
HAL Id: hal-04728275
https://hal.science/hal-04728275v1

Submitted on 9 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

When does gradient estimation improve black-box
adversarial attacks?

Enoal Gesny, Eva Giboulot, Teddy Furon

To cite this version:
Enoal Gesny, Eva Giboulot, Teddy Furon. When does gradient estimation improve black-box ad-
versarial attacks?. WIFS 2024 -16th IEEE International Workshop on Information Forensics and
Security, Dec 2024, Roma, Italy. pp.1-6. �hal-04728275�

https://hal.science/hal-04728275v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


When does gradient estimation improve black-box
adversarial attacks?

Enoal Gesny
Univ. Rennes, Inria, CNRS, IRISA

Rennes, France

Eva Giboulot
Univ. Rennes, Inria, CNRS, IRISA

Rennes, France

Teddy Furon
Univ. Rennes, Inria, CNRS, IRISA

Rennes, France

Abstract—The recent black-box adversarial attack SurFree
demonstrated its high effectiveness resorting to a purely geomet-
ric construction. The method drastically reduced the number
of queries necessary to craft low-distortion adversarial example
compared to the preceding art which relied on costly gradient
estimation. Recently, CGBA proposed to reintroduce gradient
information to SurFree. Despite promising empirical results, no
theoretical study of the method was provided. This paper fills this
gap by providing a comprehensive analysis of the performance of
SurFree and CGBA. Notably, we express conditions under which
using the gradient information is guaranteed to improve upon
SurFree performance. We also provide the theoretical distortion
of each attack at a given iteration, demonstrating the convergence
of CGBA to the optimal adversarial image. Finally, we study the
optimal query allocation schedule for CGBA. The accompanying
code is to be found at https://github.com/EnoalG/Use-of-gradient-
for-black-box-attacks.

Index Terms—Adversarial examples, black-box

I. INTRODUCTION

Adversarial attacks perturb an input with minimal distortion
to delude a classifier. The literature considers two setups that
give birth to two attack strategies. In the white-box setup,
the threat analysis states that the attacker knows the internals
of the classifier [1]–[3]. On the contrary, the black-box setup
is more difficult without this knowledge. A classifier induces
a partition of the input space into regions, each associated
with a given class. Probing the entire space to draw a map
of this partition is not tractable. The attacker needs to query
a lot the black-box classifier to find an adversarial example
and then to reduce its distortion. This paper focuses especially
on the hardest decision-based variant where the attacker only
observes the predicted class for any input, contrary to score-
based attacks where logits or probits are returned [4]–[7].

This type of attack, known as ‘Oracle attacks,’ dates back to
the late 1990s in the watermarking literature [8], [9]. Indeed,
a zero-bit watermark detector is nothing more than a binary
classifier. Unfortunately, the recent literature on adversarial
machine learning does not refer to these pioneer works. It
reinvents the wheel, resorting to the same tools, such as binary
search, sensitive points, gradient estimation, and local approx-
imation of the frontier by tangent hyperplane. Paper [10] is a
notable exception. Yet, the literature on adversarial machine
learning also proposes improvements: The state-of-the-art in
black-box decision-based attacks is the recent CGBA [11].

Black-box attacks follow an iterative process refining the
quality of the adversarial example. The biggest challenge is

to provide theoretical guarantees, such as convergence to the
nearest adversarial example. This is usually done under some
strong assumptions, such as the frontier between class regions
in the input space is a hyperplane. The distortion of the
closest adversarial examples found within a given number of
queries monitors the rate of convergence. Another issue is the
number of queries dedicated to the estimation of the gradient
at each iteration. Does the gradient estimation always lead to
an improvement in the convergence rate?

This paper answers this question by providing an expression
of the optimal number of queries for estimating the gradient
to outperform SurFree. This is done through a theoretical
justification of the approach of CGBA and the derivation of
new results about the performance of SurFree and CGBA. In
particular, we derive an expression of the expected distortion
of both algorithms at each iteration of the adversarial search.
An outline of the proof of each proposition can be found
in the appendix. The detailed version can be found in the
supplementary material.

II. RELATED WORK

A. Watermarking Literature

In an oracle attack, the attacker has unlimited access to a
watermark detector and one of the two following goals: 1)
To remove the watermark of protected content, 2) to disclose
a part of the secret key [12]–[14]. The former option is also
known as the ‘closest point attack’. The latter is not detailed
as it is specific to watermarking.

These two goals resort to the same core process: the
sensitivity attack, whose roots date back to [15]. Its first step
is to find a point on the frontier. This is called a sensitive point
because a small perturbation flips the detection output with a
good probability. To find a sensitive vector, the attacker needs
two images detected as watermarked and non-watermarked.
One possible choice strongly distorts a watermarked image
until it is deemed “non-watermarked.” In the image space, the
segment bridging the two intersects the frontier. A dichotomy
line search finds this sensitive point.

The second step adds a small random perturbation and
submits the modified vector to the detector. By repeating this
process, the attacker can have a local approximation of the
frontier, only valid in the neighborhood of the sensitive point:
The frontier is approximated by a tangent hyperplane.



Once the frontier is locally estimated, the attacker knows in
which direction to push the image to get closer to the original
while staying close to the frontier. From this new point, the
attacker again finds a sensitive vector and approximates the
frontier again. This process is iterated until the improvement
in quality of the sensitive content is no longer meaningful.

This attack is called BNSA (Blind Newton Sensitivity At-
tack) by its inventors [16]–[18]. Its main advantage is that
no assumption is needed regarding the shape of the decoding
region. BNSA converges to the global minimum distortion
if the decoding region is convex, and to a local minimizer
otherwise. The gradient estimation consumes as many queries
as the number of space dimension. The attack focuses on a
subspace to reduce this constraint.

Later, J. Earl proposes a method consuming fewer detection
queries because no gradient estimation is needed [19]. The
quality of the attacked content keeps improving with the
number of queries. The quality improvement is huge for the
first iterations but then slowly converges.

B. Adversarial Machine Learning Literature

In machine learning, an oracle attack is called a black-box
attack. The black box is no longer a watermark detector but
a classifier. The goal of an untargeted attack is to forge an
input as close as possible to an original image while being
not classified as the ground truth.

Although not referring to any work of the watermarking
literature, the most well-known black-box attacks are clearly
an application of BNSA to classifiers [20]–[22]. Of these
methods, the most efficient is GeoDA [21] which finds an
adversarial example by first estimating the vector normal to
the classifier’s decision boundary. It then perturbs the original
image along the normal vector until finding an adversarial
example. Its estimator is based on averaging multiple Gaussian
perturbations of an image on the decision boundary.

These works offer a theoretical study of the best allocation
strategy for the query budget. For instance, the number of
queries spent for the gradient estimation should scale expo-
nentially with a rate 2/3 with the number of iterations [21].
Yet, their recommendations are not identical and, as observed
in [10], this doesn’t make a difference when observing how
the distortion is decreasing with the number of queries.

The powerful attack SurFree [10] acknowledges that it
is inspired by the work of J. Earl [19]. It is faster than the
previous attacks because no gradient estimation is needed. It
is a kind of coordinate descent. It iterates the following step:
randomly pick a 2D affine hyperplane and find the optimal
adversarial example constrained on this hyperplane.

The latest improvement is the attack CGBA [11]. It adopts
the way SurFree finds the optimal point on a 2D hyperplane,
yet this hyperplane is no longer random but generated by the
estimation of the gradient at the sensible point. In a nutshell,

CGBA = SurFree+ GeoDA.

Again, no recommendation is given w.r.t. the number of
queries spent for the gradient estimation.
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Fig. 1: Geometrical representation of the problem statement
in SurFree– see notations from Sec. III-B.

III. PROBLEM STATEMENT AND MAIN BRICKS

This section introduces the problem and the main bricks,
SurFree and the gradient estimation, building CGBA.

A. Problem statement

The classifier f : [0, 1]D → RC takes images as input and
outputs a vector of predicted probabilities associated to each
of the C classes. The predicted class is the most likely:

cl(x) := argmax
k∈JCK

fk(x). (1)

We denote the original image as xo. The outside region is
defined as O := {x ∈ [0, 1]D : cl(x) ̸= cl(xo)}. The problem
is to find the optimal adversarial example x∗:

x∗ = argmax
x∈O

||x− xo||. (2)

The decision boundary ∂O is considered to be a hyperplane
denoted by H. The vector n ∈ RD normal to the decision
boundary points outside such that n⊤(x − xa) > 0 if x is
adversarial. Assuming we know a point y ∈ O, a binary search
finds a point xa ∈ H between xo and y.

B. SurFree

The basic idea of SurFree is to iteratively refine the
adversarial points by restricting the search to a new random 2-
D plane P(i). At the beginning of the i-th iteration, xa(i) ∈ H
is the closest adversarial example. The plane is constructed in
two steps. First, we compute u(i) ∈ RD as follows:

u(i) :=
xa(i)− xo

||xa(i)− xo||
. (3)

Secondly, a vector v(i) ∈ RD orthonormal to u(i) is ran-
domly sampled. The plane is then constructed as P(i) :=
(xo,u(i),v(i)). This plane P(i) intersects the hyperplane H
in a line L(i). The circle C(i) with diameter [xo,xa(i)] is
drawn in P(i). This circle always intersects L(i) in at most
two points: xa(i) and the orthogonal projection of xo onto
L(i). The latter point becomes xa(i + 1), the adversarial
point in P(i) leading to the smallest distortion. Note that one
iteration of SurFree consumes k queries spent on the binary



search of xa(i + 1) over the circle C(i). This paper assumes
that this ‘search budget’ is constant.

This creates the distortion series d(i) := ∥xa(i)−xo∥, with
d(i+1) ≤ d(i) converging to the global minimum d⋆ := ∥x∗−
xo∥, where x∗ is the projection of xo onto H [10, Prop. 4].
Another quantity of interest is the angle θ(i) between x∗−xo

and xa(i)−xo s.t. cos θ(i) = n⊤u(i). This angle dictates how
the distortion decreases over iterations: d(i) = d⋆/ cos θ(i).

C. Estimation of the normal vector

In a black-box setup, the attacker cannot compute the
gradient of the classifier. Yet, he can estimate it for a point
xa on the boundary. This amounts to compute an estimation
n̂ of the normal vector n of the tangent hyperplane.
CGBA and GeoDA use the same estimator:

n̂ =

∑Q
q=1 ϕ(xa + zq)zq

||
∑Q

q=1 ϕ(xa + zq)zq||2
, (4)

where zq ∼ N (0D, ID) and ϕ is the indicator function of the
class of x:

ϕ(x) =

{
1 if cl(x) ̸= cl(xo),

−1 if cl(x) = cl(xo).
(5)

Proposition 1. For 1 < Q≪ D, the following approximation
is accurate:

E[(n̂⊤n)2] ≈ 1

1 + π
2

D−1
Q+π/2−1

≈ 1

1 + π
2
D−1
Q

IV. COMPARISON OF SURFREE AND CGBA

This section provides a careful theoretical comparison of
the performance of SurFree and CGBA. A sketch of every
proof can be found in the appendix.

A. About SurFree

The main proposal of CGBA is to integrate gradient in-
formation into SurFree. We start by justifying why such
information can be useful:

Proposition 2. At any iteration of SurFree, there exists an
optimal vector v∗(i) which makes xa(i+ 1) = x∗:

v∗(i) =
n− (n⊤u(i))u(i)√

1− (n⊤u(i))2
(6)

The attacker thus needs a single iteration of SurFree if n
is known perfectly.

This demonstrates that the knowledge of the normal vector
allows a significant improvement over picking random direc-
tions in SurFree. Yet, since n is not accessible to the attacker
in a black-box setting, it remains to be shown if its estimation
still leads to a significant gain in efficiency: For the same
query budget, does CGBA construct adversarial points with
lower distortion? To answer this question, we first need to
characterize the rate of distortion of SurFree:

Proposition 3. At any iteration of SurFree, we have

cos2 θ(i+ 1) = cos2 θ(i) + sin2 θ(i) cos2 ϕ(i), (7)

where ϕ(i) is defined s.t. cosϕ(i) = v(i)⊤v∗(i).

The corollary is that cos θ(i + 1) ≥ cos θ(i) so that the
angle θ(i) converges to zero. This shows that xa(i) converges
to the optimal adversarial point x∗. Note that xa(i+1) = x∗ if
cos θ(i+1) = 1. This happens if cos θ(i) = 1 (xa(i) is already
optimal) or if cosϕ(i) = 1 which means that v(i) = v∗(i).

Let us define c(i) := E[cos2 θ(i)] with c(0) := cos2 θ(0).

Proposition 4. As v(i) is randomly sampled in a (D − 1)
dimensional space, then E[cos2 ϕ(i)] = (D − 1)−1, ∀i. On
expectation cos2 θ(i) obeys to the following series:

c(i+ 1) = c(i) + (1− c(i))ηSurFree (8)

= 1− (1− ηSurFree)
i (1− c(0)) , (9)

with ηSurFree := (D − 1)−1. This series converges to 1.

The corollary is an approximation of the decreasing rate of
the distortion in expectation:

E[d2(i)] ≈ d⋆,2
1

1 + (1− ηSurFree)i(cos2 θ(0)− 1))
. (10)

B. About CGBA

We can express the expected rate of distortion of CGBA
using the same technique as for SurFree:

Proposition 5. Let v̂∗(i) be the estimation of the optimal
vector v∗(i) (17). In CGBA, the expectation of cos2 θ(i)
obeys (9) but with E[cos2 ϕ(i)] = v∗(i)T v̂∗(i) = ηCGBA, ∀i:

ηCGBA ≈ 1
π
2
D−1
Q

when Q≪ D. (11)

Even for a moderate Q, ηCGBA is larger than ηSurFree
so that the distortion of CGBA converges faster than the
one of SurFree. However, CGBA consumes Q queries for
the estimation v̂∗(i) and k queries for the search overhead,
whereas SurFree spends only k queries per iteration. Fig. 2
compares of the rate of distortion of SurFree and CGBA.

Note that (10) and (11) link the size of the input to the
convergence speed for both SurFree and CGBA. In particu-
lar, for larger images, SurFree converges more slowly while
CGBA necessitates more estimation queries Q per iteration to
converge as fast as for smaller images.

Knowing both expected rates of distortion, we provide the
minimum number of estimation queries Q∗(k) such that the
expected distortion of CGBA is lower than SurFree for the
same amount of queries.

Proposition 6. Assuming a search overhead k ≥ 2 and i ≪
D, if we set Q = Q∗(k) such that:

Q∗(k) :=

⌈
πk

2k − π

⌉
, (12)

then:

E[d2SurFree(i(1 +Q∗(k)/k))] ≥ E[d2CGBA(i)], (13)

where CGBA consumes in i iterations i(Q∗(k) + k) queries,
i.e. as many as SurFree does in i(1 +Q∗(k)/k) iterations.
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(c) k = 5, Q = 5
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Fig. 2: Distortion of adversarial examples as a function of
the number of queries. Per iteration, k queries for the binary
search, Q queries to estimate the normal vector n. The
simulated curves are averaged over 20 runs in a D = 1000
dimension space. CGBA quickly converges to a low distortion
adversarial point whatever (k,Q), whereas SurFree’s per-
formance is extremely dependent on the search overhead k.

In other words, we can always find a Q such that CGBA
is more efficient – i.e needs a lower number of queries (not
iterations) – than SurFree in converging towards the optimal
adversarial point. Figure 3 shows that there is no significant
departure from the approximation (12) even for spaces with a
comparatively small dimension such as D = 100.

This section ends by studying the impact of the query
allocation schedule. Should the estimation query budget be
constant over each iteration? Or should we increase or decrease
the number of queries along the way? We simulated CGBA
with each of these possible strategies for a space of dimension
D = 1000 and report the results in Fig. 4. Still assuming the
decision boundary to be a hyperplane, no strategy seems to
strongly outperform the others. This is in sharp contrast to
[20] and the allocation strategy proposed in the CGBA paper.

V. EXPERIMENTS

This section presents our results on real-world datasets and
classifiers. These experimental results are to be compared to
our theoretical analysis performed under the assumption that
the decision boundary is a hyperplane in the previous section.

A. Experimental setup

Dataset We work on two datasets, MNIST and ImageNet.
For MNIST, we use a pre-trained CNN network composed of
2 linear layers to be as close as possible to our theoretical
assumptions. The attacks are performed on a subset of 100
correctly classified images among the test set. The dimension
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Fig. 3: Number of queries Q necessary for CGBA to outperform
SurFree given a query search overhead k. The black curve
is the approximation (12), color lines are the empirical values.
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Fig. 4: Distortion depending on the query allocation in CGBA
(simulated for D = 1000 dim.). Constant: Q(i) = 10,
Increasing: Q(i) =

⌈√
i
⌉
, Decreasing Q(i) =

⌈
50/

√
i
⌉
. The

distortion converges to the same value whatever the allocation.

of the space in this case is D = 1 × 28 × 28 = 784. For
ImageNet, we use a pre-trained ResNet18 with nonlinear
layers, departing from the separating hyperplance assumption.
A subset of 100 correctly classified images among the 2012
ImageNet validation set have been chosen to perform the
attacks. The dimension is D = 3× 224× 224 = 150, 528.

Setup and Code We compare the performance of
GeoDA, which is based purely on the use of the normal vector
n, SurFree, which does not use any gradient information and
CGBA which combines the two approaches. We use our own
implementation of CGBA to closely follow the presentation
made in this paper, replacing SurFree random direction with
the optimal vector of Prop. 2 computed from the estimated
normal n̂ but performing the binary search of the angle in the
same way as in SurFree.

When dealing with large dimensional spaces it is common
practice in the black-box attack literature to restrict the search
of adversarial examples within a smaller subspace [10], [11],
[21], [22]. We follow what is currently considered the best
practice for ImageNet, by performing the search in the DCT
domain and focusing the search over the 50% lowest frequen-
cies per 8× 8 block – see Section 5.2 and 6.1 in [10].

Evaluation metrics Similarly as for our theoretical re-
sults, the two main quantities of interest to the attacker are: 1)
the number of queries used to perform the attack and 2) the
resulting distortion of the adversarial image. We thus report:

• The l2-distortion computed over pixels values in [0, 1]D,
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Fig. 5: Comparison of the mean distortion (14) depending on
the number of queries between SurFree, GeoDA and CGBA.

averaged over the N images in each dataset. We report
this average d̄(i) for different amount i of queries:

d̄(i) :=
1

N

N∑
j=1

||xo
(j) − xa

(j)(i)||2. (14)

• The success rate defined as the rate of images that
successfully deceive the classifier for a distortion equal
or lower than target distortion dt and query budget K:

S(dt,K) =
1

N

N∑
j=1

[||xo
(j) − xa

(j)(K)||2 ≤ dt]. (15)

B. Benchmark

a) Linear classifer – MNIST : We report the results for
the MNIST dataset in Fig. 5a. We fix the number of query to
estimate the normal vector to Q = 50 for both GeoDA and
CGBA. On average, the search overhead is close to k = 10
for each algorithm. Estimation and search create a distortion
plateau between each iteration. Now, observe that CGBA is
more effective than SurFree from the first iteration and
converges more quickly than the other attacks. This is aligned
with our theoretical analysis: Q >

⌈
πk

2k−π

⌉
and as such, CGBA

should indeed have lower distortion than SurFree for every
iterations. Also observe that GeoDA, though having access to
the same estimation of the normal vector, is not able to use
this information as efficiently as CGBA. This demonstrates the
effectiveness of the geometrical approach of SurFree and
the importance of merging the two approaches.

b) Non-linear classifier – ImageNet: Fig. 5b shows
the experimental results. For CGBA, we report the average
distortion for two different query schedules concerning the
estimation: a constant one at Q = 5 and an increasing
one with Q(i) = 5

√
i+ 1. Once again, CGBA outperforms

SurFree for a very low number of queries, showing that
the hyperplane approximation is somewhat robust for non-
linear classifiers. However, CGBA performs approximately
the same as SurFree for a few iterations before clearly
outperforming it. Furthermore, the increasing schedule does
help CGBA reaching a slightly lower distortion, something
which is clearly not observed for linear classifiers – see Fig. 4.
The effectiveness of CGBA is even clearer in Table I reporting
the success rate of the attacks for ImageNet. Here CGBA–

TABLE I: Attack success rate for achieving a targeted distor-
tion dt under a limited query budget K (ImageNet).

target dt GeoDA SurFree CGBA

K = 500
30 0.82 0.95 0.95
10 0.45 0.56 0.65
5 0.35 0.4 0.54

K = 1000
30 0.85 0.97 0.99
10 0.47 0.72 0.75
5 0.36 0.52 0.60

K = 1500
30 0.87 1.0 1.0
10 0.50 0.79 0.85
5 0.38 0.59 0.63

with a constant schedule at Q = 5 – outperforms SurFree
whatever the query budget and target distortion chosen. This
is especially true for low target distortion with gain ranging
from 6% to close to 15%.

c) Impact of the query allocation schedule: Figure 6
studies the impact of the allocation schedule more closely for
ImageNet. Note that, in the same way as for the theoretical
results in Fig. 4, every schedule converges quickly – here in
approximately in 500 queries – to the same trajectory. Starting
with a small number of queries allows faster convergence
during the first iterations. There is no significant difference
between CGBA with an increasing number of queries and
CGBA with a constant schedule of Q = 5 queries.

VI. CONCLUSIONS

An important debate in black-box attacks is whether the
surrogate gradient estimation is necessary or not to obtain
highly efficient algorithms. The geometric construction of
SurFree shows that estimation of the gradient is a waste
of queries while CGBA shows that incorporating the gradient
information back into SurFree could lead to improvements.
This paper shows that this claim holds true as long as a
sufficient number of query is provided for the estimation of
the normal vector compared to the binary search overhead of
SurFree. Furthermore, it provides an explicit expression of

0 200 400 600 800 1000 1200 1400
Number of queries

10

20

30

40

50

D
is

to
rt

io
n

CGBA increasing Q0 = 5

CGBA constant Q = 50

CGBA decreasing Q0 = 120

CGBA constant Q = 5

Fig. 6: Distortion (14) under different query allocation sched-
ules. The decreasing (increasing) schedule uses Q(i) = 120√

i

(resp. Q(i) = 5
√
i) queries for estimating n at iteration i.



the distortion of both SurFree and CGBA as a function of
the dimension of the space and query budget, showing for the
first time the convergence of the latter.
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PROOF OF PROPOSITION 1
Without loss of generality, suppose n = (1, 0, . . . , 0). Then:(
n̂⊤n

)2
=

A2

A2 +B2
, A = t−1

t∑
i=1

|Xi(1)|, B = ∥Y ∥,

where Y ∼ N (0D−1, σ
2/tID−1). Note that:

E[A] = σ

√
2

π
, V[A] =

σ2

n

(
1− 2

π

)
. (16)

Approximating the expectation as the ratio of expectations:

E[(n̂⊤n)2] ≈
2
πσ

2

2
πσ

2 + σ2D−1
Q

=
1

1 + π
2
D−1
Q

, ∀Q≪ D

PROOF OF PROPOSITION 2 AND 3
In plane P , The line (L) intersect the circle C in two points:

xa(i) and the orthogonal projection of xo in L. Thus if x∗ ∈
P , then xa(i + 1) = x∗ = xo + d∗n. To do so, P contains
xo and is spanned by u(i) and n. Thus, v∗(i) is the Gram-
Schmidt orthogonalization of n with respect to u(i).

v∗(i) =
n− (u(i)⊤n)u(i)

||n− (u(i)⊤n)u(i)||
=

n− (n⊤u(i))u(i)√
1− (n⊤u(i))2

. (17)

We now calculate the distance d(i + 1) using SurFree.
Consider the coordinate system with origin xo and basis (u(i),
v∗(i), e1(i), . . . , ed−1(i)). The normal vector n writes as:

n =


cos θ(i)

sin θ(i) cosϕ(i)
...

sin θ(i) sinϕ(i) . . . sinψ(d− 2) cosψ(d− 1)
sin θ(i) sinϕ(i) . . . sinψ(d− 2) sinψ(d− 1)


We have xa(i) = d(i)u(i), and n⊤u(i) = cos θ(i). We

look for xa(i + 1) = αu(i) + βv(i) ∈ L. This implies that
β = −k(i)(α− d(i)). Point xa(i+1) is also the closest from
the origin xo. Minimizing α2 + β2 yields: ∀i

d2(i+1) = ∥xa(i+1)∥2 = d(i)2
cos2 θ(i)

cos2 θ(i) + sin2 θ(i) cos2 ϕ(i)
.

Knowing that d⋆ = d(i) cos(θ(i)),∀i, we obtain:

cos2 θ(i+ 1) = cos2 θ(i) + sin2 θ(i) cos2 ϕ(i). (18)

PROOF OF PROPOSITION 4
In SurFree, v(i) is a random direction in a hyperspace

of dimension D − 1 because v(i)⊥u(i), while v∗ is fixed.
Thus E[v(i)⊤v∗] = 0 and V[v(i)⊤v∗] = 1/(D− 1). In other
words, E[cos2 ϕ(i)] = 1/(D − 1).

PROOF OF PROPOSITION 5
The demonstration is fully identical to the proof of Prop.

4 but with ηCGBA. Proposition 1 shows that: ηCGBA ≈
1

π
2

D−1
Q

when Q≪ D.

PROOF OF PROPOSITION 6
Q∗(k) is defined as the smallest integer Q such that:

E[d2SurFree(i(1 +Q/k))] ≥ E[d2CGBA(i)]. (19)

Eq. (9) implies: (1 − ηSurFree)
i(Q/k+1) ≥ (1 − ηCGBA)

i.
Assuming that 1 ≤ Q ≪ D leads to a second order equation
independent on i whose solution is:

Q∗(k) ≈ k

D
(
1− π

2k

)
−

√
D2

(
π
2k − 1

)2 − 2Dπ
k

2


≈ − kπ

π − 2k
, when D

(
1− π

2k

)
→ +∞.

(20)


