem 1 Min-Intra is Polynomial time solvable.

Proof Minimizing Intra diversity is akin to grouping a

set of points in a line to produce the smallest aggregated

variance. This requires sorting the points based on the

Intra dimension d and grouping every l points to create

a session. Clearly, this is polynomial time solvable.

Theorem 2 Optimizing Max-Intra is NP-Hard.

Proof The proof of this theorem uses another claim that

we prove later (Theorem 6). This latter theorem for-

mally proves that Max-Intra happens (
∑k
i=1(Intra(si))

is maximized) if the mean of each session is equal (or

very close) to the global mean of all N items for the

specific dimension d. We omit the superscript d from

the proof and ti is considered as the value of the item

ti for dimension d. Since groups have the same size l,

the problem is akin to finding groups of items whose

sum is equal:

∑
ti∈s1

ti =
∑
ti∈s2

ti = · · · =
∑
ti∈sk

ti (5)

To prove NP-hardness we reduce an instance of the

k-Equal Subset Sum of Equal Cardinality Problem (k-

ESSEC) [14] to an instance of Max-Intra, as follows.

Given an instance of k-ESSEC with P = {a1, ..., aN}
which are N positive integers and k, we set the items

ti = ai and k remains the same. A solution to the

k-ESSEC with k disjoint subsets, each with equal value

sum(s1) = sum(s2) = . . . = sum(sk) occurs, iff a

solution of the Max-Intra exists with l = N/k and

µsi = µsglobal
=

ΣN
i=1ai
N .

2.3.2 Inter Diversity Optimization

The Inter diversity problem aims to find a sequence of

k sessions of length l that will optimize the aggregated

Inter distance computed on a dimension d over all k

sessions in that sequence.

Theorem 3 Inter Problem (both Min and Max) is NP-

Hard.

Proof (Sketch) We show the NP-hardness for the Min-

Inter case, and the maximization works analogously.

To prove the NP-hardness of the Min-Inter problem,

we reduce an instance of the known NP-hard problem

Hamiltonian Path problem [23] to an instance of the

Min-Inter problem. Consider an instance of the Hamil-

tonian Path problem with G = (V,E), where V is the

set of nodes and E is the set of edges. Each node vi ∈ V
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Fig. 1 Reduction: Hamiltonian Path to the Inter problem

represents l items with the same value on the dimen-

sion of interest. Essentially, these l items form a session.

For assigning the Inter diversity of two sessions, we first

deal with the non-edges inG. For each edge (vi, vj) /∈ E,

we set the µsi and µsj such that ||µsi−µsj || > X (where

X is an integer) and for each edge (vi, vj) ∈ E, we cre-

ate ||µsi − µsj || ≤ X. This creates an instance of Min-

Inter problem with |V | (i.e., k for Min-Inter) sessions,

each with l items. Clearly, this reduction can be done in

polynomial time. Figure 1 shows such a reduction from

an example graph, where X = 15. Now a Hamiltonian

Path exists in G, iff Min-Inter value is < X2 × |V |.

Theorem 4 The bi-objective optimization problems com-

bining Intra and Inter diversity are all NP-Hard.

Proof (Sketch) We omit the formal proof for brevity -

but it is easy to show that the NP-hardness remains for

each of the 4 bi-objective problems, since the individual

optimization problems are NP-hard.

2.4 Modified Problem Definitions of Fixed Length

Sessions

As proved in Theorem 4, each of the 4 bi-objective opti-

mization problems are NP-hard. In fact 2 ((Min-Inter,

Max-Intra) and (Max-Inter, Max-Intra)) out of the 4

problems are NP-hard on both objectives. Upon care-

ful investigation, we propose an alternative formulation

of each of these bi-objective problems to a correspond-

ing constrained optimization problem, with the goal of

obtaining one point from the Pareto front. The idea is

to optimize Inter diversity, subject to the constraint of

Intra diversity.

The constraint on Intra is obtained by solving the

Intra optimization first. There exists more than one

benefit to this approach. First, in one of the two cases

(i.e., Minimization) Intra is tractable and easier to solve,

Algorithm Running Time Approx Factor
Ex-Min-Intra O(NlogN) Exact

Ap-Max-Intra O(NlogN +Nl) 1
2−1/k

Ap-Min-Inter O(NlogN + k2 + logk) 4− 2/k
Ap-Max-Inter O(NlogN + k2 + logk) 1/2

Table 2 Optimization Algorithms and Results for Fixed
Length Sessions

therefore, coming up with the optimal value of the con-

straint is computationally efficient. More importantly,

the constrained optimization problem aims at finding

one point in the Pareto front, which is perfectly accept-

able, as the points in the Pareto front are qualitatively

indistinguishable (unless further information is avail-

able).

min(max)
S

k−1∑
i=1

(Interd2(si, si+1))

s.t.

k∑
i=1

(Intra(si))x <= OPTIntrad1

|S| = k, |si| = l, N = k × l

(6)

where OPTIntra is the optimal solution of the Intra

problem.

Using Example 1, the sequence

S =< {t5, t6, t7}, {t1, t2, t3}, {t9, t10, t11} >

minimizes the IntraSkill score but at the same time

maximizes the InterReward score whereas

S′ =< {t1, t2, t3}, {t9, t10, t11}, {t5, t6, t7} >

minimizes the IntraSkill and minimizes the InterReward.

3 Optimization Algorithms

We design optimization algorithms for the Intra and

Inter problems individually, following which, we study

how to solve the constrained optimization problem (Equa-

tion 6). Table 2 summarizes our technical results.

3.1 Algorithm Min-Intra

3.1.1 Fixed Length Sessions

The objective here is to design k sessions, each of length

l, such that the aggregated Intra diversity over the k
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Fig. 2 Sorted Intra Diversity of Skills

sessions is minimized. Specifically, if there are l val-

ues associated with a dimension in a session, the Intra

diversity is the variance of those points that is to be

minimized here.

With an abstract representation, once sorted, the

dimension values of N items, fall on a line, as shown

in Figure 2. Therefore, if the aggregated variance is to

be minimized, it is intuitive that the sessions need to

be formed by grouping l values that are closest to each

other.

Thus our proposed Exact-Min-Intra algorithm for

minimizing Intra diversity first sorts the values of the

dimension of interest. After that, it starts from the

smallest value and finds each consecutive l points to

form a session.

Theorem 5 Algorithm Exact-Min-Intra is exact.

Proof (Sketch) Let us assume that our algorithm does

not produce an exact solution. That means there ex-

ists another algorithm which produces a solution with

smaller Intra diversity than that of

Exact-Min-Intra. Suppose this other algorithm uses

another way to create the sessions. Of course, this is

different from sorting the items in increasing value of

the dimension of interests and grouping each l of them

starting from the smallest one. However, that is a con-

tradiction because then the latter algorithm will have

larger Min-Intra value, as l non-consecutive points will

have higher variance than consecutive ones. Hence the

proof.

Lemma 1 Algorithm Exact-Min-Intra runs in O(N

logN).

Proof Since the only required operation is sorting, the

running time of the algorithm will take O(NlogN).

3.1.2 Variable Length Sessions

For the Variable Length Sessions problem, we group

the items depending on the specified input length after

sorting them. To clarify more, in Example 1, if we are

given [2, 3, 2, 3] as the sessions’ length input, we choose

the first two items after sorting as the first session, then

the following three items as the second session, and so

on.

3.2 Algorithm Max-Intra

As proved in Section 2.3, Max-Intra is NP-hard. What

makes it computationally intractable is that when the

objective is to maximize variance, the search space has

to be combinatorially explored.

We show that Max-Intra is optimized when all ses-

sions have the same mean, which is equal to the global

mean µglobal. This proof is critical, as it helps us design

our solution. Theorem 6 has the formal statement.

Theorem 6
∑k
i=1(Intra(si)) is maximized when

µds1 = µds2 , . . . = µdsk = µglobal (7)

Proof The theorem states that the objective is maxi-

mized when the means of all sessions are equal, which in

turn are equal to the global mean. It is indeed true that

when µds1 = µds2 , . . . = µdsk , the global mean µglobal =

1
N

∑N
j=1(tdj ) =

k×µd
si

k = µdsi
Our intention is to prove that

∑k
i=1(Intra(si)) is

maximized when this aforementioned scenario occurs.

For ease of exposition, we omit the superscript d from

the proof.

We do the proof by the method of contradiction.

Consider two different sets of k sessions, S and S′. For

S = s1, s2, . . . , sk, we have µs1 = 1
l

∑
t∈s1 t and simi-

larly for other si ∈ S. For S′ = s′1, s
′
2, . . . , s

′
k where

µs′1 = µs′2 = . . . = µs′k = µglobal =
1

k ∗ l
∑

t (8)

We also assume, Intra(S) > Intra(S′).

Intra(S) =
∑
si

Intra(si)

=
∑
t∈s1

(t− µs1)2 + . . .+
∑
t∈sk

(t− µsk)2

=

N∑
i=1

t2i − l(µ2
s1 + µ2

s2 + . . .+ µ2
sk

)

(9)

Intra(S′) =

N∑
i=1

t2i − klµ2
global (10)

According to our assumption, Intra(S) > Intra(S′)

this means that,

N∑
i=1

t2i − l(µ2
s1 +µ2

s2 + . . .+µ2
sk

) >

N∑
i=1

t2i −klµ2
global (11)

which after considering µopt =
µs1+µs2+...+µsk

k we get,

µ2
s1 + µ2

s2 + . . .+ µ2
sk
< 0 (12)

which is a clear contradiction, hence the proof.
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Fig. 3 Ap-Max-Intra steps on Example 1

3.2.1 Fixed Length Sessions

Theorem 6 provides a useful insight, that is, to maxi-

mize the Intra, we need to form the k sessions in such a

way that the means of all the sessions are equal or very

close to each other. Algorithm Ap-Max-Intra is itera-

tive and greedy and it relies on this principle to cre-

ate sessions that satisfy this property. First, it creates l

bins, each has k different slots. The bins are then initial-

ized so that each contains a subset of k items from the

set of items that are sorted in ascending order. Then,

in the third step, each of the l bins are scored using a

scoring function described in Definition 1 , which cap-

tures the maximum difference between the average of

all items and the ones in each bin. Finally, it merges

the two bins with the highest and lowest scores greed-

ily. The final two steps are repeated iteratively. This

process is repeated for l − 1 times.

Definition 1 (Score of the i-th bin:)

d(bi) = max{|µglobal−argmax
∀j

bij |, |µglobal−argmin
∀j

bij |}

This scoring function captures the largest difference

between items in a bin and the global average, allowing

the highest and lowest scoring bins to be merged. If we

do this, as we proved in Theorem 6, the sessions created

at the last step have an average near to µglobal, which

maximizes the Intra value.

To illustrate the solution further, bij represents the

j-th slot in bin i, which is kept as a placeholder for j-th

session. To initialize the bins, we first sort the items

in an increasing order on the dimension of interests.

Next, in the i-th bin 1 ≤ i ≤ l, we put the sorted

items t(i)∗k+j in bij . Using Example 1, this amounts to

creating 3 bins of tasks where b1 = {[t1], [t2], [t3], [t4]},
b2 = {[t5], [t6], [t7], [t8]}, and b3 = {[t9], [t10], [t11], [t12]}.
In step 3, each bin is scored, based on d(bi), as presented

in Definition 1. Then two bins i and j are merged that

have the largest and smallest score respectively. Going

back to the Example 1, the scores are calculated as

follows d(b1) = 0.18 , d(b2) = 0.08, and d(b3) = 0.25

and b2 and b3 are merged. Figure 3 details these steps.

To merge b with b′, where b has the largest score and

b′ has the smallest score, we create a new bin bmerge

such that, bmergeij contains the m-th smallest items of b

and m-th largest items of b′ (1 ≤ m ≤ k). Considering

Example 1, the new bin bmerge is created by combining

b2 and b3 , such that

bmerge = {[t5, t12], [t6, t11], [t7, t10], [t8, t9]}

This process is then repeated until only a single bin

is left.

Algorithm 1 Algorithm Ap-Max-Intra

Require: N , Number of sessions k, Length of session l

1: µglobal ← Average of all items
2: Initialize l bins each with k slots ←
3: bi ← {bi1 = [til+1], bi2 = [til+2, ..., bik = [til+k]]}
4: while number of bins > 1 do
5: pick bi and bj with the largest and smallest scores
6: bmerge=merge bi and bj
7: Delete bi and bj
8: number of bins ← l − 1

9: Return the final merged bin

Theorem 7 Ap-Max-Intra runs in O(NlogN +Nl) .

Proof Getting the average of the items takes O(N). The

partitioning of items into k bins takes O(NlogN) which

is done by sorting items first and then putting each item

in their corresponding bin by iterating over them once

more. Now there are l − 1 iterations of the algorithm

to merge the bins. Each bin merge takes at most O(kl)

since there are k sessions with at most l members which

means for l− 1 iterations we will have O(kl2). Overall,

the running time of the algorithm will be O(NlogN +

Nl)

Theorem 8 Algorithm Ap-Max-Intra has 1
2−1/k ap-

proximation factor.

Proof (Sketch) The detail proof of this problem makes

use of an approximation-preserving reduction. Basically

the idea of an approximation-preserving reduction is as

follows: we need to show that an instance of Ap-Max-

Intra is reducible to an instance of another known
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NP-hard problem, Balanced Number Partitioning prob-

lem [33] and by applying Algorithm BLDM, which is an

approximation algorithm for the latter problem pro-

duces a solution for the problem Ap-Max-Intra. The

proof sketch makes use of two arguments: the first is

that an instance of Max-Intra could be reduced to an

instance of the Balanced Number Partitioning prob-

lem [33] in polynomial time. Then, it can be shown

that the BLDM algorithm has one-on-one correspondence

with Ap-Max-Intra. Ap-Max-Intra will accept 1
2−1/k

approximation factor, since BLDM holds 2− 1/k approx-

imation factor.

3.2.2 Variable Length Sessions

The solution of Max-Intra for Variable Length Sessions

is identical to aforementioned one, except the last step.

If the length of each of the k bins is smaller than the

length of the input variable, we merge them; otherwise,

we skip that one and move on to the next one to merge.

To clarify, if we want to merge one more time after step

4 in Figure 3, we skip the first column because the first

session must have length 2, but we merge [0.51] and

[0.63, 0.89] in the second column to get a session with

length 3 as specified in the input length [2, 3, 2, 3].

3.3 Algorithm Min(Max)-Inter

3.3.1 Fixed Length Sessions

Optimization of Inter diversity, both minimization and

maximization variants, is NP-hard, and they bear re-

markable similarity to each other. Given a set of N
items, the Min(Max)-Inter problems will try to find

an ordering of k sessions, each with l items, such that

the aggregated differences between the average of two

consecutive sessions is minimized (maximized). To bet-

ter understand these problems, we break them into two

steps. We only present these steps for the Max-Inter

problem and note that the Min-Inter version works

analogously, only by inverting the optimization goals

inside the algorithm. For example, for optimizing Max-

Inter, our goal is to find a sequence of sessions that

maximizes Equation 2. One intuition is that Inter di-

versity increases if the means of individual sessions (on

the dimension of interest) are highly different from each

other. Indeed, if the k sessions have the same exact

mean, no matter how one orders them, Inter diversity

will be zero. As we prove in Lemma 2, this relates to

forming a set of k sessions with the goal to minimize

Intra diversity. So, the first step of our algorithm is to

produce a set of sessions with the smallest Intra diver-

sity. The next step is to order these sessions, such that

the resulting sequence has the Inter value maximized.

This is our guiding principle in creating the algorithms

to solve this problem.

Our proposed solution Ap-Max-Inter for Max-Inter

works as follows: we first find k sessions obtained by

running Algorithm Ap-Min-Intra. This is needed, since

it will generate sessions with means as different from

each other as possible. After that, we create a graph

of k nodes, each represents one of the k sessions. The

weight of each edge (si, sj) is defined as w(si, sj) =

(µsi −µsj )2. After that, the goal is to run an algorithm

for the Longest path problem for Max-Inter. Since the

graph is complete with positive weights on the edges,

the Longest Path Problem could be solved by replac-

ing the positive weights with negative values and run-

ning a traveling salesman problem (TSP) over it. In

our implementation, we use the simple yet effective

2-approximation algorithm for TSP in metric space,

described in [32, 36]. The algorithm starts by finding

the Minimum Spanning Tree of the input graph using

Prim’s algorithm. Next, it lists the nodes in Minimum

Spanning Tree in a pre-order walk and adds the edge to

the starting vertex to the end. This path will create an

ordering of sessions by following from the starting ver-

tex si to the ending vertex sj . This algorithm runs in

O(k2logk) which is dominated by the running time of

the Prim’s algorithm. We further improve this running

time by using Fibonacci heaps and obtain O(k2+logk).

Inversely, Algorithm Ap-Min-Inter, designed for Min-

Inter first solves the Min-Inter problem to create ses-

sions with the largest Intra diversity. Then, we create

the graph same as we have done in Ap-Max-Inter but

the edge weights do not need to be negated. Finally,

we run TSP [36] to generate a sequence of sessions for

minimizing Inter diversity of those sessions. For both

problems, the obtained solution is a cycle and has one

extra edge. We simply remove the edge with the small-

est (largest) value in the solution. This produces an or-

dering of the sessions. Algorithm 2 presents the pseudo

code of Max-Inter algorithm.

Algorithm 2 Algorithm Ap-Max-Inter

Require: N items, Number of sessions k, Length of session
l

1: Sinit ← Min− Intra(N, k, l)
2: G = (S,E) ← complete graph with k nodes
3: w(si, sj) = (µsi

− µsj
)2

4: Run Longest path algorithm on G
5: Longest path contains the ordering of the sessions.

Theorem 9 Both Ap-Max-Inter and Ap-Min-Inter run

in O(NlogN + k2 + logk).



Diversifying Recommendations on Sequences of Sets (Author’s copy) 9

Fig. 4 Relationship between Min-Intra and Max-Inter when
defined on the same dimension (1) If S =< s2, s1, s3 > is the
Min-Intra solution and µs1

≤ µs2
≤ µs3

, the Inter value
reaches its maximum value, which is α + β; (2) If a task is
swapped between sessions s1 and s2, the Inter value for the
new sessions will be α+ β − 3x which is smaller and cannot
be the solution of Max-Inter.

Proof The running time of the algorithm Ap-Max-Inter

is dominated by the first step which is getting the solu-

tion of Min-Intra (for Ap-Min-Inter it is Max-Intra).

The algorithm for TSP takes O(k2 + logk). This means

that the overall running time will be O(NlogN + k2 +

logk).

Lemma 2 Given a set of N items forming k sessions

(each with l items), when defined on the same dimen-

sion of interest, Inter diversity of the k sessions is max-

imized (minimized), when Intra diversity of those k ses-

sions is minimized(maximized).

Proof (Sketch)

Inter Minimization Case: For the case of Max-

Intra, the solution will require the averages of all groups

to be the same (Recall Theorem 6). This results in hav-

ing Min-Inter with value 0, leading to the optimal so-

lution. Hence the proof.

Inter Maximization Case: We prove by contra-

diction for Min-Intra and Max-Inter, for k = 3. For

the purpose of illustration, consider the sequence S =<

s2, s1, s3 > where µs1 ≤ µs2 ≤ µs3 . Consider s1, s2, s3
are the solution of Min-Intra and µs3 − µs1 = α and

µs2−µs1 = β. Figure 4 presents one such solution. Now

consider that we swap a task between s1 and s2. After

this swap, the value of µs1 will increase by x amount

and the value of µs2 will decrease by the same x. Now

it is easy to see that if the value of Inter is α+β for the

solution of Min-Intra, then the value of the new solu-

tion will be α+β− 3x which is smaller. This argument

extends to k > 3.

Theorem 10 Ap-Max-Inter produces an answer that

is at least 1/2 of the the optimal solution.

Proof The approximation of Ap-Max-Inter occurs in

step 2, while solving the longest path problem (Since

Min-Intra has an exact solution)). Since the longest

path algorithm has the 1/2 approximation factor, the

overall algorithm Ap-Max-Inter has 1/2 approximation

factor.

Theorem 11 Algorithm Ap-Min-Inter has 4−2/k ap-

proximation factor.

Proof Similar to the proof of Ap-Max-Inter, using Lemma

2, the first step of Ap-Max-Inter is finding a set of ses-

sions which are closest to each other. Using algorithm

Ap-Max-Intra provides these sessions with 2− 1/k ap-

proximation. The next step multiplies this error by a

factor of 2 since the composition of the groups is not

changed and we only find an ordering over the fixed

groups. This yields an approximation factor of 4− 2/k.

3.3.2 Variable Length Sessions

The Inter solution of the Variable Length Sessions is

the same as Fixed Length Sessions for both minimiza-

tion and maximization problem.

3.4 Optimizing Inter with Intra as Constraint for

Fixed Length Sessions

We now develop algorithms for the constrained opti-

mization problems defined in Section 2.4. When the val-

ues of the item dimension used for Intra diversity are

all unique, two of these four algorithms have provable

approximation factors. Table 3 provides the summary
of our technical results.

Algorithm Running Time Approximation Factor
Alg-Min-Intra,Min-Inter O(NlogN + k2) (OPT, 4− 2/k)
Alg-Min-Intra, Max-Inter O(NlogN + k2) (OPT, 1/2)
Alg-Max-Intra, Min-Inter O(NlogN +Nl + k2) heuristic
Alg-Max-Intra, Max-Inter O(NLogN +Nl + k2) heuristic

Table 3 Optimization Algorithms and Results for Fixed
Length Sessions

To optimize Inter with Min-Intra as a constraint,

we design two algorithms Alg-Min-Intra, Min-Inter and

Alg-Min-Intra, Max-Inter. For both, we start from the

solution of the Min-Intra problem using algorithm Ex-Min

-Intra. This solution is an exact algorithm for solv-

ing Min-Intra and gives a set of k sessions as the the

output. After that, we run Ap-Max-Inter in Alg-Min-

Intra, Min-Inter and Ap-Min-Inter in Alg-Min-Intra,

Max-Inter.
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Fig. 5 Ap-Max-Inter graph of Example 1

On the other hand, to optimize Inter with Max-

Intra as a constraint, we start from the solution of the

Max-Intra using algorithm Ap-Max-Intra. This solu-

tion is an approximation algorithm for solving Max-

Intra and returns a set of k sessions. After that, we run

Ap-Max-Inter for Max-Intra, Max-Inter and Ap-Min-

Inter for the Max-Intra, Min-Inter. Using Example 1,

to solve Alg-Min-Intra, Max-Inter where the Intra di-

mension is on Skill and Inter dimension is on Skill

as well, we first call the Exact-Min-Intra subroutine

which sorts N items and group these items that are

close to each other and obtain the following sessions,

s1 = {t1, t2, t3}, s2 = {t4, t5, t6}, s3 = {t7, t8, t9}, and

s4 = {t10, t11, t12} where µs1 = 0.516, µs2 = 0.6066,

µs3 = 0.726, and µs4 = 0.873 (see Figure 2). Given the

solution of these 4 sessions, we then create a complete

graph (Figure 5) by considering each session as a node.

The weight of each edge in this graph is the Inter value

of adjacent sessions on the Skill dimension that are

calculated using Equation 2. The Ap-Max-Inter is then

akin to the longest path problem. We convert these pos-

itive weights to negative weights by introducing a minus

sign and then apply our proposed 2-approximation al-

gorithm for the traveling salesman problem (TSP) on

metric space that gives us the following tour T = {s1 →
s4 → s2 → s3 → s1} . We remove the edge s2 → s3
since it has the smallest weight. The solution of Max-

Inter is hence the sequence S =< s2, s4, s1, s3 >.

Alg-Min-Intra, Min-Inter problem is solved in a sim-

ilar manner by following the steps outlined above. The

only distinction is that we don’t have to convert weight

to negative weight.

Algorithm 3 presents the generic pseudo code. These

two algorithms are based on heuristics and may not

have any provable bounds.

Theorem 12 Algorithm Alg-Min-Intra, Max-Inter has

(1, 1/2) approximation factor Min-Intra,Max-Inter prob-

lem and Alg-Min-Intra, Min-Inter has (1, 4 − 2/k) ap-

Algorithm 3 Algorithm for maximizing Inter with In-

tra as a constraint
Require: N items, Number of sessions k, Length of session

l, dimensions d1 and d2

1: Sinit ← k sessions of l items each, obtained by running
Intra optimization algorithm on d1

2: G = (V,E) ← complete graph with nodes of Sinit and
edge weights are calculated based on d2 values between a
pair of sessions

3: Call Subroutine Ap-Max-Inter or Ap-Min-Inter on G

proximation factor Min-Intra,Min-Inter problem, as long

as items in Intra dimension have unique values.

Proof (Sketch) We provide the proof for Alg-Min-Intra,

Max-Inter and the proof of Alg-Min-Intra, Min-Inter

works analogously. Ex-Min-Intra is optimal. Since items

have unique values on Intra diversity dimension, there

exists one and only one set of k sessions that mini-

mizes Intra diversity values. The second step of the al-

gorithm Alg-Min-Intra, Max-Inter creates an ordering

over these sessions. In that subset of the search space,

i.e containing only solutions that start with the ses-

sions of Ex-Min-Intra where the Min-Intra is optimal,

our Max-Inter algorithm produces a solution which is

1/2 the optimal solution. Hence the (1, 1/2) approxi-

mation factor holds for Min-Intra,Max-Inter problem.

Similarly, the (1, 4 − 2/k) approximation factor holds

for Min-Intra,Min-Inter problem.

4 Experimental Evaluations

We first conduct experiments involving human subjects

on music playlist recommendation and task recommen-

dation in crowdsourcing to observe the effect of di-

versity on user satisfaction (in both applications) and

worker performance (in crowdsourcing). Then, using

large scale real data and synthetic data, we examine

the quality of our algorithms in comparison to base-

lines, and evaluate the scalability of our approach.

Except for Section 4.2.5, which is related to the Vari-

able Length Sessions, the rest of the section focuses on

the Fixed Length Sessions.

4.1 Experiments with Human Subjects

We validate our framework in two applications: mu-

sic recommendation, where we generate music playlists,

and task recommendation in crowdsourcing, where we

generate task sessions. These experiments are summa-

rized in Table 4.
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Experiment
# of

workers
Setup Observed data Findings

1. Music
Recommendation

200
Users rate playlists.
Each playlist has 5 channels.
Each channel has 10 songs.

user satisfaction
no. of selected songs
diversity rating

User satisfaction, no. of selected
songs, and diversity rating are
higher in diversified playlists.

2. Task
Recommendation

200
(total)

Workers complete and
rate task sessions.
Each task session has 5 task sets.
Each task set has 10 tasks.

worker satisfaction
quality
throughput

Worker satisfaction and quality
are higher in diversified task sessions.

2.1. Controlled
Session Gap

102
Workers complete task sessions
in session gaps of 1 minute,
5 minutes, and 10 minutes.

workers’ preference
(diverse vs. similar
task sessions)
factors affecting workers’
satisfaction (diversity,
relevance, others)

Worker satisfaction is higher
in diversified task sessions
across all session gaps and
peaks at the 5-minute session gap.
Quality is higher in diversified task
sessions across all session gaps.
Workers prefer diverse sessions
diversity is the main factor
in 55% of the workers’ ratings.

2.2. Random
Session Gap

98 Workers complete tasks anytime.

Table 4 Summary of experiments with human subjects

4.1.1 Music Recommendation.

We generate music playlists for users and consider dif-

ferent contexts namely music for long drive, theme party,

Sunday morning, and learning a new music style, to

observe how diversity affects user satisfaction in differ-

ent contexts. Each playlist contains 5 distinct channels,

each with 10 songs.

Dataset. The dataset consists of 727 songs from 54

albums, 47 artists, and 10 genres. The songs are from

albums that won the Grammy Best Album of the Year

Award between 1961 and 2020. The list of albums and

their corresponding genres are from Wikipedia while

the other information such as artist, period, popularity,

tempo, and duration are from Spotify.

Experiments Flow. We first collect preferred gen-

res and artists from users to form their profiles. We then

generate 5 music playlists for each user. Each playlist

has 5 channels, and each channel has 10 songs. The first

4 playlists are generated using the algorithms in Ta-

ble 3, with dimensions specified for each context in Ta-

ble 5. The 5th playlist represents the baseline with No

diversity. It consists of similar songs randomly selected

from the same dimension. Specifically, in this case, all

songs from the period 2000’s. Lastly, users evaluate the

playlists by selecting songs they would actually listen

to, rating how much they like diversity in the sessions,

and providing an overall rating of the entire playlist.

The ratings are based on a 5-pt Likert scale where 1 is

the lowest and 5 is the highest. We measure user satis-

faction using the overall rating provided by users. We

recruit 200 workers (50 per context) from Amazon Me-

chanical Turk (AMT). We pay the workers $0.10 for

profile collection and $1.00 for their evaluations.

Summary of Results. We observe in Table 6 that

user satisfaction in diversified playlists (Scenarios 1−4)

Long
Drive

Theme
Party

Sunday
Morning

Learn
Music

Intra tempo period popularity genre
Inter popularity genre genre tempo

Table 5 Diversity dimensions per context

Scenario
No. of

Selected
Songs

Diversity
Rating

User
Satisfaction

1 Min-Intra, Min-Inter 15.16 3.57 3.54
2 Min-Intra, Max-Inter 15.05 3.66 3.66
3 Max-Intra, Min-Inter 14.71 3.59 3.71
4 Max-Intra, Max-Inter 14.66 3.69 3.71
5 No diversity 12.83 3.35 3.44

Table 6 Average evaluation scores across all contexts

is higher compared to the No diversity baseline. This

observation is statistically significant at p = 0.10 us-

ing a one-way Analysis of Variance (ANOVA) [42]. The

results are consistent with other measures: workers se-

lect the smallest number of songs from the No diversity

playlist and the No diversity playlist receives the lowest

average diversity ratings. Moreover, these observations

extend to different contexts, as shown in Tables 7, 8,

and 9. These results are summarized in Table 4 - Ex-

periment 1. The sample size of 200 workers from the es-

timated 200, 000 workers in AMT [17] gives our results a

99% confidence level and a 10% error margin (based on

the Central Limit Theorem [44]). In summary, our mu-

sic experiment clearly shows that diversity is preferred

over No diversity. Additionally, diversity definitions de-

pend on context, as observed in Tables 7, 8, and 9.
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Scenario
Long
Drive

Theme
Party

Sunday
Morning

Learn
Music

1 Min-Intra, Min-Inter 16.58 14.86 14.76 14.42
2 Min-Intra, Max-Inter 15.82 15.06 14.12 15.20
3 Max-Intra, Min-Inter 16.52 13.64 14.30 14.38
4 Max-Intra, Max-Inter 16.24 13.96 15.04 13.40
5 No diversity 14.10 11.92 13.62 11.68

Table 7 Average number of selected songs per context

Scenario
Long
Drive

Theme
Party

Sunday
Morning

Learn
Music

1 Min-Intra, Min-Inter 3.64 3.52 3.64 3.46
2 Min-Intra, Max-Inter 3.70 3.50 3.82 3.61
3 Max-Intra, Min-Inter 3.70 3.54 3.58 3.54
4 Max-Intra, Max-Inter 3.84 3.68 3.58 3.64
5 No diversity 3.34 3.30 3.46 3.30

Table 8 Average diversity rating per context

Scenario
Long
Drive

Theme
Party

Sunday
Morning

Learn
Music

1 Min-Intra, Min-Inter 3.62 3.88 3.34 3.32
2 Min-Intra, Max-Inter 3.76 3.72 3.66 3.50
3 Max-Intra, Min-Inter 3.86 3.98 3.56 3.44
4 Max-Intra, Max-Inter 3.76 3.80 3.70 3.58
5 No diversity 3.60 3.42 3.46 3.28

Table 9 Average user satisfaction per context

4.1.2 Task Recommendation.

In these experiments, we recommend task sessions to

workers in crowdsourcing. Each task session consists of

5 sets and each set consists of 10 tasks.

Dataset. The dataset consists of 20, 000 tasks from

Figure Eight’s open data library [1]. Each task belongs

to one of 10 types such as tweet classification, image

transcription, and sentiment analysis. Each task type

is represented as a set of keywords that best describe

required skills. Additionally, each task has a creation

date, an expected completion time (less than a minute),

and a reward that varies between $0.01 - $0.05.

Experiments flow. We collect a total of 200 user

profiles where workers indicate (from 1 to 5) their in-

terest in completing tasks, which are described by a

given set of keywords. For each user profile, we gener-

ate task sessions using the algorithms in Table 3 and a

combination of the following dimensions: skill, reward,

duration, and creation date. We also generate a No di-

versity baseline session. In this session, we randomly

pick a task type and randomly select similar tasks be-

longing to that type. Next, workers complete and rate

the recommended sessions. We measure worker satis-

faction, quality of the completed tasks with respect to

a ground truth, and task throughput.

Satisfaction refers to how satisfied workers are with

the task sessions (a rating from 1 to 5 provided by each

worker). Quality refers to the percentage of correct an-

swers from the tasks completed by a worker. To measure

Session Type
Worker
Satis-
faction

Quality
(%)

Through
put

1
Min-Intra(creation
date), Min-Inter(skill)

4.26 0.67 7.72

2
Min-Intra(skill),
Max-Inter(reward)

4.30 0.68 7.85

3
Max-Intra(skill),
Min-Inter (reward)

4.29 0.66 7.60

4
Max-Intra(duration),
Max-Inter (skill)

4.28 0.68 7.71

5 No diversity 4.01 0.62 7.92

Table 10 Task recommendation sessions

Session Gap
(minutes)

Session Type 1 5 10
Worker

Satisfaction
Diversified 3.76 4.30 4.21
Non-diversified 3.48 4.09 3.91

Quality
Diversified 0.68 0.64 0.65
Non-diversified 0.62 0.55 0.59

Throughput
Diversified 8.50 8.82 8.01
Non-diversified 8.57 10.67 8.18

Table 11 Throughput, quality, and worker satisfaction of
diversified and non-diversified sessions with different session
gaps

quality, we use the answers obtained from the dataset

as the ground truth. We use a näıve script that relies on

basic equality to evaluate answer correctness. Through-

put refers to the average number of tasks completed per

minute.

We also investigate the impact of session gap, the

time interval between completing sessions, in our pro-

posed algorithms. We conduct Experiment 2.1 in Table

4 where we assign 102 of the 200 workers to complete

the sessions in 3 fixed time intervals of 1, 5, and 10 min-

utes between sessions (34 workers for each fixed time

interval). We also ask these workers their preference

between diversified and non-diversified sessions, and to

indicate which factor mainly affects their satisfaction.

In total, we recruit 200 workers, pay each $0.03 for

profile collection and at least $0.35 for task completion.

Summary of Results. Table 10 presents the av-

erage worker satisfaction, quality, and throughput in

the task recommendation experiments. We observe that

worker satisfaction and quality in diversified sessions

are higher compared to the No diversity baseline. This

observation is statistically significant at p = 0.01 us-

ing a one-way Analysis of Variance (ANOVA) [42]. On

the other hand, throughput is marginally higher for the

No diversity case. This observation confirms previous

studies where workers get more proficient in complet-

ing similar (and hence not diverse) tasks, allowing them

to become faster at task completion [18].



Diversifying Recommendations on Sequences of Sets (Author’s copy) 13

Fig. 6 Worker satisfaction in varying session gaps

In Table 11, we present the average worker satisfac-

tion, quality, and throughput grouped by session gap.

The values are from the 102 workers in the Experiment

2.1 in Table 4 where we control the session gap. For

each session gap (1, 5, 10 minutes), 34 workers complete

the 5 session types listed in 10. The Diversified rows in

Table 11 show the aggregated values obtained in the

4 task sessions generated by our algorithms while the

Non-diversified rows show the values obtained in the

baseline or No diversity session.

Our findings show that quality and worker satisfac-

tion are better in the diversified tasks sessions gener-

ated by our proposed algorithms across all session gaps.

These observations are significant at p = 0.10 using a t-

test [15]. Moreover, it is interesting to note that worker

satisfaction peaks at the 5-minute session gap as seen

in Figure 6. For the task sessions, 5 minutes may be

the ideal break time workers need to alleviate fatigue or

boredom [41]. We also note that our findings are consis-

tent with the 102 workers’ responses where 72.5% of the

workers prefer diversified sessions over non-diversified

sessions; 55% of the workers consider diversity in their

ratings, 23.3% consider relevance, and 21.7% consider

other factors.

In summary, our task recommendation experiments

clearly show the benefit of diversity in the workers’ sat-

isfaction and the quality of crowdsourced tasks.

4.2 Large Data Experiments

The goal here is to evaluate our algorithms with appro-

priate baselines (including exact solutions) and com-

pare them qualitatively (approximation factors, objec-

tive function value) and scalability-wise (running time).

All algorithms are implemented in Python 3.6 on a 64-

bit Windows server machine, with Intel Xeon Processor,

and 16 GB of RAM. All numbers are presented as the

average of five runs. For brevity we present a subset of

results that are representative.

4.2.1 Data Sets.

a. 1-Million Song: We use the Million Songs Dataset [9]

that has 1 million songs (please note the Spotify dataset

used in Section 4.1 is small in scale). We have normal-

ized the data to be between [0, 1]. This dataset also

includes artist popularity and hotness, genre, release

date and etc. The presented results are representative

and consider tempo and loudness as dimensions.

b. Synthetic dataset: The presented results on this are

the ones that vary distributions of the underlying di-

mensions. We sample from three distributions: Normal,

Uniform, and Zipfian. For Normal distribution, data is

sampled with mean and standard deviation, µ = 250,

σ = 10. For Uniform, dataset is sampled from Uniform

distribution between [0,500], and for Zipfian distribu-

tion default exponent is set to α = 1.01. We produce a

pool of 230 items for each of our three distributions.

4.2.2 Implemented Baselines.

In addition to Random where we generate random se-

quences, we implement different baselines and compared

the performance of our algorithms.

Optimal. The optimal baseline is based on an Inte-

ger Programming (IP) algorithm that solves the prob-

lem optimally on small instances. The rationale behind

implementing IP is to verify the theoretical approxi-

mation factors of our algorithms against the optimal

solution. We used Gurobi as the solver2.

Baseline-MMR. This baseline is inspired by the MMR
algorithm [11] used in diversifying web search results.

MMR takes a search query and returns relevant and

diverse results. Hence, our mapping to MMR optimizes

Intra session diversity only. At each iteration, Baseline-

MMR considers an item to be included or not in the result

and calculates two scores: the Intra score of adding a

new item to a session and the max (resp., min Inter)

score of a new session to all other sessions in the case of

Max-Inter (resp., Min-Inter). It then picks the highest

or the lowest weighted sum of these two scores based

on the Intra part of the problem. The item with that

score is chosen to be added to the session. This process

is repeated until there is no item left.

Baseline-Constrained-KMean. This is a cluster-

ing technique similar to the one proposed in [10] , which

uses the K-Mean Clustering approach to produce a set

of k clusters, each containing exactly l items. Following

2 https://www.gurobi.com/resource/switching-from-open-
source/



14 Sepideh Nikookar et al.

Our Scenarios
N=8192 , k=16 N=1024 , k=128
Intra Intra Intra Inter

Min-Intra , Min-Inter 1 1.05 1 1
Min-Intra , Max-Inter 1 0.35 1 0.49
Max-Intra , Min-Inter 0.99 1.06 0.98 1.04
Max-Intra , Max-Inter 0.99 0.58 0.95 0.69

Table 12 Approximation factors on 1-Million Song dataset

that, these clusters are sorted by increasing mean to

generate a sequence of sets as the final result.

4.2.3 Summary of Results.

Overall, for our problems, where both Intra and Inter

diversity are to be optimized, our algorithms are the

unanimous choice considering both quality and scalabil-

ity. When the Intra and Inter diversity is studied in-

dividually, our algorithms outperform all the baselines

and empirically produce approximation factors close to

1, across varying k, N , and different distributions. The

only exception to this latter observation is Baseline-MMR,

which performs better in maximizing Inter diversity

(while performing very poorly for Intra optimization),

which is due to its focus on optimizing Inter diversity

only. Moreover Baseline-Constrained-KMean performs

poorly for the maximization problems, our algorithm

convincingly outperforms it in both Intra and Inter

minimization and maximization. This baseline also ex-

hibits poor scalability. Contrarily, our algorithms are

highly scalable and are much more efficient compared

to the baselines.

4.2.4 Quality Evaluation.

We vary k (the number of sessions), N (the number of

items), and the data distribution. The default values

are N=213 and k=27 with a uniform distribution.

Comparison against Optimal. Table 12 shows

the approximation factors for our algorithms for two

default settings: (N = 213, k = 24) and (N = 210,

k = 27) using 1-Million Song dataset. We can see that

our algorithms produce an approximation factor equal

to 1 when Intra diversity is minimized and a factor very

close to 1 when Intra diversity is maximized.

When Inter diversity is minimized, the resulting ap-

proximation factors are close to 1. However, when Inter

diversity is maximized, the approximation factors are

slightly low as our algorithm solves the Intra part of the

problem before ordering the sessions to maximize Inter

diversity. It is hence bound by the constraints of the

solution to Intra. Nevertheless, the solution formulated

by our algorithm for Min-Intra,Max-Inter and Min-

Intra,Min-Inter is able to produce a point on the Pareto

Front in the optimal solution region which meets both

the Intra and Inter objectives. The synthetic dataset

mimics this trend as well.

Based on the approximation factor results and the

above analysis, we conclude that our algorithms produce

good and in some cases the best possible solution for the

4 problems we attempt to optimize.

Varying N . Figures 7 and 8 show how Inter scores

change as we vary N from 210 to 216 for Baseline-MMR,

Baseline-Constrained-KMean, Random and our algo-

rithms for 1-Million Song and synthetic dataset respec-

tively. Figures 7(a)(c) and 8(a)(c) confirm that our

algorithm performs best when Inter diversity is mini-

mized. The objective function improves with increasing

N . On the other hand, as seen in Figures 7(b)(d) and

8(b)(d),when Inter diversity is maximized, Baseline

-MMR outperforms our algorithm with increasingN . This

is because our algorithm is subject to the constraints

imposed by optimizing Intra diversity first then maxi-

mizing the Inter diversity, while Baseline-MMR focuses

on the Inter dimension only.

We also compare Intra scores whilst varying N . Ta-

bles 13 and 14 showcase the approximation factors of

our algorithm’s Intra considering Optimal for N ≤ 213

and N > 213. A ratio of 1 means that the algorithm pro-

duces the best or optimal solution. These results show-

case that our solutions achieve even better bound em-

pirically compared to the theoretical bounds. Tables 13

and 14 also show that although Baseline-MMR performs

better in Max-Inter problem, but it performs poorly for

both Min-Intra and Max-Intra problems.

Interestingly, Random often times produces approxi-
mation factor close to 1 for N > 213 when maximizing

Intra. This is due to the fact that Intra is maximized

when the variance of the sessions are maximized which

is one of the side effects of Random algorithm. However,

Baseline-MMR and Random produce very poor approx-

imation factors when minimizing Intra. Contrarily, our

solutions stay close to 1 approximation factor for both

minimization and maximization of Intra diversity. AsN

increases, the Intra scores do not see any drastic change

in approximation factors, and always stays close to 1.

Varying k. Figure 9 and 10 present how Inter scores

evolve as we vary k between 24 and 211 for different

baselines compared to our algorithm. We keep N con-

stant at 213. We observe figure 9(a)(c) and 10(a)(c)

that our algorithm performs significantly better than

other baselines in minimizing Inter diversity. For Fig-

ures 9(b)(d) and 10(b)(d), our observation is similar to

the case of varying N , Baseline-MMR performs slightly

better. Overall, Inter diversity increases for all 4 scenar-

ios as k increases. This is because of the fact that when
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(a) Ap-Min-Inter (Min-Intra) (b) Ap-Max-Inter (Min-Intra) (c) Ap-Min-Inter (Max-Intra) (d) Ap-Max-Inter (Max-Intra)

Fig. 7 Inter scores with varying N for 1-Million Song dataset

(a) Ap-Min-Inter (Min-Intra) (b) Ap-Max-Inter (Min-Intra) (c) Ap-Min-Inter (Max-Intra) (d) Ap-Max-Inter (Max-Intra)

Fig. 8 Inter scores with varying N for Synthetic dataset

more sessions are present, it allows for more diversity

between each session.

We present approximation factors of Intra in Tables

15 and 16 and observe similar trend as to when we

vary N . Also, similar to varying N for Intra scores, the

approximation factors here also stay close to 1 for our

algorithm.

Varying distribution. Figures 11 and 12 present

how our algorithm and other baselines perform as we

vary data distributions. We set N to 213 and k to 27.

Considering Intra scores, our algorithm performs

the best using Uniform distribution for all 4 scenarios.

However, Normal performs slightly worse at times with

our algorithm when we attempt to maximize Intra.

When we compare Inter scores, our algorithm per-

forms best with Uniform distribution. In Figures 11(b)(d),

Baseline-MMR outperforms our algorithm due to the

same reasons mentioned in the varying k and N sec-

tion of this paper.

Baseline-Constrained-KMean outperforms our al-

gorithms for minimizing Intra and Inter when using the

Zipf distribution.

We also observe that across all 4 scenarios, Zipf pro-

duces scores much larger in magnitude than Normal or

Uniform distribution. This is due to the range of values

in Zipf, which results in larger Intra and Inter scores.

Overall, our algorithms stand out to be the best choice,

with its best performance being on Uniform distribu-

tion.

Min-Intra
(Minimizing & Maximizing Inter)

N
Algorithms

MMR Random Constrained-KMean Ours
<= 8192 0.008 6.41E-05 0.165 1
>8192 0.002 5.42E-05 0.167 1

Max-Intra
(Minimizing & Maximizing Inter)

N
Algorithms

MMR Random Constrained-KMean Ours
<= 8192 0.22 0.98 0.0173 0.99
>8192 0.021 0.92 0.0187 0.99

Table 13 Intra approximation factors varying N on 1-
Million Song dataset

Min-Intra
(Minimizing & Maximizing Inter)

N
Algorithms

MMR Random Constrained-KMean Ours
<= 8192 0.006 7.53E-05 0.018 1
>8192 0.005 6.56E-05 0.0086 1

Max-Intra
(Minimizing & Maximizing Inter)

N
Algorithms

MMR Random Constrained-KMean Ours
<= 8192 0.19 0.94 0.007 0.99
>8192 0.019 0.99 0.0076 0.99

Table 14 Intra approximation factors varying N on Syn-
thetic dataset

Min-Intra
(Minimizing & Maximizing Inter)

k
Algorithms

MMR Random Constrained-KMean Ours
<= 128 0.011 0.0021 0.263 1
>128 0.0012 4.95E-06 0.069 1

Max-Intra
(Minimizing & Maximizing Inter)

k
Algorithms

MMR Random Constrained-KMean Ours
<= 128 0.035 0.92 0.05 0.99
>128 0.29 0.85 0.0027 0.99

Table 15 Intra approximation factors varying k on 1-Million
Song dataset

4.2.5 Variable Length Sessions

We relaxed two limitations of the Fixed Length Ses-

sions problem in this section: a. session lengths varies;

b. just a subset of items is recommended. The com-

plexity of the Min-Intra problem remains unchanged,

while the NP-hardness of Max-Intra still holds. Finally,

Inter problems’ NP-hardness remains intact. We vary

k between between 24 and 211 and keep N as its de-
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(a) Ap-Min-Inter (Min-Intra) (b) Ap-Max-Inter (Min-Intra) (c) Ap-Min-Inter (Max-Intra) (d) Ap-Max-Inter (Max-Intra)

Fig. 9 Inter scores with varying k for 1-Million Song dataset

(a) Ap-Min-Inter (Min-Intra) (b) Ap-Max-Inter (Min-Intra) (c) Ap-Min-Inter (Max-Intra) (d) Ap-Max-Inter (Max-Intra)

Fig. 10 Inter scores with varying k for Synthetic dataset

(a) Min-Intra,Min-Inter (b) Min-Intra,Max-Inter (c) Max-Intra,Min-Inter (d) Max-Intra,Max-Inter

Fig. 11 Synthetic dataset: Inter and Intra scores varying distributions

(a) Min-Intra,Min-Inter (b) Min-Intra,Max-Inter (c) Max-Intra,Min-Inter (d) Max-Intra,Max-Inter

Fig. 12 Synthetic dataset: Zipf Distribution
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(a) Ap-Min-Inter (Min-Intra) (b) Ap-Max-Inter (Min-Intra) (c) Ap-Min-Inter (Max-Intra) (d) Ap-Max-Inter (Max-Intra)

Fig. 13 Inter scores with varying k for 1-Million Song dataset for Variable Length Sessions

(a) Min-Intra,Min-Inter (b) Min-Intra,Max-Inter (c) Max-Intra,Min-Inter (d) Max-Intra,Max-Inter

Fig. 14 Running times varying N for 1-Million Song dataset

(a) Min-Intra,Min-Inter (b) Min-Intra,Max-Inter (c) Max-Intra,Min-Inter (d) Max-Intra,Max-Inter

Fig. 15 Running times varying N for Synthetic dataset

(a) Min-Intra,Min-Inter (b) Min-Intra,Max-Inter (c) Max-Intra,Min-Inter (d) Max-Intra,Max-Inter

Fig. 16 Running times varying k for 1-Million Song dataset

(a) Min-Intra,Min-Inter (b) Min-Intra,Max-Inter (c) Max-Intra,Min-Inter (d) Max-Intra,Max-Inter

Fig. 17 Running times varying k for Synthetic dataset
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(a) Min-Intra,Min-Inter (b) Min-Intra,Max-Inter (c) Max-Intra,Min-Inter (d) Max-Intra,Max-Inter

Fig. 18 Running times varying k for 1-Million Song dataset for Variable Length Sessions

Min-Intra
(Minimizing & Maximizing Inter)

k
Algorithms

MMR Random Constrained-KMean Ours
<= 128 0.035 0.0013 0.03 1
>128 0.0008 5.05E-06 0.0045 1

Max-Intra
(Minimizing & Maximizing Inter)

k
Algorithms

MMR Random Constrained-KMean Ours
<= 128 0.055 0.99 0.03 0.99
>128 0.42 0.85 0.001 0.99

Table 16 Intra approximation factors varying k on Syn-
thetic dataset

Min-Intra
(Minimizing & Maximizing Inter)

k
Algorithms

MMR Random Constrained-KMean Ours
<= 128 0.215 0.0127 0.39 0.725
>128 0.0485 0.0001 0.058 0.76

Max-Intra
(Minimizing & Maximizing Inter)

k
Algorithms

MMR Random Constrained-KMean Ours
<= 128 0.435 0.98 0.033 0.714
>128 0.39 0.78 0.0013 0.79

Table 17 Intra approximation factors varying k on 1-Million
Song dataset for Variable Length Sessions

fault value for different baselines compared to our al-

gorithms. This experiments incorporate an extra input

that is generated at random and indicates the length

of each session as a list of k values between 2 and l. In

Example 1, N = 12 and k = 4, therefore l = 3. As a

consequence, [2, 3, 2, 3] is the length list containing ran-

dom integers between 2 and 3, which is our l. As we

have 8192 items in our experiments for each k value,

averaging the items that are recommended in each sce-

nario yields 4568 items out of 8192.

The results are presented in Figure 13 and Table

17. When maximizing Intra, Random produces an ap-

proximation factor close to 1 for k ≤ 128. This is due

to the same reason that is explained in the Varying k

section that when Intra is maximized, the variance of

the sessions is also maximized. Except for the Alg-Max-

Intra, Min-Inter problem, all of the scenarios follow the

same trend of Fixed Length Sessions. In comparison to

the other baselines, Variable Length Sessions achieves

a higher Intra approximation factor, as shown in Table

17.

Since Baseline-MMR could not finish in reasonable

time for scenario when k is 211, we leave it blank in

Figure 13.

4.2.6 Scalability Evaluation.

Figures 14 , 15 and 16, 17 compare the running time

of the three algorithms for 1-Million Song and synthetic

dataset. The running time of Baseline-Constrained-

KMean was not included in these figures since some sce-

narios took many days to complete. Naturally, as N

increases, the running time of our algorithms increase.

We also observe that as we vary N with k = 27, our

algorithms are the fastest in all diversity scenarios.

In Figures 16 and 17 , we vary k and set N to 213.

We observe that our algorithms scale very well but is

sometimes slightly slower than Random. This is unsur-

prising, as Random does not even have to do much work

to generate sessions (recall that however it performs

poorly qualitatively). However, we observe that our al-

gorithm is consistently faster with increasing values of

k. The scalability evaluation plots for relaxed problem

experiments closely resemble those of the original prob-

lem for the 1-Million Song dataset, as seen in Figure 18.

Overall, we find that our algorithms are highly scalable

and produce results within a few seconds for very large

values of N and k, while some of the baselines take

hours to complete.

5 Related Work

Applications Diversity has been extensively studied in

recommendation and search applications [2, 6, 13, 22,

28, 29, 34, 37–39, 45, 47–51], to return items that are

relevant as well as cover full range of users interests. The

goal is to achieve a compromise between relevance and

result heterogeneity. Existing works [26, 46] have also

acknowledged the need for diversity and sequence based

modeling in different recommendation applications. Re-

cent works in crowdsourcing [21, 35] have demonstrated

the importance of diversity in task recommendation.

Task diversity is grounded in organization theories and

has shown to impact the motivation of the workers [12].

Amer-Yahia et al. [5] propose the notion of composite

tasks (CT), a set of similar tasks that match workers’

profiles, comply with their desired reward and task ar-

rival rate. Their experiments show that diverse CTs

contribute to improving outcome quality. A recent work

has studied Intra and Inter -table influence in web table

matching [21] involving crowd. Even though complet-
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ing similar tasks lead to faster completion time [18],

but such composition lead to fatigue and boredom, and

task abandonment [16, 25, 27]. Aipe and Gadiraju[3]

empirically observe that workers who perform similar

tasks achieve higher accuracy and faster task comple-

tion time compared to workers who worked on diverse

tasks. However, they find that these workers experi-

ence fatigue the most. Alsayasneh et al. integrate the

concept of diversity in composite tasks and empirically

find a positive effect of diversity in outcome quality [4].

In [43], The authors investigated a sequential group

recommender that is aware of the group’s previous in-

teractions with the system by adding the concept of

satisfaction, which characterizes how relevant the rec-

ommended items are to each group member.

For all of these applications, diversity is studied set-

based or sequence based only.

These applications call for a deeper examination of

diversity and a powerful framework to capture its vari-

ants, which is our focus here.

Set and Sequence Diversities Existing works on

diversification could be classified as set-based only [2,

22, 34, 37, 38, 45] or sequence-based only [6, 13, 29, 31,

51]. As an example, in [51], the authors study sequence-

based diversity that is defined as the diversity of any

permutation of the items. Another example is [6], in

which taxonomies are used to sample search results to

reduce homogeneity. In [2], the authors proposed an al-

gorithm with a provable approximation factor to find

relevant and diverse news articles. In the database con-

text, Chen and Li [13] propose to post-process struc-

tured query results, organizing them in a decision tree

for easier navigation. In [8, 30] the notion of diversity is

used in the results of queries to produce closest results

such that each answers is different from the rest. In rec-

ommender systems, results are typically post-processed

using pair-wise item similarity to generate a list that

achieves a balance between relevance and diversity. For

example, in [19], recommendation diversity was formu-

lated as a set-coverage problem. By distinguishing be-

tween item and user diversity and focusing on various

definitions of each, [31] investigated a diversity-aware

recommender system for a single user or a group of

users.

To the best of our knowledge, existing works have

focused on achieving diversity in a single set. We solve

set-based and sequence-based diversities in tandem and

develop algorithms with guarantees.

6 Conclusion

We initiate the study of a formal and algorithmic frame-

work to address diversity for s sequence of sets that

has natural recommendation applications (from song

playlists to task recommendations in crowdsourcing).

The combination of Intra and Inter session diversities

gives rise to four bi-objective optimization problems.

We propose algorithms with guarantees. Our extensive

empirical evaluation, conducted using human subjects,

as well as large scale real and simulated data, shows the

need for diversity to improve user satisfaction and the

superiority of our algorithms against multiple baselines.

In addition to theoretical questions, this work opens

up interesting directions that are of empirical interests:

an immediate extension of our work is to observe users

as they consume items and learn how diversity dimen-

sions and their respective definitions could be person-

alized for different users. Similarly, we are empirically

exploring how to choose the preferred diversity dimen-

sions depending on the underlying context for different

applications. Finally, an interesting open problem is to

understand how time affects underlying contexts and

fine tune diversified recommendations based on that.

In terms of other widely used diversification func-

tions, there exist diversity functions that consider ra-

dius (maximum/minimum distance) [24], or sum (sum

of distance). One can maximize or minimize these based

on the underlying optimization goal. Many of these

problems relate to the Facility Allocation Problem [7]

and its variants, as well as Graph Partitioning problems

[40]. These problems are known to be NP-hard. Our

produced greedy solutions could be adapted to solve

these variants. However, whether these solutions would

be just heuristic or they would accept provable approx-

imation factors would require revisiting and analyzing

each of them and that can be studied in the future work.

We are also going to study the approximation fac-

tors of the proposed algorithms for the Variable Length

Sessions in the future.
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