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Abstract 

Lithium induces nephrogenic diabetes insipidus (NDI) and microcystic chronic kidney disease 

(CKD). As previous clinical studies suggest that NDI is dose-dependent and CKD is time-

dependent, we investigated the effect of low exposition to lithium in a long-term experimental 

rat model. Rats were fed with a normal diet (control group), or with the addition of lithium (Li+ 

group), or with lithium and amiloride (Li+/Ami group) during 6 months, allowing obtaining low 

plasma lithium concentrations (0.25±0.06 and 0.43±0.16 mmol/l respectively). Exposition to 

low concentrations of plasma lithium levels prevented NDI but not microcystic dilations of 

kidney tubules, that were identified as collecting ducts (CD) on immunofluorescent staining. 

Both hypertrophy, characterized by an increase in the ratio of nuclei per tubular area, and 

microcystic dilations were observed. The ratio between principal cells and intercalated cells 

was higher in dilated microcystic than in hypertrophied tubules. There was no correlation 

between AQP2 mRNA levels and cellular remodeling of the CD. Additional amiloride treatment 

in the Li+/Ami group did not allow consistent morphometric and cellular composition changes 

compared to the Li+ group. Low exposition to lithium prevented overt NDI but not microcystic 

dilations of the CD, with differential cellular composition in hypertrophied and dilated 

microcystic CDs, suggesting different underlying cellular mechanisms. 

 

  



Introduction 

Lithium (Li+) is the first line treatment for bipolar disorder (1–3), but its high efficacy is 

counterbalanced by long-term adverse effects (4). Among them, renal adverse effects are the 

most significant and are divided into 2 entities, the nephrogenic diabetes insipidus (NDI) and 

the microcystic chronic kidney disease (CKD) (5,6).  

Regarding Li-induced microcystic CKD, previous experimental studies have reported tubular 

dilations and microcysts, developing as soon as 1 month after Li initiation (7–9). Interstitial 

fibrosis and uremia have also been induced in long-term exposition models up to 6 months 

(7,10). Based on morphological analyses and lectin staining, distal tubules and/or collecting 

ducts have been indirectly identified as the potential origin of dilations and microcysts (7,11). 

However, no specific staining has been reported, and the exact cellular composition of these 

cysts is not established. In this respect, experimental data have shown collecting duct 

remodeling characterized by cellular proliferative signals and an increase in the ratio between 

type A intercalated cells and principal cells (12–14).  

Li-induced NDI is characterized by early polyuria and polydipsia due to renal resistance to 

vasopressin secondary to a decrease in AQP2 apical membrane addressing and expression 

(15). Whether a mechanistic relationship exists between Li-induced NDI and CKD remains to 

be determined. Moreover, the relationship between cellular composition, microcystic tubular 

dilations and resistance to the action of vasopressin is yet to be demonstrated. 

As a matter of fact, NDI develops shortly after Li initiation in humans as well as in experimental 

models (16), while CKD is inconstant and very slowly progressive (17). Recent clinical studies 

suggest differential determinants of Li-induced NDI and CKD. While Li daily dose is the main 

determinant of the former (18), Li treatment duration is reported to be independently associated 

with the latter (19).  

Amiloride is a therapeutic strategy in Li-induced NDI, based on case series of patients treated 

with lithium (20,21). Amiloride is a specific blocker of the Epithelial Sodium Channel (ENaC), 

hence of Li entry in principal cells (22–24). Regarding Li-induced microcystic CKD, two studies 



have shown a reduction in kidney fibrosis and tubular dilations in rats treated with Li during 6 

months at therapeutic doses when amiloride was concomitantly administered (25,26). 

Based on these findings, the objective of this study was to evaluate in a rat model the effect of 

Li under-exposition on NDI and microcystic tubular dilations, the potential relationship between 

them and the efficacy of amiloride to prevent both.   



Results 

Under-exposition to lithium resulted in no overt NDI but in microcystic dilations of the collecting 

ducts 

Plasma lithium concentrations in rats treated with Li alone (Li+ group) were 0.25 ± 0.06 mmol/l. 

The Li+ group displayed non-significantly higher urine output and lower urine osmolality than 

control rats (figure 1). Urine concentration challenging tests (hydric restriction and 

desmopressin injection) did not reveal a significantly altered urine concentration ability in the 

Li+ group at 3 and 6 months of treatment. After 6 months of treatment, plasma creatinine was 

not statistically different between the 2 groups, and no overt interstitial fibrosis was observed 

on histopathological assessment (figure 2). However, consistent and marked tubular 

morphological changes were observed in the Li+ group, characterized by cortical and outer 

medullary microcystic tubular dilations, sometimes associated with intratubular casts. Semi-

automated cortical tubular area measurement showed significantly higher tubular areas and 

minimal diameters in the Li+ group compared to controls (figure 2). 

 

A differential cellular composition of collecting ducts was observed in dilated microcystic and 

non-dilated microcystic collecting ducts 

Dilated Microcystic tubules stained for markers of principal (PC) and type A intercalated (AIC) 

cells, demonstrating that the tubular segment involved in these dilations microcystic dilations 

were collecting ducts (CD) (figure 3). Morphometric analysis of these collecting duct showed 

an increase in the size of cells and in the number of nuclei per tubular area in Li-treated rats 

compared to control rats, suggestive of epithelial hypertrophy. This was equally observed in 

the cortex, the outer medulla and the inner medulla (figure 4). Hypertrophy was not associated 

with positive Ki67 staining of CD cells at 6 months (figure 3). 

The analysis of the composition of CDs revealed a decrease in the ratio between PCs and 

AICs in the Li group in the cortex, the outer medulla and the inner medulla (figure 4). However, 

the cellular composition of dilated microcystic CDs was different, lined with a majority of PCs, 

conversely to hypertrophied CDs (figure 4). 



Long-term exposure to lithium has been demonstrated to induce remodeling of the collecting 

ducts, particularly in the inner medulla, characterized by the presence of pendrin-positive cells 

(27). Therefore, we assessed pendrin expression across various renal segments to determine 

whether low-dose exposure altered its expression pattern. Consistent with prior findings, we 

observed that pendrin expression was markedly higher in the cortex compared to the deepest 

segments, by at least a five-fold increase (28), with no significant differences observed within 

each segment between control and lithium-treated rats (figure 4)    

 

Despite no overt NDI, AQP2 expression decreased in Li-treated rats, with weak minor 

correlation with cellular remodeling 

On qualitative assessment of immunofluorescent staining, no difference in the expression 

pattern of AQP2 was observed between the experimental groups (figure 3). AQP2 mRNA 

levels were analyzed in the cortex, the outer stripe of the outer medulla (OSOM), the inner 

stripe of the outer medulla (ISOM) and the inner medulla, showing that mRNA levels were 

significantly lower in Li-treated rats compared to controls in all these segments, despite the 

absence of significantly higher urine output, with a decreased AQP2 expression gradient in the 

Li+ group (figure 5). There was no statistical correlation between cellular and morphometric 

quantifications of CDs and the level of AQP2 expression except a correlation between AQP2 

expression and the PC/AIC ratio that was found only in the outer medulla (rho=0.61, p=0.03). 

 

Amiloride treatment had no effect on microcystic dilations but decreased the type A 

intercalated/principal cells ratio within the non-hypertrophieddilated  portions of the collecting 

ducts 

Plasma lithium levels were 0.43 ± 0.16 mmol/l in rats treated with lithium and amiloride (Li+/Ami 

group, p=0.01 compared with rats in the Li+ group). Rats treated with Li and amiloride did not 

differ from the Li+ group in terms of urine output, urine osmolality and plasma creatinine, and 

urine concentration ability after challenging tests, but with a lower weight gain than the two 

other groups over the study period (figure 1).  Tubular area quantifications were also similar 



between the Li+ and the Li+/Ami group (figure 2). Increased number of nuclei per external area 

was prevented exclusively in the renal cortex of the Li+/Ami group, with no statistical difference 

in the outer or the inner medulla (figure 3). This observation was associated with a less 

extended decrease in the PC/AIC ratio compared to the Li+ group (figure 3), and no difference 

in this ratio between dilated microcystic et non-dilated hypertrophied CDs (figure 4). Finally, 

the reduction in AQP2 mRNA expression decrease was more importantpronounced, though 

not reaching statistical significance throughout all the kidney segments in the Li+/Ami group 

compared to the Li+ group (figure 5). Overall, amiloride did not prevent AQP2 transcription 

decrease after 6 months of lithium exposure.   



Discussion 

Our study showed in a rat model of Li exposition that lower plasma lithium concentrations 

resulted in the no overt nephrogenic diabetes insipidus, but did not prevent morphological 

changes and cellular remodeling consisting in microcystic dilations and hypertrophy of the 

collecting ducts. 

The usual standard target plasma lithium levels are 0.6-1 mmol/l. However, several clinical 

trials suggest clinical efficacy of lower doses in bipolar disorder, with lithium concentrations of 

0.4 mmol/l (29). Our previous study evaluating vasopressin resistance and NDI in Li-treated 

patients showed that the main determinant of urine output was Li daily dose, directly affecting 

plasma lithium concentrations, independently of treatment duration (18). Our experimental 

findings in a model with low plasma concentrations are consistent with the clinical findings as, 

even though a significant decrease in AQP2 expression was observed, no significant change 

in urinary output, urine osmolality, or urine concentration ability was evidenced. 

Immunofluorescent staining of AQP2 showed no apparent decrease in fluorescence intensity 

between the groups allowing to identify PCs with this staining. This suggests a resistance to 

the action of vasopressin to a certain degree, that might be obvious during hydric restriction 

challenge.  

Despite the absence of polyuria or major AQP2 expression decrease, morphological changes 

were observed. These morphological changes involved the CDs, as suggested by previous 

studies with no direct evidence to date (11,16). Two features coexisted in all the analyzed 

kidneys, namely CD hypertrophy, characterized by an increase in the number of cells per 

tubular area, and microcystic dilations, characterized by CD enlargement and cellular 

stretching. Interestingly, cellular composition was different in dilated microcystic and 

hypertrophic CDs, with a majority of PCs in the former and a higher proportion of AICs in the 

latter. While Bissler et al. reported that cysts developed in a murine model of tuberous sclerosis 

complex originated from AICs (30,31), cysts in experimental models of autosomal polycystic 

kidney disease (ADPKD) consisted both of PCs and ICs, with a major role of PCs in cyst 

development (32,33). Of note, primary cilia dysfunction represents an essential promoter of 



renal cysts in ADPKD as well as in various cystic kidney diseases (generically referred to as 

ciliopathies), and are only present in PCs within the CDs (34).  

Cellular remodeling has been previously reported during lithium treatment as well as during 

acute kidney injury (12,35). In our study, no proliferation was seen after 6 months of Li+ 

treatment as assessed by Ki67 staining. Cells also presumably remained differentiated, with 

no double positive cells found on immunofluorescent analysis (AQP2+/AE1+). In this regard, 

Trepiccione et al. demonstrated the presence of double-positive cells bearing markers of both 

PCs and of AICs after Li discontinuation in a murine model (36). These cells were particularly 

concentrated at the end of long-row distribution of AICs, suggestive of a trans-differentiation 

and/or recovery process inducing PCs following Li suspension. The existence, time course and 

mechanisms of a potential CD cell proliferation during Li therapy are still a matter of debate. 

While Christensen et al. have found proliferation among PCs (37), De Groot et al. reported a 

G2 arrest of the cell cycle in these cells and a shift towards a higher proportion of AIC, in 

accordance with our findings (13). This shift might be due to trans-differentiation of PC into AIC 

rather than proliferation, a mechanism that is likely mediated by Notch signaling inactivation 

(38). This trans-differentiation is not associated with cellular proliferation in physiological 

conditions as well as during acute kidney damage (35). Early events remain to be evaluated 

in our model in order to determine a potential trans-differentiation with or without proliferation 

signals. Interestingly, the remodeling phenomena were barely correlated with the decrease in 

AQP2 expression, whereas one could have hypothesized such a correlation based on the 

decrease in the proportion of PCs. Our findings rather suggest that Li effect on urine 

concentration and on cellular remodeling are uncoupled. Accordingly, our previous reports 

evaluating patients treated with Li for bipolar disorder showed differential determinants of Li-

associated NDI  and Li-associated kidney texture changes using kidney MRI radiomic analyses 

(18,39). 

We did not evidence elevated plasma creatinine levels or renal interstitial fibrosis suggestive 

of a decrease in renal function after 6 months of treatment, whereas interstitial fibrosis was 

reported by Walker et al. (7) after the same duration of treatment with higher exposition to 



lithium. It remains to be determined whether cellular remodeling is deleterious in the long term, 

but our results, put in the perspective of previous literature, suggest that lowering kidney 

exposition to Li might be nephroprotective in a certain extent. 

Finally, we studied the effect of amiloride treatment in this experimental under-exposed model. 

We found no difference between the group without and the group with amiloride regarding 

urine concentration. AQP2 mRNA expression was even lower, although not significantly, in the 

Li+/Ami group. However, this should be interpreted with caution as plasma lithium 

concentrations were higher, though still at infra-therapeutic levels, than in the Li+ group. This 

is likely attributable to angiotensin II-mediated stimulation of proximal tubular sodium (and 

lithium) reabsorption, which occurs secondary to the natriuretic effect of Amiloride (40). The 

lower weight gain observed in the Amiloride treated rats may be indicative of a relative 

reduction in extracellular volume due to natriuresis. These findings also align with those 

reported in a prior study by Bedford et al (41). As a monovalent cation Li enters tubular cells 

using the same transporters as sodium. As a specific ENaC blocker, amiloride has been proven 

to inhibit Li entry in PCs in vitro and in vivo (22). Conversely to our findings, Bedford et al. 

demonstrated improved urine concentration and increased AQP2 expression when Li-exposed 

rats were treated with amiloride (41). Small clinical trials have shown an increase in urine 

osmolality and urinary AQP2 excretion after treating patients with amiloride (20,21). In a long 

term (5 months) murine model of Li nephrotoxicity, Kalita-De Croft et al. also showed that 

amiloride prevented renal fibrosis (25), although altered tubular morphology and microcystic 

dilations were not prevented, consistently with our study. The disparity in Li exposition among 

studies could account for the differences in our findings. In our study, a mild effect of amiloride 

was observed on cellular remodeling, in particular in the renal cortex, with a lesser decrease 

in the PC/AIC ratio. This effect is in line with recent literature showing an important crosstalk 

between PCs and AICs, especially during acidosis (23,42–44). 

Our study displays limitations. First, due to the long-term treatment study design and the animal 

facility space limitations, we lacked an experimental group with plasma lithium concentrations 

at the therapeutic ranges, that might further evaluate the potential effect of amiloride on 



hypertrophy and microcysts development. We thus based our protocol on previous literature 

showing NDI, kidney fibrosis and uremia, and microcystic kidney disease in the long-term 

setting (7,8,25). Second, our study also lacked early timepoint assessments in order to 

evaluate the early biochemical and morphological changes induced by exposition to lower 

plasma lithium levels. In particular, the evaluation of cell cycle disruption by Ki67 staining at 6 

months was insufficient, and assessments at earlier time points are necessary to contextualize 

our model within previous literature. Li triggers the activation of cell cycle pathways at very 

early stages following initiation (45). Further studies at therapeutic levels of lithium exposition 

with early timepoints of assessments would thus help better evaluate CD remodeling in this 

setting. Finally, our transcript analyses could not be complemented by protein analyses due to 

the unavailability of kidney tissue. 

 

In conclusion, under-exposition of kidneys to lithium resulted in the prevention of overt 

nephrogenic diabetes insipidus although AQP2 expression was decreased, but did not prevent 

collecting duct hypertrophy and microcysts, with only minor effect of amiloride on cellular 

remodeling. Future studies are needed to better decipher the differential role of signaling 

pathways leading to hypertrophy and intercalated cell number increase on the one hand, and 

microcysts generated from principal cells on the other hand. 

  



Experimental 

Animals 

All procedures were performed in accordance with the French animal care legislation, and 

were approved by the Ethics committee of the Université Paris Cité and by the French Ministry 

of Research (approval # 26674-2020020714451509). Wild-type male Sprague-Dawley rats 

(mean weight of 100-125 g, Janvier Labs) were fed a normal rat diet with free access to water. 

Rats were randomly allocated into 3 groups: (1) control group, (2) lithium treatment group, (3) 

amiloride and lithium treatment group (n=8 for each group) for a duration of 6 months. Lithium 

carbonate (Sigma) was added to the dry food at 0.1% (0.05% of wet food, corresponding to 

2,7 mmol/kg of body weight of lithium). Amiloride was added to the diet at a concentration of 

200 mmol/kg of dry food, as previously described (22). Both Lithium and Amiloride were 

blended with wet ground food, totally solubilizing in the water used to wet the food. Food was 

subsequently dried to form dense kibbles. Control food underwent a similar processing 

method. 

 

Sample processing 

Urine and plasma were collected at 4, 5 and 6 months during metabolic cage housing. 

Sublingual blood collection was performed under gas anesthesia, followed by centrifugation of 

the 500 µl blood sample with 10% heparinization at 5000 rpm. The supernatant plasma was 

then collected and stored at -20˚C until further processing for biochemical analyses. Creatinine 

measurement was performed using a Konelab device (ThermoFischer Scientific). Urine 

osmolality was measured using the Advanced 3250 osmometer (Advances Instruments). 

Plasma lithium was measured by mass spectrometry (Inductively Couple Plasma Mass 

Spectrometry, ICP-MS, NexION 2000 spectrometer, Perkin Elmer). At the end of the protocol 

(6 months), after anesthesia, the left kidney was rapidly excised, partly embedded into Optimal 

Cutting Temperature embedding medium (OCT, Fisher Healthcare) and frozen for fluorescent 

immunostainings, and partly frozen and conserved at -80°C for subsequent RNA analyses. 

Aorta was subsequently cannulated in order to perfuse the right kidney with isotonic saline 



first, and 4% paraformaldehyde (PFA) second. The right kidney was removed, fixed in 4% PFA 

solution, embedded in paraffin and further processed for Masson trichrome staining (3µm 

sections). 

 

Urine concentration tests 

Rats were monitored in metabolic cages for a duration of 24 hours each session. Water 

deprivation and desmopressin challenging tests were performed separately twice, after 3 and 

6 months of treatment in metabolic cages. For the final timepoint (6 months), metabolic cage 

assessments were conducted 2 days prior to sacrifice. This timeframe was consistent for all 

rats. Although the assessments were spread over two days due to technical constraints, the 

sacrifices were scheduled accordingly, also spread over two days to ensure uniformity in the 

duration between the experiment and sacrifice. They respectively consisted in a 6-hour hydric 

restriction with urine collection at 2, 4 and 6 hours and in an intramuscular injection of 

desmopressin (DDAVP) (0.75 µM/kg) after 2 hours of hydric restriction, with subsequent urine 

collection at 2 and 4 hours after injection. 

 

Immunofluorescent assay 

Snap-frozen kidney samples were processed after cryosection (4µm sections) for 

immunofluorescence microscopy using a two-step staining, the first step with primary 

antibodies (goat anti-AQP2 SC-9882, 1/500, Santa Cruz, rabbit anti-AE1 20112, 1/800, Cell 

Signaling), and secondary antibodies (donkey anti-goat AF488, SC-362255, Santa Cruz, 

donkey anti-rabbit AF555 A-31572, 1/500, ThermoFischer Scientific), the second step with 

direct FITC-labeled Ki67 antibody specific for Ki67 (1/500; Abcam ab281847).   

 

Morphometric analyses 

Whole sagittal sections of kidneys were scanned using Axioscan Z1 slide scanner (Zeiss) after 

Masson trichrome staining or immunofluorescent labeling. Tubular area was semi-

automatically measured using the QuPath software (46). Briefly, approximately one sixth of 



the cortex was selected on Masson-stained tissue slices, and vessels (arteries and veins) were 

manually excluded. A pixel classification method was trained from manual annotations, in 

order to differentiate tubular lumen and parenchyma. A cut-off of 1500 µm2 was then applied 

on 'lumen' objects in order to exclude glomerulus urinary spaces and peritubular capillaries. 

An average of 436 ± 223 tubules were analyzed in each kidney (including all the tubules 

present within the renal cortex).    

The ratio between principal cells (stained with AQP2) and type A intercalated cells (stained 

with AE1, type 1 anion-exchanger), and between the number of cells and the tubular area was 

assessed in dilated microcystic and non-dilatedhypertrophied collecting ducts. Only cells with 

visible nucleus were counted, and all the tubules displayed closed lumen.  

 

RT-PCR 

Kidney samples were separated immediately after excision to obtain specific samples from the 

cortex, the outer stripe of the outer medulla, the inner stripe of the outer medulla, and the inner 

medulla (including the papilla). Total RNA was extracted from these samples using the RNeasy 

Micro-Kit according to the manufacturer’s protocol (Qiagen). Reverse transcription was 

performed using first-strand cDNA synthesis kit for RT-PCR (Roche Diagnostics). qPCR was 

then performed on a LightCycler (Roche Diagnostics) using a SYBR green kit (LightCycler 480 

SYBR Green Master, Roche Diagnostics) for AQP2 (forward primer: 5’- ACC TGG CTG TCA 

ATG CTC TC - 3’ and reverse primer: 3’- GG ACG GGA GAG GTA ACC AAA - 5’), and Pendrin 

(forward primer: 5’- ACT GGA ACT CTG AAC TCC CG - 3’ and reverse primer: 3’- 

CAAAGAACCCACACTGCTCC - 5’) normalizing to the ribosomal protein S23 (RPS23) 

trancript levels (forward primer: CTC ACG CAA AGG GAA TTG T…, reverse primer: CAA TGA 

AGT TCA AGC AAC CG…). 

 

Statistical analyses 

All data are presented as percentages or mean ± SEM values. As the parameters did not 

display normal distribution, nNon-parametric Mann-Whitney or Kruskal-Wallis tests were 



performed to test differences between groups. Non-parametric Spearman test was used to test 

correlations between AQP2 expression and the cellular quantifications. The significance level 

of a statistical hypothesis test was set at 0.05. All statistical analyses and graphs were 

performed using Prism GraphPad. 
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Figures 

Figure 1. Weight, uUrine concentration and plasma creatinine levels. 

 
Data are expressed in mean and SEM. Uosm: urine osmolality, Li+: lithium, Li+/Ami: lithium and amiloride 
treatment. Weight gain was significantly lower in the Li+/Ami group. There were no other statistically 
significant difference between the groups in all the analyses. 
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Figure 2. Masson’s trichrome staining of kidneys and quantification of tubular areas and minimal 

tubular diameters. 

 
Representative images of trichrome staining (left) with zoomed-in images showing microcystic tubular 
structures (yellow arrows) in the Li+ and the Li+/Ami group, sometimes enclosing tubular casts (green 
arrow). A, automated tubular areas and minimal diameters in each group (right). Only statistically 
significant differences are represented. **** p<0.0001. Uosm: urine osmolality, Li+: lithium, Li+/Ami: 
lithium and amiloride treatment. 
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Figure 3. Immunofluorescent staining of collecting duct cells 

 
Representative images of the cortex and the outer medulla (OM) of immunofluorescent staining of type 
2 aquaporin (AQP2), type 1 anion exchanger (AE1) and Ki67 of kidney slices of control rats, rats treated 
with lithium (Li+) and rats treated with lithium and amiloride (Li+/Ami). No collecting duct cells stained 
positive for Ki67. 
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Figure 4. Morphometric analyses and cellular composition of collecting ducts 
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Upper panelA, ratio between the numbers of DAPI-stained nuclei and external surface measurement of 
the collecting ducts in the cortex, the outer medulla and the inner medulla of control rats, rats treated 
with lithium (Li+), and with lithium and amiloride (Li+/Ami). Lower panelB, ratio between principal cells 
(PC) and type A intercalated cells (AIC) in the cortex, the outer medulla and the inner medulla of control 
rats, rats treated with lithium (Li+) and rats treated with lithium and amiloride (Li+/Ami). Right panelC, 
representative image of a longitudinal section of a collecting duct in the Li+ group, showing a microcystic 
portion delineated by a majority of AQP2+ cells, and a consecutive portion with minimal lumen (non-
dilated) delineated by a majority of AE1+ cells. This aspect was observed only in the Li+ and the Li+/Ami 
groups. D, ratio between principal cells (PC) and type A intercalated cells (AIC) in the cortex of rats 
treated with lithium (Li+) and rats treated with lithium and amiloride (Li+/Ami) in non-dilated 
(hypertrophied) and in dilated (microcystic) collecting ducts (CD). *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001. 

  



 

Figure 5. AQP2 expression in the different segments of the kidney  

 
Upper panel, rRelative AQP2 mRNA expression in the cortex, the outer stripe of the outer medulla 
(OSOM), the inner stripe of the inner medulla (ISOM) and the inner medulla (IM) in control rats, rats 
treated with lithium (Li+) and rats treated with lithium and amiloride (Li+/Ami). Lower panel, relative 
Pendrin log mRNA expression in the cortex, the outer stripe of the outer medulla (OSOM), the inner 
stripe of the inner medulla (ISOM) and the inner medulla (IM) in control rats, rats treated with lithium 
(Li+) and rats treated with lithium and amiloride (Li+/Ami). * p<0.05, ** p<0.01, *** p<0.001. RPS23: 
ribosomal protein S23. 
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Graphical abstract 

Lithium treatment is the main treatment of bipolar disorder but can induce renal adverse 

events, including nephrogenic diabetes insipidus (NDI) and microcystic chronic kidney disease 

(CKD). We found that in a long-term treatment rat model, low exposition to lithium prevented 

NDI, but not microcysts, which were predominantly composed of collecting ducts principal 

cells, conversely to hypertrophic zones of the collecting duct that were mainly bordered by 

intercalated cells.  
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