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We address demographic bias in neighborhood-learning models for collaborative filtering recommendations. Despite their superior
ranking performance, these methods can learn neighborhoods that inadvertently foster discriminatory patterns. Little work exists in
this area, highlighting an important research gap. A notable yet solitary effort, Balanced Neighborhood Sparse LInear Method (BNSLIM)

aims at balancing neighborhood influence across different demographic groups. Yet, BNSLIM is hampered by computational inefficiency,
and its rigid balancing approach often impacts accuracy. In that vein, we introduce two novel algorithms. The first, an enhancement
of BNSLIM, incorporates the Alternating Direction Method of Multipliers (ADMM) to optimize all similarities concurrently, greatly
reducing training time. The second, Fairly Sparse Linear Regression (FSLR), induces controlled sparsity in neighborhoods to reveal
correlations among different demographic groups, achieving comparable efficiency while being more accurate. Their performance
is evaluated using standard exposure metrics alongside a new metric for user coverage disparities. Our experiments cover various
applications, including a novel exploration of bias in course recommendations by teachers’ country development status. Our results
show the effectiveness of our algorithms in imposing fairness compared to BNSLIM and other well-known fairness approaches.

CCS Concepts: • Information systems → Recommender systems; • Computing methodologies→ Learning linear models.
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1 INTRODUCTION

Recommenders have become indispensable decision-making tools across diverse domains, from e-commerce to health-
care [17, 18]. As a result, their unbiased functioning has become a key concern for the scientific community. To mitigate
bias, various dimensions of fairness have been explored in the literature [30, 38]. Individual fairness aims for similar
individuals to be treated similarly, whereas group fairness aims for different groups to be treated similarly. These groups
are often divided into protected and non-protected, with the former being subject to bias. Fairness in recommenders also
requires an understanding of their multi-stakeholder nature [5]. Consumer fairness (C-fairness) looks at fairness from
the side of the users, whereas Provider fairness (P-fairness) looks at fairness from the side of the items. Fairness benefits
may also vary: exposure refers to the uniformity with which items or item groups are presented across all users or user
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groups, and effectiveness refers to the degree to which an exposure is effective [11]. Based on the stage at which fairness
considerations take place, approaches can be categorized into: pre-processing, in-processing, and post-processing.

Collaborative Filtering (CF) recommends items based on past user-item interactions, such as ratings or clicks [24].
While traditional CF methods use predefined similarity measures to compute user-user or item-item similarities,
neighborhood-learning CF models [34], considered state-of-the-art (SOTA) [1, 15], dynamically derive these similarities
from the interaction data. The SOTAmodels, Sparse LInear Methods (SLIM) [35] and Embarrassingly Shallow AutoEncoders

(EASE) [41], differ in approach. SLIM estimates sparse similarities to preclude less important neighbors, while EASE
estimates dense similarities to include correlated neighbors. Given that similarities may be derived from imbalanced
interactions, a critical question arises: do the computed similarities unwittingly sustain or exacerbate existing biases?

Imbalanced interactions between different user or item demographics make these methods vulnerable to demographic
bias, in which certain user or item demographic groups are unfairly treated over others [7]. We will use two motivating
examples that highlight demographic bias in user-based and item-based methods.

User-neighborhood example. On an academic platform where students can be grouped based on their gender as
either females or males, assume a preference imbalance: females mainly engage with the humanities, while males are
more inclined towards STEM (Science, Technology, Engineering, and Mathematics). Consider a female student who
has a balanced interest in both the humanities and STEM. If her neighborhood mostly includes female students, her
recommendations are likely to favor courses in the humanities, potentially overlooking her interests in STEM.

Item-neighborhood example. On an academic platform where courses can be grouped based on the country of
the teacher, assume a preference imbalance: courses by teachers from developed countries receive more interactions
than those from developing countries. Consider a user engaging with a course from the developed country group. If its
neighborhood mostly includes courses by teachers from developed countries, the user’s recommendations are likely to
favor such courses, potentially overlooking related courses by teachers from developing countries.

In that vein, the balanced neighborhoods concept was introduced, aimed at balanced group representation in user or
item neighborhoods for C- or P-fairness, respectively, as realized by Balanced Neighborhood SLIM (BNSLIM) [7] that
adds the balanced regularization term into SLIM. BNSLIM learns similarities such that, within each neighborhood, the
cumulative similarity across neighbors of the protected group is equal to that of the non-protected group. For our
user-neighborhood example, this means having a balance between the influence of female and male neighbors. For our
item-neighborhood example, this means having a balance between the influence of courses by teachers from developed
and developing countries. BNSLIM employs Coordinate Descent (CD) for optimizing each similarity individually, which
is impractical for large datasets. To partly address this, during each CD step, the algorithm focuses solely on the closest
neighbors, defined at the beginning and fixed throughout the algorithm [6]. Still, the computational burden is significant
[3]. More crucially, such static neighbor selection potentially harms the intended balancing effect due to a lack of group
diversity; thus, the true potential of balancing neighborhoods for fairness remains unverified to its full extent. Lastly,
this rigid balancing approach may adversely affect personalization by increasing (decreasing) the similarity scores with
irrelevant (relevant) neighbors just for the sake of influence balance.

Overcoming these limitations, our work introduces two novel in-processing algorithms for group fairness to mitigate

demographic bias in neighborhood-learning models. We particularly focus on the benefit of exposure1, reducing exposure
disparities in top-N lists: C-fairness involves balancing the exposure of item groups across user groups, while P-
fairness involves balancing the exposure of item groups within the top-N lists of all users. For this purpose, our

1We use exposure and visibility interchangeably to describe how frequently items appear in top-N recommendation lists.
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algorithms optimize user or item neighborhoods for C- or P-fairness, respectively. The first algorithm, BNSLIMADMM,
tackles the efficiency bottleneck of BNSLIM by allowing simultaneous optimization of all similarities. The second
algorithm, Fairly Sparse Linear Regression (FSLR), induces controlled sparsity in neighborhoods, ensuring representation
by demographically varied, yet correlated, counterparts so as to preserve personalization. This is achieved by integrating
a novel regularization term into EASE. For our user-neighborhood example, this means that the recommendations of
the female student will largely be influenced by the preferences of similar male students. For our item-neighborhood
example, this means that the recommendations of the user will largely be influenced by similar courses from the
developing countries group. Both algorithms employ the Alternating Direction Method of Multipliers (ADMM) for its
ability to decompose complex optimization problems and convergence properties [4].

We ran extensive experiments across various recommendation domains: movies (Movielens 1M [19]), music (LastFM
1K [8]), courses (COCO [12]), and books (Goodreads [44]). We explore how teachers’ country development status
affects course recommendations, a P-fairness scenario that (to the best of our knowledge) has not previously been
studied. Furthermore, we study fairness not only by measuring exposure disparities of item groups across all users or
user groups (our primary fairness goal), but also by measuring disparities in the coverage of user groups (in terms of
the item categories they access through recommendations) or item groups. For the latter, we present User-coverage
Parity (u-Parity), a novel exposure metric for C-fairness that measures the difference in percentages of protected and
non-protected users covered by each item category. Results show that under the given fairness goals, our algorithms
outperform other leading fairness-aware models [7, 9, 46] in balancing personalization and fairness, with FSLR showing
superior accuracy than BNSLIMADMM. Notably, BNSLIMADMM significantly reduces training time by around 99%, compared
to BNSLIM. Overall, our algorithms are uniquely capable of achieving satisfactory results for both C- and P-fairness.

Our contributions are summarized as follows:

(1) We introduce BNSLIMADMM, a faster implementation of BNSLIM that updates all similarities concurrently.
(2) We introduce FSLR, a novel model that induces controlled sparsity in neighborhoods, ensuring representation by

demographically varied, yet correlated, counterparts so as to preserve personalization.
(3) We present u-Parity, a novel exposure metric for C-fairness, which measures the disparity in coverage percentages

between protected and non-protected users within each item category.
(4) We study the influence of teachers’ country development status in course recommendations, offering insights

into a previously unexplored P-fairness application.
(5) We provide empirical evidence across diverse datasets, comparing BNSLIMADMM and FSLR to other established

fair recommendation models [7, 9, 46], showing their superiority in balancing accuracy and fairness.

2 RELATEDWORK

Fairness definitions. In recommenders, fairness definitions are shaped by task (i.e., rating prediction or ranking) and
fairness type (i.e., individual or group, C- or P-fairness). In the rating-prediction task, C- and P-fairness aim to balance
average ratings or prediction errors across user or item groups [22, 46], while individual C-fairness aims to minimize
prediction error variance across all pairs of users (individual C-fairness) [39]. In the ranking task, P-fairness aims to
balance the exposure of item groups [7, 16, 48], or their coverage in top-N lists [29], whereas C-fairness aims to balance
the exposure of items [9] or item groups [7], or ensure comparable relevance levels [13, 26], across user groups. We

target group fairness in top-N lists (rankings), focusing on either C-fairness (balancing the exposure of item groups across

user groups) or P-fairness (balancing the exposure of item groups within the top-N lists of all users).
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Table 1. Notation and Definitions.

Symbol Description Symbol Description

U, I Sets of user and item identifiers ⊘ Element-wise division
| · | The size of a set ⊙ Element-wise multiplication (Hadamard product)
𝑹 The | I | × |U | interaction matrix ∥𝑾 ∥2

𝐹
Squared Frobenius norm of𝑾

𝒓𝑖 . , 𝒓 .𝑢 Row and column vectors of 𝑹 ∥𝑾 ∥1 Sum of the absolute elements of𝑾
Diag(𝜸 ) Diagonal matrix with elements of vector 𝜸 ∥𝑾 ∥∞ Maximum absolute value in𝑾
diag(𝑾 ) Vector of diagonal elements of matrix𝑾 1condition Indicator function, 1 if condition is true, otherwise 0
⟨·, ·⟩ Frobenius inner product ∥𝒂 ∥22 Squared Euclidean norm of vector 𝒂
𝑠𝜏 ( ·) Soft-thresholding operator with threshold 𝜏 ( ·)+ Positive part operator

Fairness-aware CF recommenders can be grouped into the following three categories:
Fairness-aware embeddingmethods. These methods learn bias-free embeddings. [20–22] introduced regularizers to

decouple predicted ratings from sensitive attributes. [46] focused on the dependency of those attributes with prediction
errors. [47] proposed the use of a sensitive embedding matrix along with an orthogonality regularizer. [48] proposed
a ranking model based on adversarial learning to handle item under-recommendation. [45] introduced a user model
comprising a bias-aware embedding built through sensitive attribute prediction and a bias-free embedding built on
adversarial learning. [27] enabled consumers to define their sensitive attributes, using adversarial learning for rankings
that are personalized yet free from these attributes’ influence. Instead of purifying the learned user or item embeddings

from sensitive attributes, our work regulates the neighborhood distribution of users or items to promote fairness.

Data-driven fairness methods. Data augmentation approaches mitigate unfairness using a dual-optimization
strategy, optimizing the model and fake data, such as user profiles [39] or interactions [9], concurrently. However, each
method follows its own approach to fake data synthesis: [39] tries to meet predefined fairness objectives, whereas
[9], independent of fairness metrics, employs two hypotheses to balance interactions between user groups. Instead of
increasing the size of the dataset, a different approach is to modify the user or item relationships. BNSLIM balances
influences within user or item neighborhoods, aiming for equal representation of protected and non-protected members
within a neighborhood [7]. Like BNSLIM, our algorithms target C- or P-fairness by optimizing neighborhoods.

Rebalancing methods. These methods mitigate unfairness by rebalancing the input or output of recommenders.
[14, 31] studied data resampling techniques to adjust the representation of protected and non-protected user groups,
mitigating demographic bias. [40] proposed a probabilistic re-ranker for balancing item groups’ exposure. [29] proposed
a re-ranker for balancing users’ ranking accuracy and provider diversity. [26] introduced a re-ranking framework for
balancing ranking accuracy across user groups with different activity levels. [33] introduced a framework that extends
the concept of [26] to also balance the exposure of long-tail and short-head items. Our algorithms address fairness

directly during the processing stage, eliminating the need for additional re-samping or re-ranking steps.

3 PRELIMINARIES

This section provides an overview of the neighborhood-learning models SLIM and EASE, alongside ADMM. Originally
designed for item-item similarity learning, SLIM and EASE can adapt to learn user-user similarities by transposing the
user-item interaction matrix 𝑹. For our purposes, focusing on user-user similarities, we directly define 𝑹 as an item-user

interaction matrix to streamline notation and eliminate the need for constant transposing. Table 1 outlines our notation
with sets denoted by calligraphic letters or {.}, vectors by bold lowercase, and matrices by bold uppercase.
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3.1 Sparse LInear Methods (SLIM)

SLIM [35] optimizes a least-squares regression model with elastic net regularization, yielding sparse similarity estimates
for each user that represent its neighborhood. The acquired user-user similarities are then utilized as weights for the
item vectors: for an arbitrary user 𝑢 ∈ U and item 𝑖 ∈ I, the ranking estimate is 𝑟𝑖𝑢 = 𝒓𝑖 .𝒘.𝑢 , where 𝒘.𝑢 ∈ R |U | the
similarity weights of user 𝑢 relative to all users. Ranking estimates for unobserved items are ranked in descending order,
recommending the top-N. The similarities are computed by solving the following optimization problem:

𝑾∗ = argmin
𝑾

1
2
∥𝑹 − 𝑹𝑾 ∥2𝐹 + 𝜆1∥𝑾 ∥1 +

𝜆2
2
∥𝑾 ∥2𝐹 , s.t. diag(𝑾 ) = 0 and𝑾 ≥ 0, (1)

where𝑾 = [𝒘.1, . . . ,𝒘. |U | ] ∈ R |U |× |U | the user-user similarity matrix and 𝜆1, 𝜆2 > 0 the regularization parameters.
The first term minimizes reconstruction error, the second term shapes the neighborhoods, and the third term handles
overfitting. The first constraint, self-similarity constraint, precludes self-similarity, where𝑾∗ = 𝑰 |U | ; and the second
constraint, non-negativity constraint, permits only positive relations between users for interpretability purposes.

3.2 Embarrassingly Shallow AutoEncoders (EASE)

Steck [41] omitted the sparsity-enforcing regularization and the non-negativity constraint of SLIM, resulting in a new
model called EASE. The similarities are now computed by solving the following optimization problem:

𝑾∗ = argmin
𝑾

1
2
∥𝑹 − 𝑹𝑾 ∥2𝐹 + 𝜆2

2
∥𝑾 ∥2𝐹 , s.t. diag(𝑾 ) = 0. (2)

This simplification allows EASE to benefit from a closed-form solution, a feature SLIM lacks. EASE leads to increased
ranking accuracy and is faster due to the direct computation of similarities enabled by the closed-form solution [42].

3.3 Alternating Direction Method of Multipliers (ADMM)

ADMM, popular for its ability to decompose complex optimization problems, is widely used in various domains [4],
including recommenders [10, 42]. It is a first-order optimization method for optimizing problems of the form:

min
𝑾 ,𝒁

𝑓 (𝑾 ) + 𝑔(𝒁 ) s.t. 𝑨𝑾 + 𝑩𝒁 = 𝑪, (3)

where 𝑓 and 𝑔 are two convex closed functions;𝑾 and 𝒁 are the unknown matrices of variables to be optimized; and 𝑨,
𝑩, and 𝑪 are the coefficient matrices in the constraint of the optimization problem.

The solution procedure can be simplified by minimizing the augmented Lagrangian of the above-given problem.
This function merges the primal and dual problems, i.e., the original objective function and its constraint, into one:

L𝜌 (𝑾 ,𝒁 , 𝒀 ) = 𝑓 (𝑾 ) + 𝑔(𝒁 ) + 𝜌

2
∥𝑨𝑾 + 𝑩𝒁 − 𝑪 ∥2𝐹 + ⟨𝒀 , (𝑨𝑾 + 𝑩𝒁 − 𝑪)⟩ , (4)

where 𝜌 > 0 is a parameter that controls the trade-off between solution accuracy and convergence rate. 𝒀 denotes the
matrix of Lagrangian multipliers, representing the magnitude of the constraint violation.

In ADMM, the augmented Lagrangian is minimized through an iterative process that progressively converges towards
the solution. This procedure entails three sequential updates, with each iteration denoted by 𝑘 :

1 𝑾𝑘+1 = argmin
𝑾

L𝜌 (𝑾 ,𝒁𝑘 , 𝒀𝑘 ) 2 𝒁𝑘+1 = argmin
𝒁

L𝜌 (𝑾𝑘+1,𝒁 , 𝒀𝑘 ) 3 𝒀𝑘+1 = 𝒀𝑘 + 𝜌 (𝑨𝑾𝑘+1 + 𝑩𝒁𝑘+1 − 𝑪) (5)

The steps outlined in Eq. (5) are repeated until convergence or a maximum iteration limit is reached.
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4 BALANCED NEIGHBORHOODS

We first revisit BNSLIM’s objective and then reformulate it to enable the simultaneous optimization of all similarities
through the ADMM framework. While presented for C-fairness through balanced user neighborhoods, BNSLIM is also
able to address P-fairness through balanced item neighborhoods by transposing the item-user interaction matrix 𝑹.

4.1 Balanced Neighborhood SLIM (BNSLIM)

BNSLIM attempts to learn a matrix of user-user relationships, with the goal that each user can be represented equally
by users from two distinct demographic groups: the protected Gp, which is subject to bias, and the non-protected
Gnp. Specifically, it aims for each user to be equally influenced by members from both of these groups in the resultant
similarity matrix. The optimization problem of BNSLIM for synthesizing this balanced matrix𝑾∗ is formulated as:

𝑾∗ = argmin
𝑾

1
2
∥𝑹 − 𝑹𝑾 ∥2𝐹 + 𝜆1∥𝑾 ∥1 +

𝜆2
2
∥𝑾 ∥2𝐹 + 𝜆3

2

∑︁
𝑢∈U

(𝒑⊤𝒘.𝑢 )2 s.t. diag(𝑾 ) = 0 and𝑾 ≥ 0, (6)

where 𝑾 = [𝒘.1, . . . ,𝒘. |U | ] ∈ R |U |× |U | is the user-user similarity matrix; 𝒑 ∈ R |U | is a vector constructed with
elements set to 1 for members of Gp and −1 for members of Gnp; and 𝜆1, 𝜆2, 𝜆3 > 0 are the regularization parameters.
The inclusion of the non-negativity constraint in BNSLIM is crucial as it ensures similarities within Gp and Gnp are not
negated. Note that omitting the fourth term from Eq. (6) effectively transforms the model into SLIM [35]. This fourth
term is known as the balanced regularization term and is responsible for learning balanced neighborhoods.

The optimization problem delineated in Eq. (6) is conventionally resolved using CD [7]. Within this framework, for
each distinct pair (𝑢, 𝑣) ∈ U ×U, where 𝑢 ≠ 𝑣 , the similarity is iteratively updated as per the rule:

𝑤𝑢𝑣 =
(𝑠𝜆1 (

∑ | I |
𝑖=1 (𝑟𝑖𝑢 −∑ |U |

𝑙=1, 𝑙≠𝑢,𝑣 𝑟𝑖𝑙𝑤𝑙𝑢 ) + 𝜆3𝑝𝑣
∑ |U |
𝑙=1, 𝑙≠𝑢,𝑣 𝑝𝑙𝑤𝑙𝑢 ))+∑ | I |

𝑖=1 𝑟
2
𝑖𝑣
+ 𝜆2 + 𝜆3

. (7)

From Eq. (7), it is apparent that optimizing each similarity individually poses a computational challenge, especially
for large user bases. In an effort to improve performance, BNSLIM considers updating similarities between the closest
neighbors only, defined at the beginning and fixed throughout the algorithm [6]. Still, this heuristic does not lead to
notable performance gains and results in suboptimal solutions [3]. To address this, we propose to re-write Eq. (6) so
that the balanced regularization term is expressed in a compact matrix form, i.e.,

𝑾∗ = argmin
𝑾

1
2
∥𝑹 − 𝑹𝑾 ∥2𝐹 + 𝜆1∥𝑾 ∥1 +

𝜆2
2
∥𝑾 ∥2𝐹 + 𝜆3

2
∥𝒑⊤𝑾 ∥22 s.t. diag(𝑾 ) = 0 and𝑾 ≥ 0. (8)

We may now solve this optimization problem for the entire𝑾 matrix, addressing the efficiency bottleneck of BNSLIM.

4.2 Optimization via ADMM

Under the ADMM framework, the augmented Lagrangian for this problem is given by

L𝜌 (𝑾 ,𝒁 , 𝒀 ) =

𝑓 (𝑾 )︷                                                ︸︸                                                ︷
1
2
∥𝑹 − 𝑹𝑾 ∥2𝐹 + 𝜆2

2
∥𝑾 ∥2𝐹 + 𝜆3

2
∥𝒑⊤𝑾 ∥22 + 𝜆1∥𝒁 ∥1︸  ︷︷  ︸

𝑔 (𝒁 )

+𝜌
2
∥𝑨𝑾 + 𝑩𝒁 − 𝑪 ∥2𝐹 + ⟨𝒀 ,𝑨𝑾 + 𝑩𝒁 − 𝑪⟩ , (9)

where 𝑨 = 𝑰 |U | (the |U| × |U| identity matrix), 𝑩 = −𝑰 |U | , and 𝑪 = 𝑶 |U | (the |U| × |U| matrix of zeroes).
The updating steps of ADMM, as outlined in Section 3, can be adapted to fit the form and constraints of the BNSLIM

model. In what follows, we provide detailed descriptions of each step within the ADMM framework.
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Algorithm 1 BNSLIM via ADMM

Input: 𝑹, 𝒑, 𝜆1, 𝜆2, 𝜆3, 𝜌 Output:𝑾 ∗ =𝑾𝑘+1

Initialize: 𝑘 = 0,𝑾 0 = 𝒁 0, and 𝒀 0

𝑮 = 𝑹⊤𝑹, 𝑷 = (𝑮 + (𝜆2 + 𝜌 )𝑰 |U| + 𝜆3𝒑𝒑⊤ )−1
repeat

𝑸𝑘 = 𝑷 (𝑮 + 𝜌𝒁𝑘 − 𝒀𝑘 )
𝑾𝑘+1 = 𝑸𝑘 − 𝑷 Diag(diag (𝑸𝑘 ) ⊘ diag (𝑷 ) )
𝒁𝑘+1 = (𝑠𝜆1/𝜌 (𝑾

𝑘+1 + 1
𝜌
𝒀𝑘 ) )+

𝒀𝑘+1 = 𝒀𝑘 + 𝜌 · (𝑾𝑘+1 − 𝒁𝑘+1 )
𝑘 = 𝑘 + 1

until convergence

Algorithm 2 FSLR via ADMM

Input: 𝑹,𝑴, 𝜆1, 𝜆2, 𝜌 Output:𝑾 ∗ =𝑾𝑘+1

Initialize: 𝑘 = 0,𝑾 0 = 𝒁 0, and 𝒀 0

𝑮 = 𝑹⊤𝑹, 𝑷 = (𝑮 + (𝜆2 + 𝜌 )𝑰 |U| )−1
repeat

𝑸𝑘 = 𝑷 (𝑮 + 𝜌𝒁𝑘 − 𝒀𝑘 )
𝑾𝑘+1 = 𝑸𝑘 − 𝑷 Diag(diag (𝑸𝑘 ) ⊘ diag (𝑷 ) )
𝒁𝑘+1 = 𝑠𝜆1/𝜌 (𝑾

𝑘+1 + 1
𝜌
𝒀𝑘 ) ⊙𝑴 + (𝑾𝑘+1 + 1

𝜌
𝒀𝑘 ) ⊙ �̃�

𝒀𝑘+1 = 𝒀𝑘 + 𝜌 · (𝑾𝑘+1 − 𝒁𝑘+1 )
𝑘 = 𝑘 + 1

until convergence

Step 1:𝑾 update. The self-similarity constraint is incorporated into the update process using Lagrange multipliers,
penalizing the loss function when it is violated. Therefore, the new loss for updating𝑾 is given by

L (𝑐 )
𝜌 (𝑾 ,𝒁𝑘 , 𝒀𝑘 ) = 𝑓 (𝑾 ) + 𝑔(𝒁𝑘 ) + 𝜌

2
∥𝑾 − 𝒁𝑘 ∥2𝐹 +

〈
𝒀𝑘 ,𝑾 − 𝒁𝑘

〉
+𝜸⊤ diag(𝑾 ), (10)

where 𝑓 (·) includes all the involving differentiable norms2 and 𝜸 ∈ R |U | is the Lagrangian multiplier vector.
By taking the partial derivative of L (𝑐 )

𝜌 (𝑾 ,𝒁𝑘 , 𝒀𝑘 ) w.r.t.𝑾 and setting it equal to zero, we find that

𝑾𝑘+1 = 𝑸𝑘 − 𝑷 Diag (𝜸 ), where 𝑸𝑘 = 𝑷𝑹⊤𝑹 + 𝑷 (𝜌𝒁𝑘 − 𝒀𝑘 ) and 𝑷 = (𝑹⊤𝑹 + (𝜆2 + 𝜌)𝑰 |U | + 𝜆3𝒑𝒑
⊤)−1 . (11)

Applying the constraint diag(𝑾𝑘+1) = 0, it holds that 𝜸 = diag (𝑸𝑘 ) ⊘ diag (𝑷 ). Thus, Eq. (11) can be reformulated as:

𝑾𝑘+1 = 𝑸𝑘 − 𝑷 Diag(diag (𝑸𝑘 ) ⊘ diag (𝑷 )) . (12)

Step 2: 𝒁 update. Setting the partial derivative of L𝜌 (𝑾𝑘+1,𝒁 , 𝒀𝑘 ) w.r.t. 𝒁 to zero involves handling the ∥·∥1 norm,
which is non-differentiable at zero. For this purpose, the soft-thresholding operator, 𝑠𝜆1/𝜌 (·), is applied to act as a
proximal operator for the norm.We then project the output onto the non-negative orthant to preserve the non-negativity
constraint. The update formula for 𝒁 is thus expressed as:

𝒁𝑘+1 =
(
𝑠𝜆1/𝜌 (𝑾

𝑘+1 + 1
𝜌
𝒀𝑘 )

)
+
. (13)

Step 3: 𝒀 update. The final step involves updating 𝒀 ∈ R |U |× |U | using the last formula given in Eq. (5). This update
is crucial for ensuring that the variables𝑾 and 𝒁 , updated in the earlier steps, converge towards equality.

The update steps of the ADMM solution for Eq. (8) are summarized in Alg. 1.

5 FAIRLY SPARSE NEIGHBORHOODS

This section presents the FSLR model, aimed at C-fairness through fairly sparse user neighborhoods. FSLR is also able to
address P-fairness through fairly sparse item neighborhoods by simply transposing the item-user interaction matrix 𝑹.

5.1 Fairly Sparse Linear Regression (FSLR)

BNSLIM’s strategy of balancing neighborhood influence across different demographic groups may hurt accuracy as
it may lead to increasing (decreasing) the similarity scores with irrelevant (relevant) neighbors. Acknowledging the

2 𝑓 embodies EASE with the balanced regularization term. Offline experiments revealed that without sparsity-enforcing regularization, the model struggles
to balance neighborhoods, likely due to EASE’s tendency to estimate dense similarities.
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importance of achieving fairness with minimal impact on personalization, we also propose an alternative approach:
induce controlled sparsity in neighborhoods to reveal correlations among users of different demographic groups.
In particular, we introduce FSLR, a model that attempts to learn a partially, i.e., fairly, sparse matrix of user-user
relationships, with the goal that each user is primarily represented as a linear combination of users belonging to
different groups. The optimization problem of FSLR for synthesizing this fairly sparse matrix𝑾∗ is formulated as:

𝑾∗ = argmin
𝑾

1
2
∥𝑹 − 𝑹𝑾 ∥2𝐹 + 𝜆1∥𝑴 ⊙𝑾 ∥1 +

𝜆2
2
∥𝑾 ∥2𝐹 , s.t. diag(𝑾 ) = 0, (14)

where𝑴 = [𝝁.1, . . . , 𝝁. |U | ] ∈ {0, 1} |U |× |U | is the membership matrix with 𝜇𝑢𝑣 = 1 if user 𝑢 belongs to the same group
as user 𝑣 and 𝜇𝑢𝑣 = 0 otherwise, ∀𝑢, 𝑣 ∈ U; and 𝜆1, 𝜆2 > 0 are the regularization parameters.

Observe that applying the non-negativity constraint,𝑾 ≥ 0, into Eq. (14) yields to a modified version of SLIM that
enforces elastic-net regularization within demographic groups. Omitting the second term of Eq. (14) reverts the model
to its EASE form. The novelty lies on incorporating 𝑴 into the ∥·∥1 norm as 𝜆1 selectively reduces the influence of
neighbors from the same group on each individual user, facilitating the discovery of important relationships with users
from different groups. Adding the balanced regularization term introduces a conflict between prioritizing cross-group
similarities (FSLR) and balancing group similarities (BNSLIM), justifying the proposal of two separate models.

5.2 Optimization via ADMM

Under the ADMM framework, the augmented Lagrangian for FSLR is given by:

L𝜌 (𝑾 ,𝒁 , 𝒀 ) =

𝑓 (𝑾 )︷                           ︸︸                           ︷
1
2
∥𝑹 − 𝑹𝑾 ∥2𝐹 + 𝜆2

2
∥𝑾 ∥2𝐹 + 𝜆1∥𝑴 ⊙ 𝒁 ∥1︸         ︷︷         ︸

𝑔 (𝒁 )

+𝜌
2
∥𝑨𝑾 + 𝑩𝒁 − 𝑪 ∥2𝐹 + ⟨𝒀 ,𝑨𝑾 + 𝑩𝒁 − 𝑪⟩ , (15)

where 𝑨 = 𝑰 |U | (the |U| × |U| identity matrix), 𝑩 = −𝑰 |U | , and 𝑪 = 𝑶 |U | (the |U| × |U| matrix of zeroes).
This formulation enables concurrent optimization of EASE’s objective and our controlled sparsity objective. The last

two terms of the loss balance the discrepancy between the solutions of these two subproblems.
As before, the updating steps of ADMM are adapted to accommodate the specificities of this model.
Step 1:𝑾 update. The self-similarity constraint is incorporated into the update process using Lagrange multipliers,

penalizing the loss function when it is violated. Therefore, the new loss for updating𝑾 is given by

L (𝑐 )
𝜌 (𝑾 ,𝒁𝑘 , 𝒀𝑘 ) = 𝑓 (𝑾 ) + 𝑔(𝒁𝑘 ) + 𝜌

2
∥𝑾 − 𝒁𝑘 ∥2𝐹 +

〈
𝒀𝑘 ,𝑾 − 𝒁𝑘

〉
+𝜸⊤ diag(𝑾 ). (16)

To determine the optimal solution, we take the partial derivative of L (𝑐 )
𝜌 (𝑾 ,𝒁𝑘 , 𝒀𝑘 ) w.r.t.𝑾 and set it to zero, i.e.,

𝑾𝑘+1 = 𝑸𝑘 − 𝑷 Diag (𝜸 ), where 𝑸𝑘 = 𝑷𝑹⊤𝑹 + 𝑷 (𝜌𝒁𝑘 − 𝒀𝑘 ) and 𝑷 = (𝑹⊤𝑹 + (𝜆2 + 𝜌)𝑰 |U | )−1 . (17)

Applying the constraint diag(𝑾𝑘+1) = 0, it holds that 𝜸 = diag (𝑸𝑘 ) ⊘ diag (𝑷 ). Thus, Eq. (17) can be reformulated as:

𝑾𝑘+1 = 𝑸𝑘 − 𝑷 Diag(diag (𝑸𝑘 ) ⊘ diag (𝑷 )) . (18)

Step 2: 𝒁 update. By setting the partial derivative of L𝜌 (𝑾𝑘+1,𝒁 , 𝒀𝑘 ) w.r.t. 𝒁 to zero, it follows that

𝒁𝑘+1 = 𝑠𝜆1/𝜌 (𝑾
𝑘+1 + 1

𝜌
𝒀𝑘 ) ⊙ 𝑴 + (𝑾𝑘+1 + 1

𝜌
𝒀𝑘 ) ⊙ �̃�, (19)

where �̃� = 𝑱 |U | −𝑴 , with 𝑱 |U | being a |U| × |U| matrix of ones, indicating �̃� as the binary complement of 𝑴 .
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Fig. 1. Imbalances in Music Genre Preferences Across Different Age Groups.

In essence, this step applies a penalized update to those elements of the similarity matrix associated with users within
the same group, while the remaining elements undergo an update process that is unaffected by the L1 regularizer.

Step 3: 𝒀 update. Finally, 𝒀 ∈ R |U |× |U | is updated using the last formula given in Eq. (5). This update is crucial for
ensuring that the variables𝑾 and 𝒁 , updated in the earlier steps, converge towards equality.

The update steps of the ADMM solution for Eq. (14) are summarized in Alg. 2.
Complexities. BNSLIM exhibits a computational complexity of O(𝑘 |U|3 |I |), necessitated by 𝑘 iterations to update

|U|2 similarities, each involving computations across all users and items, see Eq. (7). Conversely, the overall compu-
tational complexity for BNSLIMADMM and FSLR is O(𝑘 |U|3). Our improved performance is also attributed to being
able to conduct efficient operations on square matrices, unlike the less flexible cyclic CD of BNSLIM that limits matrix
operations. For item neighborhoods, complexities adjust by interchanging |U| and |I |.

6 DATASETS AND METRICS

Datasets. For C-fairness, we cover two distinct recommendation applications: movies and music. For movies, we used
the Movielens 1M (ML1M) dataset [19]. We transformed ratings (1 to 5) into binary format by interpreting ratings of 4
or higher as positive feedback [9, 41]. Users were grouped by gender, with females as the protected group and males as
the non-protected group. For music, we focused on artist recommendations using the LastFM 1K (LFM1K) dataset [8].
For each user, we aggregated song plays per artist, and if the count exceeded the average play count of that user, it was
marked as positive feedback for this artist by the user. Users were grouped by age, with those over 30 as the protected
group and those 30 or younger as the non-protected group [31]. As LFM1K lacks music genre information, we used the
genres extracted from MusicBrainz by [2]. In our analysis, we targeted genres where notable age imbalances among
listeners were observed, specifically: country, folk, hip hop, indie, jazz, and metal (see Fig. 1).

For P-fairness, we also cover two distinct recommendation applications: courses and books. For courses, we used the
COCO dataset [12], binarizing ratings (1 to 5) such that ratings of 5 are interpreted as positive feedback [2]. COCO
features courses taught by teachers from various geographic provinces. We focused on single-teacher courses, grouping
them as protected for teachers from developing countries and non-protected for those from developed countries, based
on the OECD’s classification [36]. To the best of our knowledge, this is the first exploration of bias in course recommendations

based on teachers’ country development status. For books, we used the young adult subset of the Goodreads dataset [44],
a genre where users exhibit bias based on author gender [43]. We retained books by single authors and binarized ratings
(1 to 5) with ratings of 4 or higher considered as positive feedback. Subsequently, we fetched author gender (female or

9
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Table 2. Summary of Processed Data (Gp: protected group, Gnp: non-protected group, inter(·): interaction counts).

Dataset Fairness Attribute Sparsity |U | |I | | Gp | | Gnp | inter(Gp) inter(Gnp)
ML1M Consumer Gender 97.27 5,950 3,532 1,682 4,268 145,372 429,247

LFM1K Consumer Age 98.01 236 2,233 37 199 2,032 8,003

COCO Provider Province 99.81 3,803 7,972 2,146 5,826 13,349 45,159

Goodreads Provider Gender 99.88 186,919 26,576 6,574 20,002 1,170,604 4,802,037

male) using the Wikidata API. Books were grouped by author gender, with male-written books viewed as protected and
female-written books as non-protected.

Table 2 provides data statistics. All datasets underwent 10-core user filtering, i.e., keeping users with at least 10
interactions, to secure robust training data, and they were split: an 80-20 training-testing split and an additional 80-20
split within the training set for validation. For C-fairness, to ensure consistent group sizes across all splits, focusing on
the study of our mitigation strategies’ impact, the datasets underwent weak generalization. This involves the same users
appearing in all sets, a necessary condition for user-neighborhood models, which cannot accommodate unseen users.
For P-fairness, we applied strong generalization, where users in each set are different, chosen to simulate real-world
conditions, and because such a split would not notably alter the results, unlike in C-fairness.

Accuracy metrics. Accuracy is evaluated using Recall and Normalized Discounted Cumulative Gain (NDCG) [28, 31].
These metrics measure predictive performance, with higher scores indicating better accuracy. Recall measures the
presence of held-out items in top-N lists, whereas NDCG additionally accounts for their ranking.

C-fairness metrics. Recall that C-fairness is defined as balancing the exposure of item groups across user groups. In
our datasets, these item groups represent item categories: movie genres (ML1M dataset) and music genres (LFM1K
dataset). To assess different aspects of this fairness objective, we utilize the following two metrics:

Consumer-side Equity (c-Equity) [7] measures the ratio of the observed probability of recommending an item category
to protected users (Gp) relative to that of non-protected users (Gnp). Due to its formulation, this metric is computed and
reported separately for each item category. For convenience, we reformulated it as the absolute differences between
these probabilities, averaged across all item categories, i.e.,

c-Equity@𝑁 =
1
|C|

∑︁
𝑐∈C

�����
∑
𝑢∈Gp

∑
𝑖∈R𝑢

1𝑖∈C𝑐
|Gp | · 𝑁

−
∑
𝑢∈Gnp

∑
𝑖∈R𝑢

1𝑖∈C𝑐
|Gnp | · 𝑁

����� , (20)

where C is the set of item category identifiers, R𝑢 is the top-N recommendation list for user 𝑢, and C𝑐 includes all
item identifiers within category 𝑐 . The c-Equity metric ranges from 0 (balanced visibility) to 1 (imbalanced visibility),
indicating the average difference in the visibility of item categories between two user groups. Attaining a c-Equity
score of 1 indicates a rare scenario where Gp exclusively gets recommendations from one category and Gnp from a
different category with no overlap. A c-Equity score, multiplied by N, represents the average additional number of
positions occupied by any item category in the top-N recommendation lists of a user group.

We also introduce the User-coverage Parity (u-Parity) metric, which measures the disparity between the proportions of
protected and non-protected users receiving recommendations from a particular category, averaged across all item
categories. u-Parity is formally defined as follows:

u-Parity@𝑁 =
1
|C|

∑︁
𝑐∈C

�����
∑
𝑢∈Gp 1∃𝑖∈R𝑢 : 𝑖∈C𝑐

|Gp |
−
∑
𝑢∈Gnp 1∃𝑖∈R𝑢 : 𝑖∈C𝑐

|Gnp |

����� . (21)
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Table 3. Results on the ML1M and LFM1K Datasets (top-10 lists). Best metric scores are highlighted in gold, and the slowest time
performance in red. Rows corresponding to our algorithms are shaded in gray for easy identification.

ML1M LFM1K

Algorithm Training (secs) Accuracy Metrics Fairness Metrics Training (secs) Accuracy Metrics Fairness Metrics

Recall↑ NDCG↑ c-Equity↓ u-Parity↓ Recall↑ NDCG↑ c-Equity↓ u-Parity↓
EASE 6.854±2.786 0.323±0.001 0.332 0.050±0.001 0.097±0.001 0.041±0.017 0.222±0.006 0.208±0.008 0.060±0.004 0.108±0.014
BNSLIM 11,160.704±3,597.703 0.239±0.007 0.246±0.006 0.038±0.001 0.066±0.002 478.099±25.274 0.142±0.027 0.127±0.023 0.031±0.012 0.060±0.013
BNSLIMADMM 120.580±4.490 0.226±0.013 0.240±0.016 0.015±0.004 0.027±0.005 0.085±0.026 0.116±0.004 0.098±0.007 0.010±0.004 0.026±0.008
FSLR 60.893±39.747 0.255±0.010 0.270±0.010 0.026±0.007 0.059±0.007 0.055±0.018 0.164±0.010 0.151±0.009 0.039±0.007 0.114±0.034
FairMF 5.878±3.042 0.161±0.015 0.164±0.019 0.013±0.002 0.028±0.003 0.201±0.169 0.103±0.049 0.092±0.045 0.016±0.004 0.039±0.007
FDA 3,156.129±807.204 0.250±0.023 0.251±0.025 0.057±0.003 0.118±0.007 45.212±10.284 0.159±0.011 0.145±0.016 0.060±0.007 0.116±0.011

u-Parity ranges from 0 to 1, with 0 indicating that equal percentages of users (from both groups) receive recommendations
from each category and 1 indicating a rare scenario where each category covers users from only one group.

c-Equity helps identify if there is an imbalance in how item categories are recommended to distinct user groups, u-Parity

helps identify if there is an imbalance in how different user groups are covered by recommendations across categories.

P-fairness metrics. Recall that P-fairness is defined as balancing the exposure of item groups within the top-N lists
of all users. In our datasets, these item groups represent providers: teachers (COCO dataset) and authors (Goodreads
dataset). To assess different aspects of this fairness objective, we utilize the following two metrics:

Bilateral Disparate Visibility (BDV) is a modification of the c-Equity metric for P-fairness. It measures the difference
between the observed probability of recommending protected items (Gp) and that of non-protected items (Gnp), i.e.,

BDV@𝑁 =

�����
∑
𝑢∈U

∑
𝑖∈R𝑢

1𝑖∈Gp

|U| · 𝑁 −
∑
𝑢∈U

∑
𝑖∈R𝑢

1𝑖∈Gnp

|U| · 𝑁

����� . (22)

The BDV metric ranges from 0 to 1, indicating the difference in visibility between protected and non-protected items in
top-N lists. A score of 0 indicates balanced visibility, while a score of 1 indicates completely imbalanced visibility. A
BDV score, multiplied by N, represents the additional number of positions occupied by one group over another.

Average Provider Coverage Rate (APCR) [29] measures the degree of provider coverage within the recommendation
lists of all users in the test set. APCR is formally defined as follows:

𝐴𝑃𝐶𝑅@𝑁 =

∑
𝑢∈Utest prov(R𝑢 )

|P||Utest |
, (23)

whereUtest is the user set in the test dataset, prov(R𝑢 ) counts distinct providers in R𝑢 , and P is the set of providers.
In our datasets, we have two providers: the protected and non-protected teachers or authors, i.e., |P | = 2. The APCR
metric ranges from 0 to 1. A score of 0 indicates a lack of coverage, with recommendations dominated by a single
provider group, while a score of 1 indicates perfect coverage, with all providers appearing across all top-N lists.

u-Parity and APCR metrics emphasize coverage fairness in top-N lists: u-Parity evaluates balanced item category access

for different consumer groups, while APCR evaluates balanced provider appearance for all consumers.

7 BENCHMARKING AND RESULTS

The evaluation of our algorithms regarding C- and P-fairness is guided by the following research questions:

RQ1. Can our algorithms achieve C- and P-fairness? What is the impact on accuracy?
RQ2. How do they compare to other fairness-aware algorithms in terms of fairness, accuracy, and time efficiency?
RQ3. How do the different characteristics and sensitive attributes of datasets affect our algorithms’ behavior?
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Table 4. Results on the COCO and Goodreads Datasets (top-10 lists). Best metric scores are highlighted in gold, and the slowest time
performance in red. Rows corresponding to our algorithms are shaded in gray for easy identification.

COCO Goodreads

Algorithm Training (secs) Accuracy Metrics Fairness Metrics Training (secs) Accuracy Metrics Fairness Metrics

Recall↑ NDCG↑ BDV↓ APCR↑ Recall↑ NDCG↑ BDV↓ APCR↑
EASE 7.863±0.945 0.275±0.005 0.214±0.005 0.586±0.013 0.870±0.010 117.301±15.450 0.554±0.001 0.529±0.001 0.527±0.001 0.898±0.001
BNSLIM 33,237.556±5,116.273 0.031±0.006 0.020±0.007 0.680±0.094 0.873±0.051 - did not complete within the 24-hour limit -
BNSLIMADMM 160.103±69.683 0.153±0.047 0.129±0.038 0.207±0.265 0.831±0.038 3,435.894±21.644 0.498±0.009 0.470±0.008 0.482±0.010 0.916±0.004
FSLR 182.845±50.534 0.197±0.021 0.157±0.014 0.079±0.040 0.898±0.012 2,009.628±1,540.767 0.499±0.005 0.472±0.004 0.476±0.004 0.917±0.002
FairMF 24.040±16.832 0.002±0.001 0.001 0.437±0.021 0.983±0.005 1,424.151±812.837 0.000 0.000 0.449±0.035 0.980±0.006

Competitors.We consider two baselines. EASE, as a SOTA lacking fairness capabilities, benchmarks our fairness
improvements. BNSLIM, the sole existing fairness-aware neighborhood-learning algorithm, emphasizes the demand for
our more efficient alternatives. We utilize both the user- and item-neighborhood versions of EASE for C- and P-fairness
experiments, respectively. Two advanced fairness-aware algorithms are also considered. Fair Matrix Factorization

(FairMF) [46] is the classical MF model enhanced with the non-parity regularizer of [22], chosen for its interpretability
when binary data are present and its frequent use in related work [25, 45]. Fairness-aware Data Augmentation (FDA)

using Bayesian Personalized Ranking (BPR) as its backbone [9], chosen as the most recent data-driven fairness strategy,
akin to the proposed algorithms. BNSLIM and FairMF are applicable for both C- and P-fairness. FDA, originally designed
for C-fairness, presents challenges in applying for P-fairness; hence, we use it solely for C-fairness.

Implementations. Neighborhood-learning algorithms were developed using Recpack [32]. Our Python implementa-
tion for BNSLIM adheres to its original Java version [6]. For FDA, we used the implementation available by its authors3.
For FairMF, we developed an implementation using PyTorch [37], due to the lack of existing code.

Fine-tuning. We optimized for 𝑁 = 10 using Hyperopt [23], with parameter ranges derived from the corresponding
papers. For BNSLIMADMM, the parameter space included 𝜆1 ranging from 10−3 to 50, 𝜆2 from 1 to 104, and 𝜆3 from 10−3

to 103. For FSLR, the parameter space was set for 𝜆1 from 10−3 to 10 and 𝜆2 from 1 to 104. The Tree-structured Parzen
Estimator (TPE) algorithm guided this process, limited to either 50 trials or 24 hours. Convergence for BNSLIM was set
at ∥𝑾𝑘 −𝑾𝑘+1∥∞ < 10−4 or 50 iterations, while for BNSLIMADMM and FSLR, it was set at ∥𝑾𝑘+1 − 𝒁𝑘+1∥∞ < 10−4 or
50 iterations. To enhance the computational efficiency of BNSLIM, we used a cap of 100 neighbors.

Addressing the lack of standard fairness optimization and the frequent omission of such details in existing studies
and code repositories, we explain our own approach. Given our interest in both accuracy and fairness, it was deemed
reasonable to tune all fairness-aware algorithms by combining NDCG (accuracy) with c-Equity or BDV for C- or
P-fairness, respectively. This combination was formulated as 𝛼 × (1 − accuracy@𝑁 ) + (1 − 𝛼) × fairness@𝑁 , where 𝛼 is
a weighting parameter that allows system designers to tailor the balance between accuracy and fairness according to
marketplace needs. Prioritizing fairness in this work, we chose 𝛼 = 0.2. EASE was tuned solely on NDCG.

Experiments were conducted on a server featuring an Intel® Xeon® Gold 5318Y processor at 2.10GHz with 48 cores
and 386GB of RAM, running Ubuntu 22. The source code for the experiments is available on GitHub4.

7.1 C-fairness Results

Each experiment was repeated five times to ensure reliability. Table 3 details the mean performance and standard
deviation for each metric. Note that the small fairness scores are the result of balancing the exposure of multiple item
categories within the top-10 lists amidst the inherent diversity of user interests within each group.
3https://github.com/newlei/FDA
4https://github.com/Selefth/fair_neighborhood
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RQ1. In both datasets, our BNSLIMADMM considerably improves fairness compared to EASE over its predecessor,
BNSLIM, both in terms of item group exposure (c-Equity) and user coverage (u-Parity), while preserving accuracy losses
comparable to those observed between BNSLIM and EASE. In the LFM1K dataset, it reduced the c-Equity score from
6% to 1% compared to EASE, implying a nearly negligible disparity in the representation of each item category across
top-N lists for different user groups. This favorably impacted the u-Parity metric, decreasing from 10.8% to 2.6%, which
shows more even user coverage by each category. Similar reductions are observed in the ML1M dataset. However, in
the LFM1K dataset, these improvements lead to a recall and NDCG reduction of about 48-53% from EASE.

In contrast to BNSLIMADMM, FSLR strikes a balance, improving fairness while achieving the least reduction in
ranking accuracy from EASE in both datasets. FSLR’s superior accuracy over BNSLIMADMM is attributed to the latter’s
stringent approach to balancing neighborhoods: by increasing (decreasing) the similarity scores with irrelevant (relevant)
neighbors for the sake of influence balance, i.e., it may increase (potentially artificially) fairness but adversely affect
personalization, as shown by the significant decrease in recall and NDCG of BNSLIMADMM.

Answer to RQ1. Consequently, our algorithms effectively enhance C-fairness in neighborhood learning, with FSLR

compromising less accuracy than BNSLIMADMM, following a more reasonable approach to imposing fairness.
RQ2.While EASE leads in accuracy, BNSLIMADMM and FairMF are more fair, albeit at the cost of accuracy. BNSLIMADMM

achieves the best fairness scores compared to all fairness-aware competitors in both datasets, followed by FairMF, which
slightly surpasses BNSLIMADMM in ML1M, achieving the best c-Equity score. FairMF is also the fastest but ranks last in
terms of personalization, making it less appealing for imposing fairness due to its high accuracy loss.

Apart from improved fairness, BNSLIMADMM has another notable advantage over BNSLIM: it is orders of magnitude
faster. For instance, for the ML1M dataset, it achieves a reduction of about 99% in training time, where 5, 9502 similarities
must be learned. BNSLIM, in contrast, only computes 100 neighbors per user to manage its computational load,
highlighting BNSLIMADMM’s superior efficiency in processing the full set of similarities more rapidly. Among the two
algorithms, BNSLIMADMM is a more efficient choice for attaining fairness through balanced neighborhoods.

FDA is also time-intensive due to its data-augmentation approach. This model underperformed in our C-fairness
context, as even if the estimated interactions are balanced, some item categories may still be underrepresented or
overrepresented in the recommendations provided to different user groups. Finally, our FSLR is faster than BNSLIMADMM,
and, while not as strong in fairness as BNSLIMADMM, leads in accuracy among fairness-aware methods.

Answer to RQ2. Compared to other fairness-aware methods, our algorithms demonstrate optimal performance in

balancing accuracy, fairness, and reasonable training time.

RQ3. FSLR surpasses BNSLIM in fairness metrics in ML1M but not in LFM1K, while securing the best ranking
accuracy among fairness-aware methods. This variation could be due to the protected group’s size in LFM1K, affecting
FSLR’s ability to form strong neighbor relations with users from different groups. On the other hand, BNSLIMADMM

consistently outperforms BNSLIM in fairness in both datasets, as, in contrast to BNSLIM, it considers all possible
neighbors to achieve balance. Lastly, FSLR consistently achieves accuracy closer to that of EASE.

Answer to RQ3. Our comparison with EASE revealed that our algorithms are consistent in reducing unfairness in the

ML1M and LFM1K datasets, focusing on distinct sensitive attributes: users’ genders and users’ ages, respectively.

7.2 P-fairness Results

Each experiment was repeated five times to ensure reliability. Table 4 details the mean performance outcomes for each
metric, along with their corresponding standard deviations. P-fairness scores are larger compared to their C-fairness
counterparts due to our focus on only two item groups, making any disparities more noticeable.
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RQ1. In the COCO dataset, EASE’s 58.6% overrepresentation of courses from developed countries (BDV), translating
to roughly six more slots for developed countries in users’ top-10 lists, is notably reduced by our algorithms: BNSLIMADMM

reduces this to 20.7% and FSLR further decreases it to 7.9%. The high standard deviation in BNSLIMADMM’s BDV score
suggests a sensitivity to strong generalization, unlike FSLR. This also contributes to its slightly poorer (compared
to EASE) APCR. Despite the fairness gains, there are accuracy trade-offs: Compared to EASE, BNSLIMADMM shows a
drop in accuracy by nearly 40-44%, whereas FSLR’s accuracy decreases by about 27-28%. In the Goodreads dataset,
EASE exhibits a 52.7% overrepresentation of women-authored books. While our mitigation methods’ impact is not as
pronounced as in COCO, both of them managed to reduce this imbalance to 48%, with a 2% increase in APCR. Accuracy
for both algorithms falls by 10-11% compared to EASE, a reasonable trade-off for our modest fairness improvements.

Answer to RQ1.Our algorithms effectively enhance P-fairness, with FSLR compromising less accuracy than BNSLIMADMM

in the COCO dataset, following the trends in C-fairness. Strong generalization impacts BNSLIMADMM’s performance.

RQ2. BNSLIM exhibits poor performance, ranking as the slowest among all evaluated algorithms and failing to
complete within the 24-hour limit on Goodreads. BNSLIMADMM outperforms BNSLIM with an impressive 99% reduction
in training time for COCO and completes training on Goodreads, where BNSLIM could not. It also surpasses BNSLIM
in both accuracy and fairness, establishing itself as a feasible solution for balancing neighborhoods. FSLR achieves the
best BDV score in COCO, notably improving over EASE. In both datasets, it shows strong APCR performance and
surpasses all other fairness-aware methods in accuracy. BNSLIMADMM ranks near FSLR in fairness, but for the COCO
dataset, it offers less personalized recommendations. FairMF leads in APCR for both datasets and BDV for Goodreads,
yet it underperforms in personalization, attributed to datasets’ sparsity (see Table 2). Experiments on denser COCO
subsets showed accuracy and fairness gains for FairMF, yet our algorithms preserved a superior balance of both (results
omitted due to space limitations). FairMF is slower in Goodreads than in COCO, mainly due to its dependence on the
number of users, while the item-neighborhood versions of our algorithms scale solely with the number of items.

Answer to RQ2. Compared to other fairness-aware methods, our algorithms optimally balance accuracy and fairness

while scaling well to large datasets in P-fairness scenarios, with scalability driven solely by the number of items. Additionally,

they demonstrate robust performance on sparse datasets, where other algorithms struggle.

RQ3. BNSLIMADMM and FLSR reduce unfairness, more notably in the COCO dataset, possibly due to Goodreads’
extensive volume of interactions (nearly 6 million). Extending training beyond 50 iterations would enhance fairness
further. BNSLIMADMM is faster than FLSR in COCO, but it needs more time to converge in the larger Goodreads. Finally,
in COCO, FSLR achieves better visibility (BDV score), whereas in Goodreads, both algorithms go hand-in-hand.

Answer to RQ3. Our algorithms are consistent in reducing unfairness in the COCO and Goodreads datasets, focusing

on distinct sensitive attributes: teachers’ geographic provinces and authors’ genders, respectively.

8 CONCLUSIONS

We introduced two algorithms, BNSLIMADMM and FSLR, to address demographic bias in neighborhood-learning models,
targeting group fairness for consumers or providers. BNSLIMADMM improves upon BNSLIM by employing the ADMM
so as to balance the influences across demographic groups faster. FSLR induces controlled sparsity in neighborhoods,
ensuring representation by demographically varied, yet correlated, counterparts so as to preserve personalization. We
verified our algorithms empirically on several real-world datasets and showed that they outperformed existing solutions
while achieving an optimal balance of accuracy, fairness, and time efficiency. An interesting research direction for future
work involves developing algorithms for multi-group neighborhood balancing and exploring how these neighborhoods
can preserve fairness while dynamically adapting to temporal changes.
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