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ABSTRACT
Populations of marine top predators have been sharply declining during the past decades, and one- third of chondrichthyans are 
currently threatened with extinction. Sustainable management measures and conservation plans of large pelagic sharks require 
knowledge on population genetic differentiation and demographic connectivity. Here, we present the case of the Mediterranean 
blue shark (Prionace glauca, L. 1758), commonly found as bycatch in longline fisheries and classified by the IUCN as critically 
endangered. The management of this species suffers from a scarcity of data about population structure and connectivity within 
the Mediterranean Sea and between this basin and the adjacent Northeast Atlantic. Here, we assessed the genetic diversity 
and spatial structure of blue shark from different areas of the Mediterranean Sea and the Northeast Atlantic through genome 
scan analyses. Pairwise genetic differentiation estimates (FST) on 203 specimens genotyped at 14,713 ddRAD- derived SNPs re-
vealed subtle, yet significant, genetic differences within the Mediterranean sampling locations, and between the Mediterranean 
Sea and the Northeast Atlantic Ocean. Genetic differentiation suggests some degree of demographic independence between the 
Western and Eastern Mediterranean blue shark populations. Furthermore, results show limited genetic connectivity between 
the Mediterranean and the Atlantic basins, supporting the hypothesis of two distinct populations of blue shark separated by the 
Strait of Gibraltar. Although reproductive interactions may be limited, the faint genetic signal of differentiation suggests a recent 
common history between these units. Therefore, Mediterranean blue sharks may function akin to a metapopulation relying upon 
local demographic processes and connectivity dynamics, whereby the limited contemporary gene flow replenishment from the 
Atlantic may interplay with currently poorly regulated commercial catches and large- scale ecosystem changes. Altogether, these 
results emphasise the need for revising management delineations applied to these critically endangered sharks.

1   |   Introduction

Detecting population structure, at various spatial scales, in large 
pelagic marine fish species, such as sharks, is essential for the 
implementation of reliable species conservation and fisheries 
management plans. Ideally, stock boundaries must encompass 

groups of individuals with similar demographic or genetic 
connectivity that share similar responses to fishing and other 
external pressures. This is of particularly importance for the 
conservation of large apex predators which are K- selected spe-
cies with potentially no external ‘replenishment’ and, thus, vul-
nerable to mismanagement (Ying et al. 2011; Reiss et al. 2009; 
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Ferretti et al. 2008). This is far from easy, as intermediate sce-
narios between panmixia and absence of gene flow (Waples 
and Gaggiotti  2006) are particularly difficult to discern in 
large pelagic species (Bailleul et al. 2018; Puncher et al. 2018; 
Rodríguez- Ezpeleta et  al.  2019). Mismatches between biologi-
cally independent entities and management units are also com-
mon, with negative effects on the conservation of population 
complexes managed as a single entity (Reiss et  al.  2009). The 
identification of these boundaries is essential for an accurate es-
timation of individual stock delineation.

Given the semi- closed sea nature of the Mediterranean, its level 
of connectivity with the Atlantic Ocean in several marine spe-
cies has been investigated (e.g., Maroso et al. 2021; Rodríguez- 
Ezpeleta et al. 2019; Puncher et al. 2018; Catarino et al. 2015; 
Patarnello, Volckaert, and Castilho 2007).

The Mediterranean Sea harbours a high percentage of threat-
ened sharks and rays, with more than half of the species being 
threatened with extinction (Walls and Dulvy 2021). Overfishing, 
including bycatch (non- target species caught incidentally), is 
the main cause of the decline of shark populations (Pacoureau 
et al. 2021; Dulvy et al. 2014, 2021), and as several sharks and 
rays are top predators, their demographic decline is expected to 
affect the functioning of marine ecosystems (Estes et al. 2011; 
Myers et al. 2007).

The blue shark Prionace glauca, L. 1758 is no exception. Besides 
being targeted by commercial fishing, this viviparous K- selected 
species with an average generation time of 9.8 years in the North 
Atlantic (Cortés et al. 2015; Nakano and Stevens 2008) is a major 
bycatch of longline and driftnet fisheries (Parra et  al.  2023; 
Megalofonou, Damalas, and Yannopoulos 2005).

As a result of the impact of fishing on blue shark global popula-
tions (Fowler et al. 2005), the species has been classified as glob-
ally ‘Near Threatened’ on the IUCN Red List (Rigby et al. 2019). 
More importantly, blue shark is classified as ‘Critically 
Endangered’ in the Mediterranean Sea (Sims et al. 2016), where 
high fishing pressure is associated with a dramatic decrease in 
estimated abundance over the last decades (Ferretti et al. 2008). 
Yet, the population genetic structure, the spatial dynamics and 
the level of connectivity of the Mediterranean blue shark with 
the Atlantic are still poorly understood, despite the importance 
of this information for the correct management of the species in 
the region.

Previously published tagging studies and the analysis of 
fisheries- dependent data (Kohler, Casey, and Turner  1998; 
Kohler et al. 2002; Kohler and Turner 2008; Ferretti et al. 2008; 
Megalofonou et al. 2009) suggest that the vast majority of blue 
sharks tagged in the Mediterranean Sea were immature and 
remained in the tagging area, with no migration movements 
towards the adjacent southern areas of the Northeast Atlantic. 
The only exception was one subadult female that moved a short 
distance to reach the adjacent Northeast Atlantic area (Kohler 
et al. 2002).

These tag–recapture surveys, carried out from 1962 to 2000, 
suggest that North Atlantic blue sharks form a single stock, 

separate from the Mediterranean Sea stock, and that migratory 
movements within the Atlantic basin are quite frequent (Kohler 
et al. 2002).

The analysis of two mitochondrial markers highlighted an 
apparent lack of geographical differentiation between the 
Mediterranean and the Northeast Atlantic on the basis of hap-
lotype networks (Leone et  al.  2017). However, the use of ФST 
integrating haplotype divergence detected significant genetic 
structure among four geographical groups, suggesting that the 
analysis of spatial genetic structure in relation to sex ratio and 
size could indicate some level of sex/age- biased migratory be-
haviour (Leone et al. 2017).

On the contrary, distribution and behavioural data suggest wide-
spread panmixia, and the first genetic data using microsatellites 
confirmed this hypothesis (Veríssimo et  al.  2017; Vandeperre 
et al. 2014).

Genetic studies have been carried out on Atlantic and Pacific 
blue shark populations using microsatellites, suggesting re-
stricted gene flow between oceans (Ussami et  al.  2011; 
Fitzpatrick et  al.  2010; Veríssimo et  al.  2017). However, the 
analysis of juvenile specimens (<2 year) from Atlantic Ocean 
nurseries (Western Iberia, Azores and South Africa) using both 
mitochondrial and microsatellite markers reported a lack of 
genetic differentiation, suggesting the presence of a panmictic 
population in the whole Atlantic Ocean (Veríssimo et al. 2017).

Similar results were reported by Bailleul et al. (2018), with mi-
crosatellite data supporting the occurrence of a single panmictic 
worldwide blue shark population, except for hints of faint ge-
netic differentiation of Mediterranean populations compared 
with Pacific populations. As the level of exchange required to 
maintain genetic homogeneity is much lower than that required 
to maintain demographic interdependency, particularly for large 
populations (Waples and Gaggiotti 2006), Bailleul et al.  (2018) 
performed simulations suggesting that the apparent panmixia 
in blue shark could be explained by a genetic lag- time effect. 
In other terms, demographic changes are not likely detectable 
using standard genetic analysis before a long transitional period 
of time (coined the ‘population grey zone effect’).

More recent worldwide scale population genomic studies de-
tected a subtle but significant level of differentiation between the 
Mediterranean and the North Atlantic (FST comprised between 
0.0007 and 0.0010; Nikolic et al. 2023). These results, including a 
handful of Mediterranean specimens, confirmed the hypothe-
sis previously made by Bailleul et al. (2018) that a more granular 
genome- representation approach would allow exiting the ‘grey 
zone of population differentiation’ and reveal genetic differentia-
tion if present. Nevertheless, these recent studies only included a 
limited sample of Mediterranean origin, particularly in the Eastern 
part, which precludes a thorough understanding of microevolution-
ary dynamics in the basin. The International Commission for the 
Conservation of Atlantic Tunas (ICCAT), which assesses the blue 
shark stocks, manages the species as separate stocks in the Atlantic 
Ocean and Mediterranean Sea, solely based on the results of previ-
ous tagging studies with a limited number of sharks tagged in the 
Atlantic and recaptured in the Mediterranean Sea (ICCAT  2009; 
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Fitzmaurice et al. 2005). However, the need for more data to better 
delineate stock boundaries has been stressed (ICCAT 2023).

As the blue shark population structure within the Mediterranean 
Sea remains largely unknown, this work aimed to fill this 
knowledge gap, while also shedding further light on the connec-
tivity between the Atlantic and Mediterranean—using a large 
set of genome- wide SNPs—with the aim to contribute to the im-
proved management and conservation of this species, and fur-
ther expanding our understanding of how marine populations 
are formed and maintained.

2   |   Materials and Methods

2.1   |   Sampling

A total of 291 individuals were sampled in four areas, mostly 
as bycatch from commercial fisheries (Figure 1; Appendix S4): 
the Mediterranean (East Mediterranean, EMED: n = 111; West 
Mediterranean, WMED: n = 116), adjacent Northeast Atlantic 
areas from Gibraltar to Azores (Northeast Atlantic, EATL: 
n = 34) and from Southern Ireland and Great Britain (Celtic Sea, 
CELT: n = 30).

Muscle or skin tissue samples (ca 0.1–0.2 g) were collected using 
sterile scissors or tweezers and stored in 96% ethanol at −20°C. 
Specimens biological data as fork Length (in cm) and sex (fe-
male/male) as well as sampling data such as fishing date, geo-
graphical coordinates (longitude/latitude) and depth (in m) were 
collected whenever possible (Appendix S4).

2.2   |   Genomic Libraries Preparation 
and Sequencing

Genomic DNA (gDNA) was extracted using a modified salting- out 
extraction protocol (Cruz et al. 2017). A modified ddRAD sequenc-
ing protocol was used to simultaneously genotype individuals at 
thousands of SNPs (Peterson et al. 2012; Brown et al. 2016).

Three ddRAD libraries were constructed, including individuals 
from different geographical areas distributed across three dif-
ferent libraries (Table S2) to avoid library bias. Briefly, for each 
individual, a standard quantity of 30 ng of gDNA was digested 
with SbfI and SphI (0.43 U of each, New England Biolabs). P1 
and P2 barcoded adapters, compatible with the SbfI and SphI 
overhangs respectively, were mixed with T4 ligase and added to 
each sample. After enzyme heat inactivation, individual sam-
ples were pooled and cleaned up with MinElute PCR Clean Up 
Kit (Qiagen, Venlo, Netherlands).

Each library was run on an agarose gel (1.1%), to select frag-
ments of 200–300 bp. Size- selected DNA was then extracted 
from the gel. The eluted library was PCR amplified with generic 
P1 and P2 complementary primers after optimising the PCR 
conditions. The amplified library was purified using AMPure 
XP Magnetic Beads (Beckman Coulter, Pasadena, California, 
USA). Two reference individuals were included as replicates 
in each library to assess the sequencing/genotyping error rate. 
The obtained ddRAD libraries were paired- end (PE) sequenced 
in three lanes using an Illumina HiSeq 4000. Demultiplexed 
reads are available on the NCBI Short Read Archive BioProject 
PRJNA1053301.

FIGURE 1    |    Sampling locations of blue sharks in the Celtic Sea (green dots), North Eastern Atlantic (red dots), Western Mediterranean (purple 
dots) and Eastern Mediterranean (blue dots). Blue shading indicates bathymetry (i.e., depth, in metres).
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2.3   |   Bioinformatic Analysis and Loci Filtering

Raw sequencing data were checked for quality using FASTQC 
(version 0.11.8, Andrews 2010). Reads were demultiplexed using 
the program ‘process_radtags’ implemented by STACKS v. 1.42 
(Catchen et  al.  2011, 2013) avoiding - c and - q parameters, as 
suggested by the dDocent pipeline manual. The dDocent pipe-
line (www. ddoce nt. com; Puritz et  al.,  2014a, 2014b) was then 
used for reference construction, mapping reads and SNP calling. 
The pipeline dDocent has been specifically designed to analyse 
ddRADseq data of marine species, which are often character-
ised by high diversity and low differentiation (Puritz, Gold, and 
Portnoy 2016; Hollenbeck et al. 2017).

Characterising genotype data without the help of a reference ge-
nome presents several challenges, such as the pipeline trade- off 
between splitting or lumping alleles into different clusters or a 
single locus, inflating homozygosity and heterozygosity, respec-
tively. Similar issues have been addressed at the clustering step 
level using a high sequence similarity, from which a consensus 
sequence is derived. Additionally, haplotyping informative vari-
ants identified by dDocent using the rad_haplotyper.pl script by 
Willis et al. (2017) allowed for resolving any artificial clustering 
due to physical linkage between SNPs within locus typical at 
low levels of divergence among populations (Figures S1–S4). The 
haplotyping post- clustering step mitigated also the effect of high 
levels of repeats and duplications expected in shark genomes.

Detailed assembly, SNP calling and filtering steps are described 
in the Appendices  S1 and S2. Genomic data were then con-
verted to the appropriate file format for subsequent population 
genetic analysis with PDGSpider (Lischer and Excoffier 2012). 
The final SNPs dataset was screened for outlier loci with 
three different approaches: the software Bayescan v. 2.1 (Foll 
and Gaggiotti  2008), the packages pcadapt (Luu, Bazin, and 
Blum  2017) and OutFLANK (Whitlock and Lotterhos  2015), 
implemented in the R environment version 4.0.5 (R Core 
Team 2021). See Appendix S3 for a detailed explanation of each 
of the three genome scan methods for outlier detection. All the 
resulting outlier loci were annotated for specific functions by 
matching the SNP flanking regions against the GenBank data-
base (www. ncbi. nlm. nih. gov/ genba nk/ ) using BLAST (Altschul 
et  al.  1990), and then removed from the dataset, producing a 
neutral loci dataset used for downstream analysis.

2.4   |   Population Genetics Analysis

Basic statistics of genetic diversity, heterozygosity, homozygosity 
and Hardy–Weinberg test were computed using the diveRsity R 
package (Keenan et al. 2013).

Genetic differentiation and population structure were inferred 
using three distinct families of approaches. First, pairwise 
FST and relative p- values, following the Weir and Cockerham 
model (1984), were computed using the StAMPP R package 
(Pembleton, Cogan, and Forster 2013). Second, principal com-
ponents analysis (PCA) and discriminant analysis of princi-
pal components (DAPC) were performed using the R package 
adegenet (Jombart 2008; Jombart, Devillard, and Balloux 2010; 
Jombart and Ahmed 2011) and plotted using the ggplot2 package 

(Wickham 2016). Third, the genetic ancestry of each individual 
was estimated using the admixture model as implemented in 
the Bayesian clustering approach in STRUCTURE version 2.3.4 
(Pritchard, Stephens, and Donnelly 2000). Results were obtained 
for K values (i.e., number of distinct genetic clusters) set from 1 
to 5, and from 300,000 iterations following a burn- in period of 
100,000 iterations. The output from each K value (K from 1 to 
5) was examined with (Jakobsson and Rosenberg 2007) to iden-
tify common modes, and results were plotted using DISTRUCT 
(Rosenberg 2004). The value of K that best fits the data was iden-
tified according to the Evanno method (Evanno, Regnaut, and 
Goudet 2005), as implemented in StructureHarvester (Earl and 
vonHoldt 2012), and according to Puechmaille (2016).

A Mantel test was used to test for isolation by distance per 
population. Four geographical points were chosen to be rep-
resentative of the Celtic Sea, Northeast Atlantic, Western 
Mediterranean and Eastern Mediterranean (see Appendix  S1 
for details), and the minimum distance possible by seaway 
(Figure S5) was estimated using the R package marmap (Pante 
and Simon- Bouhet 2013).

3   |   Results

Among the 291 specimens initially collected (Appendix S4), the 
sex of 263 individuals (118 males and 145 females) was deter-
mined, while for 28 individuals, no information was gathered, 
and after selecting for DNA extractions that met the quality stan-
dard for RAD sequencing, libraries were built and sequenced for 
a total of 212 blue sharks, plus four replicates (n = 216). This led 
us to discard 79 samples with poor preservation state that did 
not permit to obtain the high- quality DNA extraction required 
by the protocol. Steps with sample selection and discard due to 
quality post- sequencing are detailed in the Appendix S1.

After the demultiplexing, trimming and sample selection of 
the 3 ddRAD libraries (Pg_ddRAD01, Pg_ddRAD02 and 
Pg_ddRAD03), the number of retained reads per individual 
ranged from 688,054 to 66,488,950, with an average of 8,685,731 
reads and a total of 1763 million of reads (detailed steps in 
Appendix  S1). The dDocent pipeline identified 56,004 SNPs. 
After processing and filtering, the resulting dataset consisted 
of 14,729 SNPs and 203 blue shark individuals, distributed in 
the four geographical areas (CELT, EATL, WMED and EMED; 
Table S2) and across different years (2003–2016; Table S3).

Of these 14,729 SNPs, no SNPs were identified as outliers by 
BayeScan, 1 by OutFLANK and 15 SNPs by pcadapt, represent-
ing in total 0.11% of the retained SNPs. After removing these 
outliers, a final dataset in vcf format of 14,713 SNPs was created. 
Annotation of each of the outlier SNPs is available in Table S4.

Overall, the allelic richness observed was higher in the Med-
iterranean Sea than the Atlantic Ocean (Table 1). Heterozygosity 
values were similar among localities (Table  1). Significant 
Hardy–Weinberg disequilibrium and heterozygote deficiency 
were observed in the Western Mediterranean sample. The 
highest value of heterozygosity was observed in the Eastern 
Mediterranean samples (0.159), whereas the lowest value was 
observed in the two Atlantic samples (0.151) (Table 1).
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Pairwise FST values were low but significant for most com-
parisons after false discovery rate correction for multiple tests 
(Benjamini and Yekutieli 2001; Benjamini and Hochberg 1995; 
Table  2), with the exception of the comparisons between the 
Celtic Sea and either the Northeast Atlantic or the Western 
Mediterranean.

Overall, multivariate PCA and DAPC analyses did not show 
any clear pattern of genetic structure among areas, despite a 
few Eastern Mediterranean individuals being genetically differ-
ent from the rest (Figures 2 and 3). Similarly, the STRUCTURE 
Bayesian clustering, using the best K values according to the 
Puechmaille and Evanno methods (K = 2 and 4, respectively), 
showed no clear geographic clustering when K = 2, yet high-
lighted a few well- differentiated individuals from the Eastern 
Mediterranean (Figure 4), in agreement with the PCA (Figure 2), 
while the DAPC more closely reflected the results observed with 
the pairwise FST analysis (Figure 3, Table 2).

A significant correlation between geographical and genetic 
distance, expressed as pairwise FST, was detected through the 
Mantel test performed on the four geographical regions (Mantel 
statistic r = 0.7790, y = −0.00031 + 4e- 07x, R2 = 0.61, p = 0.0417, 
Figure S6).

4   |   Discussion

Our study reveals the existence of subtle yet significant genetic 
differentiation between the Mediterranean and the Northeast 
Atlantic blue shark populations, confirming the Mediterranean 
singularity recently reported by Nikolic et al. (2023).

Our findings also suggest some substructure within the 
Mediterranean. These results contrast with previous studies 
based on low- density genotyping, where no departure from large- 
scale panmixia was detected in the entire Northeast Atlantic and 
Mediterranean areas (Bailleul et al. 2018; Veríssimo et al. 2017).

Furthermore, the use of larger sample sizes, including both 
adult and juvenile specimens, and denser sampling in the 
Mediterranean allowed the present study to highlight a faint but 
significant genetic differentiation between Western and Eastern 
Mediterranean groups (Table 2, Figures 2–4).

These results support the phylogeographic signal previously 
suggested based on mitochondrial DNA (Leone et al. 2017).

The limited heterozygote deficiency and FIS values in our study 
are comparable to results obtained by Bailleul et al. (2018) using 
microsatellites. When comparing our findings to those obtained 
with SNPs by Nikolic et  al. (2023), we observed lower values 
of FIS in both Northeast Atlantic and Mediterranean areas 
(Table 1).

The genetic diversity of subsampled groups (Figure S7) confirms 
the patterns observed in Table  1 (Table  S5), and pairwise FST 
values among subgroups confirm the significant differentiation 
of the Eastern Mediterranean blue sharks. Some comparisons, 
however, show nonsignificant values after correction for mul-
tiple test, possibly due to the limited sample size and associated 
statistical power of split groups.

Interestingly, the pairwise value between the Eastern Ionian 
Sea verses Adriatic Sea within the Eastern Mediterranean is still 
significant. However, these results may also be affected by low 
sample size, and more samples are needed to better resolve any 
other substructuring within the Mediterranean Sea (Table S6).

Similar to Nikolic et al. (2023), these significant FST values were 
accompanied by a lack of clear clustering pattern (when using 
multivariate and model- based clustering methods), likely due to 
the low genetic signal of differentiation.

A significant exception in the present study is the remote posi-
tion of some eastern Mediterranean individuals that seem to be 
well differentiated from all others (Figures 2–4), associated with 
higher FST values between the Eastern Mediterranean and all 
other areas (Table 2). Of these divergent individuals, three are 
from the Adriatic Sea, one from the Eastern Ionian Sea and one 

TABLE 1    |    Genetic diversity estimates of blue sharks per geographic areas—Allelic richness (Ar) with the low and high CI, number of individuals 
(Nb), observed heterozygosity (Hobs), expected heterozygosity (Hexp), unbiased expected heterozygosity (Hexp_un), inbreeding coefficient (FIS) 
with the low and high CI on FIS wrapper, p- values from chi- squared test for goodness- of- fit to Hardy–Weinberg equilibrium globally (hwe_glb), test 
significance for directional HWE on homozygote and heterozygote deficiency (hwe_hom; hwe_het).

Ar Nb Hobs Hexp uexp_het FIS hwe_glb hwe_hom hwe_het

CELT 1766 (1727–1801) 28 0.151 0.163 0.166 0.054 (0.028–0.046) 1.000 1.000 1.000

EATL 1782 (1745–1816) 33 0.151 0.163 0.166 0.059 (0.037–0.051) 1.000 1.000 1.000

WMED 1834 (1806–1857) 88 0.152 0.166 0.167 0.077 (0.064–0.071) 0.000 1.000 0.000

EMED 1818 (1785–1846) 54 0.159 0.167 0.169 0.048 (0.021–0.050) 1.000 1.000 1.000

TABLE 2    |    Pairwise FST values (below diagonal) and associated p- 
values (above diagonal) between blue shark samples based on the 14,713 
neutral SNPs.

CELT EATL WMED EMED

CELT \ 0.1286 0.0883 0

EATL 0.00035 \ 0.0097 0

WMED 0.00030 0.00043* \ 0

EMED 0.00170* 0.00152* 0.00068* \

Abbreviations: CELT, Celtic Sea; EATL, Northeast Atlantic; EMED, Eastern 
Mediterranean; WMED, Western Mediterranean.
*Values significant after false discovery correction for multiple tests.
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from Crete (Figure S7). The amount of divergence observed in 
these Eastern Mediterranean specimens may also suggest cases 
of Lessepsian migration from the Red Sea by this species, al-
though this has never been reported. Such migrations are more 
commonly associated with small bony fishes and invertebrates 

(via ships/cargos), but have also been observed in elasmobranchs, 
such as Carcharhinus melanopterus and the Carcharhinus brevi-
pinna (Bradai, Saidi, and Enajjar 2012). A dedicated study with 
larger sample sizes, including samples from the Red Sea, would 
be necessary to test this hypothesis.

FIGURE 2    |    Analysis of the principal component analysis (PCA) plot using 14,713 neutral SNPs dataset. CELT, Celtic Sea (green); EATL, Northeast 
Atlantic (red); EMED, Eastern Mediterranean (blue); MED, Western Mediterranean (purple).

FIGURE 3    |    Discriminant analysis of principal component (DAPC) using 14,713 neutral SNPs dataset with a priori number of clusters of four. 
CELT, Celtic Sea (green); EATL, Northeast Atlantic (red); EMED, Eastern Mediterranean (blue); WMED, Western Mediterranean (purple).
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Even removing the five most divergent specimens from the 
Eastern Mediterranean (see Appendix S1 for details), the over-
all genetic diversity and divergence do not change significantly 
(Tables S6 and S7). This suggests that the genetic structure ob-
served in the present study is not the result of just a few diver-
gent individuals alone, but rather the result of a genuine, subtle 
population structuring of blue shark populations within the 
Mediterranean Sea.

The genetic divergence of the Eastern Mediterranean sharks 
is also observed in split groups within the Mediterranean Sea 
(Figure S7) in both PCA and in DAPC analysis using a priori 
number of groups, supporting genetic differentiation within the 
Mediterranean (Figures S8 and S9). The correct number of clus-
ters cannot be ascertained through the successive K- means as in 
adegenet (Jombart 2008; Jombart, Devillard, and Balloux 2010; 
Jombart and Ahmed  2011), probably due to the subtle signal 
detected. In fact, generalised linear models applied on the rela-
tionship between clustering success and FST values on simulated 
data, examining the influence of a priori versus de novo group 
designations in DAPC analysis, highlight that the successive 
K- means method does not reliably detect signal when FST be-
tween groups is not very high, particularly for large pelagic spe-
cies (<0.1). This pleads for the use of a priori number of clusters 
based on the knowledge of the biology and behaviour of species 
under study (Miller, Cullingham, and Peery 2020).

Recent observations relating ecological data on blue shark dis-
tribution showed that large females may be more tolerant to 
cooler waters (Druon et al. 2022). This raises questions about the 
influence of sex on the spatial distribution of genetic diversity, 
as previously suggested based on mitochondrial phylogeography 
(Leone et al. 2017).

In the present study, the Celtic Sea is the only area where such a 
sex ratio (and life stage) bias is observed, as the majority of Celtic 
specimens sampled are large females. However, a larger dataset 
and a wider range of sampling will be needed to better investi-
gate the relationship between genetic structure and sex.

Long- term (four decades) tagging studies suggest that the large 
majority of blue sharks tagged in the Mediterranean Sea are 

immature and remain in the tagging area, avoiding movements 
towards the adjacent Northeast Atlantic. The only exception is 
one subadult female that moved a short distance to reach the 
adjacent Northeast Atlantic area (Kohler et al. 2002). Similarly, 
on the other side of the Strait of Gibraltar, only one adult male 
tagged in the Northeast Atlantic has been recaptured in the 
Mediterranean Sea (Kohler et al. 2002).

Telemetry data from blue sharks equipped with satellite tag-
ging in the Western Mediterranean suggest a lack of connectiv-
ity with the Northeast Atlantic and with the adjacent Eastern 
Mediterranean blue sharks (Poisson et  al.  2024). Altogether, 
these observations indicate a limited level of exchange among 
those areas, reflecting weak differentiation between these major 
basins (Northeast Atlantic, Western and Eastern Mediterranean; 
Nikolic et al. 2023; present study).

Furthermore, the result from the Mantel test is consistent with 
the existence of an isolation by distance in blue sharks, which 
implies non- random mating and restricted gene flow among 
individuals from different sampled locations (see Results and 
Figures S5 and S6).

The lack of panmixia within the Mediterranean Sea may be ex-
plained by the environmental factors of the western and east-
ern Mediterranean, respectively. In fact, the Mediterranean 
Sea is characterised by different seas with very different ocean-
ographic conditions (Tanhua et  al.  2013). An environmental 
niche and habitat analysis of the blue shark on a global scale 
highlighted how biotic and abiotic factors may shape blue 
shark population distribution (Druon et  al.  2022). In other 
pelagic species with similar spatial ecology, such as sword-
fish (Xiphias gladius), significant genetic structure has been 
observed between the Mediterranean Sea and the Atlantic 
Ocean, and within the Mediterranean Sea (Righi et  al.  2020; 
Viñas et al. 2010).

Philopatric behaviour was suggested to be the main driver of 
swordfish population differentiation within the Mediterranean 
Sea because of distinct phylogeographic histories of populations 
in the eastern and the western Mediterranean basins, maintained 
by contemporary life- history traits (Viñas et al. 2010).

FIGURE 4    |    Resulting plot of the genetic clustering using STRUCTURE software for K = 2 and 4 as suggested by Puechmaill and Evanno's method 
respectively. CELT, Celtic Sea; EATL, Northeast Atlantic; EMED, Eastern Mediterranean; WMED, Western Mediterranean. Each bar on both plots 
represents the same individual.
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Evidence of philopatry and regional site fidelity has been 
observed in blue sharks, with interannual resighting of blue 
sharks in the same spots in the mid- North Atlantic (Fontes 
et al. 2024; Vandeperre et al. 2014). This philopatric behaviour, 
in combination with local demographic dynamics and poten-
tial site fidelity, may have shaped the current population dif-
ferentiation of the blue shark between the Northeast Atlantic 
and the Mediterranean, and within the Mediterranean Sea.

4.1   |   Evolutionary Perspective of Subtle Genetic 
Structure

Accounting for the limited dispersal through the Gibraltar 
Strait observed with tagging data, the allele frequencies among 
even distant locations can be maintained at similar levels by 
very few migrants per generation. This can partially mask the 
existence of different demographic stocks (Palsbøll, Bérubé, 
and Allendorf  2007). In fact, even low migration rates, com-
bined with a relatively large effective population size, can 
mask the existence of two demographically independent pop-
ulations, suggesting a near- panmictic scenario (Waples and 
Gaggiotti 2006).

This observed pattern could be explained by a marine meta-
population model as proposed by Kritzer and Sale (2004), in 
which genetic drift and gene flow determine ‘the dynamics 
of local populations strongly dependent upon local demo-
graphic processes, but also influenced by a nontrivial element 
of external replenishment’. If the dynamics of each potential 
population can be modelled per se (i.e., neglecting any poten-
tial external influence), the metapopulation scenario is not 
appropriate (Kritzer and Sale 2004). Otherwise, if the poten-
tial populations dictate their own population dynamics to-
gether with an external replenishment that cannot be ignored, 
then the metapopulation scenario is appropriate (Kritzer and 
Sale  2004). In these cases, it is the amount of demographic 
connectivity among potential populations set by migrant in-
dividuals that determine whether they form a metapopulation 
or not, and the rate of gene flow among units will determine 
the shape and fate of a given metapopulation complex and its 
components.

However, in the presence of small values of genetic differenti-
ation, such as the FST values observed in the present study, the 
amount of gene flow is difficult to estimate under an island 
model of migration. This difficulty arises because of the rela-
tionship between FST and number of migrants among popula-
tions per generation (Lowe and Allendorf 2010). Furthermore, 
many biological assumptions necessary to estimate the gene 
flow under an island model of migration, are unrealistic and 
will be violated (Whitlock and McCauley 1999).

A metapopulation model has been used to explain the re-
cent decline observed in three species of sharks when assum-
ing unstructured demographic models, with the presence 
of a neglected population structure (Lesturgie, Planes, and 
Mona 2021). Beyond speculating about the existence of a meta-
population structure, even faint but significant genetic structure 
implies limited demographic exchange between populations. 
This is evident in the results observed in the present study and 

is in line with the stronger signal recently reported between 
the Atlantic and the Mediterranean by Nikolic et  al.  (2023). 
Furthermore, the pattern of isolation by distance (Figure  S6) 
and those two concordant studies increase the confidence in 
the biological relevance of such subtle, yet significant, genetic 
structure (Palumbi 2003).

Based on the above results, the Mediterranean and Northeast 
Atlantic populations should be considered demographically in-
dependent, subject to area- related population processes and dif-
ferent vulnerabilities to exploitation. Furthermore, even within 
the Mediterranean Sea (western Mediterranean vs. eastern 
Mediterranean), there is evidence of substructuring, with the 
presence of at least two subpopulations with independent demo-
graphic dynamics.

4.2   |   Management Implications of Multiple 
Discrete Population

The small number of sharks tagged in the Atlantic and recap-
tured in the Mediterranean Sea led management organisations 
to consider the Mediterranean as a separate stock (Kohler and 
Turner  2008; ICCAT  2005; Fitzmaurice et  al.  2005; Kohler 
et al. 2002). For stock assessment purposes, separate analyses have 
been carried out for the North Atlantic and the Mediterranean 
for more than a decade. The ICCAT Sub Committee on bycatches 
assumed three different stocks in the North Atlantic, South 
Atlantic and Mediterranean (ICCAT 2005). The limited amount 
of tagging data made the separation of the Northeast Atlantic 
and Mediterranean blue shark in two different stocks a precau-
tionary approach, as limited data from the Mediterranean blue 
shark were available. There was thus an acknowledged need for 
targeted studies to fill the knowledge gap about the existence of 
two separated populations on both sides of the Strait of Gibraltar 
(ICCAT  2016), a gap now filled through population genomics 
(present study; Nikolic et  al.  2023), confirming the validity of 
this precautionary approach.

The present study may also serve to update future stock as-
sessment and management plans. In fact, the genetic differ-
entiation with significant FST values supports the existence of 
independent demographic entities for the blue shark within 
the Mediterranean as well, calling for a revision of recognised 
management units. The present study, echoing results from 
Nikolic et al. (2023), confirms the importance of using genome- 
wide markers and dedicated sampling design in resolving the 
population genetic structure of the Northeast Atlantic and 
Mediterranean blue shark populations, especially considering 
the potential ‘grey zone’ effect in studies based on a handful of 
molecular markers (Bailleul et al. 2018).

Another possible area of future research would be to increase 
the sample size in the Mediterranean and in the Atlantic Ocean, 
including also the westernmost and the easternmost distribu-
tion of blue sharks from the Atlantic and Mediterranean Sea. 
This would clarify the relationships between western Atlantic 
and eastern Atlantic blue sharks with those from the western 
and eastern Mediterranean Sea. This is especially important 
in light of the extensive transatlantic migration observed, with 
consequent gene flow that follows.
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A similar pattern of genetic differentiation within the Med-
iterranean has been reported thus far for the benthic small- 
spotted catshark using both mitochondrial and microsatellite 
markers (Gubili et al. 2014; Kousteni et al. 2014; Melis et al. 2023), 
and in the black mouth catshark using microsatellite markers 
(Di et al. 2022). The significant differentiation observed in blue 
sharks between the Eastern and the Western Mediterranean 
suggests that the presence of discrete populations within the 
Mediterranean may also extend to pelagic sharks. Given the 
implications of such independence for the management of ex-
ploited or impacted populations, extending this study to other 
chondrichthyan species would be important for the conservation 
of these often declining groups.
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