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Abstract. Upskilling is a fast-growing segment of the education econ-
omy [31]. Yet, there is little algorithmic work that focuses on crafting
dedicated strategies to reach high-skill mastery. In this paper, we formal-
ize AdUp, an iterative upskilling problem that combines mastery learn-
ing [49] and Zone of Proximal Development [7]. We extend our previous
work [9] and design two solutions for AdUp: MOO and MAB. MOO is a multi-
objective optimization approach that relies on Hill Climbing to adapt the
difficulty of recommended tests to three objectives: learner’s predicted
performance, aptitude, and skill gap. MAB is a meta approach based on
Multi-Armed Bandits to learn the best combination of objectives to op-
timize at each iteration. We show how these solutions are combined with
two common learner simulation models: BKT (KT-IDEM) [47] and Item
Response Theory (IRT) [53]. Our simulation experiments demonstrate
the necessity of leveraging all three objectives and the need to adapt the
optimization objectives to the learner’s progression ability as MAB offers
a higher mastery rate and a better final skill gain than MOO.

1 Introduction

The rapid growth in new learning opportunities e.g., MOOCs, tutorials, and
community-based discussion forums, is shifting attention to online skill improve-
ment. Upskilling that is occurring outside of formal offerings is a fast-growing seg-
ment of the educational economy [45, 31]. Moreover, nowadays, learners engage
in self-directed learning, managing many elements of their own study, which, in
turn, often requires working on various learning activities independently with less
direct guidance from teachers [22]. Consequently, providing guarantees on the
quality of learning outcomes is increasingly difficult in these new bite-sized learn-
ing structures as they can lead to the so-called illusion of explanatory depth [55]
where learners only acquire a superficial understanding of a topic. Ideally, each
learner should receive tests chosen in a such way that the learner’s skill pro-
gresses. This should account for the learner’s ability to resolve tests based on
skill and past performance. That is the topic of mastery learning [49] where
the focus of instruction is the time required for different learners to acquire the
same competencies and achieve the same level of mastery. To the best of our
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knowledge, our work is the first to propose formalization that encounters mas-
tery learning. This learning strategy is very much in contrast with classic models
of teaching where all learners are given approximately the same time to learn.
We illustrate that with an example.

Fig. 1: Example of the process of learning mathematical functions.

Motivating example. Consider a learner with very basic knowledge in
Math who wants to learn mathematical functions. Figure 1 illustrates an ex-
ample of the learning process. In the beginning, the learner receives tests with
a moderate difficulty level of 0.3 for which she provides correct answers. As a
result, she incurs no skill gap, and her skill is updated accordingly. This triggers
a second step where she is assigned more difficult tests (on limits of functions) on
which she fails. In addition to not increasing her skill, she incurs a skill gap. To
fill that gap, she is given a second chance with the same type of tests on which
she succeeds. Her input is correct and her skill is updated. The same process is
repeated, and the learner receives more difficult tests on derivatives and then on
integrals. She provides correct results and her skill increases.

Challenges. Our example identifies several challenges. First, we need to de-
termine which k tests to assign to a learner at each iteration. Existing work
on recommending tests optimizes the learner’s expected performance either by
assuming tests with the same difficulty level [49] or by pre-defining the compo-
sition of difficulties beforehand (e.g., by alternating test difficulty levels [36]).
Indeed, according to learning theories illustrated in Figure 2, simply relying on
the learner’s expected performance runs the risk of narrowing down the learner
into a zone of ”boring” and under challenging tests that do not incur upskilling.
To address that, we propose to also account for the learner’s aptitude, i.e., the
difference between the learner’s skill and the test difficulty level. This will en-
courage selecting tests that challenge the learner (the learnable zone in Figure 2).
Hence, we need to balance expected performance and aptitude. Second, we need
to account for the potential skill gap for determining the next k tests. This will
motivate the learner to work on her weaknesses and previous failures. To the
best of our knowledge, no existing work does so. Third, we need to simulate the
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learners’ performance and devise a skill update strategy after they complete a
batch of k tests.

Fig. 2: Illustration of the combination of the Zone of Proximal Development
(ZPD) and Flow Theory. In [7], it is shown that learners improve their skills by
completing tests that are challenging but not too hard (dotted line).

Contributions. This paper represents an extension of our previous work [9].
We formalize AdUp (Adaptive Upskilling) as an optimization problem where
a learner receives k tests that maximize expected performance and aptitude
and minimize the accumulated skill gap. The combination of these objectives
constitutes the novelty of our formalization.

The main challenge in solving AdUp, is its multi-objective nature. We pro-
pose to explore two solutions: a Multi-Objective Optimization, referred to as
MOO, and a Multi-Armed Bandits solution, referred to as MAB. MOO is the natural
formulation when all dimensions need to be optimized and is addressed by de-
veloping a Pareto solution that relies on dominance between k test sets and a
Hill Climbing [42] heuristic algorithm that finds a subset of the non-dominated
solutions [6]. Several variants can be drawn from MOO depending on the different
compositions between the objectives. A drawback of MOO is that all variants op-
timize exactly the same dimensions over all the assigned batches of tests during
the whole learning process. It would be desirable to have an approach that learns
to find the dimensions to optimize at each iteration. For example, if the learner
keeps providing wrong answers to the same tests, favoring the optimization of
gap could be more desirable as we need to make sure that the learner successfully
completes tests before providing more challenging ones. Therefore, we propose
MAB, a solution that learns which of the three optimization dimensions to opti-
mize at each iteration of k tests. We formalize this approach as a multi-armed
bandit (MAB) problem.
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Empirical validation. Our experiments examine the effectiveness of the
optimization dimensions on upskilling. To investigate that, we divided our ex-
periments into two parts. In the first one, we examine the impact of our solutions
on mastery by simulating the learners’ answers as well as the whole learning
process. We formulate four research questions: RQ1. Is the combination of all
optimization dimensions well-adapted for attaining mastery and improving skill
gain? RQ2. Do different settings of the skill update strategy exhibit different re-
sults? RQ3. Does the choice of the learner simulation model impact mastery and
skill gain? RQ4. Does an application of a meta-strategy that chooses to optimize
a subset of dimensions at each iteration (MAB), improve mastery achievement?
In the second part, we examine the quality of the assigned tests at the next
iteration of the learning process based on the interactions of learners with real
educational systems. We then formulate a research questionRQ5. Does the opti-
mization of all the dimensions lead to a more relevant test assignment compared
to state-of-the-art baselines?

We use three real-world datasets: MatMat collected from a Czech educational
system (matmat.cz)3, ASSISTment challenge data collected from the ASSIST-
ment platform4, and, ASSISTment2009 data that contains learners’ answers to
questions extracted from the same ASSISTment platform between 2009 and
2010. From each dataset, we infer the difficulty levels of the tests based on their
features (e.g., type of the test) if they are available. If the features are miss-
ing, the inference is based on the correctness rate of the tests of all learners.
To simulate learners and predict their probability of providing correct answers,
we leverage two models: an extended version of Bayesian Knowledge Tracing
(BKT) [14] that leverages test difficulties [47] and the Item Response Theory
model (IRT) [53]. These models capture the learning process of learners and
infer the tests that are correctly answered by them. After each iteration, the
skill of a learner is updated following an existing approach (i.e., NCC [27]) that
aggregates the learner’s performance based on her N last consecutive answers.
For example, when N = 3, the learner’s skill is updated if she provides three
consecutive correct answers on tests with the same difficulty level.

Summary of findings. For the first part of the experiments, we summarize
the findings of each research question. On RQ1, we find that combining all
objectives performs better than optimizing one or two dimensions only. We show
that it yields the highest mastery in fewer iterations. Our results confirm the ZPD
and Flow theories [7] and the importance of leveraging aptitude and challenging
learners. Moreover, as our skill update strategy is based on NCC, we find, on
RQ2, that MOO is not sensitive to the variation of the value of N . On RQ3., we
find that the results of RQ1, performed on BKT, are generalized when using
another simulation model (i.e., IRT). We also observe that MOO offers the highest
rate of mastery and optimizing aptitude remains essential. The main difference
between the two simulation models is that IRT tends to favor the minimization
of gap while BKT favors the maximization of expected performance. On RQ4.,

3 https://github.com/adaptive-learning/matmat-web/blob/master/data/data description.md
4 https://sites.google.com/view/assistmentsdatamining
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we find that choosing automatically the combination of dimensions to optimize
at each iteration improves both the skill gain and the percentage of learners that
attain mastery. This confirms the need for a meta-strategy that automatically
adapts to the learner’s skill progression. For the second part of the experiments,
we find, on RQ5., that MOO is not only the best in terms of upskilling but it offers
the possibility to a larger number of learners to improve their skill compared
to recommendation-based (e.g., KNN [56]) and knowledge-based baselines [51,
66](i.e., models that capture the learning and the knowledge of learners). This
shows that our optimization dimensions capture with accuracy the evolution of
the learning process of a given learner. It also shows that our solution can adapt
to different learners.

Organization. In Section 2, we define our data model as well as the opti-
mization dimensions we study and we give a formalization of the AdUp problem.
Section 3 provides a description of our algorithms. Our extensive experiments
are described in Section 4. We provide a review of the related work in Section
5. We conclude with a summary and discussion on future work in Section 6.

2 Model and Problem

We consider a learner l ∈ L who follows an iterative learning process for a skill sk.
We focus on one skill that has a scalar value. Extending the skill representation
to a vector is not straightforward. It requires studying independence between
skills or making an independence assumption which may be unrealistic.

At each step, l completes a set of k tests with different difficulty levels for
sk. Each test t ∈ T has a fixed difficulty dt. We associate to each learner l a skill
value l.sk that either remains the same or increases as the learner successfully
completes tests. The initial value of l.sk can be computed from the information
the learner fills when joining the system (e.g., by completing an initial set of tests
or through a pre-assessment questionnaire). We consider that a learner attains
mastery when hey skill value l.sk can not be further improved and is equal to
the highest difficulty level.

We aim to formalize a problem where at any given iteration, the learner
receives a batch of k tests whose difficulty level is strictly greater than l.sk.
To define our problem, we formalize dimensions that characterize the learning
process of a learner l for a skill sk.

2.1 Expected performance, aptitude, and gap

Expected performance. It is the expected performance of learner l for a test
t. It is based on the similarity of t with successfully completed tests l.S ⊆ T by
l and is formalized as follows:

exPerf (l, t) = sim(t, l.S)

Aptitude. It quantifies the difference between a learner’s skill value (l.sk) and
the difficulty level of a test t (dt). It represents the learner’s progression ability
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for skill sk when assigned tests that are correctly completed. Aptitude is defined
as follows:

apt(l, t) = dt − l.sk

Gap. It quantifies the distance between the past failed tests of learner l (set
l.F ⊆ T ) and the test t and is defined as follows:

gap(l, t) = dist(t, l.F)

Similarity and distance between tests can be computed in several ways. In
our implementation, we use the Euclidean distance between the difficulty levels
of tests.

2.2 The AdUp problem

To achieve skill mastery, we propose an iterative formulation that solves the
following problem:

Problem 1 (The AdUp Problem). Given a learner l, with a skill l.sk, find a
batch B ⊆ T of k tests to assign to l at iteration i s.t.:

maximize
∑
t∈B

exPerf (l, t)

maximize
∑
t∈B

apt(l, t)

minimize
∑
t∈B

gap(l, t)

subject to |B| = k

(1)

3 Solutions

The main challenge in solvingAdUp is its multi-objective nature. Scalarization is
a common approach that transforms the problem into a single objective whereas
optimization dimensions are combined via a weighted linear sum. Another ap-
proach is the ϵ-Constraint method where a single objective is optimized and the
other objectives are constrained with user-specific values [46]. These methods suf-
fer from the need to fix weights or thresholds, leading to sub-optimal solutions.
Therefore, we propose to explore two solutions: a Multi-Objective Optimization,
referred to as MOO, and a Multi-Armed Bandits, referred to as MAB.

3.1 Multi-Objective Optimization (MOO)

We propose an approach that finds the Pareto solutions by addressing all objec-
tives at once [6]. To do so, we define a dominance relation between two sets of
tests of size k.

We represent the set of all test batches as Ck = {B|B ⊆ T , |B| = k}. We
define batch dominance B1 ≻ B2 between any two sets in Ck:

Batch dominance. We say that B1 dominates B2 (B1 ≻ B2) iff:
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– B1 is no worse than B2 for all three objectives.
– B1 is strictly better than B2 for at least one objective.

We design a heuristic Algorithm 1, based on [42], to avoid an exhaustive
exploration of the search space of possible solutions. It starts by performing
times iterations where in each it finds an optimal batch of tests (Lines 3 to 7) to
avoid local optima. At each iteration, it first generates a random set of k tests.
Then it performs Hill Climbing to optimize both expected performance and
aptitude using Algorithm 2. The Hill Climbing optimizes these two dimensions
because they may be related. Indeed, the tests with a high aptitude tend to have
lower expected performance (See Figure 2). The returned candidates are added
to the set of results. From this set, only non-dominated candidates are kept
(Line 8). Finally, the candidate that yields the lowest gap is chosen (Line 9) and
assigned to the learner (Line 10). The skill gap is not directly optimized within
Hill Climbing as it is independent of both aptitude and expected performance.
The learner’s skill is updated after the completion of the test batch (Line 11).
Refer to Section 4.2 for our skill update strategy. This process is repeated until
the learner l masters the skill (i.e., correctly answering the most difficult test).

Algorithm 1: Heuristic MOO that optimizes Aptitude, Expected Per-
formance, and Gap

Input: learner l, set of tests T , size k, # repetition times
1 while not mastery do
2 Results← ∅
3 for n in [1..times] do
4 C ← Random candidate(k)
5 C∗ ← HCAE(C) \\Algorithm 2
6 Results.Add(C∗)

7 end
8 Keep non-dominated candidates in Results
9 B ← The solution from Results with the lowest skill gap

10 l completes B
11 l.sk ← skill update(l.sk,B)

12 end

Algorithm 2 is a routine that is called from Algorithm 1 and searches over
all the neighbors of the input batch and selects the one that improves aptitude
and expected performance. A neighbor of a batch is computed by replacing one
and only one test with another test that has either the next higher or next lower
difficulty (Lines 3 to 10). If all neighbors are dominated by the current batch,
this latter is chosen as the optimized batch. Otherwise, the algorithm replaces
the current batch by randomly selecting one from the non-dominated neighbors.

MOO variants. There are multiple solution variants to AdUp: MOO as described
in Algorithm 1; MOEG, MOAG, and MOAE optimize expected performance and gap,
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Algorithm 2: HCAE - Hill Climbing for Aptitude and Expected Per-
formance (Called from Algorithm 1)

Input: Batch of k tests B
Output: Optimized batch B∗

1 while True do
2 Candidates← ∅
3 for test ∈ B do
4 test down← A test with the next lower difficulty
5 B 1← B − {test}+ {test down}
6 test up← A test with the next higher difficulty
7 B 2← B − {test}+ {test up}
8 Candidates.add([B 1, apt(B 1), exPerf (B 1)])
9 Candidates.add([B 2, apt(B 2), exPerf (B 2)])

10 end
11 Keep non-dominated candidates in Candidates
12 if B dominates all candidates in Candidates then
13 return B
14 end
15 else
16 B ← A random candidate from Candidates
17 end

18 end

aptitude and gap, or aptitude and expected performance respectively; MOG, MOE,
and MOA optimize gap only, expected performance only, or aptitude only respec-
tively. Similarly to Algorithm 1, the bi-objective variants are also based on Hill
Climbing to explore the space of batches and find potential candidates. In the
case of MOAE and MOEG, the Hill Climbing optimizes expected performance. The
condition in Line 9 (Algorithm 1) relates to aptitude for MOAE and gap for MOEG.
On the other hand, for MOAG, the Hill Climbing optimizes aptitude, and Line 9
remains unchanged.

3.2 Multi-Armed Bandits Algorithm (MAB)

A drawback of the previous solution is that all the variants optimize exactly the
same dimensions over all the assigned batches of tests during the whole learning
process. However, it would be desirable to have an approach that can learn to
find the dimensions to optimize at each iteration. For example, if the learner
keeps providing wrong answers to the same tests, optimizing gap solely could be
more desirable as we need to make sure that the learner successfully completes
these tests before providing more challenging ones. On the contrary, if the learner
answers correctly the last batches of tests, it might be better to optimize aptitude
so that the learner gets challenged with more difficult tests as she has no gap in
her learning process. Therefore, our goal is to design an approach that chooses
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automatically which of the three dimensions will be optimized at each iteration
of k tests. We formalize this approach as a multi-armed bandit (MAB) problem.

The goal of MAB is to verify if a meta approach could be used to address the
AdUp problem. The meta approach chooses, at each iteration, an optimization
variant of our problem, i.e., bi-objective, or multi-objective optimizations, to
generate k tests. We formalize that as a multi-armed bandit problem where each
arm corresponds to an optimization variant and the reward ri, at iteration i, for
each variant v is defined as the speed of skill progression:

riv =

∑
∀iterations j,j<i skill gain offered by v at iteration j

#time the variant v was chosen

At each iteration, the skill progression speed of each arm is computed and
the one with the highest cumulated progression is selected. In the case where an
arm has never been selected before, its speed is set to zero. The batch of k tests
is then generated based on the variant of the chosen arm.

MAB variants. We implemented different multi-armed bandit strategies [58]:
ϵ-GREEDY that chooses randomly an arm (i.e., variant) with an ϵ probability.
It chooses the arm with the highest reward with a 1-ϵ probability. THOMPSON
Sampling which selects the arm with the highest probability that is learned from
previous interactions. The third strategy is the upper confidence bound (UCB)
which combines the reward and an uncertainty measure with a confidence de-
gree (c) that balances between exploitation and exploration. Finally, the SOFTMAX
strategy relies on Boltzmann distribution that has a parameter (τ) that specifies
the randomness of the exploration to choose the optimal arm.

4 Experiments

In this section, we conduct extensive experiments to show the effectiveness of
our proposed solutions. We divide our experiments into two parts. In the first
part, we compare variants of both MOO and MAB to select the best combination
of optimized dimensions to provide the best learning experience to users. We
evaluate the overall sequence of assigned test batches from the beginning of the
learning process until attaining mastery by simulating the learners’ answers.
In the second part, we evaluate the quality of the generated batches, at one
iteration of the process, based on interactions of real learners. We compare our
variants to state-of-the-art adaptive learning and recommendation models. In
the following, we first introduce the datasets that we use. We then describe our
skill update strategy and finally present the settings and results of each part of
the experiments.

4.1 Datasets

We use three real-world datasets that we summarize in the following.
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– MatMat5: The data is collected from a Czech educational system. It is an
adaptive practice system for elementary arithmetic tests. The data contains
more than 1800 tests from which we infer 42 distinct difficulty levels ranging
in ]0, 1[. We assume this order of difficulty level: “divisions” > “multiplica-
tions” > “subtractions” > “additions” > “numbers”. We consider that all
tests for “numbers” have the lowest difficulty (0.13). The difficulty ranges of
“additions”, “subtractions”, “multiplications”, and “divisions” are [0.2, 0.4[,
[0.4, 0.6[, [0.6, 0.8[, and [0.8, 1[ respectively. Within each difficulty range, we
assume that multi-digit operations are more difficult than single-digit ones,
and tests displayed with visualisations are simpler than directly written tests.

– ASSISTment Challenge 6: The data contains information about the free on-
line tutoring ASSISTment platform 7. The dataset is composed of school
math exercises sampled from the Massachusetts Comprehensive Assessment
System (MCAS) containing different types of tests. From the different ver-
sions of datasets, we used the ASSISTment challenge one. It contains more
than 3000 tests answered by 1709 students. From the data, we selected 10
types of tests (e.g., additions, fractions) and inferred, using the same proce-
dure as MatMat and based on the features of the tests, 26 distinct difficulties.

– ASSISTment20098: The data also contains information about the free online
tutoring ASSISTment from the 2009-2010 year. We use a subset of the data
that was extracted by [35]. The data contains more than 17700 tests answered
by more than 4000 students. We classified the tests into different classes and
each class has a difficulty level. As the data does not contain tests’ features,
they are classified by their overall rate of correct answers. We consider the
tests with a high rate of correctness the easiest.

4.2 Skill update and mastery achievement

At each iteration and after the completion of a batch B of k tests, we update
the skill of learner l as follows:

skill update(l.sk,B) = maxsk∈D∪{l.sk}sk (2)

where D is the set of difficulty values of correctly completed tests for which all
tests with lower difficulties were correctly completed.

To show the intuition of this strategy, we consider a learner with l.sk = 0.3 at
iteration i. At the next iteration i+1, the learner is targeted with k = 3 tests t4,
t5, and t6 having 0.35, 0.4, and 0.45 as difficulty levels respectively. We consider
that the learner correctly answered t4 and t6 and failed t5 (Table 1). Using our

5 https://github.com/adaptive-learning/matmat-web/blob/master/data/data description.md
6 https://sites.google.com/view/assistmentsdatamining
7 https://new.assistments.org
8 https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-

data/skill-builder-data-2009-2010?authuser=0
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Test Difficulty Learner Input

t4 0.35 True

t5 0.4 False

t6 0.45 True

Table 1: Test completion examples.

strategy, the skill value l.sk is updated to 0.35 (difficulty of t4). The correct
completion of t6 is not considered as there exists one test (t5) with a lower
difficulty that was wrongly completed. To account for variability in learners’
answers, we used the static mastery detection method NCC [27] that updates
the skill if the number of consecutive correct answers for a given difficulty level
is N . For mastery achievement, we consider that learners attain mastery when
their skill can not be further improved and is equal to the highest difficulty level.

4.3 Research Questions

Our goal is to address the following research questions related to the perfor-
mances of MOO and MAB:

– RQ1: Is the combination of all optimization dimensions well-adapted for
attaining mastery and improving skill gain?

– RQ2: Do different settings of the skill update strategy exhibit different re-
sults?

– RQ3: Does the choice of the model of learner simulation impact mastery
and skill gain?

– RQ4: Does an application of a meta-strategy that chooses to optimize a
subset of dimensions at each iteration, improve mastery achievement?

– RQ5: Does the optimization of all the dimensions lead to a more relevant
test assignment compared to state-of-the-art baselines?

We divide these questions into two parts. The first part contains the four first
questions where we evaluate the whole learning process of learners (i.e., from
the beginning of the process until attaining mastery). To do so, we simulate the
learners and their answers. The second part contains only the last question where
we evaluate the quality of the assigned test batches on real learners instead of
simulating them.

In the following, we first present the models used for simulating the learners.
We then present the different metrics, baselines, and experimental settings. We
finally report the results to answer each RQ.

4.4 Experimental Settings

Learner simulation. To answer the first four questions, we need to simulate
the answers of the learners. From all the existing simulation models, we rely on
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these established ones:

• Bayesian Knowledge Tracing (BKT). This model simulates learn-
ers using an extended version of BKT (KT-IDEM) [47] that takes into account
the difficulty level of tests. BKT is a cognitively diagnostic form of assessment
that has been recognized as beneficial to learners and instructors [47]. It models
the learning process given the chronological sequence and correctness of tests.
It infers the knowledge of learners by predicting the probability of learning. In
addition, two more probabilities are used to estimate the performance of the
learner: Guess and Slip. Guess is the probability of correctly answering a test
when the learner does not master the difficulty while Slip is the probability of
incorrectly answering a test even if the learner masters the difficulty. If the test
is easy, the probability of Guess is high. If the test is hard, the probability of Slip
is high as the learners are likely to make mistakes. We use the implementation
of [5] in our experiments.

• Item Response Theory (IRT). This model simulates learners based on
latent factors [11]. The probabilities of the next tests are calculated by apply-
ing a sigmoid function and learning a logistic regression to predict responses
of learners. One method, AFM [11], infers the probability by characterizing the
learner and the difficulty of tests with two distinct parameters. Another method,
PFM [48], extends AFM by integrating the number of successes and failures as
parameters in addition to previous ones. Other latent models are based on Item
Response Theory (IRT) [53], a traditional cognitive diagnosis model [30]. The
simplest version [53] predicts a probability of a binary answer (correct/incorrect)
by assuming a unique internal parameter for each learner. In addition, it de-
fines tests with one parameter (difficulty) [52], two parameters (the number of
correct answers and difficulty) [8], or three parameters (probability of correct
answer) [34]. In our experiments, we used this last method based on the im-
plementation of [59]. The reason is that compared to other latent models, it
incorporates the probability of guessing in addition to the difficulty and the
number of correct answers.

BKT and IRT are structurally different as BKT captures the learning as a
chronological process while latent models do not capture the temporal dimen-
sions. They are trained differently as BKT uses the Expectation Maximization
(EM) algorithm [5] and IRT uses Adam [59]. Despite these differences, both
BKT and latent models infer the probability of correct answers and simulate
the learning by capturing similar concepts: the difficulty of tests, the level of
learning, and the probability of guessing the correct answers.

Variants. In our experiments we used two types of variants. In the simulation
part, we compare MOO and its variants described in Section 3.1 as well as MAB

and its variants described in Section 3.2. We recapitulate them in Table 2. In
the real-learners part (i.e., RQ5), our goal is to verify whether our dimensions,
introduced in Section 2.1, capture well the knowledge of the learners. We then
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use the MOO solution that combines all three of them. We define two variants of
the solution: the original MOO, presented in Section 3.1, that assigns batches that
only contain tests with higher difficulties and MOO BEG that assigns batches of
tests for which the difficulties are lower than the skill level of the learner.

Variant Description

MOO

MOO optimize expected performance, aptitude and gap
MOAE optimize expected performance and aptitude
MOAG optimize aptitude and gap
MOEG optimize expected performance and gap
MOE optimize expected performance only
MOA optimize aptitude only
MOG optimize gap only

MAB

ϵ-GREEDY choose randomly an arm with an ϵ probability
SOFTMAX rely on Boltzmann distribution
THOMPSON sample the arm with the highest probability

UCB combine the reward and uncertainty with a confidence degree (c)

Table 2: Recapitulation of the variants of our solutions

Baselines. As we want to simulate the whole learning process, we consider
ALTERNATE, a state-of-the-art approach that assigns a random set of k tests
whose difficulty levels alternate in a round-robin fashion: k easy then k medium
then k hard tests [36].

Moreover, to verify the quality of our solution on real learners, we compare it
to state-of-the-art methods that capture the knowledge of learners and its evo-
lution. Different models [2] were proposed in the literature. These models differ
in their assumptions about the way they represent and quantify the learners’
knowledge. They also differ in their strategy of tracking the learning progres-
sion. As they can capture the knowledge state of the learners, they were also used
in the literature for test assignments and recommendations [26]. In this work,
we consider a wide range of methods covering both recent and mostly used ones.
We give a brief description for each one:

– KNN [56]: k nearest neighbors. This baseline is commonly used for recommen-
dations. As adaptive upskilling can be seen as a recommendation problem,
we used this method as a baseline to verify how standard recommenders
behave for upskilling. KNN finds a predefined number of tests that are similar
to the learning path of the learner using cosine similarity. The k tests that
have a high similarity are the assigned ones.

– BKT [47]: Bayesian Knowledge Tracing. As explained in more detail in Sec-
tion 4.4, this baseline models the knowledge of learners given the chrono-
logical learning path of the learner. It computes the probability of correctly



14 Nassim Bouarour, Idir Benouaret, and Sihem Amer-Yahia

answering a test. For a given learner, the batch of tests that maximizes these
probabilities is assigned.

– IRT [53]: Item Response Theory. We also introduced this baseline in Sec-
tion 4.4. It is a popular solution that estimates the performance of learners
by learning a logistic function. For a given learner, the batch of tests that
maximizes the performance is assigned.

– MCD [59]: Matrix-Factorization Cognitive Based. This method applies the ma-
trix factorization method to education-related data. It embeds both learners
and tests and represents the link between them in a latent space. The model
learns the latent space based on the learning path of the learner.

– NCDM [63]: Neural Cognitive Diagnosis Model. It is a recent model that in-
corporates neural networks to learn the learner-test interactions. It projects
learners and tests to factor vectors and captures knowledge relevancy and
proficiency. It leverages multi-neural layers to output a predicted score of
the correctness of a test by a given learner.

– DKT [51]: Deep Knowledge Tracing. It is an extension of the original BKT.
It relies on Recurrent Neural Networks (RNNs) [32] to model the learners’
process and predict their probability of correctly answering a test. The tests
are ranked based on their probability.

– DKVMN [66]: Dynamic Key-Value Memory Network. It uses a key-value mem-
ory network [37] to capture the learners’ knowledge state and its evolution.
It is composed of two matrices: the key that stores the representation of test
difficulties and the value that stores the knowledge level of the learner. In
this model, the key memory is static while the value one is dynamic (up-
dated after each iteration). The model produces the probability of correctly
answering a test.

– SAKT [44]: Self-Attentive Knowledge Tracing. This model adds an attention
mechanism to the original knowledge tracing models. It uses the mechanism
proposed by [61] to learn attention matrices. It also incorporates multiple
attention heads. Each attention matrix learns the importance of a test in the
past interactions of the learned in predicting the correctness of the current
test. It also predicts the probability of answering correctly a test.

We can group the selected baselines into three categories: Recommendation-
based baselines (KNN), Traditional knowledge tracing (BKT, IRT, MCD), and Ad-
vanced knowledge tracing (NCDM, DKT, DKVMN, and SAKT). In the last category, we
selected the models based on their internal structure of capturing the knowledge
and its evolution (Deep Learning, Recurrent Learning, Key-Value Network, and
Attention Mechanism).
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Metrics. We report (1) the average skill gain i.e. the difference between the
last and first skill values for all simulated learners, and (2) the average skill
progression i.e. the average skill evolution from iteration to iteration. To better
understand this first experiment, we examine (3) the percentage of learners who
attained mastery and (4) the average number of iterations required to attain
mastery. Finally, we compute (5) the average time each variant takes to generate
a batch of k tests.

We want to report the quality of the generated test batches for real learners.
For this reason, we evaluate both the logic [67] of the assigned test batches
wrt the previous interactions of the learner and the potential knowledge gained
when correctly performing these tests. To capture the logic of the assigned batch,
we rely on relevance metrics. These metrics are learner-based and evaluate the
proportion of the tests that were assigned and were truly performed by the
learner in real world (i.e., relevant tests). We then report (6) Precision i.e. the
proportion of assigned tests that are relevant, (7) Recall i.e. the proportion of
relevant tests that are assigned, and (8) F-Score i.e. a combination between
Precision and Recall that captures the balance between them. Finally, we report
(9) the percentage of learners who improved their skills under each variant or
baseline.

Parameters. In the first four questions, we evaluate the overall sequence of
batches assigned to the learners from the beginning until attaining mastery. We
set the maximum number of iterations to attain mastery to 500. We vary the
value of k in {3, 5, 10, 15, 20} and the number of simulations, i.e., learners, in
{50, 100}. We only report results of 100 simulations. Results on other settings
are similar.

On the other hand, in RQ5, we evaluate the quality of assigned batches for
real learners at one iteration of the process. This iteration is chosen based on the
split of the data. In fact, as selected baselines need training, we split our data
in a learner-wise fashion, i.e., the split is done for every learner, chronologically
according to the provided timestamps so that 70% of the data constitutes the
training set and the remaining 30% is assigned to the test set. In the case where
the timestamps are not provided, the split is random.

We rely on this GitHub repository 9 for the implementation of NCDM, DKT,
DKVMN, and SAKT. We used the same training configurations and the same values
of the hyperparameters of the models. We also rely on [59] for the implementation
of IRT and MCD). We refer the reader to our GitHub repository10 for our complete
results and code for reproducibility.

4.5 RQ1: Impact of optimizing all dimensions

To verify the impact of optimizing all dimensions, we use BKT (KT-IDEM) [47]
and assume N = 1 in the skill update strategy. We consider two datasets: MatMat

9 https://github.com/hcnoh/knowledge-tracing-collection-pytorch/tree/main
10 https://github.com/AdaptiveUpskilling/AdUp.git
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and ASSISTment2009 challenge. We consider two settings: fixed initial skill value
and variable initial skill value.

• Fixed initial skill value. We assume the same fixed initial skill value for
all learners and consider that learners attain mastery when their skill equals the
highest difficulty level. We set the initial value to the lowest difficulty level in
our simulated data.

(a) MatMAt Dataset (b) ASSISTment2009 Dataset

Fig. 3: Average skill gain for each variant with a fixed initial skill.

(a) MatMAt Dataset (b) ASSISTment2009 Dataset

Fig. 4: Skill progression as a function of # iterations with a fixed initial skill.

Skill gain and progression. Figure 3 reports the average skill gain. We ob-
serve that MOO and MOAE produce the highest average skill gain for both MatMat

and ASSISTment2009 datasets. Surprisingly, ALTERNATE seems to also produce
a high skill gain outperfoming in both cases MOAG and MOEG. To elucidate that,
we plot Figure 4 to examine the average step-wise skill progression. Here again,
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we observe that MOO and MOAE result in the fastest upskilling with a clear ad-
vantage for the former. MOAG is slower but still faster than MOEG. This reinforces
our initial assumption that optimizing for all three objectives at once yields the
best results. It also shows that alternating task difficulties does yield good skill
gain and progression. Therefore, in the next experiment, we examine whether
ALTERNATE compares favorably to MOO and MOAE in terms of achieving skill mas-
tery.

(a) MatMAt Dataset

(b) ASSISTment2009 Dataset

Fig. 5: (I) Percentage of learners who attain mastery - (II) Average number of
iterations to attain mastery.
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Mastery. Figure 5 (I) reports the number of times each variant attained mas-
tery. One can see that while ALTERNATE reaches a reasonable mastery level in
MatMat (≈ 59%), it is much lower than MOO, MOAG and MOAE (≈ 90%). On the
other hand, one can see that on ASSISTment2009, MOO and MOAE remain effective
while ALTERNATE mastery rate is null. This clearly confirms that aptitude plays
a central role in attaining mastery as all variants that optimize it offer higher
mastery rates than ALTERNATE. Hence, while alternating test difficulty levels do
achieve good skill gain (Figure 3) and skill progression (Figure 4) performances,
it is capped in terms of mastery level since it does not explicitly optimize apti-
tude. We can also observe that single-objective variants rarely attain mastery.
This experiment confirms our initial assumptions: MOE assigns tests that are
similar to the ones the learner completed correctly, thereby staying within the
under-challenging zone [62]. MOA assigns tests that are too difficult and that keep
the learner in a frustration zone [62].

Figure 5 (II) shows the average number of iterations to attain mastery for
each variant. One can observe that ALTERNATE attains mastery in a similar num-
ber of iterations as MOAG in MatMat but has a lower rate of mastery. Nevertheless,
it is quicker than all single-objective variants. As explained before, these vari-
ants narrow the learners into zones where their skill value does not evolve while
ALTERNATE offers more challenging batches that allow learners to attain mastery
more often. However, simulated learners under ALTERNATE are able to correctly
complete difficult tests but are unable to do so for the most difficult tests. Fi-
nally, the figure shows that MOAE attains a slightly higher mastery level than MOO

in both datasets, but it is clearly outperformed by MOO in terms of the number
of iterations needed to achieve that mastery level.

(a) MatMAt Dataset (b) ASSISTment2009 Dataset

Fig. 6: Average time for generating one batch.

Response time. Time experiments have shown that single-objective variants
are obviously the fastest to generate a batch of k tests (Figure 6). MOO has the
worst time average as it has to optimize three objectives (≈10 seconds for MatMat
and ≈5 seconds for ASSISTment2009). MOAE would be a good candidate since it
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runs faster than MOO. However, MOO does better than MOAE on skill progression
and on the average number of iterations needed to attain mastery. Therefore, we
will need to focus on improving response time for MOO in future work.

Fig. 7: Average skill gain with variable initial skills on MatMat.

• Variable initial skill value. We study the case where learners have dif-
ferent initial skill values and consider that a skill is mastered when the skill gain
attains a fixed value. We set the value to 0.4 as it is the highest skill gain in
common between all learners. We only present results on MatMat as similar ob-
servations are made on ASSISTment2009. We report only bi-objective and MOO

variants in addition to ALTERNATE as we showed already that single-objective
solutions are inefficient.
Skill gain and progression. From figure 7, which reports the average skill
gain for all variants, we note that similarly to the case of a fixed initial skill
value, MOO, MOAE, and ALTERNATE offer the highest skill gain that is equal to the
maximum value (0.4). Figure 8 also generalizes previous results by showing that
MOO and ALTERNATE skill progressions are the fastest followed by MOAE.

Mastery. Figure 9 shows the percentage of mastery attained by each variant
as well as the number of iterations needed to attain mastery. One can confirm
that, despite a smaller gain value to attain mastery, optimizing aptitude is still
necessary as MOEG is the worst performer for the number of iterations and the
second worst for mastery. We also see that ALTERNATE has comparable results to
MOO and MOAE which confirms that it is capped in terms of mastery. Obviously, we
can see that all variants attain mastery more often and in fewer iterations than
when initial skills are fixed. This is due to the fact that in the latter, learners
must achieve a much higher skill gain to attain mastery.

Findings. This experiment shows that combining all objectives yields the high-
est skill gain which permits a higher mastery in fewer iterations independently of
the initial skill value of the learners. It also shows that challenging learners and
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Fig. 8: Skill progression as a function of # iterations with variable initial skills
on MatMat.

Fig. 9: (I) Percentage of learners who attain mastery - (II) Average number of
iterations to attain mastery using variable initial skills on MatMat.

optimizing aptitude is beneficial to attain mastery. These results were observed
on two different datasets MatMat and ASSISTment2009 that have different char-
acteristics. These results also confirm the ZPD and Flow theories [7] and show
the importance of leveraging aptitude and challenging learners.

4.6 RQ2: Impact of changing the settings of the skill update

We report skill and mastery results by further challenging the learners during
the skill update. We increase the value of N , the number of consecutive correct
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answers, to N = 3. We report results in the case where the initial skill is fixed
for both MatMat and ASSISTment2009.

(a) MatMat Dataset (b) ASSISTment2009 Dataset

Fig. 10: Skill progression as a function of # iterations with N = 3.

Skill gain and progression. The average skill gain is similar to the one re-
ported in Figure 3 where ALTERNATE is comparable to MOO and MOAE. MOO is the
best variant while MOAE is the second best. Figure 10 shows the average progres-
sion of the skill on both datasets. We see that the progression is slower than
the one presented in Figure 4 because the skill gain is slow. This is intuitive as
learners have to answer correctly N = 3 tests of the same difficulty level to see
their skill updated while previously one correct answer was enough. The second
observation is that MOO is still the best variant with a clear advantage compared
to ALTERNATE and MOAE. This means that MOO is less affected by the different
values of N than other variants. To be sure of this conclusion, we study the
Mastery rate and number of iterations under the N = 3 constraint.

Mastery. The results, in Figure 11, show that more than 90% of learners attain
mastery under MOO while less than 70% achieve it under ALTERNATE and MOAE

on MatMat. On the other hand, 99% of learners attain mastery under MOO on
ASSISTment2009. We also see a small decrease in the mastery rates of MOAG,
MOEG and ALTERNATE. Results also show that MOO is the fastest as it offers learn-
ers fewer iterations to reach the highest difficulty level on both datasets. These
results confirm that MOO is not affected by different settings of the skill update
strategy and is the best variant.

Findings. This experiment finds that MOO is not sensitive to varying different
settings of the skill update strategy and that holds for all datasets.

4.7 RQ3: Impact of changing the learner simulation model

We report the results of the same metrics using a different learner simulation. We
used item response theory (IRT) as explained in Section 4.4. We report results,
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(a) MatMat Dataset (b) ASSISTment2009 Dataset

Fig. 11: (I) Percentage of learners who attain mastery - (II) Average number of
iterations to attain mastery with N = 3.

on MatMat only, where the initial skill value is similar for all learners. Similar
results were observed when the initial skill value was different from one learner
to the other.

Skill gain and progression. Figure 12 reports the average skill gain for the
variants that performed well previously. We observe that MOO and MOAG along
with ALTERNATE produce the highest skill gain. One can also note that, similarly
to the case of KT-IDEM, MOEG is the worst bi-objective variant. The main reason
is that the test batches of MOEG do not challenge the learners as MOEG does not
optimize for aptitude.

Fig. 12: Average skill gain using IRT on
MatMat.

Fig. 13: Skill progression using IRT on
MatMat.

Figure 13 shows the step-wise skill progression. We observe that MOO and
MOAG are the fastest in terms of upskilling outperforming ALTERNATE which was
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equivalent to MOO under BKT. One can also observe that MOEG is the slowest.
Next, we compare these variants in terms of mastery.

Fig. 14: (I) Percentage of learners who attain mastery - (II) Average number of
iterations to attain mastery using IRT on MatMat.

Mastery. Figure 14 shows the average rate of mastery achieved by each variant
as well as the average number of iterations to attain it. From the figure, we
observe that the state-of-the-art alternating solution (ALTERNATE) achieves a
high mastery level (≈80%) but it is clearly outperformed by MOO and MOAG. This
experiment confirms that aptitude is required to attain a high rate of mastery
as we see that MOEG is the worst variant. It attains mastery in ≈7% of time.
From this figure, we can also observe that MOAE is outperformed by MOAG while it
was better under the BKT model. A hypothetical explanation is related to the
internal design of both methods. BKT formalizes the learning process as a hidden
Markov model where test completion is viewed as a chronological sequence and
where the different parameters are learned using the correctness of tests. In this
case and intuitively, learner performances on recently assigned tests appear to
be more influential than older tests while in the case of IRT, and because of
the absence of time dimension, all performances have the same weight. Usually,
as the gap is related to earlier tests, IRT seems to give more attention to it
than BKT. Another possible explanation is that BKT tends to overestimate the
importance of failure as reported in [48]. In that work, it was observed that BKT
tends to predict worse performance after an incorrect answer. Based on that, one
can make a hypothesis that BKT is negatively biased towards gap in contrast
to latent factors models.

Results from Figure 14 (II) are inversely proportional to the ones depicted
in Figure 14 (I). Variants with the highest mastery percentage are the quickest
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to attain it. Inversely, the variants that attain a lower rate of mastery are the
slowest. This indicates with more evidence that MOO is the best variant.

Findings. This experiment finds that IRT generalizes the results of KT-IDEM.
In this case, we also observe that MOO offers the highest rate of mastery. Op-
timizing aptitude remains essential as MOEG is the worst variant. Despite the
differences between BKT and IRT, one can explain their similar results with the
fact that they both assume a guessing probability of correct answers and char-
acterize tests by their difficulties. They both infer the correctness probability by
approximating the knowledge of the learner based on previous correct answers
(See section 4.4). In addition, prior work [23, 54] has shown that these models
exhibit similar prediction accuracy. However, from these results, we see that the
main difference between the two learner simulation models is that IRT tends to
favor gap as MOAG is comparable to MOO while BKT favors expected performance
as MOAE was the second best. We believe that further research needs to perform
a more detailed comparison to understand why BKT and IRT offer the same
predictions.

4.8 RQ4: Impact of the meta-strategy

We seek to verify whether choosing automatically a subset of learning dimensions
to optimize at each iteration improves mastery and skill progression compared
to optimizing fixed dimensions throughout the process. We implemented the
four MAB strategies described in Section 3.2 and tested them with N = 1 as
we showed in RQ2. that the value of N has no impact on the performances of
our solution. We also assume a fixed initial skill value as we showed in RQ1.
that variable initial skill exhibits similar performances. We used MatMat and
ASSISTment2009 for this experiment.

(a) MatMat Dataset (b) ASSISTment2009 Dataset

Fig. 15: Average skill gain using MAB strategies.
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Skill gain and progression. Figure 15 shows the skill gain offered by the
different MAB strategies. The lines represent the skill gain attained by learners
under MOO and ALTERNATE. One can see that UCB and THOMPSON strategies slightly
improve skill gain compared to MOO and ALTERNATE. We also see that SOFTMAX
is the worst strategy showing that probability-based MAB is not adapted to this
context in both datasets. Similar results can be observed in terms of skill pro-
gression in Figure 16. We can see that UCB is as fast as MOO. We can also see that
THOMPSON has a better progression than ALTERNATE and MOAE, especially after
a few iterations. Finally, one may note that ϵ-GREEDY has a similar progression
than MOAE on the MatMat and a slightly slower on the ASSISTment2009. A possi-
ble explanation of these results is that ϵ-GREEDY takes a longer time to converge
than the other MAB variants as it explores more especially at the beginning of
the process. Moreover, we explain the outperformance of UCB by the fact that
this variant converges quickly and always finds the right dimensions to leverage
at each iteration.

(a) MatMat Dataset (b) ASSISTment2009 Dataset

Fig. 16: Skill progression of learners using MAB strategies.

Mastery. Figure 17 shows the percentage of learners that attained mastery and
the average number of iterations to achieve that. The lines represent the results
of MOO, MOAE, and ALTERNATE. One can see that UCB is the best performer and
outperforms all other MAB strategies as well as previous variants for mastery on
both MatMat and ASSISTment2009. It also achieves that in fewer iterations. We
can also see that THOMPSON attains more mastery than ALTERNATE, MOAE, and
MOO in both datasets. It is also better than the two first ones but is equivalent
to MOO in terms number of iterations in ASSISTment2009. In addition, ϵ-GREEDY
variant is slightly outperformed by MOO in ASSISTment2009 data but is better
in terms of mastery and iterations on the second one (MatMat). Finally, even if
SOFTMAX is outperformed in terms of skill gain and progression, it achieves higher
mastery and in a lower number of iterations than ALTERNATE in both datasets.
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These findings add more evidence to the skill gain and progression results and
confirm our previous assumption that selecting the dimensions to optimize dur-
ing the learning process is better than optimizing fixed dimensions. However,
this involves choosing the right multi-armed bandit variant. In our result, UCB
was the best one.

(a) MatMat Dataset (b) ASSISTment2009 Dataset

Fig. 17: (I) Percentage of mastery attained - (II) Average number of iterations
to attain mastery using MAB strategies.

Response time. Time experiments have shown that MAB strategies are faster
than MOO to generate the test batches but are slower than bi-objective variants.
The reason is that, during the whole learning process, MAB strategies optimizes
fewer objectives than MOO. In some iterations, MAB leverages only two objectives.
So they are faster in generating the test batches. On the other hand, MAB strate-
gies optimize more objectives than bi-objective variants. In some iterations, MAB
optimizes for all objectives. So they are slower in generating the batches.

Insights on Combining Dimensions. One can see that bi-objective and
multi-objective variants are a special case of a MAB strategy where only one arm
is available and chosen. Based on that, one can ask the question of whether the
policies of MAB are relying on only one or two variants, for example, they leverage
both best variants MOO and MOAE. To answer that, we examine the policies output
by MAB on MatMat.

First, we examine the overall proportions of the selection of each variant in
each strategy. The results show that the best strategies (the ones exhibiting the
highest mastery rates in lower iterations) UCB and THOMPSON, exhibit a more
uniform use of each variant. For example, in UCB each multi-objective variant is
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selected ≈ 25% of the time. In contrast, we see that SOFTMAX, the worst strategy,
relies mainly on two variants, MOEG with ≈ 84% and MOAE with ≈ 13% of the time.
This may be the reason for its underperformance. Another interesting insight is
that ϵ-GREEDY selects MOO just 9% of the time. This also explains why ϵ-GREEDY
has a higher number of iterations and a slightly slower skill progression.

Analyzing these proportions in more detail showed that UCB is more stable
and less noisy in selecting the different variants across all simulations. For ex-
ample, by calculating the standard deviation of MOO selection proportions we
found that UCB has the lowest value (≈ 0.04) while SOFTMAX has the highest one
(≈ 0.4). This means that the choice of MOO in UCB is similar from one simulation
to another while for SOFTMAX this choice looks more random and noisier.

We now examine the veracity of the hypotheses we made in Section 3.2. We
assumed that after failing tests, it is more desirable to optimize gap. We also
assumed that after obtaining successful answers, aptitude is optimized. Our re-
sults show that all strategies tend to leverage gap, in the next two iterations,
after learners fail to increase their skill value. For example, UCB and THOMPSON

optimize gap 77% and 72% of the time after wrong answers while SOFTMAX does
the same 67% of the time. Similarly, our simulations show that UCB, THOMPSON,
and ϵ-GREEDY optimize aptitude after successful tests more than 75% of the time,
while it is no more than 58% for SOFTMAX. These results also provide insights on
why SOFTMAX under-performs compared to the other strategies.

Findings. This experiment finds that choosing automatically the dimensions
to optimize at each iteration improves the rate of mastery and the number of
iterations needed to achieve it. This justifies the use of a meta-strategy to learn
the best combination of objectives to optimize at each iteration.

4.9 RQ5. The quality of the generated test batches

In this section, we want to verify whether our behavioral dimensions: Expected
Performance, Aptitude, and Gap, capture well the needs of real learners. We aim
to test if these dimensions define well the knowledge of the learners. We then
compare our solution, MOO, to the state-of-the-art adaptive learning solutions [2]
presented in Section 4.4. We used two of the datasets presented in Section 4.1:
ASSISTment and ASSISTment2009. In the following, we first present the settings
of the experiments and then report the comparison results.

Relevance of assigned batches. Tables 3 and 4 report the overall average of
Precision, Recall, and F-score over all learners on ASSISTment and ASSISTment2009
respectively. The main observation is that our variants MOO and MOO BEG are the
best solutions for relevance. For example, the Precision of MOO BEG and MOO is
10% and 9.2% on ASSISTment respectively while the best baseline Precision is
8.8% (i.e., IRT). This means that our solution tends to sufficiently capture the
knowledge of the learners and trace its evolution better than all the baselines.
More precisely, one can see that MOO BEG outperforms MOO on both datasets. The
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reason is that MOO is more restrictive as it only assigns tests that have a higher
difficulty than the current skill level of the learner. This shows that, in the real
world, learners tend to come back and complete previously assigned tests even
if they were mastered. For example, on ASSISTment, 41% of the tests assigned
by MOO BEG were already mastered by learners while this rate is null for MOO.

The second observation is that deep knowledge models tend to have better
performances than traditional ones (e.g., BKT, IRT, and MCD). More precisely, we
observe that SAKT is the best baseline on ASSISTment2009 and the second best on
ASSISTment. It also outperforms all other deep knowledge models. The reason is
that it relies on the powerful attention mechanism which mimics cognitive atten-
tion and learns the importance and relevance of tests from the input sequence
(i.e., the learning process). Our results confirm that the attention mechanism
outperforms recurrent models, in an upskilling environment, as it was originally
introduced [61] to overcome the drawback of recurrent models (e.g., LSTM [25]).
Indeed, recurrent models lose information when embedding the interactions of
a long input sequence. Our results also show that models used originally for
recommendations can be applied for upskilling. Indeed, we see that KNN has rea-
sonable relevance as it outperforms models like BKT or NCDM on both datasets.

Finally, one can see a drop in performance from ASSISTment to ASSISTment2009.
The reason is directly related to the size of the data. Indeed, ASSISTment2009
has more than 27600 tests while ASSISTment contains around 3000 tests. Most
importantly, we see that our solutions MOO and MOO BEG scale well when the
number of tests increases.

Knowledge of assigned batches. Figure 18 shows the percentage of learn-
ers that improved their skill in the next iteration as a function of the average
skill (i.e., knowledge) that was gained by these learners on both ASSISTment

and ASSISTment2009 datasets. These results are generated by using BKT as a
simulator for each learner. From Figure 18 (a), one can see that our solutions
MOO and MOO BEG are outperformed by knowledge tracing baselines in terms of
the percentage of learners that improved their skill. One potential explanation
for these results is that the knowledge models tend to find a better connection
between the embedding of the tests and the performances of the learners. How-
ever, despite that, our solutions are the best in terms of the knowledge that
these learners gained. We explain this outperformance for the skill gain by the
fact that our solution always challenges the learners by maximizing Aptitude
while all other baselines tend to optimize only for the Expected Performance.
Finally, we see that KNN is the worst performer for both metrics which indicates
that recommendation-based solutions tend to assign tests that match the previ-
ous sequence the learners interacted with instead of the ones that improve their
knowledge.
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Models Precision (%) Recall (%) F-Score (%)

Recommendation
Based

KNN 5.2 1.128 1.854

Traditional Knowledge
Tracing

BKT 1 0.232 0.376
IRT 8.8 1.734 2.897
MCD 2.8 0.573 0.951

Deep Knowledge
Tracing

NCDM 5 1.051 1.737
DKT 5.2 1.123 1.847
DKVMN 4.8 0.908 1.527
SAKT 6.8 1.333 2.229

Ours
MOO 9.2 2.074 3.385

MOO BEG 10 2.151 3.54

Table 3: Overall relevance results on ASSISTment dataset

Models Precision (%) Recall (%) F-Score (%)

Recommendation
Based

KNN 0.4 0.01 0.02

Traditional Knowledge
Tracing

BKT 0 0 0
IRT 0.6 0.014 0.027
MCD 1 0.021 0.042

Deep Knowledge
Tracing

NCDM 0 0 0
DKT 0.6 0.014 0.028
DKVMN 1 0.026 0.051
SAKT 1.4 0.037 0.072

Ours
MOO 1 0.024 0.048

MOO BEG 2.2 0.055 0.107

Table 4: Overall relevance results on ASSISTment2009

dataset

On larger datasets (i.e., ASSISTment2009), we see that NCDM is the worst
baseline (Figure 18 (b)) while it was the best in the previous data. This baseline
does not scale when the number of tests increases. However, we see that our
solutions MOO and MOO BEG are the best for both metrics with an advantage for
the former one (e.g., ≈20% of learners improved their skills with an average gain
of 0.23). This shows that our methods scale well to the size of the data. Finally,
we see that all knowledge tracing baselines have similar performances as was the
case in the previous dataset.

Findings. This experiment we performed in this part finds that our solutions
are not only the best in terms of skill gain but it offers the possibility to a
larger number of learners to improve their knowledge. In addition to that, they
assign more relevant test batches according to the previous sequence of learners’
interactions. Finally, in this experiment, we found that our solution scales for
larger datasets. In conclusion, the dimensions, we defined in this work, tend to
capture well the knowledge of the learners and are able to trace their evolution.
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(a) ASSISTment Dataset

(b) ASSISTment2009 Dataset

Fig. 18: Average skill gain and average rate of learners who improved their skills
for all baselines.

5 Related work

Education Science. Flow [15] and ZPD [62] theories conceptualize the idea
of experiential learning [28] that emphasizes the importance of choosing appro-
priate tests for learners. Flow theory was shown to be effective in the physical
world in on-the-job training [38, 18]. More recently, it was used in crowdsourcing
to compose tasks with different difficulty levels and test the impact on skill im-
provement and worker satisfaction [36]. The difference with our work is that the
composition of test difficulties is decided beforehand (for instance, by alternating
easy and difficult tasks).

Learner Modeling & Mastery Detection. Many works [49] develop criteria
that analyze the sequential interactions of learners and determine if a learner
has mastered a skill. The easiest methods are based on simple statistics. For
example, NCC (N Consecutive Correct) [27] declares mastery if the number
of consecutive correct answers exceeds a certain threshold. Another method is
Moving Average [50] that declares mastery of a type of test if the average of cor-
rect answers within a moving window exceeds a threshold. These methods are
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too simple to capture learners’ knowledge of all the skills. For this reason, more
sophisticated models were also proposed [2, 3]. The two first and most popular
models are Bayesian Knowledge Tracing (BKT) [14] and Latent Factor mod-
els [11, 48, 50].

BKT [14] is a hidden Markov model with 4 parameters: probability that the
skill is initially mastered, probability of learning in one iteration, probability of
an incorrect answer when the skill is learned (slip), and probability of a correct
answer when the skill is unlearned (guess). Many extensions were proposed [16,
43, 2]. For example, KT-IDEM [47] accounts for the difficulty of each test. Other
improvements are made by applying new architecture like Deep Learning tech-
niques. The first extension is Deep Knowledge Tracing (DKT) [51] which uses
Recurrent Neural Networks (RNNs) [32], and more precisely LSTM [25], to cap-
ture the past performance of the learners chronologically. Other models used
key-value memory networks [37, 1] to capture these interactions. More models
used the concept of BKT with specific data types like text [57] or graphs [41].

On the other hand, Latent Factor models are based on logistic regression [11].
They define the performances of the learners using latent parameters and learn
them to infer the probability of mastery using a sigmoid function. The most
known model is Item Response Theory (IRT) [53] which ignores the chronolog-
ical aspect of the learner interaction and considers that tests are independent.
Other models like Additive Factor Model (AFM) [12] or Performance Factor
Analysis (PFA) [48] were proposed by considering other assumptions like the
pace with which the learners master a certain skill (or difficulty a difficulty level).

In our work, we leverage some of these models to simulate learners and their
answers (e.g., KT-IDEM [47] and IRT [53]). We also used some of these mod-
els as baselines to compare the quality of the assigned batches of tests (e.g.,
DKT [51], and memory networks [37]). Finally, the simplest statistical methods
(e.g., NCC) was used in our skill update strategy.

Adaptive Learning. Adaptive learning systems aim to provide an efficient,
effective, and customized learning experience for learners by capturing their
competencies and interactions with various learning activities and dynamically
adapting learning content to suit their individual abilities or preferences [60]. A
consistent and growing body of knowledge provides evidence about the effective-
ness of adaptive systems compared to classroom teaching or to educational sys-
tems that provide instructions and learning activities that are not adaptive [65].
While there are examples of using adaptive learning systems across different dis-
ciplines, by and large, they have been most effectively utilized in the context
of high school Maths using tools such as ASSISTments [24]. Usually, learner
modeling models and knowledge tracing were used for adaptive learning and
test assignment [2]. Recent work also combines different types of data and deep
learning architectures for adaptive learning [26, 33]. In [26], the authors propose
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to learn a policy based on Reinforcement Learning [4] that optimizes different
objectives: Engagement of the learner, Smoothness of the tests, and the trade-off
between exploration and exploitation of new tests. The proposed policy outper-
formed standard baselines like IRT [53], or DKT [51]. Another work by [33]
integrates both DKT as a knowledge tracing and a graph-based model as a
cognitive navigation for learning path assignment. Their procedure outperforms
recommendation-based and simple knowledge models. Finally, [40] also proposes
a bi-objective solution for test assignment. The solution maximizes the precision
of the assigned tests while minimizing the number of given tests. Their simulated
experiments showed the effectiveness of the proposed solution in maximizing the
accuracy while minimizing the size of the given tests.

Similarly to some of these works, we aim to solve a multi-objective problem
for adaptive learning. On the contrary, and to the best of our knowledge, none
of these solutions combines the optimization of expected performance, aptitude,
and skill gap to adapt tests to individual learners.

In online labor marketplaces, a few studies focused on the role of task diffi-
culty and workers’ ability to complete micro-tasks in improving skills [21], and
how affinity between workers can be used to form teams that collaborate to
produce high-quality contributions while also improving skills [19].

Usually, such approaches require additional human costs to build training ma-
terial or give feedback to workers. Additionally, these solutions do not customize
test difficulty in recommended tasks.

6 Conclusion and Future Work

We addressed adaptive upskilling following a mastery learning approach. The
originality of our approach lies in adapting the difficulty of tests to the learner’s
predicted performance, aptitude, and skill gap. We proposed two approaches:
MOO that directly solves our problem and a MAB that chooses among different op-
timization variants at each iteration. We tested the impact of optimizing these
dimensions on skill progression and mastery achievement. We also tested the
impact of different learner simulation models on mastery achievement. Our ex-
periments confirmed that MAB offers a higher mastery rate and a better final
skill gain than MOO. They also confirmed that our solution MOO assigns tests with
higher quality and accuracy.

For future work, we would like to deploy our solutions so that real learners
can interact with them. We may use environments at our university that scaffolds
students’ activity as they learn to solve exercises or write experimental reports.
Experimenting online with real learners will help confirm the findings we exhibit
in this work. It will also permit to capture new variables as completion time,
reflexion time, or non cognitive metrics (e.g., engagement, motivation) [20].

In addition to that, we aim to extend our formalization by considering addi-
tional theories. In fact, there are many learning theories in the physical world,
such as situated learning [29] and collaborative learning [10]. One representa-
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tive of the former is apprenticeship where knowledge is propagated from experts
to novice learners based on the principle of Legitimate Peripheral Participa-
tion [29]. Collaborative learning is also effective in online learning environments
like MOOCs, and studies showed that rich interactions such as peer feedback
and discussion promote learning [17, 13, 64].

We also aim to personalize the upskilling experience of learners. We would
like to model profiles for learners based on their past performances on the tests
of different skills. We may use these profiles to assign tests by either using a
clustering method to define their overall ability [39] or applying a collaborative
filtering method [56] to focus on the tests that were correctly completed by
similar learners.
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