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ABSTRACT

In many recommendation applications, items may have limited
availability thereby causing conflict among users interested in
the same items. Over time, this results in unequal user treat-
ment: few users are recommended the limited items and receive
preferential treatment, while the rest is left with sub-optimal
recommendations, ultimately leading them to leave. In this pa-
per, we formalize the novel problem of compensating users in
multi-session recommendations under limited item availability.
Our aim is to generate recommendations that not only optimize
accuracy, but also compensate users over time for the loss of
accuracy incurred in previous iterations. We design compensa-
tion strategies that serve users and items in different orders and
accommodate various recommendation adoption models. Our al-
gorithms are integrated into SOCRATE (System for Compensating
Recommendations with Availability and Time), a framework that
enables us to study loss compensation over time. Our experiments
on real data demonstrate that to best compensate users for the
incurred loss, traditional recommenders need to be revisited to
account for item availability. Our experiments on synthetic data
explore different parameters of our solution and show that it is
much faster than an optimal (brute-force) compensation strategy,
while achieving comparable results.

1 INTRODUCTION

A recommender system aims to generate a set of items that are
highly relevant to a user. A typical workflow takes historical user
data, applies a strategy that produces relevant recommendations,
and measures accuracy [10, 12, 13, 19, 22, 23, 25, 26]. In this work,
we are interested in a setting where items have limited availabil-
ity and multiple users are served at each iteration. For instance,
when a new book from a popular author comes out, there may
not be enough copies for all the interested users. This creates a
situation of inequality, where only “privileged” users get access
to a limited resource. If the system is not able to compensate the
incurred accuracy loss over time, inequality will increase leading
unsatisfied users to leave. In this paper, we advocate for an ap-
proach that observes users as they consume items, and reduces
their loss in accuracy in subsequent iterations. To the best of our
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knowledge, our work is the first to formalize and tackle recom-
mendations under limited item availability, and compensating
users by taking into consideration the order in which users are
served, the incurred loss in accuracy, and the recommendation
adoption model.

Formalizing loss and compensation in multi-session recom-
mendations raises several challenges. The first challenge C1 is
to model how users adopt recommendations, i.e., their explicit
choice of which items to consume out of recommended items.
Additionally, several implicit signals must be accounted for, in-
cluding the order and speed at which users consume recommen-
dations. The second challenge C2 is to determine at what moment
and for which users recommendations are generated, whether
at fixed time intervals or based on the users’ consumption rate.
Under limited availability, some users may not get an item even if
it is in their top choice. This yields a loss in accuracy. Hence, the
third challenge C3 is to leverage the observed feedback and the
quality of items served to each user to refine recommendations
in subsequent iterations in such a way that users are “compen-
sated” for their “loss in accuracy” in previous iterations. This
was recently discussed in our vision paper [2] and a prototype
demonstration [1].

To address C1, we simulate users and recommendation adop-
tion according to existing models [8, 9, 30]. In multi-session
recommendation, a user chooses k out of N provided recommen-
dations according to some recommendation adoption model [3,
9, 36]. We recognize three different such models: random, where
users choose items arbitrarily; utility-based, where users choose
items in decreasing order of utility, e.g., in crowdsourcing, tasks
are chosen based on their fitness to the user profile; rank-based,
where users follow a ranking of recommended items. Adoption
models capture a user’s strategic behavior when a scoring func-
tion, expressed as a linear combination of several dimensions,
is used to rank items. In crowdsourcing, ranking dimensions
usually include monetary compensation and task requesters.

To address C2, we introduce two time granularities: fixed,
where recommendations of all users are generated at fixed time
periods, and user-group, where the best moment is determined
for a group of users as a function of their behavior, i.e., group-
ing users with similar consumption rates and producing new
recommendations for them at the same time.

To address C3, we propose to learn a user’s choice of recom-
mended items as a vector, where an entry represents the user’s
weight for an optimization dimension. At each iteration, a user
chooses k out of N recommended items. That choice induces a
weight update to reflect the user’s preferences. This approach
is based on generalizing the work in [20], whose purpose is to

10.48786/edbt.2024.45
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quantify workers’ motivation on a crowdsourcing platform by ob-
serving their task adoption in multiple sessions. Refined weight
vectors are used to re-rank recommendations produced for each
user to match their preferences.

We formalize the notion of loss using scoring functions since
they capture the utility of items to users. We model loss as the
difference between proposed and optimal recommendations, i.e.,
those that would have been returned to a user if no other users
were present. This loss is leveraged in the next iteration to com-
pensate users, either individually or together. Building on this, we
first formalize the problem of loss compensation and then design
algorithms that solve it with different compensation strategies
and recommendation adoption models. We consider two loss
compensation strategies: preference-driven, where users are com-
pensated in decreasing loss order by receiving recommendations
in preference order before the user with the next smaller loss is
served, and round-robin, where users are considered in decreasing
loss order but items are recommended to them in round-robin
with respect to item availability. Our algorithms can be used with
any recommendation engine. We integrate them into SOCRATE
(System for Compensating Recommendations with Availability
and Time), a novel recommendation framework that watches
recommendation consumption and decides when to apply a loss
compensation strategy to make up for sub-optimal recommenda-
tions due to limited item availability!. Our solution falls within
the category of sequence-aware recommendation because it lever-
ages both short-term knowledge on the users’ actions in the last
session (given by weights of the scoring function expressing their
preferences) and longer-term knowledge on their past behavior
given by an item-user matrix (see [21] for a survey on this topic).

We run extensive experiments to compare our solution to
traditional recommendation and to examine the optimality of
our algorithms with respect to loss compensation. To do so, we
consider suitable measures: i) average and standard deviation of
cumulative loss, and ii) response time. To showcase the benefit
of our solution, we inject item availabilities in popular datasets,
namely Amazon Digital Music [17], Amazon Movies&TV [17], and
a Task Recommendation dataset [18]. Our results show that So-
CRATE outperforms traditional recommendation by delivering i)
better average cumulative loss and ii) better average standard de-
viation of cumulative loss over multiple iterations. Furthermore,
we test our system with a synthetic dataset and a brute-force
strategy that finds the best possible ordering of users at each
iteration, i.e., the one that yields optimal loss compensation. We
observe that SOCRATE is comparable to the optimal solution in
terms of minimizing standard deviation of loss while being much
faster.

Our empirical analysis finds that sorting users on decreasing
cumulative loss always yields a reduction in standard deviation
of loss, thereby decreasing disparities between users. In fact, user
loss represents the difference in satisfaction between the opti-
mal recommendation and that of the actual recommended items.
Therefore, compensating loss over time allows us to treat users
more equally, without running into situations of privilege. Sev-
eral lessons can be learned. First, under limited item availability,
recommender systems should be modified so that items are sug-
gested in round-robin of availability rather than in the traditional
preference-driven fashion. Second, the amount of loss compen-
sation is a function of the distribution of conflicts among users:

ISOCRATE code is available at: https://github.com/TommasoD/SoCRATe_v2.
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the higher the conflict, the more SOCRATE is able to compensate
users.

The rest of the paper is organized as follows: we present our
data model and formalize our problem in Section 2. We describe
our solutions in Section 3. The experiments are reported in Sec-
tion 4. Section 5 summarizes the related work. We conclude in
Section 6.

2 DATA MODEL AND PROBLEM
2.1 Data Model

We are given a set of users U and items I. We are interested in
multi-session recommendations, where items are recommended
to users in multiple iterations. An item i € I has an availability,
a(i, t), that represents, at each iteration ¢, the number of copies
left of i. In our setting, an ordered list of N recommendations
R! C Iis provided to a user u € U, s.t. each item in R, has
availability greater than 0 at iteration t. When u receives Rf,, u
may choose to adopt a subset S}, C R}, of size k < N. OptR!, is
the set of optimal recommendations in terms of accuracy that a
user u could get at iteration ¢. Due to the presence of other users
and limited item availability, R}, may differ from OptRY,. This
introduces the notion of “loss”, i.e., the difference between R{,,
the recommendations served to a user u at iteration ¢, and the
optimal set OptRY,. Given a set of computed attributes defined
as scalar functions O = {04, Og, ..., Oy, }, the loss of a user u at
iteration t is a vector that records one loss per dimension, i.e.,
losst, = (|01 (OptRL) = O1 (RL)II. ... || Om (OptRL) ~ O (RL ),
where Oh(OptRfl), with 1 < h < m, is a vector whose elements
are obtained by applying function Oy, to the elements of OptR,
(and similarly for Oy, (R,)) and ||@|| is the £;-norm of a.

The purpose of the dimensions in O is to better characterize
how the preferences of user u evolve over time. The importance
given by user u to each dimension in O is captured as a weight
vector W! that is updated at each iteration based on the items
user u decided to adopt. In this way, we are able to capture user
preferences that depend on single item attributes (e.g., price of a
book or a reward for a crowdsourcing task), or on a combination
of multiple attributes (e.g., balancing price vs. reviews of a book
or balancing reward vs. expected task completion time) or across
items (e.g., diversity of recommended items). At each iteration,
we refine a user’s weight vector by running a regression that
considers the k chosen recommendations against the remaining
N —k at the previous iteration as well as past adoption history. We
use L1 to refer to the cumulative loss for user u up to iteration ¢:

t
L= Z W, - loss], . (1)
j=1

Equation (1) represents the sum of all the losses incurred in
previous iterations weighted according to the user preferences.
The higher the relevance of an aspect for a user, the higher its
impact on the computed loss, ultimately leading to an increased
cumulative loss. We assume our observations occur for a time
horizon of T iterations. Table 1 summarizes our data model.

2.2 Motivating Example

Our goal is to set up a system that compensates users for previ-
ously experienced loss. We illustrate this with an example consid-
ering 3 users U = {uy, ug, u3}, 6 items I = {iy, ..., ig} with initial
availability a(i,0) = [1,2,2,2,2,1], two dimensions O; and O,
that are price and utility, and weight vector W/ that represents



Table 1: Symbols of SOCRATE data model

Symbol ‘ Description

U set of users

I set of items

(@] set of optimization dimensions

R! list of recommended items for user u at time ¢

N number of recommended items in RY,

OptR;, optimal list of recommendations for user u at time #
St list of adopted items by user u at time ¢, S%, C R/,
K number of adopted items by user u at time #

a(i, t) number of copies left of item i at time ¢

a(i) initial availability a(i,0)

SortU! | ranking of U in decreasing loss loss?, at time ¢

wt weight vector for user u at time ¢ based on S,

loss}, vector of one loss per dimension for user u at time ¢
L cumulative loss for user u up to iteration ¢

T number of observed iterations

the importance a user gives to dimensions (they are initialized
for all users to 0.5). For conciseness, let us model price as Oy (i})
=1-0.1j (e.g., i3’s price is 0.7) and assume users have similar
preferences (i.e., utility), modeled as O2(ij,ux) =1 —0.1j — 0.1k
(e.g., i3’s utility for user uy is 0.5), so that every user prefers iy,
then iy, then i3, etc. Let us also assume N = 3 recommended
items and T = 2 iterations. The initial serving order of users is
[u1,u2, u3]. At the first iteration, the optimal recommendation
is Opth [i1, iz, i3] for all users; however, only u; receives it,
while uy and u3 receive Rgz = [ig, i3, i4] and R33 = [ig, 5, ig],
respectively. This entails no loss for u1, while the loss for uy is
computed as lossg2 = (|01 (Opthz) -01 (Rgz)H, ||Og(OptR82) -
OZ(R22)||), ie, (||[0.9,0.8,0.7] — [0.8,0.7,0.6]]],]|[0.8,0.7,0.6] —
[0.7,0.6,0.5]||) = (0.3,0.3), hence £}, = 0.3; similarly, £J, = 0.9.
Such losses should be used to modify the order users will be
served at the next iteration ([us, ug, u1], in this case) and to up-
date the weights.

2.3 Problem Formulation

Given a time horizon T (number of observed iterations), the prob-
lem we formulate aims to produce a set of recommendations for
a user at each iteration in such a way that the standard deviation
of the cumulative loss is minimized. To this end, let us denote

with
—_— 1
T_ t
z 7 > L

uelU

)

the mean cumulative loss of all users at a given iteration t, and
with

1 —\2
8=l 2 (L T0) 3)
uelU
the standard deviation of cumulative loss of all users. With this,
our problem is to find at each iteration ¢ € T and for each user u,
a set of N recommendations R/, such that:

R, = argmin S’

4

In other words, for any given iteration, our purpose is to find,
for each user, the best recommendations that will minimize the
standard deviation of cumulative loss across all users. To avoid
inequality among users, we enforce equal treatment over time. In
fact, minimizing the standard deviation guarantees the minimum
cumulative loss distance between users for each iteration. In turn,
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equal user treatment increases recommendation accuracy and,
consequently, favors user retention.

Our problem is a variant of the Knapsack Problem [4]. Each
item has a value that corresponds to its contribution to the scoring
function and a weight (in our case the weight vector W2~! of the
user), and we want to find N items for each user that optimize an
aggregation of values under a capacity constraint. This means the
value of recommending an item to a user evolves over time. The
challenge in solving this problem is to keep track and account
for this dynamic aspect. Despite the hardness of this problem,
we will see in Section 3 how we can satisfactorily address it with
solutions based on heuristic considerations.

3 OUR SOLUTION

We first provide an overview of the architecture of SOCRATE
and then we describe our algorithms.

3.1 Architecture of SOCRATE

The architecture of SOCRATE is provided in Figure 1. The Or-
CHESTRATOR (1) is in charge of determining the moment at which
recommendations are computed. It monitors when users are done
consuming recommendations during iteration t — 1 and uses that
to determine when to produce new recommendations and start
iteration t. To better model this scenario, we implement two time
granularity splits: fixed (all users consume items at the same
time) and user-group (different sets of users consume their rec-
ommendations at different time). The Orchestrator makes use
of the recommendations consumed by users in S5™!, according
to different adoption models described in Section 3.2 (2), and
triggers the WEIGHT UPDATE (3) module to obtain new weights.
Weight computation receives S5, R, ™1, OptR!,! and returns
the updated weights W!. Each entry of W, represents the prefer-
ence of a user for an optimization dimension. To refine weight
vectors, we run a regression. Refined weight vectors are used to
re-rank the recommendations produced for each user to match
their feedback.

Following the weight update, the INDIVIDUAL RECOMMENDER
module (4) is called to produce new recommendations based on
the weights of each user. SOCRATE is compatible with any single-
user recommender; in our implementation we use KNN [15]. This
module returns OptR!,, which is passed to the COMPENSATION
STRATEGY module. The USER SORTING module (5) sorts users
according to their loss (see Section 3.2 for different sortings)
and calls the ITEM RECOMMENDATION module (6). This module
implements two strategies: preference-driven and round-robin.
The output is a set of new recommendations that are fed to the
Loss CompuTAaTION module (7) to compute each user’s incurred
loss. SOCRATE then moves to the next iteration by calling the
ORCHESTRATOR.

3.2 Algorithms in SOCRATE

The generic algorithmic pattern that contains the main steps of
our solution is shown in Algorithm 1. We describe the main steps
of our solution, and illustrate it for a fixed time granularity in
Algorithm 2. The process takes as input ¢, the moment where
a new iteration starts according to the ORCHESTRATOR, and for
each user u, Lf;l, R,’;‘l, OptR,Z_l, and Wut_l. It outputs, for each
user, LI, R!,, OptR!,, and W!. The systems can be instantiated
according to different user sortings, compensation strategies, and
recommendation adoption models. All these system parameters
allow us to describe a variety of scenarios.



Figure 1: Architecture of SOCRATE: internal structure of the framework, components and interactions.
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Algorithm 1 SOCRATE Algorithm

Algorithm 2 Preference-Based Compensation Strategy

Input: Yu, LL7L R, Opt R, Wi
Output: Yu, L, R, OptRL,, Wi
1: forallu € U do
St « ChoiceModel(R: 1)
W} — WeightUpdate(OptRL L RETT, Wi-1,St)
OptR!, « IndividualRecommender(W/})
SortU" « UserSorting(W., £I™1)
R!, — ItemRecommendation(SortU*!,OptR!, Vi.a(i,t))
L!, — LossComputation(OptR!, RE, L171)

2
3
4:
5:
6
7
8: end for

User Sorting. Different policies can, in principle, be adopted
for sorting users. However, SOCRATE commits to a user sort-
ing based on loss, which, as described in Section 4, is the most
suitable for compensating users. Yet, in order to compare this
choice to other possibilities, in the experiments we run alterna-
tive algorithms that adopt other policies, namely: no, where the
position of users never changes; shuffle, where the position of
users is set at random at each iteration; forced, which considers
all possible orderings of users. We observe that sorting users with
respect to loss is a way to intuitively reduce disparity among
users, targeted by our Problem Statement, since those who in-
curred the highest loss are given higher priority in the next round
of recommendations.

Time Granularity. This determines the moment at which rec-
ommendations are re-optimized based on user feedback, and
for which user. We consider a fixed granularity, where recom-
mendations of all users are re-optimized at the same time, and
user-group, where the best time is determined for a group of
users, divided according to their consumption rate (low, medium,
high). Our system also accommodates the case of user-group time
granularity by simply considering the users in the same group
instead of all users.

Adoption Model. There are multiple ways to simulate a recom-
mendation adoption model [3, 9, 36], i.e., the model that reflects
which set of items is chosen by a user out of all the recommen-
dations R,ﬁ. We consider three models: rank, where users are
assumed to choose their items in the order in which they are
ranked by the scoring function; utility, where users are assumed
to choose items in decreasing order of their utility with respect
to their profile; random, where users are assumed to choose items
randomly.
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Input: SortU?, OptR:, Vi. a(i, t)
1: Vi.a(i,t+1) « a(i,t)
2: for all u € SortU*? do
3: forn «— 1to N do

4 while OptR!, not empty and a(i,t +1) > 0 do
5: i — pop(OptRY)

6: RL «— R, U

7 a(i,t+1) «—a(i,t+1) -1

8: end while

9: end for

10: end for

11: return Vu.R},

Compensation Strategy. This is the strategy to compensate
users, either individually or in groups according to the time
granularity. We consider two strategies:

(1) preference-driven, where users are compensated in decreas-
ing loss order by receiving all their Nrecommendations at
once before the user with the next smallest loss is served.

(2) round-robin, where users are considered in decreasing loss
order and items are recommended to them in round-robin
order of item availability.

When the preference-driven compensation is adopted (see Al-
gorithm 2), N items are recommended to the first user before
moving to the next user in the sorted list of users. The round-
robin compensation strategy (see Algorithm 2 inverting lines 2
and 3) recommends one item at a time to each user (according
to the order dictated by the sorted list of users), until N items
are recommended to each user. Preference-driven is expected to
maximize the satisfaction of the first users in the sorted list. As
a result, this strategy is preferred when the system detects that
some specific users are unsatisfied and thus may be prone to
abandon the system, rapidly compensating for their incurred
loss. On the other hand, round-robin is preferred when consump-
tion is the main goal, since it is likely that all users will get items
that they like, which will affect their consumption rate and the
overall user retention.

Choosing the right compensation strategy is crucial when
there is a limited set of items that are very popular among all
users and when the availability of these items is limited and not
sufficient to satisfy all users. The example in Figure 2 illustrates
the intuitive difference between our compensation strategies. In
Figure 2a, users have similar recommendations (i.e., similar item
rankings) and item availability is low (= 1). In Figure 2b, their
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Figure 2: Illustration of compensation strategies. The set
of optimal recommendations of each user is shown in de-
creasing relevance. The numbers on the arrows reflect the
order in which items will be recommended. On the top, the
two users compete as they have similar recommendations.
On the bottom, the two users do not compete.

recommendations differ. When the two users compete, we can see
that preference-driven favors uy, while round-robin treats u; and us
equally. Section 4 will examine the benefits and drawbacks of each
compensation strategy. We observe that adopting a compensation
strategy also goes in the direction of reducing disparity among
users, thus addressing our Problem Statement.

3.3 Complexity of the Algorithms

The single-user recommender system computes recommenda-
tions for each user just once at the beginning of the first iteration.
Each user is associated with a list of items ordered by utility:
at each iteration the system iterates over the list as new items
are recommended to her/him. SOCRATE internally adapts recom-
mendations at each iteration by updating user weights, which
represent the behaviour of the user with respect to the objective
functions.

Regarding complexity, if we assume that N, K and |O| in Ta-
ble 1 are constant (and indeed they correspond to small integer
values in our implementation), the worst-case asymptotic com-
plexities of the various procedures invoked in Algorithm 1 are
as follows: ChoiceModel, WeightUpdate and LossComputation
are in O(1); IndividualRecommender is in O(|I|log|I|); Item-
Recommendation is in O(|I]). All of these are included in a loop
iterating through the set of all users U, thereby incurring a
O(|U||I|log |I|) complexity. UserSorting can actually be exe-
cuted outside the aforementioned loop for all users at once, with
a complexity of O(|U|log |U|). Overall, the complexity of Algo-
rithm 1 is O(|U||I] log |I| + |U|log |U).
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4 EXPERIMENTS AND RESULTS

The purpose of our experiments is twofold: (i) verify, on real-
world datasets, that SOCRATE outperforms traditional recom-
mendation by delivering (1) a better average cumulative loss and
(2) a better average standard deviation of the cumulative loss
over multiple iterations, and (ii) use synthetic data to compare
SoCRATE to a brute-force optimal solution and verify that the
performance is comparable in terms of minimizing the standard
deviation of the cumulative loss while being much faster.

4.1 Settings

4.1.1 Measures.

Average Cumulative Loss. Since our overall goal is to minimize
user loss, we first measure for each user the total cumulative
loss at iteration ¢, denoted by £}, (Equation (1)), and then we
compute the mean cumulative loss of all users at a given iter-
ation t, denoted by g (Equation (2)). With this, we obtain an
indication of the overall loss incurred throughout the experiment
by computing the average loss across all iterations for all users:

T
£t

t=1

L= (5)

~ -

Standard Deviation of Cumulative Loss. To capture disparity of
compensation across users, we also measure the standard devia-
tion of cumulative loss of all users, denoted by S? (Equation (3))
and, similarly to Equation (5), we obtain an overall measure of
the disparity incurred throughout an experiment by computing
the average of S’ across all iterations:

T
St
t=1

S= ()

~ -

4.1.2  Algorithmic Variants. Table 2 summarizes our configu-
ration variants. To mimic traditional recommenders, we designed
two baselines for the real-world experiments: TRAD and SHUF-
FLE_TRAD. Hence, in both baselines, items are assigned to users
according to preference-driven compensation, just like in tradi-
tional recommendation. The two baselines differ in the order
users are considered. In TRAD, users are always served in the
same order at each new iteration. This means that the same users
are always served first at each iteration. If these users consume
items that are also preferred by users who are served after them,
this will inevitably induce a loss for those “unlucky users”, as
they will receive less optimal items. In SHUFFLE_TRAD, users are
served in a random order at each new iteration. Other strategies
with different user sortings are instances of SOCRATE. For the ex-
periments on real data, we considered two versions of SOCRATE:
SoPD and SoRR that adopt preference-driven and round-robin
compensations, respectively.

Due to lack of direct competitors, we also designed BRUTE-
Force, which considers all possible orderings of users and finds
the best ordering at each iteration. BRUTEFORCE has three vari-
ants: BRUPD implements a preference-driven compensation with
fixed time granularity, BRURR implements a round-robin compen-
sation with fixed time granularity, and BRUGRoUP implements
a round-robin compensation with user-group time granularity.
These variants are compared, respectively to three variants of
SoCRATE: SoPD that implements the preference-driven compen-
sation, SORR that implements the round-robin compensation, and
finally SoGroup that implements the round-robin compensation
with user-group time granularity. The variants using the fixed



Table 2: We consider 6 variants for the synthetic and real-world data experiments. Variants differ according to their
configuration for two parameters: the loss compensation strategy and the user sorting. The user sorting has 4 different
values: no, shuffle, forced, and loss as described in Section 3.2. In the experiment on real datasets, each variant implements
only one loss compensation strategy. Instead, for the brute-force validation both variants of loss compensation are

considered.

. . Loss Compensation User Sorting Granularity | Adoption Model
Type of Experiment Variant - - —
pref-driven { round-robin | no { shuffle { forced { loss | fixed { group | rank, utility, rand
TRAD v v v v
L-world dataset SHUFFLE_TRAD N N N N
real-world datasets SoPD v v v v
SoRR v v v v
BruPD v v v v
BrURR v v v v
L BruGroUP v v v only rank
brute-force validation SoPD v v v v
SoRR v v v v
SoGroup v v v only rank
Table 3: Parameters of real-world datasets. Table 4: Parameters of SYN_DS.
Parameters ‘ AMZ_MUS ‘ AMZ_MOV ‘ TASK_REC Parameters ‘ Values
Number of users |U| 5541 3074 110 Number of users |U| 4or8
Number of items |I| 3568 6423 1806 Number of items |I| @2-|U|-(k-(I]-1)+N))/a(i)
Number of iterations T 15 15 15 Number of iterations T 6 or 15
Recommendations per user N 5 5 5 Recommendations per user N 5 per iteration
Adopted items per user k 3 3 Adopted items per user k 3 per iteration
Mean item availability 150 30 5 Item availability a(i) 1lor % -|U|Viel

time granularity are tested against all three adoption models,
and our results indicate that the adoption model has little or no
impact on compensation; therefore, for the two variants adopting
the user-group time granularity - BRuUGRoup and SOGROUP - we
only show results regarding the rank adoption model. Each one
of the BRUTEFORCE variants reorders users at every iteration,
resulting in (JU|)T different runs, i.e., the number of possible
permutations of users for each iteration, where T is the total num-
ber of iterations considered in an experiment. A run represents
an execution with a given ordering of users at each iteration.
Since testing (|U]| DT runs would be unfeasible already for mod-
erate values of |U| and T, we choose to limit our experiments to
1 million runs sampled uniformly at random from the set of all
possible runs of BRUTEFORCE. The choice of parameter values is
such that it is possible to sample from a set of at least 1M runs.
For the BRUTEFORCE variants, we will additionally study how
SoCRATE compares to the different 1M runs when these fit a
suitable distribution for our data, i.e., to get an indication of how
well SOCRATE performs with respect to all other possible runs.

4.1.3 Datasets. We test SOCRATE over three real-world data-
sets: Amazon Digital Music (AMZ_MUS) [17], Amazon Movies& TV
(AMZ_MOV) [17], Task Recommendation (TASK_REC) [18]. All data-
sets are pre-processed as follows: we keep only users and items
with at least 5 reviews each in AMZ_MUS, and at least 20 reviews
in AMZ_MOV. This is to avoid cold start problems. In TASK_REC,
users (workers) complete and rate task sessions. The dataset
consists of 200 workers and 20k tasks. For the experiments, we
consider a subset of 1806 tasks. Each task belongs to one of
10 types, such as tweet classification, image transcription, or
sentiment analysis, and has a reward value between $0.01 and
$0.05. Table 3 contains additional details for the real datasets.
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User conflict CONFLICT or NO_CONFLICT

We also created a family of synthetic datasets SYN_DS. Table
4 describes the parameters involved in the configurations of
SYN_DS. We define two main variants of SYN_DS which differ in
the scheme of user conflicts, namely CONFLICT and NO_CONFLICT.
The goal of CONFLICT is to maximize conflict between users, thus
in this configuration, all users like the same items. Under the
NO_CONFLICT variant, overlaps between user recommendations
follow a more realistic approach, where few items are popular
among all users, few items are mildly popular, and the rest of

the items are not very popular. We consider a number of items
= ULT=D ISy I+IUI-N
- a(i)

equal to |I| , which corresponds to twice
as many items as the minimum number of items that would be

needed to perform T iterations with |U| users.

Item Availability. As item availability is typically not made
public in real data, we propose to inject it in all our datasets
(including synthetic data) following a normal distribution. This
allows us to study the benefits of our solution for different avail-
ability values. The total number T of iterations is set to 15, as
we noticed that, in real datasets, after a rather small number of
iterations, cumulative loss seems to stabilize, intuitively because
after the most interesting items for a user have been consumed,
there is little difference between all remaining items.

4.2 Summary of Findings
Our experiments helped us make three important observations:

O1. Sorting users on decreasing cumulative loss always yields
a reduction in the standard deviation of cumulative loss
(8), which results in decreasing disparities between users.



02. Satisfying O1 does not impact negatively the average cu-
mulative loss (£).

03. Observation O1 is satisfied regardless of the compensation
strategy. Yet, recommending items to users in round-robin
of item availability yields the best results.

Lessons Learned. First, under limited item availability, recom-
mender systems should be modified so that items are suggested
in round-robin rather than in preference-driven compensation
strategy. Second, under limited item availability, the amount of
compensation SOCRATE is able to provide depends on the distri-
bution of conflict among users: the higher the conflict, the more
SoCRATE compensates users.

Impact of Recommendation Adoption Models. We found that
rank and utility adoptions always outperform adopting items at
random among those recommended. In that case, users end up
consuming items that are less optimal. Moreover, with random
adoption, the worsening of S is even more pronounced (up to
5% for SORR on AMZ_MOV) as it partially disrupts compensation.

Impact of Time Granularity. Although this feature does not di-
rectly entail an improvement in disparity among users, it helped
us model more realistic scenarios, where users vary in consump-
tion rates. Moreover, even with smaller groups of users, SOCRATE
still achieves loss improvements.

Impact of User Conflict. SOCRATE outperforms most runs of
BRUTEFORCE, and is very close to the optimal, especially when
users like the same items (CONFLICT). We also notice that the
compensation performance is independent of the other param-
eters, showing that our solution works well with both com-
pensation strategies and with various combinations of number
of users, iterations, and item availability. When considering a
more realistic scheme for the distribution of items that users like
(NO_CONFLICT), SOCRATE’s performance slightly worsens, but
still remaining considerably better than the average BRUTEFORCE
run. These results are in line with our intuition that SOCRATE
is designed for cases of limited availability with many conflicts
among users. On the contrary, when conflict among users is low
(i-e., their recommended items largely differ), the performance
of our solution moves slightly away from the optimal, obtaining
better results than BRUTEFORCE in 90% of the experiments.

Real-World vs Synthetic Data. Experiments on real-world data-
sets confirm the choices we made for SOCRATE. Specifically,
when considering the average cumulative loss and its standard
deviation, SOCRATE outperforms traditional recommendation for
both preference-driven and round-robin variants. SOCRATE with
preference-driven compensation, SOPD, decreases the standard
deviation by 15.6% with respect to traditional recommendation.
SoCRATE with round-robin, SORR, decreases the standard devia-
tion by 57.0% with respect to traditional recommendation.

4.3 Real Datasets Experiments

We first provide a step-by-step description of SOCRATE applied
to AMZ_MOV for examining compensation, and then present the
results for AMZ_MUS and TASK_REC for examining cumulative loss.

4.3.1 Examining Compensation. In Figure 3 we report the re-
sults of SOCRATE and TRAD on AMZ_MOV. Figure 3d shows how
TRAD treats five users: ug, U768, 41536, 42305 and usg73. The names
of the five different users indicate their relative position in the
user sorting of the baseline option, i.e., we consider the first user
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and those at 1/4, 2/4, 3/4, and last of the ranking. The loss expe-
rienced by each user is different at each iteration; furthermore,
the maximum cumulative loss is higher than 3.0 for the baseline
and 1.75 for SOCRATE (see Figure 3b). To understand the reason
behind this disparity, the reader has to get inside SOCRATE’s
logic and specifically the preference-driven compensation chosen
for the implementation of traditional recommendation baselines.

In Table 5, we selected five different iterations: the first three
(0, 1, 2) and the last two (13, 14). For each of them, we report both
the loss at the current iteration L, = W/ - loss!, and cumulative
loss L experienced by each user. The order in which each user
is served is important. Indeed, uy never experiences any loss,
while the last user usg73 starts with a 0.25 loss, and reaches a
final cumulative loss equal to 3.24.

The lower part of Table 5 reports losses and user ranks for
SoCRATE. The main difference with the baseline is that, at each
iteration, users are re-sorted according to the loss they accu-
mulated until that point. The other difference is the use of a
round-robin compensation, instead of preference-driven. In Table
5, we see how the compensation works in SOCRATE. For exam-
ple, if we consider iterations 13 and 14, we can see how user
u768, who is experiencing the highest cumulative loss at iteration
13, is served before the other four users at iteration 14 (global
ranking position 35). Conversely, user uj53¢, who has the lowest
cumulative loss, is served globally as 2327th. As shown in Table 5,
in the first iteration, users are sorted in the same order as in the
baseline, then, in the following iterations, users are re-sorted to
minimize loss. As can be seen, both re-sorting users according to
the loss and the round-robin compensation strategy is effective in
reducing disparate treatment among users. In fact, the maximum
cumulative loss is almost halved (from 3.24 to 1.75), and also the
standard deviation among users is greatly decreased.

4.3.2  Examining Cumulative Loss. Our experiments on the
three real-world datasets are shown in Table 6. For each dataset
we select fixed time granularity and three adoption models (rank,
utility and random). The rows report two different metrics, com-
puted for both the baseline algorithms and SOCRATE: the average
cumulative loss £ and the standard deviation of the users cumu-
lative loss S. We compare four systems: two baselines (TRAD and
SHUFFLE_TRAD) and two versions of SOCRATE: SOPD and SoRR
that adopt preference-driven and round-robin compensations, re-
spectively.

Both versions of SOCRATE always outperform the two base-
lines, both for what regards the average cumulative loss £ and
average standard deviation of the cumulative loss S on all three
datasets.

The only exceptions are on AMZ_MUS, in which, for the random
and rank adoption models, the two baselines provide a slightly
lower average cumulative loss compared to SOPD. Note however
that SoPD provides a lower standard deviation S and hence a
better compensation. Both system configurations decrease S
with respect to the baselines: specifically, SOPD decreases the
standard deviation by 15.6%, and SORR decreases the standard
deviation by 57% with respect to both baselines. Overall, SORR
achieves a lower loss and a better compensation than SoPD.

4.4 Comparison with Optimal Brute Force

To test the optimality of our solution, we designed a BRUTEFORCE
strategy that considers all possible orderings of users at each
iteration so as to find the best one, i.e., the one that yields the
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Figure 3: Loss per iteration and cumulative loss per iteration from experiments on AMZ_MOV for TRAD and SOCRATE.

Table 5: Comparison between TRAD baseline and SORR with round-robin compensation on AMZ_MOV: we selected five different
iterations and, for each one, we report the position of the user in the sorting Pos, the loss L}, and cumulative loss £/,
experienced by each user. Due to space limitations, we only report the first three and the last two iterations.

System | User It #0 It #1 It #2 It #13 It #14
Pos [ LL [ L5 [Pos [ LL [ LL [Pos [LL, | LL [Pos [LL | LL |Pos [LL [ L
up 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
U768 768 0 0 768 0 0 768 0 0 768 0 1.13 | 768 0.01 | 1.15
TrAD uis3e | 1536 | 0 0 1536 | 0 0 1536 | 0 0 1536 | 0.04 | 0.46 | 1536 | 0.05 | 0.51
U305 | 2305 | 0 0 2305 | 0 0 2305 | 0.1 0.1 2305 | 0.06 | 1.92 | 2305 | 0.07 | 1.98

uzg73 | 3073 | 0.25 | 0.25 | 3073 | 0.32 | 0.57 | 3073 | 0.41 | 0.98 | 3073 | 0.03 | 3.19 | 3073 | 0.05 | 3.24

up 0 0 0 218 0 0 1031 | 0 0 1121 | 0.02 | 0.83 | 1373 | 0.04 | 0.87
U768 768 0 0 986 0 0 1582 | 0 0 3 0 1.74 | 35 0 1.74
SoRR u1s3e | 1536 | 0 0 1735 | 0 0 2100 | O 0 2327 | 0.05 | 0.37 | 2282 | 0.06 | 0.43
uz30s | 2305 | 0 0 2436 | 0 0 2601 | 0.01 | 0.01 | 1216 | 0.04 | 0.83 | 1274 | 0.05 | 0.88
usp73 | 3073 | 0.25 | 0.25 | 376 0 0.25 | 332 0 0.25 | 451 0.01 | 1.24 | 496 0.02 | 1.26

Table 6: Experiments comparing the two baselines (TRAD and SHUFFLE_TRAD) with two versions of SOCRATE (SoPD and
SoRR) on the three real-world datasets, using two compensation strategies and three adoption models.

System Metrics AMZ_MoV AMZ_MUS TASK_REC
4 Rank { Utility { Random | Rank { Utility { Random | Rank { Utility { Random
TRAD L 0.4953 0.5266 0.6962 0.4862 0.4782 0.5384 0.0990 0.0990 0.1235
S 0.6621 0.7204 0.9330 0.5440 0.6242 0.7801 0.1961 0.1961 0.2484
L 0.4175 0.4104 0.6958 0.4101 0.3906 0.5217 0.0640 0.0663 0.0747
SHUFFLE_TRAD =
S 0.5038 | 0.4843 0.8311 0.4070 | 0.4285 0.6390 0.1636 | 0.1749 0.2180
SoPD L 0.3884 | 0.3780 0.6750 0.4162 | 0.3804 0.5439 0.0446 | 0.0446 0.0527
S 0.3111 0.2964 0.5864 0.2963 | 0.2928 0.5598 0.0851 0.0851 0.0920
SORR L 0.0697 | 0.0940 | 0.5623 | 0.1268 | 0.1845 | 0.4345 | 0.0116 | 0.0116 | 0.0463
S 0.0837 | 0.1049 | 0.5568 | 0.1315 | 0.1736 | 0.4490 | 0.0485 | 0.0485 0.0980
highest loss compensation. BRUTEFORCE is expected to be costly runs, while its best run is expected to be optimal or close to opti-
in terms of execution time, since it executes a high number of mal in terms of loss compensation. The starting order of users at
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the first iteration is the same for both SOCRATE and BRUTEFORCE.
Additionally, we set item availability to a low amount for the fol-
lowing two reasons. First, we want to simulate a low-availability
scenario, where the order of users becomes critical when min-
imizing loss. Second, we seek to validate the hypothesis that
SoCRATE is able to compensate even in situations of extreme
unequal treatment among users. In fact, if user preferences are
similar and few copies of items are available, disparity will be
maximized at least in the first iterations.

4.4.1 User Conflict Configurations. To better validate SOCRA-
TE, we test our system against two kinds of synthetic datasets:
CONFLICT and NO_CONFLICT. Moreover, we study SOCRATE with
different adoption models and time granularities.

The Case of Conflicting Users. We run BRUTEFORCE on CON-
FLICT for 6 and 15 iterations so as to observe SOCRATE’s loss
compensation both in the short and long terms. We run BRUTE-
Forcke for both compensation strategies: round-robin (BRURR)
and preference-driven (BRUPD). We report results in a variety of
scenarios: with 4 and 8 users, over 6 and 15 iterations, and consid-
ering 1 and half the number of users as possible item availabilities
for the round-robin case. We run additional tests with round-robin,
because SORR is the variant of SOCRATE that performs best, as
shown in Section 4.3.

The Case of Non-Conflicting users. Under NO_CONFLICT, 1/6
items are popular among all users, with a utility between 0.8
and 1; 1/6 of the items are mildly popular, with a utility between
0.6 and 0.8; the remaining 2/3 are not popular, with a utility
between 0 (the minimum) and 0.6. Preferences are assigned at
random to users according to these ranges. We test with round-
robin compensation, with combinations of 6 and 15 iterations for
4 and 8 users.

Adoption and Time Granularity. Finally, we compare SORR
to BRURR with the different adoption models rank, utility and
random, and validate the user-group time granularity compar-
ing SoGrouP with BRUGROUP. We set the other parameters to a
standard configuration consisting of 15 iterations, 4 users, avail-
ability of 1 per item, and CONFLICT. For the user-group variant,
we consider 15 iterations, round-robin compensation, CONFLICT,
and 8 users divided into 3 groups according to their consump-
tion rate: fast, medium, and slow consumers. In our simulations,
fast consumers receive new recommendations at each iteration,
medium consumers every two iterations, and slow consumers
every four iterations. We test for item availability of 1 and 4 per
item.

4.4.2 Results. Tables 7 and 8 report our results. Under CON-
FLICT, the standard deviation of the cumulative loss S is mini-
mized in all cases, with both SORR and SoPD achieving a better
performance than most of the runs of BRURR and BRUPD respec-
tively; this is true for every configuration, regardless of a(i), |U]|
and T. Under NO_CONFLICT, results are slightly worse than in
CONFLICT. This allows us to conclude that SoRR is better suited
for extreme situations of limited availability and conflicts be-
tween users.

Nonetheless, if we try to have an indication of how well So-
CRATE scores with respect to the BRUTEFORCE runs, we find that
our solution consistently obtains performances on a par with
the best runs of BRURR even in realistic situations, confirming
the empirical results presented in Section 4.3. To this end, we
fit a continuous distribution to the values obtained from the 1
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Figure 4: BRURR runs distribution for the following con-
figuration: CONFLICT, |U| =4, T =15, a(i) = 1.

million runs of the BRUTEFORCE variants and we empirically
chose a beta distribution as the best-fitting distribution to our
experimental data. Then, we considered the probability density
function of the distribution of standard deviations of cumulative
losses and determined the probability that SOCRATE performs
better than BRUTEFORCE. In particular, we computed the area
As = 1— (cdf(X)), where cdf is the cumulative distribution
function for the value X of SgF obtained by SOCRATE. The goal
is to maximize this probability, i.e. the area located to the right of
the value obtained by SOCRATE. Figure 4 shows that SOCRATE
maximizes this area and lies very close to the absolute best run.

Additionally, Table 8 shows that SORR performs well inde-
pendently of the adoption model, and that its loss compensation
allows us to always achieve a balance between users in terms of
cumulative loss. With the user-group time granularity SOGrouP is
also close to the optimal regarding S, with only a small decrease
in the performance with a higher availability.

Finally, Figure 5 reports the performance of SORR when rang-
ing item availability from 1 to 6 copies of each item under the
NO_CONFLICT configuration. From our experiments we noticed
that increasing the value of item availability the performance of
our solution decreases. In fact, when the number of users is equal
to 8 and item availability higher than 4 (i.e. half of the number of
users), the experimental scenario cannot be considered of limited
availability anymore, i.e., the case for which our solution has
been specifically designed to cope with.

Our preliminary response time investigation found that both
the sorting of the users on loss (as opposed to not sorting them)
and the presence of conflicts among users (i.e., CONFLICT or
NO_CONFLICT) have negligible impact on time required to pro-
vide recommendations to users (for the numbers of users we
considered).

5 RELATED WORK

Our work relates to sequence-based recommendations [7, 21,
34]. Tt also relates to session-based recommendations that aim
to capture short-term dynamic user feedback [33]. Sequential
recommenders differ from session-based in that the order of
individual items matters and is used to predict the next item a
user is most likely to consume. Our work differs in many ways:
we introduce dynamic time splitting and compensation strategies
to make up for loss; we combine historical user data with dynamic
user feedback based on various recommendation adoption models.
To the best of our knowledge, no other work encompasses all
features of SOCRATE. Table 9 contains some works that are most
related to ours.



Table 7: Results on SYN_DS comparing different variants of SOCRATE and BRUTEFoRCE for various conflict configurations
(CONFLICT and NO_CONFLICT), compensation strategies and values of a(i), |U| and T. We show the average cumulative loss ©£)
and the average standard deviation of the cumulative loss (§) for both SOCRATE (S_s and £s) and BRUTEFORCE (S_BF and
L_BF). Results when S_s is within the first percentile and L is better or equal to the mean value of BRUTEFORCE are in bold.

Parameters ‘ ‘ Metrics
. . . —min —mean —_ —min —mean —
Algorithms | Conflicts | a(i) | (Ul | T | 111 || Zhe" | T | Zs | Shr | She™ | Ss || As
4 6 160 0.5660 0.5663 0.5669 | 0.0144 | 0.0410 0.0200 99.06%
1 4 15 | 376 0.8959 0.9004 0.8983 | 0.0164 0.0559 0.0194 99.98%
CONFLICT 8 6 320 0.6364 0.6434 0.6420 | 0.0194 0.0477 0.0222 99.99%
8 15 | 752 0.9701 0.9877 0.9877 | 0.0234 0.0596 0.0247 99.99%
4 4284 .42 42 . .024 . 9.63%
BRURR, SORR 2 6 80 0.428 0.4297 0.4299 | 0.0068 0.0240 0.0083 99.63%
4 15 | 188 0.7372 0.7603 0.7609 0.0100 0.0324 0.0144 99.84%
4 6 160 0.2311 0.2504 0.2459 | 0.0186 0.0539 0.0225 98.46%
4 15 | 376 0.2288 0.2659 0.2927 0.0231 0.0647 0.0397 97.67%
NO_CONFLICT 1
- 8 6 320 0.3284 0.3596 0.3591 | 0.0175 0.0614 0.0361 97.86%
8 15 | 752 0.2822 0.3316 0.3240 | 0.0259 0.0755 0.0592 92.61%
4 6 160 0.7408 0.7422 0.7423 0.0840 0.2402 0.1156 99.08%
BRUPD, SoPD CONFLICT 1 4 15 | 376 1.0021 1.0127 1.0048 | 0.0585 0.2162 0.0634 99.99%
8 6 320 1.0055 1.0105 1.0119 0.1141 0.2525 0.1222 99.99%
8 15 | 752 1.2731 1.2994 1.2952 | 0.0745 0.1946 0.0638 99.99%

Table 8: Results on SYN_DS comparing BRURR against SORR with different adoption models, and BRUGROUP against

SoGroup.
Parameters ‘ ‘ Metrics
Algorithms Adoption ‘ a(i) ‘ ‘ Z;;nl.{n 7;;‘;“” ‘ Ls ‘ EZ'}" ‘ §§}f“” ‘ Ss ‘ ‘ As
rank 0.8959 0.9004 0.8983 | 0.0164 0.0559 0.0194 99.98%
BRrRURR, SoRR utility 1 0.9215 0.9730 0.9848 | 0.0159 0.0519 | 0.0171 99.96%
random 0.9715 1.1870 1.1974 | 0.0172 0.0663 0.0295 98.98%
BRUGROUP. SOGROUP rank ‘ 1 ‘ 0.3121 0.3274 0.3282 | 0.1410 0.1649 0.1474 99.92%
’ ‘ ‘ 0.1855 0.1949 0.1991 | 0.0719 0.0895 0.0806 97.41%
Table 9: Comparison overview of the related work.
Algorithm | Time Granularities | _. . .
Paper Sequence-Aware ME ‘ S0 FIXED ‘ GROUP Simulated Adoption | Loss Compensation
SoCRATe v v v v v v v
Jannach and Ludewig [11] v v v
Zheleva et al. [37] v v N
Wang and Zhang [32] v
Moore et al. [16] v v
Moling et al. [15] v v
Vasile et al. [31] v v
Wu et al. [35] v v
Sanchez and Bellogin [24] v v v v
Hazrati and Ricci [9] v v v
Fleder and Hosanagar [8] v v v
Szlavik et al. [30] v v v

Algorithm: MF: matrix-factorization, SQ: sequence learning; Time granularity: FIXED or based on user groups.

On Sequence-Aware Recommendations. SOCRATE is sequence-
aware as it combines principles of sequence-based and session-
based recommendations [21]. Sequence-based treats the user-
item interactions as a dynamic sequence and takes the sequential
dependencies into account to capture the current and recent pref-
erence of a user [5, 34]. Session-based captures multiple user-item
iterations that happen together in a continuous period of time
(session). It is able to capture both a user’s short-term preference
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from recent sessions and the preference dynamics reflecting the
change of preferences from one session to another [33]. In [11]
the authors detected in the e-commerce domain that recommend-
ing on-sale items and currently trending items can lead to higher
adoption rates of the recommendations in this domain; in [37]
the scope is to find clusters of users in the music environment,
specifically, they adapted the model to capture the user mood in
listening sessions; finally, in [24], the authors developed a new
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Figure 5: SORR performance varying the availability of
items.

framework tailored to venue recommendation, applied to any
dataset containing temporal or sequential information, specifi-
cally it uses different item ranking strategies and new evaluation
metrics. Finally, in [31, 35] the systems provide consecutive rec-
ommendations in a cold-start context. These systems are different
from ours because they are either sequence-based or session-based
as indicated in Table 9.

On Time Granularity and Weight Update. In [32], there is a sim-
ilarity with SOCRATE regarding the time granularity, specifically
the user-group one. This work introduces the concept of recom-
mending an item at a specific time when the user is ready to
adopt it. In [15, 16] the system adapts in real-time to the changes
in user preferences. Their approach is similar to our weight update.
However, these systems are true RS algorithms, while our system is
not dependent on a specific RS algorithm. Perhaps the closest work
to ours is [6], which models the idea of limited availability in
an online matching problem (applied in a recommender system).
The scoring function combines relevance and diversity, and time
granularity is determined by different user arrival rates. The main
difference with our work is that our compensation is among users,
instead, their idea of diversity is among items recommended to a
single user.

On Fair Recommendations. [27-29] address the problem of a
group of users with potentially different preferences, such as
a group trying to decide which movie to watch. The proposed
solutions are sequence-aware recommendation systems that take
into account users’ satisfaction with the recommended items
and their disagreement with the rest of the group. In contrast,
SOCRATE does not view users as a group to be satisfied; rather, it
allows users to receive different items instead of forcing them to
receive the same one (individual recommendation). Additionally,
our solution focuses on a limited-availability scenario, contrary
to the contexts of [27-29]. While the concept of group satisfaction
and dissatisfaction is similar to the idea of loss, their computation
is specific to group and user recommendations, whereas loss
computation calculates the difference between the individual’s
optimal and actual recommendations.

6 CONCLUSION

We formalized the problem of generating recommendations that
compensate users over time in multi-session recommendations.

SoCRATE is built to be usable with any recommender system
under limited item availability. In this scenario, few users are rec-
ommended some items and receive preferential treatment, while
the rest is left with sub-optimal recommendations, ultimately
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leading them to leave. For this reason, first we identified two
measures to be minimized (average cumulative loss £ and stan-
dard deviation of cumulative loss S), in order to avoid inequality
and favor user retention. Then, we designed two compensation
strategies (preference-driven and round-robin) to enforce equal
user treatment over time, considering users and items in differ-
ent orders and simulating different recommendation adoption
models and time granularities. Finally, we introduced SOCRATE,
a framework that implements all these algorithms to enable user
loss compensation. Experiments on real data showed that we are
able to compensate loss under different conditions, suggesting
that traditional recommenders should be revisited. Additionally,
experiments on synthetic data demonstrated that our approach
is way faster than an optimal brute-force compensation strategy,
while achieving comparable results.

One limitation of our system is that we compensate users
“outside” of the individual recommender. This has the benefit of
generality, but by including compensation inside a recommenda-
tion strategy we could improve performance in terms of accuracy
and fairness. Another limitation is using real datasets of limited
size, which, although sufficient to substantiate our claims, may
not show all compensation opportunities that a more thorough
investigation with larger datasets could offer.

In future work, we shall therefore consider larger datasets, as
well as studying the system by varying item availabilities over
time, e.g., by injecting new items or increasing their availabil-
ity. Furthermore, we will complement our system evaluation
with traditional metrics of recommendation, such as recall and
precision. In fact, available datasets lack the required labelling
regarding availability, making this task highly complex. We plan
to extend our work to involve, e.g., a user study, in order to enrich
our experiments with a further evaluation based on recall and
precision.

Additionally, we would like to investigate how the solution
compares to incorporating compensation inside a particular rec-
ommendation algorithm. To do that, we would like to (i) blend
short-term user feedback with long-term user history, and (ii)
include compensation inside a recommendation strategy, in our
case KNN. We would like to build on the work of [14] that adds
temporal dynamics inside collaborative filtering. This would al-
low us to keep track of the evolution of loss in the recommenda-
tion logic itself, which may yield higher accuracy results since a
recommender has access to a larger pool of items. Comparing this
strategy to SOCRATE would enable us to verify this hypothesis
and open new research directions for exploring the extension of
other recommenders.
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