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DLR equations for the superstable Bose gas at any

temperature and activity

G. Bellot,*† D. Dereudre
∗‡

and M. Maïda
∗§

October , 

Abstract

We construct a thermodynamic limit for the grand canonical Bose gas (in its Feynman-Kac
representation) with superstable interaction. Although we do not prove the presence of infi-
nite cycles, our infinite volume model is naturally a distribution over configurations of finite
loops and interlacements. We prove the limiting process to be solution of DLR equations.
We will work within the framework of Dirichlet and periodic boundary conditions, for any
inverse temperature β > 0, chemical potential µ ∈ R and dimension d > 1.

Keywords: Gibbs point process, thermodynamic limit, entropy, random permutations, inter-
lacements
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 Introduction and results

Since the celebrated lesson of Ginibre in Les Houches [Gin], it has been formally established
that, under broad hypotheses, a canonical ensemble ofN bosons in a domain Λ ⊂ Rd at thermal
equilibrium at inverse temperature β > 0 interacting through a potential U : ΛN → R∪ {+∞}
can be modeled as a point process. More precisely, if we denote as SN the N ’th permutation

group and W
β,⊂Λ
x,y the un-normalized Wiener measure over Brownian bridges w : [0;β] → Λ

going from x to y then the function

(x1 . . . xN ) 7→
∑

σ∈SN

∫ 


n⊗

i=1

W
β,⊂Λ
xi ,xσ(i) (dwi )


 exp

[
−
∫ β

0
U(w1(s) . . .wN (s))ds

]

is proportional to the square modulus of the Bose gas wave function. This is the Feynman-Kac
formula in the case of Dirichlet boundary condition. By extension, the process sampling the
interacting Brownian bridges w1 . . .wN realizing the permutation σ is called the Feynman-Kac
(FK) representation of the Bose gas.

For technical reasons, like some other authors in the literature ([AFY], [Vog], etc), we
will prefer studying the grand canonical ensemble, where the number of points in the point
process is random, and the average density is controlled by a parameter µ ∈ R (the chemical
potential).

A standard approach to the study of the Bose gas from point processes consists in taking its
thermodynamic limit, which means inflating the domain grow to infinityΛ ↑ Rd . Onemay then
hope to deduce facts about the physical Bose gas from the properties of this infinite volume
model. In particular, the community is most interested in proving when and how much the
Bose gas undergoes Bose-Einstein condensation (BEC). In the non-interacting case (U = 0), a
lot of this work has already been done and the literature provides a good picture of the free
Bose gas. Sütö ([Süt], [Süt]) has proven Feynman’s conjecture [Fey] that the emergence
of infinite cycles in the permutation (interlacements) in infinite volume is equivalent to BEC.
Later, it has then been proven in various ways and frameworks ([BU], [AFY], [Vog]) that
these interlacements appear through a saturation effect, beyond some critical density ρc > 0.

The publications of Sütö proved the equivalence of interlacements and BEC for the free
and mean-field case, but it is expected to fail in the non-ideal gas. Nonetheless, figuring out
whether or not the thermodynamic limit samples infinite cycles is considered an interesting
question. First, interlacements do not only appear in Bose gas models and are a more general
notion [Szn]. But more importantly, understanding exactly how Feynman’s prediction fails
necessitates investigating both when BEC and interlacements happen.

Of course the community has been interested with the more realistic picture of the interact-
ing Bose gas but it is much more difficult than the free case. Even taking the thermodynamic





limit – although it really is the very first step – is not trivial. Several authors have investigated
general interacting Bose gases with various strategies ([ACK], [SKS], [BV]). But drawing
conclusive results becomes significantly harder at high densities. This is why some ingenious
approximations were proposed in the literature ([CJK], [DV]) to approach the behavior of
the true interacting Bose gas and provide some precious insight.

We believe a major reason why the general approach had trouble at high densities is due
to its usual loop soup formulation. Indeed, some authors ([AFY], [BV], [DV], etc) prefer
sampling the Brownian cycles entirely instead of generating the points and the permutation
beforehand, and only then drawing the Brownian bridges. One may get rid of that complicated
procedure and directly sample the whole loops as marks of a point process. Although much
more mathematically elegant, this method has a drawback: loops are fundamentally non-local
objects. At high enough densities, they are expected to become very large and this comes at
odds with the desire to control their behavior. Indeed, the widely used [GZ]’s theorem only
states that the integral of local functionals is preserved by taking the limit. Furthermore, in
the event that one really could control those loops and conclude to an infinite volume model,
this limit model would only sample finite loops, by construction. This will be illustrated in
section .. Of course this broad description should be amended. Vogel [Vog] for example
used a loop soup model to conclude to the presence of interlacements at the thermodynamic
limit in the free case.

As titled, the major assumption we will make on the interaction between bosons is its super-
stability, which is a very standard hypothesis. For the classical superstable gas, Ruelle originally
provided some probability estimates and general results ([Rue]). Park successfully extended
these bounds on the point-wise part of the quantum bosonic gas several decades ago ([Par],
[Par]). In our work, we were able to preserve the cycle structure in our thermodynamic limit,
not just the point-wise part. Our setting includes every β > 0 and µ ∈ R, which could potentially
allow the Bose gas to reach any density. Therefore, our results provide some hope to eventually
detect infinite cycles in infinite volume at high enough densities.

Our results are stated in the well-known (FK) representation. As it is not very tractable, we
constructed an original marked point view of the Bose gas which serves as an encoding of the
(FK) representation. Even though it does not appear in the title, nor in the results, we believe
our main contribution really is this encoding. It turns out this idea of using a custom marked
point process to model the Bose gas was first thought of by Georgii andmentioned in private ex-
changes. Our new formulation, although convoluted, was tailor-made for the crucial advantage
to have a uniformly bounded entropy along some Poisson point process. This allows the use
of standard entropic tools and the encoded Bose gas does go through a thermodynamic limit.
Then we decode the newly defined infinite volume model and prove it really is the thermody-
namic limit of the original (FK) model, thanks to the encoding being local-wise. Our approach
is purely probabilistic and does not use operator theory.

Once the thermodynamic limit is stated in its full generality, we establish DLR equations
with little additional work. More precisely, the difficulty to write those DLR equations is due to
the nature of the sampled objects (curves instead of points) rather than the range of the interac-
tion, as it is assumed finite (we only add this finite range hypothesis for the DLR equations).

. Interaction and assumptions

Definition ..— Let us denote the set of finite point configurations in Rd (d > 1) as

Conf<∞ :=
{
ξ ⊂ Rd

/
#ξ < +∞

}
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where #ξ is the cardinal of ξ . We equip this space with the smallest σ-algebra C<∞ making measurable
the maps ξ 7→ #(ξ ∩E) for every Borelian E ⊆ Rd .

Let U : Conf<∞→R∪ {+∞}measurable be an interaction.

Hypothesis I — We assume the interaction to be non-degenerate U(∅) < +∞.

Hypothesis II — We assume the interaction to be superstable [Rue], that is to say there exist
A> 0, B > 0 and r > 0 such that

∀ξ ∈ Conf<∞, U(ξ)> −A#ξ +B
∑

z∈rZd
#[ξ ∩ (z +Λr )]

2

where Λr := [−r/2; r/2[d .

Remark ..
Superstability is a very standard assumption for an interaction. We refer to Proposition .
from [Rue] for criteria for a pairwise interaction to be superstable.

If the interaction is superstable for some constants (A,B,r) then it is not true it will satisfy
superstability’s inequality for (A,B,r ′) for all 0 < r ′ < r. But we were not able to find interesting

counterexamples. In the following pages, we will consider domains ΛL = [−L/2;L/2[d only for
Lmultiple of r but this really is a technical artifact rather than a limitation.

We are going to investigate the Bose gas in Dirichlet (Dir) and periodic (per) boundary con-
ditions. An indeterminate boundary condition among those two will be denoted (bc).

The boundary condition we work in will have consequences on the interaction we do cal-
culations with. In Dirichlet boundary condition, we need to add an infinite exterior potential
restraining the particles inside the domain ΛL, while in periodic boundary condition, the inter-
action needs to be periodized. We define below the relevant adaptations of the interaction.

Our conclusions still hold for several other boundary conditions, including Neumann’s. But
we think presenting our results in full generality would have damaged readability without en-
riching significantly the theorems. We believe presenting the proofs for both Dirichlet and
periodic boundary conditions already paints a complete enough picture.

Definition ..— Let L ∈ rN. We define U(bc),L : Conf<∞→R∪ {+∞} by

U(Dir),L(ξ) :=


U(ξ) if ξ ⊂ΛL

+∞ otherwise

U(per),L(ξ) := lim
K→+∞

1

(2K +1)d
U



⋃

k∈Zd
(ξ + Lk)∩Λ(2K+1)L




if the limit exists in R∪ {+∞}.
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Hypothesis III — If the boundary condition is periodic, we assume the limit

lim
K→+∞

1

(2K +1)d
U



⋃

k∈Zd
(ξ + Lk)∩Λ(2K+1)L


 ∈ R∪ {+∞}

to exist for any L ∈ rN and any ξ ∈ Conf<∞.

It is not obvious this way of defining U(per),L in full generality is relevant. The following
proposition helps to support its validity.

Proposition ..— Let us assume the interaction is pairwise, that is to say there exists a radial
potential Φ : Rd →R such that

∀ξ ∈ Conf<∞, U(ξ) =
∑

x,y∈ξ
x,y

Φ(x − y).

If there exists a decreasing function ψ : R+→ R such that

∫ +∞

0
rd−1ψ(r)dr < +∞ and ∀x ∈ Rd , |Φ(x)|6 ψ(|x|)

then for any L > 0 the periodic version of the interaction U(per),L is well defined. Furthermore, it is
pairwise up to a linear term

U(per),L(ξ) =
∑

x,y∈ξ
x,y

Φ(per),L(x − y) + #ξ
[
Φ(per),L(0)−Φ(0)

]

where
Φ(per),L(x) :=

∑

k∈Zd
Φ(x + Lk).

The hypotheses of this subsection will always be considered throughout the following pages
and not stated anymore. Similarly, the numbers A > 0, B > 0 and r > 0 will always refer to the
superstability constants of hypothesis II. Other assumptions will be added when needed.

. Feynman-Kac state space

Definition ..— For any t > 0, we denote as Ωt the set of continuous functions from [0; t] to Rd .
This set is equipped with the topology Wt associated to the uniform norm ‖·‖∞. We denote asWt the
associated Borel σ-algebra.

On the set Ωt , we consider the Wiener measureW t
x,y weighing Brownian bridges going from x to

y in time t, whose finite-dimensional distributions are given by

dW t
x,y [ω(s1) = z1 . . .ω(sn) = zn] =

n∏

i=0

[2π(si+1 − si )]−d/2 exp
[
−‖zi+1 − zi‖

2

2(si+1 − si)

]
dz1 . . .dzn





with 0 = s0 < · · · < sn+1 = t and the convention z0 = x and zn+1 = y. This measure is unnormalized,
as

W t
x,y (Ωt) = (2πt)−d/2 exp

(
− 1

2t

∥∥∥y − x
∥∥∥2

)
.

For any L > 0multiple of r, we define a version of theWienermeasure for both boundary conditions
on ΛL

W t
x,y,(Dir),L :=W

t
x,y and W t

x,y,(per),L :=
∑

k∈Zd
W t
x,y+Lk .

Since we are studying the Bose gas at thermal equilibrium at inverse temperature β > 0, we
will be focusing on the t = β case. The parameter β > 0 is fixed in the sequel and omitted in
most notations.

Definition ..— We denote the set of Feynman-Kac configurations (FK) as

Conf(FK) :=
{
γ ⊂Ωβ

/
γ is locally finite for Wβ

}

and we equip this configuration set with the smallest σ-algebra C(FK) making measurable the maps
γ 7→ #(γ ∩E) for every bounded E ∈ Wβ .

Definition ..— A Feynman-Kac configuration γ ∈ Conf(FK) is said to be permutation-wise if
the following condition is satisfied

∀w ∈ γ,

∃!w′ ∈ γ, w′(0) = w(β)

∃!w′′ ∈ γ, w(0) = w′′(β).

We denote
ConfPerm(FK) :=

{
γ ∈ Conf(FK)

/
γ is permutation-wise

}
.

For any γ ∈ ConfPerm(FK), we define the permutation

σ(FK)(γ, ·) : γ −→ γ
w 7−→ w′ such that w′(0) = w(β).

In finite volume, all probability measures will be defined so that they are supported on
permutation-wise configurations. We will later prove the thermodynamic limits to have the
same property.

. Thermodynamic limit

Definition ..— For each boundary condition, we define a Hamiltonian over finite configurations

γ ∈ Conf(FK) with

H
(FK)
(bc),L(γ) :=

∫ β

0
U(bc),L[{w(s), w ∈ γ}]ds ∈ R∪ {+∞}.
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We will justify in remark .. this integral is well defined.

Definition ..— For any compact ∆ ⊂ Rd , we denote asΠ∆ the Poisson point process over ∆ with
intensity 1.

We introduce the Feynman-Kac representation of the grand canonical Bose gas interacting
through the potential U at inverse temperature β > 0 and chemical potential µ ∈ R. The param-
eter µ controls the average density of the Bose gas at some given temperature. Just like β, the
parameter µ is fixed in the sequel and omitted in the notations.

Lemma-definition .. (proof: see remark ..) — Let L ∈ rN, β > 0 and µ ∈ R.
In both boundary conditions, there exists a well-defined probability measure P

(FK)

(bc),L over Conf
(FK)

which satisfies for any measurable f : Conf(FK)→R+ the following equality

∫
f dP

(FK)
(bc),L

:=
1

Z(bc),L

∫
eβµ#ξΠΛL

(dξ)
∑

σ∈S(ξ)

∫
e
−H (FK)

(bc),L(γ)f
(
γ(bc),L

)


⊗

x∈ξ
W

β
x,σ(x),(bc),L


(dγ)

where S(ξ) is the set of permutations over ξ and

γ(Dir),L := γ γ(per),L :=
⋃

k∈Zd
(γ + Lk)

with

Z(bc),L :=

∫
eβµ#ξΠΛL

(dξ)
∑

σ∈S(ξ)

∫
e
−H (FK)

(bc),L(γ)



⊗

x∈ξ
W

β
x,σ(x),(bc),L


(dγ).

We illustrate for each boundary condition the kind of configurations sampled by P
(FK)
(bc),L in

fig. . The points of ξ are indicated with “•” and we represent smooth trajectories instead of
Brownian bridges, both for readability purposes and by lack of expertise in the usage of TikZ.
We also did not represent bridges that intersect each others because, although common, this
situation could make the drawings less clear.

Remark ..
By construction, it is clear that P

(FK)

(bc),L

(
ConfPerm(FK)

)
= 1.

By periodicity of the (FK) configuration under P
(FK)
(per),L, outside of degenerate cases (like the

interaction U(per),L only authorizing empty configurations), there is a positive probability for

the permutation σ(FK)(γ, ·) to include infinite cycles. This situation is illustrated in fig. b. This
is amusing as the sampled σ ∈ S(ξ) is only made up of finite cycles. Unfortunately, we have not
found a way to conclude to the presence of infinite cycles in infinite volume from this fact.





L

•
•

•

•

•

(a) (Dir)

L

•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•

•

•

•

•

(b) (per)

Figure : Example of (FK) configurations

Definition ..— For any L ∈ rN, we define the empirical field P̃
(FK)
(bc),L over Conf

(FK) by

∫
f dP̃

(FK)
(bc),L

:=
1

Ld

∫

ΛL

dv

∫
f (γ + v) P

(FK)
(bc),L(dγ)

for any measurable f : Conf(FK)→R+.

One should think the empirical field as a partially stationarized version of the probability

P
(FK)
(bc),L. In the case of periodic boundary conditions, by stationarity of the original model,

P̃
(FK)

(per),L = P
(FK)

(per),L.

According to [GZ], the functionals whose integral is compatible with the thermodynamic
limit are local functionals. For marked point processes, locality just means the function can
only depend on points inside some compact. But in our setting this is not so simple.

Definition ..— Let ∆ ⊂ Rd be a compact. We define the following projections Conf(FK) →
Conf(FK)

Proj∈∆(γ) := {w ∈ γ
/
w(0) ∈ ∆}

Proj∩∆(γ) := {w ∈ γ
/
w∩∆ , ∅}.

For any integer n > 1, we also define

Proj∩n+∆(γ) :=


w ∈ γ

/
∃k ∈ J1;nK,

∃w0 . . .wk−1 ∈ γ
wk =w

,
w0 ∩∆ , ∅
wk ∩∆ = ∅
∀i ∈ J0;k − 1K, wi(β) = wi+1(0)



Proj∩n−∆(γ) :=


w ∈ γ

/
∃k ∈ J1;nK,

∃w0 . . .wk−1 ∈ γ
wk = w

,
w0 ∩∆ , ∅
wk ∩∆ = ∅
∀i ∈ J0;k − 1K, wi+1(β) = wi(0)


.
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Finally, for any n > 0 we define

Proj∩n∆(γ) :=


Proj∩∆(γ) if n = 0

Proj∩∆(γ)∪Proj∩n+∆(γ)∪Proj∩n−∆(γ) if n > 1.

The following notions of locality ensue.

Definition ..— A function f defined over Conf(FK) is said to be ∈-local if there exists a compact
∆ ⊂ Rd such that

Proj∈∆(γ) = Proj∈∆(γ
′) =⇒ f (γ) = f (γ ′).

A function f defined over ConfPerm(FK) with the same property will also be called ∈-local.
Let n > 0. Similarly, a function f defined over Conf(FK) is said to be ∩n-local if there exists a

compact ∆ ⊂ Rd such that

Proj∩n∆(γ) = Proj∩n∆(γ
′) =⇒ f (γ) = f (γ ′).

We also need to define some notions of tameness which are compatible with our respective
definitions of locality.

Definition ..— For any trajectory w ∈Ωβ and δ > 0, we define itsWiener sausage of thickness
δ as

Sausδ(w) :=
{
x ∈ Rd

/
∃s ∈ [0;β], ‖x −w(s)‖ 6 δ

}

whose volume we denote |Sausδ(w)|.
A function f : Conf(FK)→ R is said to be ∈-tame if there exists a,δ > 0, α ∈ ]0;2[, and a compact

∆ ⊂ Rd such that for any γ ∈ Conf(FK),

a
∣∣∣f (γ)

∣∣∣6 1+
∑

w∈Proj∈∆(γ)
|Sausδ(w)|α .

A function f : ConfPerm(FK)→ R with the analogous property will also be called ∈-tame.

Let n > 0. A function f : Conf(FK) → R is said to be ∩n-tame if there exists a,δ > 0, α ∈ ]0;2[,
and a compact ∆ ⊂ Rd such that for any γ ∈ Conf(FK),

a
∣∣∣f (γ)

∣∣∣61+
∑

w∈Proj∩n∆(γ)
|Sausδ(w)|α .

A function f : Conf(FK) → R is said to be ∩n-regular if there exists a,δ > 0, α ∈ ]0;1[, and a

compact ∆ ⊂ Rd such that for any γ ∈ ConfPerm(FK) and γ ′ ⊆ γ ,

a
∣∣∣f (γ)− f (γ \ γ ′)

∣∣∣6
∑

w∈Proj∈∆(γ)∩γ ′
|Sausδ(w)|1+α +

∑

w∈Proj∩∆(γ)∩γ ′
|Sausδ(w)|α

+
∑

w∈Proj∩n+∆(γ)∩γ
′
1σ(FK)(γ,·)−1(w)<γ ′ |Sausδ(w)|1+α

+
∑

w∈Proj∩n−∆(γ)∩γ
′
1σ(FK)(γ,w)<γ ′ |Sausδ(w)|1+α .





Remark ..
A function f being ∩n-regular should be thought of as some kind of Lipschitz property for f ; if
the configuration γ is slightly modified then the value f (γ) only marginally changes.

Example ..
We provide a few examples of functions which are local, tame or regular in various ways.

• f1 : Conf
(FK)→R defined by

f1(γ) =
∑

w∈γ, w(0)∈[0;1]d

∥∥∥w(β)−w(0)
∥∥∥

is ∈-local and ∈-tame.

Locality is clear. Tameness comes from the following fact: a cylinder whose axis goes from
w(0) to w(β) with radius δ has a smaller volume than Sausδ(w). Therefore

cd−1δ
d−1∥∥∥w(β)−w(0)

∥∥∥ 6 |Sausδ(w)|

where cd−1 is the volume of a d − 1 dimensional unit ball.

• f2 : ConfPerm
(FK)→R defined by

f2(γ) =
∑

w∈γ, w⊂[0;1]d

1

inf
{
j > 1

/ [
σ(FK)(γ, ·)

]j
(w) = w

}1∀j∈Z, [σ(FK)(γ,·)]j (w)⊂[0;1]d

is ∈-local and ∈-tame.

Indeed, the function f2 counts the number of disjoint cycles in the cycle structure of γ

which are completely included inside [0;1]d . Locality is then intuitive. Tameness is clear
because f2(γ)6 #Proj∈[0;1]d (γ).

• f3 : Conf
(FK)→R defined by

f3(γ) = #
{
w ∈ γ

/
w∩ [0;1]d , ∅

}
·1

#
{
w∈γ

/
w∩[0;1]d,∅

}
is even

is ∩0-local and ∩0-tame, but not ∩n-regular for any n > 0.

There is no hope of regularity because the variations of f3 can be arbitrarily large.

• f4 : Conf
(FK)→R defined by

f4(γ) = #

{
w ∈ Proj∈[0;1]d (γ)

/
∃w′ ∈ γ, w′(0) = w(β)

w′(β) = w(0)

}

is ∩1-local, ∈-tame and ∩1-regular.
If γ ∈ ConfPerm(FK), then f4(γ) counts the number of bridges w ∈ γ starting in [0;1]d

which are part of a cycle of length 1 or 2.
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None of the examples above are bounded. So we will state the thermodynamic limit in the
most general possible way, without restricting ourselves to bounded functions. This will allow
us to state corollary ...

Remark ..
If a function f : Conf(FK) → R is ∩n-regular, then its restriction to ConfPerm(FK) is ∩n-local
because by definition

∀γ ∈ ConfPerm(FK),
∣∣∣f (γ)− f [Proj∩n∆(γ)

]∣∣∣ = 0.

Theorem .. (Thermodynamic limit, proof pp. ,)
Under hypotheses I to III, for any inverse temperature β > 0, chemical potential µ ∈ R, boundary

condition (bc) = (Dir) or (per), there exists a stationary probability measure P
(FK)

(bc),∞ over Conf(FK)

and an increasing sequence (Lm)m>0 of multiples of r such that,

• for any measurable f : ConfPerm(FK)→ R which is ∈-local and ∈-tame

• for any measurable f : Conf(FK)→ R which is ∩n-regular and ∩n-tame for some n > 0

then

lim
m→+∞

∫
f dP̃

(FK)

(bc),Lm
=

∫
f dP

(FK)

(bc),∞.

In the following, we will abbreviate this fact as

lim
L→+∞

∫
f dP̃

(FK)

(bc),L =

∫
f dP

(FK)

(bc),∞.

Remark ..
The first part of theorem .. concerns functions defined on ConfPerm(FK). This is not a

limitation, quite the contrary. Any function defined on the whole Conf(FK) can be restricted to

ConfPerm(FK). But the reverse is not as trivial: extending f2 from example .. to the whole
configuration space while keeping locality and tameness would be unpleasant.

The second part of the theorem unfortunately forces us to go through this obnoxious exer-

cise. This is why we defined f4 from example .. on the entire Conf(FK).

Proposition .. (proof: see remark ..) — P
(FK)

(bc),∞
(
ConfPerm(FK)

)
= 1.

The event “γ ∈ ConfPerm(FK)” is not local in any of the senses from definition .. so this
is not a trivial result.

Unfortunately, we were not able to prove the induced permutation σ(FK)(γ, ·) to comprise
infinite cycles at low enough temperature (or high enough chemical potential). But we believe
our construction naturally includes this possibility, because it is a local to global construction,
rather than a cycle-wise definition like in loop soup models.
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Corollary ..— The proportion of Brownian bridges which are part of an infinite cycle in the
limiting process is the limiting proportion of bridges which are part of an arbitrarily large cycle in
finite volume. More precisely,

∫
#
{
w ∈ Proj∈[0;1]d (γ)

/
∀j > 1,

[
σ(FK)(γ, ·)

]j
(w) ,w

}
P
(FK)
(bc),∞(dγ)

= lim
n→+∞

lim
L→+∞

∫
#
{
w ∈ Proj∈[0;1]d (γ)

/
∀j ∈ J1;nK,

[
σ(FK)(γ, ·)

]j
(w) ,w

}
P̃
(FK)

(bc),L(dγ).

To prove this corollary, we apply the second half of theorem .. to the functions fn :

Conf(FK)→ R, n> 1, defined by

fn(γ) =#Proj∈[0;1]d (γ)

− #
{
w ∈ Proj∈[0;1]d (γ)

/
∃j ∈ J1;nK,

∃w0 . . .wj ∈ γ
w0 = wj =w

,∀i ∈ J0; j − 1K, wi+1(0) = wi(β)

}

which makes it ∩n-regular and ∈-tame.

On ConfPerm(FK), the quantity fn(γ) is the number of bridges starting in [0;1]d which are
part of a cycle of length larger than n.

. DLR equations

In the previous section, we stated the existence of an infinite volume model P
(FK)
(bc),∞ for each

boundary condition. Since this probability measure is a thermodynamic limit, we can hope
to calculate the probability of some events as limits, but we did not provide any information
on this infinite volume distribution itself, apart from proposition ... Unfortunately, it is

not possible to describe the probability P
(FK)

(bc),∞ as simply as we did in finite volume in lemma-

definition .., because an infinite volume Hamiltonian would always value any infinite config-
uration to an infinite energetic cost. The solution is to write DLR (Dobrushin-Lanford-Ruelle)
equations, that is to say, write the conditional distribution of the infinite configuration inside
some compact ∆, given the configuration outside ∆.

Hypothesis IV— We assume the interaction to be stationary

∀ξ ∈ Conf<∞, ∀v ∈ Rd , U(ξ + v) =U(ξ).

Hypothesis V — We assume the interaction to be finite range with range R > 0, that is to say for
any compact ∆ ⊂ Rd , there exists a local interaction U∆ : Conf<∞→R∪ {+∞} such that

∀ξ ∈ Conf<∞, U(ξ) =U∆[ξ ∩ (∆+ΛR)] +U(ξ ∩∆c)

where ∆+ΛR is the Minkowski sum of those two sets.

The existence of such a U∆ implies heredity of the original interaction U.
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Proposition ..— Let us assume the interaction is pairwise (see proposition ..) with potential
Φ : Rd → R∪ {+∞} such that

∀x ∈ Rd , ‖x‖ > R =⇒ Φ(x) = 0.

Then the interaction is finite range with range R and for any compact ∆ ⊂ Rd ,

∀ξ ∈ Conf<∞, U∆(ξ) =
∑

x,y∈ξ∩∆
x,y

Φ(x − y) + 2
∑

x∈ξ∩∆

∑

y∈ξ∩[(∆+ΛR )\∆]
Φ(x − y).

Hypothesis VI — We assume the interaction to be uniformly regular from below, that is to say,
for any compact ∆ ⊂ Rd and integer N > 0, there exists C∆,N ∈ R such that

∀ξ ∈ Conf<∞, #[ξ ∩ (∆+ΛR)] =N =⇒ U(ξ)>U(ξ ∩∆c) +C∆,N .

In other words, we assume the energetic value of a configuration ξ (with a given number of
points close to ∆) not to decrease by an arbitrarily large value when adding a given number of
points inside ∆.

This could probably be guaranteed by some weak regularity criteria (hence the name of hy-
pothesis VI) because we were not able to find an example of interaction which would check
hypotheses I to V but not the VI’th. A finite range pairwise interaction satisfies the hypothesis
as long as the potential is bounded from below, which is guaranteed by superstability.

Remark .. (proof p. )
Thanks to hypothesis VI, we can assume without any loss of generality that for any compact

∆ ⊂ Rd and integer N > 0,

∀ξ ∈ Conf<∞, #[ξ ∩ (∆+ΛR)] =N =⇒ U∆[ξ ∩ (∆+ΛR)]> C∆,N .

Definition ..— For any compact ∆ ⊂ Rd , we define the local Hamiltonian H
(FK)
∆

over

γ ∈ Conf
(FK)

/
sup
s∈[0;β]

#[{w(s), w ∈ γ} ∩ (∆+ΛR)] < +∞


by

H
(FK)
∆

(γ) =

∫ β

0
U∆[{w(s), w ∈ γ} ∩ (∆+ΛR)]ds ∈ R∪ {+∞}.

According to remark .., the integrand is bounded from below by min06k6N C∆,k where

N = sup
s∈[0;β]

#[{w(s), w ∈ γ} ∩ (∆+ΛR)]

so the integral is well-defined.
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Lemma-definition .. (proof p. ) — Let ∆ ⊂ Rd be a compact and γ ∈ Conf(FK).
We define the exterior configuration relatively to ∆ as

γext
∆

:= {w ∈ γ /
w 1 ∆}.

If sups∈[0;β]#
[{
w(s), w ∈ γext

∆

}
∩ (∆+ΛR)

]
is finite, then one can define the constant

Z∆(γ) :=

∫
Π∆(dζ) e

βµ#ζ
∑

σ int
∆
∈S(∂γ in

∆
∪ζ→∂γout

∆
∪ζ)

∫



⊗

x∈∂γ in
∆
∪ζ
W

β,⊂∆
x,σ int

∆
(x)



(dη) e−H

(FK)
∆

(η∪γext
∆
)

where we denote
S(X→ Y ) := {σ : X→ Y

/
σ is bijective}

the inward and outward boundaries are the finite point configurations

∂γ in
∆

:=

{
x ∈ ∆

/
∃w ∈ γext

∆
, x = w(β)

∀w ∈ γext
∆
, x ,w(0)

}

∂γout
∆

:=

{
x ∈ ∆

/
∃w ∈ γext

∆
, x = w(0)

∀w ∈ γext
∆
, x ,w(β)

}

and we define the measure

W
β,⊂∆
x,y (dw) := 1w⊂∆W

β
x,y (dw).

The constant Z∆(γ) is well defined, positive and finite P
(FK)

(bc),L almost surely for any L ∈ rN such

that ∆+ΛR ⊆ΛL. It is also true P
(FK)
(bc),∞ almost surely.

If Z∆(γ) ∈ ]0;+∞[ then we define the probability measure P
(FK)
∆

( ·
∣∣∣γ) over Conf(FK) by

P
(FK)
∆

(dη
∣∣∣γ) := 1

Z∆(γ)

∫
Π∆(dξ∆) e

βµ#ξ∆
∑

σ int
∆
∈S(∂γ in

∆
∪ξ∆→∂γout

∆
∪ξ∆)



⊗

x∈∂γ in
∆
∪ξ∆

W
β,⊂∆
x,σ int

∆
(x)



(dη) e−H

(FK)
∆

(η∪γext
∆
).

Otherwise we define the measure by P
(FK)
∆

( ·
∣∣∣γ) := 0.

We illustrate in fig.  the detail of exterior and interior configurations.
Only points inside ∆ and bridges intersecting the compact are represented. The bridges of

γext
∆

are drawn in dashed lines and those of γ int
∆

:= γ \ γext
∆

in solid lines. Points of ∂γ in
∆

are

represented by “�”, points of ∂γout
∆

by “N”.
Points which both start and end solid bridges are represented by “•”, those which start and

end dashed bridges are represented by “�”.
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Figure : Exterior and interior configurations relatively to ∆

Remark ..
If the exterior configuration γext

∆
is far enough from the compact ∆ :

∀w ∈ γext
∆
, w∩ (∆+ΛR) = ∅

then the conditional distribution does not depend on the exterior configuration :

P
(FK)
∆

( ·
∣∣∣γ) = P

(FK)
∆

( · |∅).

In fact, it coincides with a finite volume model on ∆ with Dirichlet boundary conditions.

Theorem .. (DLR equations, proof p. )
Let ∆ ⊂ Rd be a compact. Under hypotheses I to VI, for any inverse temperature β > 0, chemical

potential µ ∈ R, boundary condition (bc) = (Dir) or (per), for any measurable f : Conf(FK)→ R+,

∫
f (γ) P

(FK)
(bc),∞(dγ) =

∫ [∫
f
(
η ∪γext

∆

)
P
(FK)
∆

(dη
∣∣∣γ)

]
P
(FK)
(bc),∞(dγ).

The resampling of the interior configuration in the DLR equations consists in the following:
we erase • points and solid bridges, then sample new interior • points, a new interior bijection
σ int
∆
∈ S(�∪•→N∪•) and the associated solid bridges. This is illustrated in fig. .

 Equivalent models

As wementioned previously, there is more than one formulation of the Bose gas. The expression
closest to the physics is Feynman-Kac’s and we chose to express our main results in this setting.
We will also properly introduce  other equivalent models. Transitions from these various
points of view are summed up in fig. .

Of course, the respective definitions will make the diagram of fig.  commute.

As we announced in the general introduction, the marked point (mp) framework will be es-
sential to establish the thermodynamic limit. The path soup (ps) framework will be necessary
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Figure : Resampling in the DLR equations

Objects are localObjects are loops

ConfPerm(FK)ConfPerm
(ps)
(bc),L

ConfPerm
(rl)
(bc),L

ConfPerm
(mp)
(bc),L

Figure : Equivalence of models in ΛL

because of proposition .. which states the invariance of the Bose gas under a time-shift of
the Brownian bridges in the configuration. This will be useful in the proof of the (mp) entropic
bound. The rooted loops (rl) framework, commonly referred to as loop soup in the literature, is
more secondary. It is necessary to introduce the (ps) model, and it will be interesting to ascer-
tain how incompatible the topologies of (rl) and (FK) thermodynamic limits are.

. Rooted loops

A usual formulation of the Bose gas is the loop soup one ([BV], [DV], etc). Instead of sam-
pling separately N different Brownian bridges which happen to draw a permutation σ ∈ S(N ),
this model samples directly the cycles of σ as Brownian loops w : R→ Rd . This model can be
naturally interpreted as a process sampling marked points: the position is the root w(0) of the
loop, and the mark is the loop itself. This is why we will call this representation the rooted loop
(rl) model of the Bose gas. We will see this representation has some flaws that prevent us from
studying interlacements.

Definition ..— For any ω ∈Ωt , we define the continuation ω̃ : R→Rd of the trajectory

ω̃(s + tq) := ω(s) + q[ω(t)−ω(0)]

for q ∈ Z and s ∈ [0; t[.
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We introduce the set
Loop

(root)
t := {ω̃, ω ∈Ωt}.

The map ω 7→ ω̃ induces the respective topology W
(root)
t and σ-algebraW (root)

t .

We understand it is not reasonable to call loops the trajectories in Loop
(root)
t , but we are going

to investigate specific subsets of Loop
(root)
t , so we believe this notation is fairly justified.

For Dirichlet boundary condition, we will call rooted loops continuous trajectories w : R→
Rd which are βj-periodic for some j > 1.

In periodic boundary condition, a loop is not forced to return to its starting point w(0). It
can go to some periodic copy w(0) + Lk, k ∈ Zd instead.

Definition ..— We define the length ℓ(w) of a given w ∈⋃
j>1Loop

(root)
βj to be the integer

ℓ(w) := inf
{
j > 1

/
w ∈ Loop(root)

βj

}
.

We define

Loop
(root)

(Dir),L
:=

⋃

j>1

{
w ∈ Loop(root)

βj

/
ℓ(w) = j
w(βj) = w(0)

}

Loop
(root)
(per),L

:=
⋃

j>1

{
w ∈ Loop(root)

βj

/
ℓ(w) = j
w(βj)−w(0) ∈ LZd

}
.

Trajectories in a set Loop
(root)
(bc),L will be called rooted loops.

Lemma-definition ..— Defining Loop
(root)
(bc),L as a discrete disjoint union of subsets induces a

topology and σ-algebra over this space, which we will denote W
(root)

(bc),L andW
(root)

(bc),L respectively.

The topological space
(
Loop

(root)

(bc),L,W
(root)

(bc),L

)
is Polish for the distance

δ(w,w′) :=


sups∈[0;βj]‖w(s)−w′(s)‖ if j = ℓ(w) = ℓ(w′)

+∞ otherwise.

It is clear δ : Loop
(root)
(bc),L ×Loop

(root)
(bc),L→ R∪{+∞}metrizes the topology of the spaces Loop

(root)
βj

for all j > 1. Hence it metrizes the topology of the subsets of Loop
(root)
βj , j > 1, in the definition

of Loop
(root)
(bc),L. Finally, δ sets a +∞ distance between those subsets, which is coherent with a

discrete disjoint union.
The property of being Polish is necessary to ensure that a Poisson point process can be de-

fined on this space.
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Definition ..— For each boundary condition, we call a rooted loops configuration (rl) a set η
in

Conf
(rl)

(bc),L
:=

{
η ⊂ Loop

(root)

(bc),L

/
#η < +∞

}

and we equip this configuration set with the smallest σ-algebra C(rl)
(bc),L making measurable the maps

η 7→ #(η ∩E) for every bounded E ∈W (root)
(bc),L .

Definition ..— On the set of rooted loops, we introduce a measure for Dirichlet and periodic
boundary conditions

W
(root)
(Dir),L

:=

∫

ΛL

dx
∑

j>1

e−βj

j
W

βj
x,x

W
(root)
(per),L

:=

∫

ΛL

dx
∑

j>1

e−βj

j

∑

k∈Zd
W

βj
x,x+Lk .

We denote by Π
(rl)
(bc),L the Poisson point process over Conf

(rl)
(bc),L with intensity measureW

(root)
(bc),L .

The weight e−βj is not standard but we add it to make these measures finite. This additional
factor will be compensated by increasing the chemical potential of the Gibbs model we will
introduce in lemma-definition ...

Definition ..— For both boundary conditions, we define a Hamiltonian for rooted loops config-
urations

H
(rl)
(bc),L(η) :=

∫ β

0
U(bc),L[

{
w(βj + s), 06 j < ℓ(w), w ∈ η}]ds.

Lemma-definition .. (proof: see remark ..) — Let L ∈ rN. The probability measure over

Conf
(rl)

(bc),L

P
(rl)
(bc),L(dη) :=

e
−Ld+W (root)

(bc),L

(
Loop

(root)
(bc),L

)

Z(bc),L
exp


β(µ+1)

∑

w∈η
ℓ(w)−H (rl)

(bc),L(η)


 Π

(rl)
(bc),L(dη).

where Z(bc),L is the same normalization constant as in lemma-definition .., is well defined. We call
this probability the rooted loops model of the Bose gas.

Definition ..— For each boundary condition, we define the map
(FK)←(rl)
ϕ(bc),L : Conf

(rl)
(bc),L→ Conf(FK)

of transition from a rooted loops configuration into a Feynman-Kac configuration as

(FK)←(rl)
ϕ(Dir),L(η) :=

{
[0;β] −→ Rd

s 7−→ w(βj + s)
, 06 j < ℓ(w), w ∈ η

}

(FK)←(rl)
ϕ(per),L(η) :=

{
[0;β] −→ Rd

s 7−→ w(βj + s) + Lk
, 06 j < ℓ(w), w ∈ η, k ∈ Zd

}
.
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Furthermore, we denote

ConfPerm
(rl)
(bc),L

:=

(
(FK)←(rl)
ϕ(bc),L

)−1(
ConfPerm(FK)

)
.

The following proposition states the Feynman-Kac and rooted loops models are equivalent.

Proposition .. (proof: see remark ..) — For any measurable f : Conf(FK)→ R+,

∫
f ◦

(FK)←(rl)
ϕ(bc),LdP

(rl)
(bc),L =

∫
f dP

(FK)
(bc),L

We will see in remark .. this result may only be true in finite volume.

Remark ..
In the case of Dirichlet boundary condition, the state space does not depend on the size L of the

domain. So from then on, we are going to drop the L in the notation of the space Loop
(root)

(Dir)
, its

topology W
(root)
(Dir)

, its σ-algebra W (root)
(Dir)

and Conf
(rl)
(Dir)

. Additionally, we are going to introduce a

more general configuration space to construct a rooted loops thermodynamic limit.

Definition ..— We define a set of rooted loops configurations as

Conf
(rl)
∞ :=

{
η ⊂ Loop

(root)
(Dir)

/
η is locally finite in W

(root)
(Dir)

}

and we equip this space with the smallest σ-algebra C(rl)∞ making measurable the maps η 7→ #(η ∩E)
for every bounded E ∈W (root)

(Dir) .

We also define the transition map infinite volume
(FK)←(rl)
ϕ(Dir),∞ : Conf

(rl)
∞ → Conf(FK) by

(FK)←(rl)
ϕ(Dir),∞(η) :=

{
[0;β] −→ Rd

s 7−→ w(βj + s)
, 06 j < ℓ(w), w ∈ η

}
.

Remark ..
Trivially, we have the inclusion Conf

(rl)
(Dir)
⊆ Conf

(rl)
∞ , so we can consider the models P

(rl)
(bc),L to be

probability measures over Conf
(rl)
∞ .

Definition ..— For any L ∈ rN, we define the empirical field P̃
(rl)
(Dir),L over Conf

(rl)
∞ by

∫
f dP̃

(rl)
(Dir),L

:=
1

Ld

∫

ΛL

dv

∫
f (γ + v) P

(rl)
(Dir),L(dγ)

for any measurable f : Conf
(rl)
∞ → R.
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Definition ..— A function f : Conf
(rl)
∞ → R is said to be (rl)-tame local if there exists a > 0

and a compact ∆ ⊂ Rd such that

∀η ∈ Conf(rl)∞ , f (η) = f (
{
w ∈ η /

w(0) ∈ ∆}
)

and
∀η ∈ Conf(rl)∞ , a

∣∣∣f (η)
∣∣∣6 1+#

{
w ∈ η /

w(0) ∈ ∆}
.

Theorem .. (proof p. )
There exists a stationary probability measure P

(rl)
(Dir),∞ overConf

(rl)
∞ and an increasing sequence (Lm)m>0

of multiples of r such that, for any (rl)-tame local measurable f : Conf
(rl)
∞ → R,

lim
m→+∞

∫
f dP̃

(rl)

(Dir),Lm
=

∫
f dP

(rl)

(Dir),∞.

Corollary ..— By construction, P
(rl)
(Dir),∞

(
η ⊂ Loop

(root)
(Dir)

)
= 1.

Remark ..
With corollary .., one may conclude that the Feynman-Kac model P

(FK)
(Dir),∞, just as P

(rl)
(Dir),∞,

only produces finite cycles. But this is not so trivial. The infinite volume models P
(FK)
(Dir),∞ and

P
(rl)

(Dir),∞ may not be equivalent, as we conjecture :

P
(rl)
(Dir),∞




(
(FK)←(rl)
ϕ(Dir),∞

)−1
(E)


 , P

(FK)
(Dir),∞(E)

for some event E ∈ C(FK), because the topologies of convergence for Feynman-Kac and rooted
loops models are fundamentally incompatible. At first glance the class of functions on which
rooted loops models converge seems strictly stronger. Indeed, (rl)-local functions can depend
on whole loops, whereas ∩n-local functions can only see n Brownian bridges beyond the bound-
ary of some compact ∆. However (rl)-local functions are limited as they can only see loops
whose root is inside ∆, contrary to ∩n-local functions. Those two modes of convergence can not
be compared and we believe this is not just a technicality.

We could have chosen a more general notion of tameness for the (rl) framework but this
would not have changed the discussion above because the problem comes from locality.

. Path soup

The information of which point is the root of the cycle is not native. In the (FK) model, any
point could be considered the root of its cycle; this additional information is not natural. When
presented with a rooted loop w, we are not interested about knowing which one of the points
w(βj), 0 6 j < ℓ(w) is its starting point w(0) (its root). We were inspired by the work from
[AFY] and refer to it for a similar presentation, used to inquire the Bose gas without interac-
tion.
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Definition ..— We define π(bc),L : R
d → Rd as

π(Dir),L(x) := x π(per),L(x) ∈ΛL such that π(per),L(x)− x ∈ LZd

and introduce an equivalence relation defined over Loop
(root)
(bc),L in finite volume as

w ≡(bc),L w′ ⇐⇒ ∃j ∈ Z, ∀s ∈ R, π(bc),L
[
w′(s)

]
= π(bc),L[w(s + βj)].

In the quotient space Loop(bc),L := Loop
(root)
(bc),L

/
≡(bc),L, we denote as w the equivalence class of a rooted

path w. We will abuse notations and denote as ℓ(w) the common length of representatives w ∈w.

That is to say, in Dirichlet boundary condition,  rooted loops are identified if they are con-
stituted of the same set of trajectories [0;β]→ Rd .

Lemma-definition ..— We define dist(bc),L : Loop
(root)
(bc),L ×Loop

(root)
(bc),L→ R∪ {+∞} by

dist(Dir),L(w,w
′) :=



inf
i∈Z

sup
s∈[0;βj]

∥∥∥w(s + βi)−w′(s)
∥∥∥ if j = ℓ(w) = ℓ(w′)

+∞ otherwise

dist(per),L(w,w
′) :=



inf
k∈Zd

inf
i∈Z

sup
s∈[0;βj]

∥∥∥w(s + βi)−w′(s) + Lk
∥∥∥ if

w(t)−w(0) = w′(t)−w′(0)
j = ℓ(w) = ℓ(w′)

+∞ otherwise.

The function dist(bc),L is compatible with the equivalence relationship ≡(bc),L. We then define the
quotient function dist(bc),L : Loop(bc),L ×Loop(bc),L→ R∪ {+∞} which is a distance.

This distance makes the space Loop(bc),L Polish and the quotient map

(
Loop

(root)
(bc),L,δ

)
−→

(
Loop(bc),L,dist(bc),L

)

w 7−→ w

continuous.
We denote as W(bc),L and W(bc),L the respective topology and Borelian σ-algebra induced on

Loop(bc),L by dist(bc),L.

We defineW
(bc),L the quotient measure ofW

(root)
(bc),L over Loop(bc),L.

Definition ..— In finite volume, we call a path soup configuration (ps) a finite set η in

Conf
(ps)
(bc),L

:=
{
η ⊂ Loop(bc),L

/
#η < +∞

}
.

We equip this space with the smallest σ-algebra C(ps)(bc),L making measurable the maps η 7→ #(η ∩E) for
every bounded E ∈W(bc),L.

We denote the Poisson point process on Conf
(ps)
(bc),L with intensity measureW(bc),L by Π

(ps)
(bc),L.
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Definition ..— The quotient map Loop
(root)
(bc),L→ Loop(bc),L induces a quotient over configuration

spaces

(ps)←(rl)
ϕ(bc),L :

Conf
(rl)

(bc),L −→ Conf
(ps)

(bc),L

η 7−→ {
w, w ∈ η}

.

For all s ∈ [0;β], the map η 7→ U(bc),L[
{
w(βj + s), 06 j < ℓ(w), w ∈ η}] is compatible with this

quotient over configurations so we define the quotient map

Conf
(ps)
(bc),L −→ R∪ {+∞}
η 7−→ U(bc),L[

{
w(βj + s), 06 j < ℓ(w), w ∈ η}]

and the path soup Hamiltonian by

H
(ps)
(bc),L(η) :=

∫ β

0
U(bc),L[

{
w(βj + s), 06 j < ℓ(w), w ∈ η}]ds.

We did everything necessary to define yet another equivalent model of the Bose gas.

Lemma-definition .. (proof: see remark ..) — Let L ∈ rN. For both boundary conditions,
the probability measure

P
(ps)
(bc),L(dη) :=

e
−Ld+W

(bc),L

(
Loop(bc),L

)

Z(bc),L
exp


β(µ+1)

∑

w∈η
ℓ(w)−H (ps)

(bc),L(η)


 Π

(ps)
(bc),L(dη).

where Z(bc),L is the same normalization constant as in lemma-definition .., is well defined.

Definition ..— We define the transition map

(FK)←(ps)
ϕ(bc),L :

Conf
(ps)

(bc),L −→ Conf(FK)

η 7−→
⋃

w∈η

{
[0;β] −→ Rd

s 7−→ w(s)
, w ∈w

}

and the set

ConfPerm
(ps)

(bc),L
:=

(
(FK)←(ps)

ϕ(bc),L

)−1(
ConfPerm(FK)

)
.

Let γ ∈ ConfPerm(FK). We write the permutation σ(FK)(γ, ·) as a product of disjoint cycles ci , i ∈ I

σ(FK)(γ, ·) =©i∈I ci .

For anyone of these ci , there are many possible labelings labi =
(
wi,j , j ∈ Z

)
of its support in a way

compatible with the permutation :

σ(FK)
(
γ,wi,j

)
= wi,j+1.

For any cycle labeling labi , we define the rooted loop wlabi : R→ Rd as



wlabi (0) := wi,0(0)
wlabi (s + βj) := wlabi (βj) +wi,j (s)−wi,j (0) for j > 0, s ∈ ]0;β]
wlabi (s + βj) := wlabi [β(j +1)] +wi,j (s)−wi,j (β) for j 6 −1, s ∈ [0;β[.
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Finally we define

(ps)←(FK)
ϕ(bc),L :

ConfPerm(FK) −→ ConfPerm
(ps)
(bc),L

γ 7−→
(⋃

i∈I
{
wlabi , labi labeling of ci

})/
≡(bc),L .

The advantage of the root-less vision is to be able to define a transition
(ps)←(FK)

ϕ(bc),L without the

issue of having to choose which w(βj), j ∈ Z is the root.

Proposition .. (proof: see remark ..) — For any measurable f : Conf
(ps)
(bc),L→R+,

∫
f ◦

(ps)←(rl)
ϕ(bc),LdP

(rl)
(bc),L =

∫
f dP

(ps)
(bc),L

Furthermore, for any measurable f : Conf(FK)→ R+,

∫
f ◦

(FK)←(ps)
ϕ(bc),LdP

(ps)

(bc),L =

∫
f dP

(FK)

(bc),L

and for any measurable f : Conf
(ps)
(bc),L→ R+,

∫
f ◦

(ps)←(FK)
ϕ(bc),LdP

(FK)
(bc),L =

∫
f dP

(ps)
(bc),L

Proposition .. (proof p. ) — The path soup model is time-shift invariant. More precisely, for

any s ∈ R and measurable f : Conf
(ps)

(bc),L→R+,

∫
f ◦T (ps)

s dP
(ps)
(bc),L =

∫
f dP

(ps)
(bc),L

with the time-shift operator T
(ps)
s defined as

T
(ps)
s :

Conf
(ps)
(bc),L −→ Conf

(ps)
(bc),L

η 7−→ {{w(·+ s), w ∈w}, w ∈ η}.

. Marked points

We present now the framework in which most of the work has been done. But it unfortunately
also is the least elegant one. We encode the Feynman Kac representation into a configuration
of marked points (mp). The goal is to localize the global information of the permutation σ into
marks, so that the mark of each point x is enough to know σ(x).

Definition ..— We define

Conf(mp) :=
{
γ = (x,px ,ux ,ωx)x∈ξ ⊂ Rd ×Zd × [0;1]×Ω1

/
ξ is locally finite in Rd

}
.
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and for any γ ∈ Conf(mp) we denote its spatial component

•
γ := {x, (x,p,u,ω) ∈ γ} ⊂ Rd .

For any finite γ ∈ Conf(mp), we denote

•
γ (Dir),L :=

•
γ and

•
γ (per),L :=

⋃

k∈Zd

( •
γ + Lk

)

and
N r
(bc),L

( •
γ,z

)
:= #

[ •
γ (bc),L ∩ (z +Λr )

]
.

We define the set of authorized configurations as

ConfAuth
(mp)
(bc),L

:=
{
γ ∈ Conf(mp)

/ •
γ is finite, simple and ∀(x,p,u,ω) ∈ γ, N r

(bc),L

( •
γ,x + rp

)
> 1

}
.

For any authorized configuration γ ∈ ConfAuth
(mp)

(bc),L, we define the map σ
(mp)

(bc),L(γ, ·) :
•
γ → •

γ (bc),L

such that for any (x,p,u,ω) ∈ γ ,

σ
(mp)
(bc),L(γ,x) :=

⌈
N r
(bc),L

( •
γ,x + rp

)
· u

⌉
’th element of

•
γ (bc),L ∩ (x + rp +Λr )

if we order them lexicographically. Finally we call an authorized configuration permutation-wise if
it satisfies

∀y ∈ •γ, ∃!x ∈ •γ, π(bc),L

[
σ
(mp)
(bc),L(γ,x)

]
= π(bc),L(y)

and we denote

ConfPerm
(mp)
(bc),L

:=
{
γ ∈ ConfAuth(mp)

(bc),L

/
γ is permutation-wise

}
.

Definition ..— We define the transition map
(FK)←(mp)

ϕ(bc),L : ConfPerm
(mp)
(bc),L→ ConfPerm(FK) by

(FK)←(mp)
ϕ(Dir),L(γ) :=


[0;β] −→ Rd

s 7−→ x + s
β

[
σ
(mp)

(Dir),L(γ,x)− x
]
+
√
βω

(
s
β

) , (x,p,u,ω) ∈ γ


(FK)←(mp)
ϕ(per),L(γ) :=


[0;β] −→ Rd

s 7−→ x + s
β

[
σ
(mp)
(per),L(γ,x)− x

]
+
√
βω

(
s
β

)
+ Lk

, (x,p,u,ω) ∈ γ, k ∈ Zd
.

Definition ..— Let ν be a probability measure over Zd such that ∀p ∈ Zd , ν(p) > 0.

We also denote as W1
0,0 the probability measure W1

0,0 :=
W 1

0,0

W 1
0,0(Ω1)

.

We denote as Π
(mp)
L the Poisson point process with intensity measure Leb(d) ⊗ ν ⊗ Leb(1) ⊗W1

0,0

over configurations γ ∈ Conf(mp) such that
•
γ ⊂ΛL.

We chose the reference measureW1
0,0 so that the state spaceΩ1 does not depend on β, unlike

the (rl) and (ps) frameworks, and chose a normalized measure for mathematical elegance (the
intensity measure’s mass is exactly Ld ).
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Lemma-definition .. (proof: see remark ..) — We define a Hamiltonian over finite marked
points configurations as follows

if γ ∈ ConfPerm(mp)
(bc),L,

H
(mp)
(bc),L(γ) :=

∑

(x,p,u,ω)∈γ

{
d

2
log(2πβ) +

1

2β

∥∥∥∥σ
(mp)
(bc),L(γ,x)− x

∥∥∥∥
2
+ log[ν(p)]− log

[
N r
(bc),L

( •
γ,x + rp

)]}

+ β

∫ 1

0
U(bc),L

[{
x + s

(
σ
(mp)
(bc),L(γ,x)− x

)
+
√
βω(s), (x,p,u,ω) ∈ γ

}]
ds

else H
(mp)
(bc),L(γ) := +∞.

Then for any L ∈ rN, the probability measure over Conf(mp)

P
(mp)
(bc),L(dγ) :=

1

Z(bc),L
exp

[
βµ#γ −H (mp)

(bc),L(γ)
]
Π

(mp)
L (dγ)

where Z(bc),L is the same normalization constant as in lemma-definition .., is well defined.

Remark ..
The model P

(mp)

(bc),L does not depend on the chosen density ν : Zd → R.

This horrendous formulation of the Bose gas is equivalent to the previously defined models.

Proposition .. (proof: see remark ..) — For any measurable f : Conf(FK)→ R+,

∫
f ◦

(FK)←(mp)
ϕ(bc),LdP

(mp)
(bc),L =

∫
f dP

(FK)
(bc),L.

Definition ..— A function f : Conf(mp)→ R is said to be (mp)-tame local if there exists a,δ >
0, α ∈ [0;2[ and a compact ∆ ⊂ Rd such that

∀γ ∈ Conf(mp), f (γ) = f [{(x,p,u,ω) ∈ γ /
x ∈ ∆}]

and

∀γ ∈ Conf(mp), a
∣∣∣f (γ)

∣∣∣6 1+
∑

(x,p,u,ω)∈γ

∣∣∣∣∣∣Sausδ



[0;β] −→ Rd

s 7−→ s
β rp +

√
βω

(
s
β

)



∣∣∣∣∣∣

α

.

Definition ..— For any L ∈ rN, we define the empirical field P̃
(mp)
(bc),L over Conf

(mp) by

∫
f (γ) P̃

(mp)
(bc),L(dγ) =

1

Ld

∫

ΛL

dv

∫
f (γ + v) P

(mp)
(bc),L(dγ).
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Theorem .. (proof p. )
There exists a stationary probability measure P

(mp)
(bc),∞ overConf(mp) and an increasing sequence (Lm)m>0

of multiples of r such that, for any (mp)-tame local measurable f : Conf(mp)→ R,

lim
m→+∞

∫
f dP̃

(mp)
(bc),Lm

=

∫
f dP

(mp)
(bc),∞.

This theorem is the one unlocking everything. The probability P
(mp)

(bc),∞ will be used to di-

rectly define P
(FK)
(bc),∞ through an infinite volume transition map

(FK)←(mp)
ϕ∞ we will introduce later.

 Proofs

. Equivalence of models

The following proposition establishes a link between (FK) and (rl) frameworks. It proves that,
if the models (FK) and (rl) are well defined, then they are equivalent.

Proposition ..— For any measurable f : Conf(FK)→ R+,

eL
d
∫

ΠΛL
(dξ)

∑

σ∈S(ξ)

∫
f
(
γ(bc),L

)
e
−H (FK)

(bc),L(γ)



⊗

x∈ξ
W

β
x,σ(x),(bc),L


(dγ)

=e
W

(root)
(bc),L

(
Loop

(root)
(bc),L

)∫ (
f ◦

(FK)←(rl)
ϕ(bc),L

)
(η) exp


β

∑

w∈η
ℓ(w)−H (rl)

(bc),L(η)


 Π

(rl)
(bc),L(dη).

where we remind
γ(Dir),L := γ and γ(per),L :=

⋃

k∈Zd
(γ + Lk).

Proof (proposition ..)
The following proof is heavily inspired by the proof of Lemma . p.  from [Gin].

By definition of the standard Poisson point process,

∫
ΠΛL

(dξ)
∑

σ∈S(ξ)

∫
f
(
γ(bc),L

)
e
−H (FK)

(bc),L
(γ)



⊗

x∈ξ
W

β
x,σ(x),(bc),L


(dγ)

= e−L
d
+∞∑

N=0

1

N !

∫

ΛL

dx⊗N
∑

σ∈S(N )

∫
f
(
γ(bc),L

)
e
−H (FK)

(bc),L(γ)



N⊗

i=1

W
β
xi ,xσ(i) ,(bc),L


(dγ).

Let N > 0 and σ ∈ S(N ). We denote as ℓi , 16 i 6 n the respective cycle lengths of σ.

We can re-order the variables (xi )16i6N into
(
xi,j

)
06j<ℓi , 16i6n

such that

σ
(
xi,j

)
= xi,j+1
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with the convention xi,ℓi = xi,0. Then

∫

ΛL

dx⊗N
∫
f
(
γ(bc),L

)
e
−H (FK)

(bc),L(γ)



N⊗

i=1

W
β
xi ,xσ(i) ,(bc),L


(dγ)

=

∫

ΛL

n⊗

i=1

dx
⊗ℓi
i

∫
f
(
γ(bc),L

)
e
−H (FK)

(bc),L(γ)




n⊗

i=1

ℓi−1⊗

j=0

W
β
xi,j ,xi,j+1 ,(bc),L


(dγ)

In the case of Dirichlet boundary condition, for any g :Ωβ ×Ωβ → R+,
∫

ΛL

dy g(w1,w2) 1w1⊂ΛLW
β
x,y (dw1) 1w2⊂ΛLW

β
y,z(dw2) = g

(
w|[0;β],w|[β;2β]

)
1w⊂ΛLW

2β
x,z (dw).

In the case of periodic boundary condition, for any g : Ωβ ×Ωβ → R+ which is L-periodic in
each variable,

∫

ΛL

dy g(w1,w2)W
β
x,y,(per),L(dw1)W

β
y,z,(per),L(dw2) = g

(
w|[0;β], w|[β;2β]

)
W

2β
x,z,(per),L(dw).

Therefore, by integrating over ΛL, we can assemble the respective Brownian bridges into
Brownian loops, along the cycle structure of σ

∫

ΛL

n⊗

i=1

dx
⊗ℓi
i

∫
f
(
γ(bc),L

)
e
−H (FK)

(bc),L(γ)




n⊗

i=1

ℓi−1⊗

j=0

W
β
xi,j ,xi,j+1 ,(bc),L


(dγ)

=

∫

ΛL

dx⊗n
∫ (

f ◦
(FK)←(rl)
ϕ(bc),L

)
(η) e

−H (rl)
(bc),L(η)




n⊗

i=1

W
βℓi
xi ,xi ,(bc),L


(dη).

For any given sequence δ ∈ NN such that
∑
j>1 jδj =N , there areN !·∏j>1

1

δj !j
δj
permutations

σ ∈ S(N ) which have exactly δj cycles of length j , for any j > 1.

Furthermore, for any g : NN→ R+,

∑

(δj )j>1



∏

j>1

1

δj !


g(δ) =

∑

n>0

1

n!

∑

j1>1

. . .
∑

jn>1

g

(
N −→ N

q 7−→ #{i ∈ J1;nK
/
ji = q}

)
.

where
∑

(δj )j>1
is a summation over sequences of integers with a finite number of non-zero

entries.
We conclude

+∞∑

N=0

1

N !

∫

ΛL

dx⊗N
∑

σ∈S(N )

∫
f
(
γ(bc),L

)
e
−H (FK)

(bc),L
(γ)



N⊗

i=1

W
β
xi ,xσ(i) ,(bc),L


(dγ)

=
∑

n>0

1

n!

∑

j1>1

1

j1
. . .

∑

jn>1

1

jn

∫

ΛL

dx⊗n
∫ (

f ◦
(FK)←(rl)
ϕ(bc),L

)
(η) e

−H (rl)
(bc),L(η)




n⊗

i=1

W
βji
xi ,xi ,(bc),L


(dη)

=
∑

n>0

1

n!

(
f ◦

(FK)←(rl)
ϕ(bc),L

)
(η) e

β
∑n
i=1 ji−H

(rl)
(bc),L(η)




n⊗

i=1

∫

ΛL

dxi
∑

ji>1

e−βji

ji
W

βji
xi ,xi ,(bc),L


(dη)

= e
W

(root)
(bc),L

(
Loop

(root)
(bc),L

)∫ (
f ◦

(FK)←(rl)
ϕ(bc),L

)
(η) exp


β

∑

w∈η
ℓ(w)−H (rl)

(bc),L(η)


 Π

(rl)
(bc),L(dη)





because the measureW
(root)
(bc),L has finite mass. �

As mentionned previously, proposition .. proved neither (FK) nor (rl) models to be well
defined. This is what lemma .. is for.

Lemma ..— For all L ∈ rN, β > 0 and µ ∈ R,

Z(bc),L :=

∫
eβµ#ξΠΛL

(dξ)
∑

σ∈S(ξ)

∫
e
−H (FK)

(bc),L
(γ)



⊗

x∈ξ
W

β
x,σ(x),(bc),L


(dγ) ∈ ]0;+∞[.

Proof (lemma ..)
According to proposition ..,

Z(bc),L = e
−Ld+W (root)

(bc),L

(
Loop

(root)
(bc),L

)∫
exp


β(µ+1)

∑

w∈η
ℓ(w)−H (rl)

(bc),L(η)


 Π

(rl)
(bc),L(dη).

If L is a multiple of r, we deduce immediately from hypothesis II and definition .. that for
any ξ ∈ Conf<∞,

U(bc),L(ξ)> −A#ξ +B
∑

z∈rZd
(z+Λr )∩ΛL,∅

N r
(bc),L(ξ,z)

2.

In particular,

(µ+1)#ξ −U(bc),L(ξ)6
∑

z∈rZd
(z+Λr )∩ΛL,∅

(A+µ+1)N r
(bc),L(ξ,z)−B ·N

r
(bc),L(ξ,z)

2.

So for any β > 0 and µ ∈ R,

(µ+1)#ξ −U(bc),L(ξ)6
(
L

r

)d (A+µ+1)2

4B
. ()

Let η ∈ Conf(rl)
(bc),L. By applying inequality () to sets

{
w(βj + s), 06 j < ℓ(w), w ∈ η} for any s ∈

[0;β] and integrating it, we conclude

β(µ+1)
∑

w∈η
ℓ(w)−H (rl)

(bc),L(η)6 β
(
L

r

)d (A+µ+1)2

4B
. ()

Since the measureW
(root)

(bc),L has finite mass,

Z(bc),L 6 e
−Ld+W (root)

(bc),L

(
Loop

(root)
(bc),L

)

exp


β

(
L

r

)d (A+µ+1)2

4B


 < +∞.

Since the interaction is non-degenerate,

Z(bc),L > exp
[
−Ld − βU(bc),L(∅)

]
> 0. ()

�
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Remark ..
If we apply inequality () for µ = −1, it is clear the interaction U(bc),L is bounded from below by

a finite quantity. The integral from the formula of H
(FK)
(bc),L is then well defined.

Remark ..
Together, proposition .. and lemma .. are enough to prove lemma-definition .., lemma-
definition .. and proposition ... Moreover, the fact the path soup model (ps) is well
defined (lemma-definition ..) and equivalent to the previous models (proposition ..) di-
rectly follows from this, as it is basically defined as the quotient of the (rl) model. The second
and third equalities of proposition .. are corollaries of proposition .. and the first equal-
ity.

Now we quickly justify the time-shift invariance property of the (ps) model.

Proof (proposition ..)
First, it is clear that both measures 1w⊂ΛLW(Dir),L(dw) andW(per),L are time-shift invariant :

for any measurable f : Loop(Dir),L→R+,

∀s ∈ R,
∫
f [w(·+ s)] 1w⊂ΛLW(Dir),L(dw) =

∫
f (w) 1w⊂ΛLW(Dir),L(dw)

and for any measurable f : Loop(per),L→ R+,

∀s ∈ R,
∫
f [w(·+ s)]W(per),L(dw) =

∫
f (w)W(per),L(dw)

where we denote
w(·+ s) := {w(·+ s), w ∈w}.

We deduce immediately that the processes 1η⊂ΛLΠ
(ps)
(Dir),L(dη) and Π

(ps)
(per),L are time-shift in-

variant too :
for any measurable f : Conf

(rl)
(Dir),L→R+,

∀s ∈ R,
∫ (

f ◦T (ps)
s

)
(η) 1η⊂ΛLΠ

(ps)

(Dir),L(dη) =

∫
f (η) 1η⊂ΛLΠ

(ps)

(Dir),L(dη)

and for any measurable f : Conf
(rl)
(per),L→ R+,

∀s ∈ R,
∫
f ◦T (ps)

s dΠ
(ps)
(per),L =

∫
f dΠ

(ps)
(per),L

Since the Hamiltonian H
(ps)
(bc),L is also time-shift invariant :

∀s ∈ R, H (ps)
(bc),L ◦T

(ps)
s =H

(ps)
(bc),L

we conclude on the probability measure P
(ps)
(bc),L. �





Remark ..
Proving the (mp) model to be both well defined (lemma-definition ..) and equivalent to the
(FK) model (proposition ..) can be done with only the proposition below.

Proposition ..— For any measurable f : Conf(FK)→ R+,

∫
ΠΛL

(dξ)
∑

σ∈S(ξ)

∫
f
(
γ(bc),L

)
e
−H (FK)

(bc),L
(γ)



⊗

x∈ξ
W

β
x,σ(x),(bc),L


(dγ)

=

∫ (
f ◦

(FK)←(mp)
ϕ(bc),L

)
(γ) e

−H (mp)

(bc),L
(γ)

Π
(mp)
L (dγ).

Proof (proposition ..)
Let ξ = {x1 . . . xN } ⊂ΛL be a finite simple configuration.

Sampling uniformly a permutation σ ∈ S(ξ) is the same as sampling independently and
uniformly the image of each x ∈ ξ among all possible images, conditioned to the whole map
being indeed a permutation over ξ . Therefore

∑

σ∈S(ξ)

∫
f
(
γ(bc),L

)
e
−H (FK)

(bc),L
(γ)



N⊗

i=1

W
β
xi ,σ(xi ),(bc),L


(dγ)

=
∑

y1∈ξ
. . .

∑

yN∈ξ
1(xi 7→yi )∈S(ξ)

∫
f
(
γ(bc),L

)
e
−H (FK)

(bc),L(γ)



N⊗

i=1

W
β
xi ,yi ,(bc),L


(dγ)

The end point of a Brownian bridge sampled by the measureW
β
x,y,(bc),L is not always y, depend-

ing on the boundary condition. We take this into account

=
∑

y1∈ξ(bc),L
. . .

∑

yN∈ξ(bc),L
1[xi 7→π(bc),L(yi )]∈S(ξ)

∫
f
(
γ(bc),L

)
e
−H (FK)

(bc),L(γ)



N⊗

i=1

W
β
xi ,yi


(dγ)

where ξ(Dir),L := ξ and ξ :=
⋃
k∈Zd (ξ + Lk).

We then introduce the encoding of the permutation of the (mp) model. First the p mark :

=
∑

p1∈Zd
1ξ(bc),L∩(x1+rp1+Λr ),∅

∑

y1∈ξ(bc),L∩(x1+rp1+Λr )
. . .

∑

pN∈Zd
1ξ(bc),L∩(xN+rpN+Λr ),∅

∑

yN∈ξ(bc),L∩(xN+rpN+Λr )

1[xi 7→π(bc),L(yi )]∈S(ξ)

∫
f
(
γ(bc),L

)
e
−H (FK)

(bc),L(γ)



N⊗

i=1

W
β
xi ,yi


(dγ).

Next, we add the u mark so that the map σ
(mp)
(bc),L(γ, ·) can be defined

=
∑

p1∈Zd
N r
(bc),L(ξ,x1 + rp1)

∫ 1

0
du1 . . .

∑

pN∈Zd
N r
(bc),L(ξ,xN + rpN )

∫ 1

0
duN

1
π(bc),L◦σ

(mp)
(bc),L(γ,·)∈S(ξ)

∫
f
(
γ(bc),L

)
e
−H (FK)

(bc),L
(γ)



N⊗

i=1

W
β

xi ,σ
(mp)
(bc),L(γ,xi )


(dγ).





Finally, all the additional factors are assembled into the (mp) Hamiltonian

=
∑

p1∈Zd
ν(p1)

∫ 1

0
du1

∫
W1

0,0(dω1) . . .
∑

pN∈Zd
ν(pN )

∫ 1

0
duN

∫
W1

0,0(dωN )

(
f ◦

(FK)←(mp)
ϕ(bc),L

)
(γ) e

−H (mp)
(bc),L

(γ)

where γ = {(xi ,pi ,ui ,ωi ), 16 i 6N }. �

. Entropic method

Unfortunately, to the best of our knowledge, there is no reference in the literature fully expos-
ing the entropic method as we are using it here, much less proving it from start to finish. We
state here the plan we follow to establish the thermodynamic limits of the (mp) and (rl) models
and quickly justify its validity.

Let M be a Polish space, called the mark space. We denote X := Rd ×M. We define the
configuration space

Conf(X) :=
{
γ = (x,yx)x∈ξ

/
ξ ⊂ Rd is locally finite

}

which we equip with the smallest σ-algebra C(X) making measurable the maps γ 7→ #(γ ∩E)
for all bounded Borelian E ⊂ X.

Let υ be a finite measure over M. We denote by Π
Leb(d)⊗υ
L the Poisson point process over

ΛL ×M with intensity measure Leb(d) ⊗ υ.

Definition ..— Let P and Q be measures over Conf(X). We define the relative entropy of P over
Q by

I(P|Q) :=



∫
log

(
dP
dQ

)
dP if P≪Q

+∞ otherwise.

We also define the specific entropy of P with reference measure υ by

Iυ(P) = sup
L>0

1

Ld
I
(
P|ΛL

∣∣∣∣ΠLeb(d)⊗υ
L

)

where P|ΛL is the restriction of P to ΛL defined by

∫
f dP|ΛL :=

∫
f [{(x,y) ∈ γ /

x ∈ΛL}] P(dγ).

Let ψ :M→ R such that

∀λ > 0,

∫
eλψ(y)υ(dy) < +∞.

We call a function f : Conf(X)→ R local and tame if there exists a > 0 and a compact ∆ ⊂ Rd

such that
∀γ ∈ Conf(X), f [{(x,y) ∈ γ /

x ∈ ∆}] = f (γ)





and
∀γ ∈ Conf(X), a

∣∣∣f (γ)
∣∣∣6 1+

∑

(x,y)∈γ, x∈∆
ψ(y).

Let (PL)L>0 be a family of probabilities over Conf(X) such that

sup
L>0

I
(
PL

∣∣∣∣ΠLeb(d)⊗υ
L

)

We define for all L > 0 the associated empirical field P̃L by

∫
f dP̃L :=

1

Ld

∫

ΛL

dv

∫
f (γ + v) PL(dγ)

for any measurable f : Conf(X)→ R+.
We also define the associated stationary field PL by

∫
f dPL :=

1

Ld

∫

ΛL

dv

∫
f



⋃

k∈Zd
γk + Lk + v



⊗

k∈Zd
PL(dγk )

for any measurable f : Conf(X)→ R+.

Lemma ..— For any V ,ε > 0, there exists some m > 1 such that for any L > 0 multiple of r and
any compact ∆ of volume V ,

∫
Threshm




∑

(x,y)∈γ, x∈∆
ψ(y)


 P̃L(dγ)6 ε

where we define the threshold function

Threshm(x) :=


0 if x 6m

x if x > m.

Proof (lemma ..)
First let us justify inequality

∫
Threshm




∑

(x,y)∈γ, x∈∆
ψ(y)


 PL(dγ)6 ε.

We are merely restating Lemma . from [GZ] with one subtle difference: the compact ∆ can
depend on L, as long as its volume remains constant. This slight generalization is not exclusive
to our model and could be stated for any Gibbs point process of marked points. Indeed the
proof of Lemma . from [GZ] never involves the shape of ∆ and exclusively uses its volume.





From there, it is clear

∫
Threshm




∑

(x,y)∈γ, x∈∆
ψ(y)


 P̃L(dγ)6

1

Ld

∫

ΛL

dv

∫
Threshm




∑

(x,y)∈γ+v, x∈∆
ψ(y)


 PL(dγ)

6
1

Ld

∫

ΛL

dv

∫
Threshm




∑

k∈Zd

∑

(x,y)∈γk+Lk+v
x∈∆

ψ(y)




⊗

k∈Zd
PL(dγk)

6

∫
Threshm




∑

(x,y)∈γ, x∈∆
ψ(y)


 PL(dγ)6 ε. �

Theorem ..
The family

(
P̃L

)
L>0

is sequentially compact. More precisely, for any sequence (Ln)n∈N, there exists
a subsequence (L′n)n∈N and a probability distribution P∞ over Conf(X) such that for any local tame
f : Conf(X)→ R,

lim
n→+∞

∫
f dP̃Ln =

∫
f dP∞.

Furthermore, for any compact ∆,
∫ ∑

(x,y)∈γ, x∈∆
ψ(y) P∞(dγ) < +∞.

Proof (theorem ..)
According to Proposition . (p. ) from [Geo],

Iυ
(
PL

)
=

1

Ld
I
(
PL

∣∣∣∣ΠLeb(d)⊗υ
L

)
.

The setting in [Geo] is discrete, but the result is still valid in a continuous setting. We deduce
immediately

sup
L>0

Iυ
(
PL

)
< +∞.

According to Proposition . from [GZ], this is enough to prove sequential compactness of

the family
(
PL

)
L>0

, which we will abusively write as

lim
L→+∞

∫
f dPL =

∫
f dP∞

for all local tame functions f . Furthermore, according to Lemma . from [GZ] again,
∫ ∑

(x,y)∈γ
ψ(y) P∞(dγ) < +∞.

According to sections . and . from [Der], the empirical field has the same limit

lim
L→+∞

∫
f dP̃L =

∫
f dP∞

for all local bounded functions f .
Thanks to lemma .., we can extend this limit to any local tame function. �





. Entropic bounds

In this section, we prove the thermodynamic limits of theorem .. and theorem ... This
will be done by uniformly bounding the relative entropy of the finite volume probabilities.

Proof (theorem ..)
The goal of this proof is to establish

sup
L∈rN

1

Ld
I
(
P
(rl)
(bc),L

∣∣∣∣Π
(rl)
(bc),L

)
< +∞.

According to inequations () and () from the proof of lemma ..,

I
(
P
(rl)
(bc),L

∣∣∣∣Π
(rl)
(bc),L

)
6W

(root)
(bc),L

(
Loop

(root)
(bc),L

)
+ βU(bc),L(∅) + β

(
L

r

)d (A+µ+1)2

4B
.

In the case of Dirichlet boundary condition,

W
(root)
(Dir),L

(
Loop

(root)
(Dir),L

)
6 Ld

∑

j>1

e−βj

j
W

βj
0,0

(
Ωβ

)

6 Ld
1

(2πβ)d/2

∑

j>1

e−βj

jd/2+1
.

For periodic boundary condition,

W
(root)

(per),L

(
Loop

(root)

(per),L

)
6 Ld

∑

j>1

e−βj

j

∑

k∈Zd

1

(2πβj)d/2
e
− L2

2πβj ‖k‖
2

6 Ld
∑

j>1

e−βj

j
· 1

(2πβj)d/2


1+

√
2πβj

L



d

.

Either way, there existsW0 > 0 such that for any L > r,W
(root)

(bc),L

(
Loop

(root)

(bc),L

)
6W0L

d .

Therefore

limsup
L∈rN

1

Ld
I
(
P
(rl)

(bc),L

∣∣∣∣Π
(rl)

(bc),L

)
6W0 + β

1

rd
· (A+µ+1)2

4B
< +∞.

According to theorem .., this is enough to prove the thermodynamic limit. The class of
tame functions is defined by the choice ψ = 1. �

To prove the thermodynamic limit of the (mp) model, we first need the following technical
result.

Lemma ..— Let L > 0 be a multiple of r. For any γ ∈ ConfPerm(mp)
(bc),L such that

•
γ ⊂ΛL,

6−d
∑

(x,p,u,ω)∈γ
log

[
N r
(bc),L

( •
γ,x + rp

)]
6 log

(
2d

)
#γ +

∑

z∈rZd
(z+Λr )∩ΛL,∅

N r
(bc),L

( •
γ,z

)
· log

[
N r
(bc),L

( •
γ,z

)]
.





Proof (lemma ..)
Let (x,p,u,ω) ∈ γ . It is clear that

N r
(bc),L

( •
γ,x + rp

)
=N r

(bc),L

[ •
γ,π(bc),L(x+ rp)

]
.

If for any y ∈ Rd we denote as
⌊
y
⌋
the closest point to y in the lattice rZd + r

2 (1 . . .1), then

N r
(bc),L

( •
γ,y

)
6N2r

(bc),L

( •
γ,

⌊
y
⌋)

Furthermore, let z ∈ rZd + r
2 (1 . . .1) such that (z +Λr )∩ΛL , ∅, then z is the closest point of that

lattice to some π(bc),L(x + rp) at most N r
(bc),L

( •
γ,z

)
times. Thus

∑

(x,p,u,ω)∈γ
log

{
N r
(bc),L

[ •
γ,π(bc),L(x + rp)

]}
6

∑

(x,p,u,ω)∈γ
log

{
N2r
(bc),L

[ •
γ,

⌊
π(bc),L(x + rp)

⌋]}

6
∑

z∈rZd+ r
2 (1...1)

(z+Λr )∩ΛL,∅

N2r
(bc),L

( •
γ,z

)
· log

[
N2r
(bc),L

( •
γ,z

)]
.

Since for any z ∈ rZd + r
2 (1 . . .1),

1

2d
N2r
(bc),L

( •
γ,z

)
=

1

2d

∑

ε∈{±1}d
N r
(bc),L

(
•
γ,z +

r

2
ε
)

by convexity of x 7→ x log(x) then
∑

z∈rZd+ r
2 (1...1)

(z+Λr )∩ΛL,∅

N2r
(bc),L

( •
γ,z

)
· log

[
N2r
(bc),L

( •
γ,z

)]

6
∑

z∈rZd+ r
2 (1...1)

(z+Λr )∩ΛL,∅


log

(
2d

)
N2r
(bc),L

( •
γ,z

)
+

∑

ε∈{±1}d
N r
(bc),L

(
•
γ,z +

r

2
ε
)
· log

[
N r
(bc),L

(
•
γ,z +

r

2
ε
)]

.

We take care of the first term
∑

z∈rZd+ r
2 (1...1)

(z+Λr )∩ΛL,∅

N2r
(bc),L

( •
γ,z

)
6

∑

z∈rZd+ r
2 (1...1)

(z+Λr )∩ΛL,∅

∑

ε∈{±1}d
N r
(bc),L

(
•
γ,z +

r

2
ε
)
.

As illustrated in fig. , for each z ∈ rZd such that (z +Λ2r )∩ΛL , ∅, the termN r
(bc),L

( •
γ,z

)
appears

in the summation at most 2d times.
Thus

∑

z∈rZd+ r
2 (1...1)

(z+Λr )∩ΛL,∅

N2r
(bc),L

( •
γ,z

)
6 2d

∑

z∈rZd
(z+Λ2r )∩ΛL,∅

N r
(bc),L

( •
γ,z

)

6 2d#
[ •
γ (bc),L ∩ (ΛL +Λ2r )

]
6 2d#

( •
γ (bc),L ∩Λ3L

)
6 6d#γ.
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Figure : Counting the N r
(bc),L

( •
γ,z

)
, z ∈ rZd

We control similarly the second term

∑

z∈rZd+ r
2 (1...1)

(z+Λr )∩ΛL,∅

∑

ε∈{±1}d
N r
(bc),L

(
•
γ,z +

r

2
ε
)
· log

[
N r
(bc),L

(
•
γ,z +

r

2
ε
)]

62d
∑

z∈rZd
(z+Λ2r )∩ΛL,∅

N r
(bc),L

( •
γ,z

)
· log

[
N r
(bc),L

( •
γ,z

)]
.

For any z ∈ rZd , the condition (z +Λ2r )∩ΛL , ∅ implies (z +Λr )∩Λ3L , ∅. Therefore
∑

z∈rZd
(z+Λ2r )∩ΛL,∅

N r
(bc),L

( •
γ,z

)
· log

[
N r
(bc),L

( •
γ,z

)]
6

∑

z∈rZd
(z+Λr )∩Λ3L,∅

N r
(bc),L

( •
γ,z

)
· log

[
N r
(bc),L

( •
γ,z

)]
.

Since
•
γ ⊂ΛL, we conclude

∑

z∈rZd
(z+Λr )∩Λ3L,∅

N r
(bc),L

( •
γ,z

)
· log

[
N r
(bc),L

( •
γ,z

)]
6 3d

∑

z∈rZd
(z+Λr )∩ΛL,∅

N r
(bc),L

( •
γ,z

)
· log

[
N r
(bc),L

( •
γ,z

)]
.

�

As previously, proving the thermodynamic limit is done by uniformly bounding the relative
entropy.

Proposition ..— Let κ ∈ ]0;1[. Assume

ν(p) =

[
r2(1−κ)
2πβ

]d/2∫

p+Λ1

exp

[
− r

2

2β
(1−κ)‖x‖2

]
dx.

Then, there exists λ > 0 such that

sup
L∈rN

1

Ld
I
(
P
(mp)

(bc),L

∣∣∣∣Πλm
L

)
< +∞





where Πλm
L is the Poisson process of intensity measure λm with m := Leb(d) ⊗ ν ⊗Leb(1) ⊗W1

0,0.

Proof (proposition ..)
First, we know that

P
(mp)
(bc),L(dγ) =

1

Z(bc),L
exp

[
βµ#γ −H (mp)

(bc),L(γ)
]
Π

m

L (dγ)

=
1

Z(bc),L
exp

{
λ+ [βµ− log(λ)]#γ −H (mp)

(bc),L(γ)
}
Π
λm
L (dγ).

We will uniformly bound the relative entropy by dealing separately with each non-trivial term
of the density

• − log
(
Z(bc),L

)

• −∑(x,p,u,ω)∈γ

{
1
2β

∥∥∥∥σ
(mp)
(bc),L(γ,x)− x

∥∥∥∥
2
+ log[ν(p)]

}

•
∑

(x,p,u,ω)∈γ log
[
N r
(bc),L

( •
γ,x + rp

)]
− interaction term

We will proceed in this order then conclude.

• According to inequation () from the proof of lemma ..,

− log
(
Z(bc),L

)
6 Ld + βU(bc),L(∅).

• For any γ ∈ ConfPerm(mp)
(bc),L and (x,p,u,ω) ∈ γ ,

∥∥∥∥σ
(mp)
(bc),L(γ,x)− x

∥∥∥∥ > r
(
‖p‖ −

√
d
)
.

Given the admitted formula of ν,

log[ν(p)]>
d

2
log

[
r2(1−κ)
2πβ

]
− r

2

2β
(1−κ)

(
‖p‖ +

√
d
)2
.

Thus there exists Cκ ∈ R such that for any (x,p,u,ω) ∈ γ ,

1

2β

∥∥∥∥σ
(mp)
(bc),L(γ,x)− x

∥∥∥∥
2
+ log[ν(p)]> Cκ .

• According to lemma ..,

∑

(x,p,u,ω)∈γ
log

[
N r
(bc),L

( •
γ,x + rp

)]
6 6d


log

(
2d

)
#γ +

∑

z∈rZd
(z+Λr )∩ΛL,∅

N r
(bc),L

( •
γ,z

)
· log

[
N r
(bc),L

( •
γ,z

)]

.

To deal with that problematic x log(x) term, we will use the interaction’s superstability.





By the equivalence of models (mp), (FK) and (ps) from proposition .. and proposi-
tion ..,

∫
P
(mp)
(bc),L(dγ)

∫ β

0
ds

(
−U(bc),L

[{
x +

s

β

(
σ
(mp)
(bc),L(γ,x)− x

)
+
√
βω

(
s

β

)
, (x,p,u,ω) ∈ γ

}])

=

∫
P
(FK)
(bc),L(dγ)

∫ β

0
ds

[
−U(bc),L({w(s), w ∈ γ})

]

=

∫
P
(ps)
(bc),L(dη)

∫ β

0
ds

(
−U(bc),L[

{
w(βj + s), 06 j < ℓ(w), w ∈ η}]

)
.

We remind that the meaning of η 7→ U(bc),L[
{
w(βj + s), 06 j < ℓ(w), w ∈ η}] is that of a

quotient function. We refer to definition .. for more details.

By choosing µ = −1 in inequality  from the proof of lemma .., the function −U(bc),L is
bounded, thus integrable. So

∫
P
(ps)
(bc),L(dη)

∫ β

0
ds

(
−U(bc),L[

{
w(βj + s), 06 j < ℓ(w), w ∈ η}]

)

=

∫ β

0
ds

∫
P
(ps)

(bc),L(dη)
(
−U(bc),L[

{
w(βj + s), 06 j < ℓ(w), w ∈ η}]

)
.

By time-shift stationarity, this equals
∫ β

0
ds

∫
P
(ps)

(bc),L(dη)
(
−U(bc),L[{w(βj), 06 j < ℓ(w), w ∈ ·}] ◦T (ps)

s

)
(η)

=β

∫
P
(ps)

(bc),L(dη)
(
−U(bc),L[

{
w(βj), 06 j < ℓ(w), w ∈ η}]

)
.

By equivalence of models again,
∫

P
(ps)
(bc),L(dη)

(
−U(bc),L[

{
w(βj), 06 j < ℓ(w), w ∈ η}]

)

=

∫
P
(mp)
(bc),L(dγ)

[
−U(bc),L

( •
γ
)]

6

∫
P
(mp)
(bc),L(dγ)



A#γ −B

∑

z∈rZd
(z+Λr )∩ΛL,∅

N r
(bc),L

( •
γ,z

)2



.

There exists C(0) ∈ R such that 6dx log(x)−Bβx2 6 C(0) for any x > 0. We deduce

∑

(x,p,u,ω)∈γ
log

[
N r
(bc),L

( •
γ,x + rp

)]
− interaction term6

[
6d log

(
2d

)
+Aβ

]
#γ −

(
L

r

)d
C(0).

Therefore,

I
(
P
(mp)

(bc),L

∣∣∣∣Πλm
L

)
6λ+ βU(bc),L(∅) +

(
1− C

(0)

rd

)
Ld

+

∫ [
βµ− log(λ) + d

2
log(2πβ)−Cκ +6d log

(
2d

)
+Aβ

]
#γ P

(mp)
(bc),L(dγ).
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For λ > 0 large enough, the integrand is non-positive and we conclude

sup
L∈rN

1

Ld
I
(
P
(mp)
(bc),L

∣∣∣∣Πλm
L

)
< +∞.

�

We need to justify the choice

ψ(p,u,ω) =

∣∣∣∣∣∣Sausδ



[0;β] −→ Rd

s 7−→ s
β rp +

√
βω

(
s
β

)



∣∣∣∣∣∣

α

for all α ∈ [0;2[.

Lemma ..— Let α ∈ [0;2[ and δ > 0. There exists κ ∈ ]0;1[ small enough such that for any
λ > 0, ∫

exp


λ

∣∣∣∣∣∣Sausδ



[0;β] −→ Rd

s 7−→ s
β rp +

√
βω

(
s
β

)



∣∣∣∣∣∣

ανκ(dp)W
1
0,0(dω) < +∞

with

νκ(p) =

[
r2(1−κ)
2πβ

]d/2∫

p+Λ1

exp

[
− r

2

2β
(1−κ)‖x‖2

]
dx.

Proof (lemma ..)
For any y ∈ Rd , we denote as

⌊
y
⌋
the point of the lattice Zd closest to x.

If a random vector Y ∈ Rd has a Gaussian distribution given by

Gr2(1−κ)(dy) =

[
r2(1−κ)
2πβ

]d/2
exp

[
− r

2

2β
(1−κ)

∥∥∥y
∥∥∥2

]
dy

then ⌊Y ⌋’s distribution is νκ. Therefore

∫
exp

[
λ

∣∣∣∣∣∣Sausδ
(
s 7→ s

β
rp +

√
βω

(
s

β

))∣∣∣∣∣∣

α]
νκ(dp)W

1
0,0(dω)

6

∫
exp

[
λ

∣∣∣∣∣∣Sausδ+r
√
d

(
s 7→ s

β
ry +

√
βω

(
s

β

))∣∣∣∣∣∣

α]
Gr2(1−κ)(dy)W

1
0,0(dω)

6

∫
exp

[
λ

∣∣∣∣∣∣Sausδ+r
√
d

(
s 7→ s

β
y +ω(s)

)∣∣∣∣∣∣

α]
G1−κ(dy)W

β
0,0(dω)

6 (1−κ)d/2
∫

e
κ
2β ‖y‖2 exp

[
λ

∣∣∣∣∣∣Sausδ+r
√
d

(
s 7→ s

β
y +ω(s)

)∣∣∣∣∣∣

α]
G1(dy)W

β
0,0(dω)

If Y is a random vector with Gaussian distribution of variance β and ω is a Brownian bridge
from 0 to 0 in time β, then the trajectory s 7→ s

βY + ω(s) has the distribution of a Brownian

motion, up to time β. So

∫
e
κ
2β ‖y‖2 exp

[
λ

∣∣∣∣∣∣Sausδ+r
√
d

(
s 7→ s

β
y +ω(s)

)∣∣∣∣∣∣

α]
g1(dy)W

β
0,0(dω)

6Eω

{
e
κ
2β ‖ω(β)‖2 exp

[
λ
∣∣∣Sausδ+r√d (ω)

∣∣∣α
]}
.
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where the expectancy is taken along the standard Brownian motion.
We repeat the reasoning we made for f1 in example ... The cylinder whose axis goes

from 0 to ω(β) with radius δ + r
√
d has bigger volume than the Wiener sausage. Then

∥∥∥ω(β)
∥∥∥ 6

1

cd−1
(
δ + r
√
d
)d−1

∣∣∣Sausδ+r√d (ω)
∣∣∣

where we denote as cd−1 the volume of the d − 1 dimensional ball of radius 1.
Thus

Eω

{
e
κ
2β ‖ω(β)‖2 exp

[
λ
∣∣∣Sausδ+r√d (ω)

∣∣∣α
]}

6Eω


exp




κ

2βc2d−1
(
δ + r
√
d
)2d−2

∣∣∣Sausδ+r√d(ω)
∣∣∣2 +λ

∣∣∣Sausδ+r√d(ω)
∣∣∣α




.

To prove this integral is finite, it is sufficient to prove

Eω


exp




κ

2βc2d−1
(
δ + r
√
d
)2d−2

∣∣∣Sausδ+r√d(ω)
∣∣∣2




< +∞

which is true for κ small enough, according to theorem A... �

Proof (theorem ..)
Finally, according to lemma .., the uniform bound from proposition .. on the entropy

is enough to prove the existence of the thermodynamic limit P
(mp)
(bc),∞. More precisely, this is

enough to prove tightness of the sequence P̃
(mp)

(bc),L, L ∈ rN, hence the existence of a converging

subsequence.
The class of tame functions is justified by lemma ... �

. Permutation in infinite volume

In section . we constructed the (mp) framework to encode the permutation of the (FK) model
into the p, u and ω marks. We just proved the (mp) model to have a thermodynamic limit, but
does the encoding pass to the limit ? Is it only possible to define an infinite volume permutation
with those marks ? Thankfully the answer is yes.

Definition ..— For any γ ∈ Conf(mp) and z ∈ Rd , we denote

N r
∞
( •
γ,z

)
:= #

[ •
γ ∩ (z +Λr )

]
.

In infinite volume, we define the set of authorized configurations as

ConfAuth
(mp)
∞ :=

{
γ ∈ Conf(mp)

/ •
γ is simple and ∀(x,p,u,ω) ∈ γ, N r

∞
( •
γ,x + rp

)
> 1

}
.
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For any authorized configuration γ ∈ ConfAuth(mp)
∞ , we define the map σ

(mp)
∞ (γ, ·) : •γ → •

γ such that
for any (x,p,u,ω) ∈ γ ,

σ
(mp)
∞ (γ,x) :=

⌈
N r
∞
( •
γ,x + rp

)
· u

⌉
’th element of

•
γ ∩ (x + rp +Λr)

if we order them lexicographically. Finally, in infinite volume, we call an authorized configuration
permutation-wise if it satisfies

∀y ∈ •γ, ∃!x ∈ •γ, σ(mp)
∞ (γ,x) = y

and we denote

ConfPerm
(mp)
∞ :=

{
γ ∈ ConfAuth(mp)

∞
/
γ is permutation-wise

}
.

Definition ..— We define the transition map
(FK)←(mp)

ϕ∞ : ConfPerm
(mp)
∞ → ConfPerm(FK) by

(FK)←(mp)
ϕ∞ (γ) :=


[0;β] −→ Rd

s 7−→ x + s
β

[
σ
(mp)
∞ (γ,x)− x

]
+
√
βω

(
s
β

) , (x,p,u,ω) ∈ γ
.

Proposition ..— P
(mp)
(bc),∞

(
ConfPerm

(mp)
∞

)
= 1.

Proof (proposition ..)
If we are given a configuration γ , the map σ

(mp)
∞ (γ, ·) is a well-defined bijection if and only if

. The marked point configuration γ is simple.

. ∀(x,p,u,ω) ∈ γ, N r
∞
( •
γ,x + rp

)
> 1 so that the mark is not pointing to an empty region of

space. The map σ
(mp)
∞ (γ, ·) is then well defined.

. ∀(x,p,u,ω) ∈ γ, ∑(x′ ,p′ ,u′ ,ω′ )∈γ 1σ(mp)
∞ (γ,x′ )=x

6 1 so that the map is injective.

. The map σ
(mp)
∞ (γ, ·) is surjective.

We will check that those  properties hold P
(mp)

(bc),∞ almost surely.

Step  Let us assume P
(mp)

(bc),∞(γ is not simple) > 0. So there exists a compact ∆ ⊂ Rd such that

P
(mp)

(bc),∞(γ ∩∆ is not simple) > 0.

This event is local so there exists L > 0 such that

P̃
(mp)
(bc),L(γ ∩∆ is not simple) =

1

Ld

∫

ΛL

dv P
(mp)
(bc),L[(γ + v)∩∆ is not simple] > 0

which is wrong.





Step  Let us denote as (x1,p1,u1,ω1) ∈ γ the closest point to 0 in the configuration. We assume

P
(mp)

(bc),∞
[
N r
∞
( •
γ,x1 + rp1

)
= 0

]
> 0.

Then there exists ε > 0 and D > 0 such that

P
(mp)

(bc),∞

[
N r
∞
( •
γ,x1 + rp1

)
= 0 and ‖x1‖ 6D and ‖p1‖ 6

D

r

]
> ε.

This event is local so there exists L0 > 0 such that for any L > L0,

P̃
(mp)
(bc),L

[
N r
∞
( •
γ,x1 + rp1

)
= 0 and ‖x1‖ 6 D and ‖p1‖ 6

D

r

]
>
ε

2
.

By definition of the empirical field,

P̃
(mp)
(bc),L

[
N r
∞
( •
γ,x1 + rp1

)
= 0 and ‖x1‖ 6D and ‖p1‖ 6

D

r

]
=

L→+∞
1

Ld

∫

ΛL−2D−r
dv P

(mp)

(bc),L

[
N r
∞
( •
γ + v,x1,v + rp1,v

)
= 0 and

∥∥∥x1,v
∥∥∥ 6D and

∥∥∥p1,v
∥∥∥ 6

D

r

]
+ o(1)

where we denote as
(
x1,v ,p1,v ,u1,v ,ω1,v

)
the point of γ + v which is closest to 0.

So there exists L > L0, δ > 0 and v ∈ ΛL−2D−r such that

P
(mp)
(bc),L

[
N r
∞
( •
γ + v,x1,v + rp1,v

)
= 0 and

∥∥∥x1,v
∥∥∥ 6D and

∥∥∥p1,v
∥∥∥ 6

D

r

]
> δ.

Since v ∈ΛL−2D−r , if
∥∥∥x1,v

∥∥∥ 6D and
∥∥∥p1,v

∥∥∥ 6 D
r , then we have

( •
γ (bc),L + v

)
∩ (
x1,v + rp1,v +Λr

)
=

[ •
γ (bc),L ∩

(
x1,v − v + rp1,v +Λr

)]
+ v

=
[ •
γ ∩ (

x1,v − v + rp1,v +Λr
)]
+ v

=
( •
γ + v

)
∩ (
x1,v + rp1,v +Λr

)
.

Thus
N r
∞
( •
γ + v,x1,v + rp1,v

)
=N r

(bc),L

( •
γ + v,x1,v + rp1,v

)
.

Therefore
P
(mp)
(bc),L

[
N r
(bc),L

( •
γ + v,x1,v + rp1,v

)
= 0

]
> δ.

If we denote as
(
xv1 ,p

v
1 ,u

v
1 ,ω

v
1

)
the point of γ which is closest to −v, this translates to

P
(mp)

(bc),L

[
N r
(bc),L

( •
γ,xv1 + rp

v
1

)
= 0

]
> δ

which is not true because P
(mp)

(bc),L

(
ConfAuth

(mp)

(bc),L

)
= 1.

We have proven

P
(mp)
(bc),∞

[
N r
∞
( •
γ,x1 + rp1

)
> 1

]
= 1

and with the same procedure, we can prove this equality for the n’th closest point to 0 in
the configuration, for any n > 1. Finally

P
(mp)
(bc),∞

[
∀n > 1, N r

∞
( •
γ,xn + rpn

)
> 1

]
= 1.





Step  We will follow a similar proof path in step . We assume

P
(mp)
(bc),∞




∑

(x′ ,p′ ,u′ ,ω′ )∈γ
1
σ
(mp)
∞ (γ,x′ )=x1

> 1


 > 0.

Then there exists ε > 0 and D > 0 such that

P
(mp)

(bc),∞




∑

(x′ ,p′ ,u′ ,ω′)∈γ
‖x′‖6D, ‖p′‖6D/r

1
N r∞

( •
γ,x′+rp′

)
>1

1
σ
(mp)
∞ (γ,x′ )=x1

> 1 and ‖x1‖ 6D



> ε.

Since this event is local, there exists L0 > 0 such that for any L > L0,

P̃
(mp)
(bc),L




∑

(x′ ,p′ ,u′ ,ω′)∈γ
‖x′‖6D, ‖p′‖6D/r

1
N r∞

( •
γ,x′+rp′

)
>1

1
σ
(mp)
∞ (γ,x′ )=x1

> 1 and ‖x1‖ 6D



>
ε

2
.

By definition of the empirical field,

P̃
(mp)
(bc),L




∑

(x′ ,p′ ,u′ ,ω′ )∈γ
‖x′‖6D, ‖p′‖6D/r

1
N r∞

( •
γ,x′+rp′

)
>1

1
σ
(mp)
∞ (γ,x′ )=x1

> 1 and ‖x1‖ 6D




=
L→+∞

1

Ld

∫

ΛL−2D−r
dv P

(mp)
(bc),L




∑

(x′ ,p′ ,u′ ,ω′ )∈γ+v
‖x′‖6D, ‖p′‖6D/r

1
N r∞

( •
γ+v,x′+rp′

)
>1

1
σ
(mp)
∞ (γ+v,x′ )=x1,v

> 1 and
∥∥∥x1,v

∥∥∥ 6D



+ o(1)

where we denote as
(
x1,v ,p1,v ,u1,v ,ω1,v

)
the point of γ + v which is closest to 0.

So there exists L > L0, δ > 0 and v ∈ ΛL−2D−r such that

P
(mp)

(bc),L




∑

(x′ ,p′ ,u′ ,ω′)∈γ+v
‖x′‖6D, ‖p′‖6D/r

1
N r∞

( •
γ+v,x′+rp′

)
>1

1
σ
(mp)
∞ (γ+v,x′ )=x1,v

> 1 and
∥∥∥x1,v

∥∥∥ 6D



> δ.

Since v ∈ΛL−2D−r , if ‖x′‖ 6D and ‖p′‖ 6 D
r , then we have

( •
γ (bc),L + v

)
∩ (x′ + rp′ +Λr ) =

[ •
γ (bc),L ∩ (x′ + rp′ − v +Λr )

]
+ v

=
[ •
γ ∩ (x′ + rp′ − v +Λr)

]
+ v

=
( •
γ + v

)
∩ (x′ + rp′ +Λr ).





Therefore

P
(mp)
(bc),L




∑

(x′ ,p′ ,u′ ,ω′)∈γ+v
‖x′‖6D, ‖p′‖6D/r

1
N r
(bc),L

( •
γ+v,x′+rp′

)
>1

1
σ
(mp)
(bc),L(γ+v,x

′ )=x1,v
> 1



> δ.

If we denote as
(
xv1 ,p

v
1 ,u

v
1 ,ω

v
1

)
the point of γ which is closest to −v, this translates to

P
(mp)
(bc),L




∑

(x′ ,p′ ,u′ ,ω′ )∈γ
‖x′‖6D, ‖p′‖6D/r

1
N r
(bc),L

( •
γ,x′+rp′

)
>1

1
σ
(mp)
(bc),L(γ,x

′ )=xv1
> 1



> δ

which is not true because σ
(mp)
(bc),L(γ, ·) is P

(mp)
(bc),L almost surely injective.

Once again, we conclude by generalizing the procedure for any n’th closest point to 0 of
the configuration.

Step  We will prove a seemingly weaker, yet sufficient result :

∀k ∈ Zd ,
∑

(x,p,u,ω)∈γ
1
σ
(mp)
∞ (γ,x)∈rk+Λr

= #
[ •
γ ∩ (rk +Λr )

]
.

By stationarity, it is enough to prove it for k = 0.

By injectivity, we already know

∑

(x,p,u,ω)∈γ
1
σ
(mp)
∞ (γ,x)∈Λr

6 #
( •
γ ∩Λr

)

To prove the equality more easily, we introduce a discretized version of the configuration

γ −→ ⌊
γ
⌋

(x,p,u,ω) 7−→
(
⌊x⌋,

⌊
σ
(mp)
∞ (γ,x)

⌋
− ⌊x⌋

)

where, for x ∈ Rd , the point ⌊x⌋ is the closest point of rZd to x.
Then

∫
P
(mp)
(bc),∞(dγ)

∑

(x,p,u,ω)∈γ
1
σ
(mp)
∞ (γ,x)∈Λr

=

∫
P
(mp)
(bc),∞(dγ)

∑

(z,k)∈⌊γ⌋
1z+k=0

=
∑

j∈Zd

∫
P
(mp)

(bc),∞(dγ)
∑

(z,k)∈⌊γ⌋
1z=rj1k=−rj .





The probability measure P
(mp)
(bc),∞ is stationary so

⌊
γ
⌋
’s distribution is rZd-stationary. Thus

=
∑

j∈Zd

∫
P
(mp)
(bc),∞(dγ)

∑

(z,k)∈⌊γ⌋
1z=01k=−rj

=

∫
P
(mp)
(bc),∞(dγ)

∑

(z,k)∈⌊γ⌋
1z=0

=

∫
P
(mp)

(bc),∞(dγ) #
( •
γ ∩Λr

)
.

We conclude
∑

(x,p,u,ω)∈γ 1σ(mp)
∞ (γ,x)∈Λr

= #
( •
γ ∩Λr

)
is true P

(mp)

(bc),∞ almost surely.

We know each cell of the lattice receives the good number of marks pointing to it. By

injectivity of the map σ
(mp)
∞ (γ, ·), it guarantees all points in the cell are reached. �

. Thermodynamic limit

Section . was dedicated to the thermodynamics limits of (mp) and (rl) models. We then
proved (section .) the marks of the (mp) infinite volume model to still have meaning and still
encode a (FK) representation.

Definition ..— We define the probability measure P
(FK)

(bc),∞ over Conf(FK) by

P
(FK)

(bc),∞(E) := P
(mp)

(bc),∞




(
(FK)←(mp)

ϕ∞

)−1(
E ∩ConfPerm(FK)

)

for any event E ∈ C(FK).

But is this new (FK) model the thermodynamic limit of the finite volume (FK) model we
presented in lemma-definition .. ? We claimed this is true in our main thermodynamic limit
result (theorem ..) and the current section will prove this statement.

Remark ..
Proposition .. is a direct corollary of proposition ...

Corollary ..— For any V ,δ,ε > 0 and α ∈ [0;2[, there exists m > 1 such that for any L > 0
multiple of r and compact ∆ of volume V ,

∫
Threshm



∑

(x,p,u,ω)∈γ, x∈∆

∣∣∣∣∣∣Sausδ
[
s 7→ s

β
rp +

√
βω

(
s

β

)]∣∣∣∣∣∣

α

P̃
(mp)
(bc),L(dγ)6 ε.

Furthermore
∫ ∑

(x,p,u,ω)∈γ, x∈∆

∣∣∣∣∣∣Sausδ
[
s 7→ s

β
rp +

√
βω

(
s

β

)]∣∣∣∣∣∣

α

P
(mp)

(bc),∞(dγ) < +∞.





Proof
This is immediate from lemma .. and lemma .. (see section .). �

We establish a result analogous to corollary .. for the (FK) models.

Proposition ..— For any V ,δ,ε > 0, α ∈ [0;2[ and K ∈ N, there exists m > 0 such that for any
L > 0 multiple of r and compact ∆ of volume V , if ∆ ⊆ΛKL then

∫
Threshm




∑

w∈γ, w(0)∈∆
|Sausδ(w)|α


 P̃

(FK)

(bc),L(dγ)6 ε.

Furthermore ∫ ∑

w∈γ, w(0)∈∆
|Sausδ(w)|α P

(FK)
(bc),∞(dγ) < +∞.

Proof (proposition ..)
By definition,

∫
Threshm




∑

w∈γ, w(0)∈∆
|Sausδ(w)|α


 P̃

(FK)
(bc),L(dγ)

=
1

Ld

∫

ΛL

dv

∫
Threshm




∑

w∈γ+v, w(0)∈∆
|Sausδ(w)|α


 P

(FK)

(bc),L(dγ)

=
1

Ld

∫

ΛL

dv

∫
Threshm




∑

w∈γ, w(0)∈∆−v
|Sausδ(w)|α


 P

(FK)
(bc),L(dγ). ()

Dir Trivially, this is equal to

1

Ld

∫

ΛL

dv

∫
Threshm




∑

w∈γ, w(0)∈π(Dir),L(∆−v)
|Sausδ(w)|α



P
(FK)
(Dir),L(dγ).

per Since ∆ + v ⊆ Λ(K+1)L for all v ∈ ΛL, each term w(0) ∈ π(per),L(∆− v) of the sum appears at

most (K +1)d times. This makes the expression from () smaller than

1

Ld

∫

ΛL

dv

∫
Threshm



(K +1)d

∑

w∈γ, w(0)∈π(per),L(∆−v)
|Sausδ(w)|α



P
(FK)
(per),L(dγ).

So in all cases, the expression from () is smaller than

(K +1)d

Ld

∫

ΛL

dv

∫
Thresh m

(K+1)d




∑

w∈γ, w(0)∈π(bc),L(∆−v)
|Sausδ(w)|α



P
(FK)
(bc),L(dγ).





According to proposition .. and the definition of the map
(FK)←(mp)

ϕ(bc),L, this equals

(K +1)d

Ld

∫

ΛL

dv

∫
Thresh m

(K+1)d



∑

(x,p,u,ω)∈γ
x∈π(bc),L (∆−v)

∣∣∣∣∣∣Sausδ
[
s 7→ s

β

(
σ
(mp)
(bc),L(γ,x)− x

)
+
√
βω

(
s

β

)]∣∣∣∣∣∣

α



P
(mp)
(bc),L(dγ).

Then

6
(K +1)d

Ld

∫

ΛL

dv

∫
Thresh m

(K+1)d



∑

(x,p,u,ω)∈γ
x∈∆L−v

∣∣∣∣∣∣Sausδ
[
s 7→ s

β

(
σ
(mp)

(bc),L(γ,x)− x
)
+
√
βω

(
s

β

)]∣∣∣∣∣∣

α



P
(mp)

(bc),L(dγ)

where ∆L :=
⋃

k∈Zd , ‖k‖∞6K
(∆+ Lk).

By approximating the trajectory by s 7→ s
β rp +

√
βω

(
s
β

)
,

6
(K +1)d

Ld

∫

ΛL

dv

∫
Thresh m

(K+1)d



∑

(x,p,u,ω)∈γ
x∈∆L−v

∣∣∣∣∣∣Sausδ+r
√
d

[
s 7→ s

β
rp +

√
βω

(
s

β

)]∣∣∣∣∣∣

α



P
(mp)
(bc),L(dγ)

6
(K +1)d

Ld

∫

ΛL

dv

∫
Thresh m

(K+1)d



∑

(x,p,u,ω)∈γ+v
x∈∆L

∣∣∣∣∣∣Sausδ+r
√
d

[
s 7→ s

β
rp +

√
βω

(
s

β

)]∣∣∣∣∣∣

α



P
(mp)

(bc),L(dγ)

6
(K +1)d

Ld

∫
Thresh m

(K+1)d



∑

(x,p,u,ω)∈γ
x∈∆L

∣∣∣∣∣∣Sausδ+r
√
d

[
s 7→ s

β
rp +

√
βω

(
s

β

)]∣∣∣∣∣∣

α



P̃
(mp)
(bc),L(dγ).

Finally we just need corollary .. to conclude.
With a very analog procedure as in finite volume, we can show that

∫ ∑

w∈γ, w(0)∈∆
|Sausδ(w)|α P

(FK)
(bc),∞(dγ)

6

∫ ∑

(x,p,u,ω)∈γ, x∈∆

∣∣∣∣∣∣Sausδ+r
√
d

[
s 7→ s

β
rp +

√
βω

(
s

β

)]∣∣∣∣∣∣

α

P
(mp)

(bc),∞(dγ).

which is finite by corollary ... �

We can now prove the first part of theorem .., that is, for any f : ConfPerm(FK) → R

∈-local and ∈-tame,

lim
L→+∞

∫
f dP̃

(FK)
(bc),L =

∫
f dP

(FK)
(bc),∞.





Proof (theorem .., /)
Let ε > 0 and f : ConfPerm(FK)→ R ∈-local such that

∀γ ∈ ConfPerm(FK), a
∣∣∣f (γ)

∣∣∣6 1+
∑

w∈Proj∈∆(γ)
|Sausδ(w)|α .

We assume without any loss of generality that δ > r
√
d.

For any m > 1, we define fm : ConfPerm(FK)→ R by

fm(γ) :=


f (γ) if

∑
w∈Proj∈∆(γ)|Sausδ(w)|α <

[
cd−1

(
δ − r
√
d
)d−1m

2

]α

0 otherwise.

For m > 1 large enough, the error between f and fm will be proven to be arbitrarily small.

Our goal is to write the integrals of the fm as integrals of local bounded hm : Conf(mp)→ R. By
using the thermodynamic limit of the (mp) model, this will be enough to conclude.

The functions fm, m > 1 are uniformly dominated by the ∈-tame bound of f , which is inte-

grable under P
(FK)

(bc),∞ (see proposition ..). So by dominated convergence theorem there exists

m0 > 1 large enough such that

∀m >m0,

∫
|fm − f |dP

(FK)

(bc),∞ 6 ε.

Furthermore, according to proposition .., there exists m1 >m0 such that

∀L ∈ rN, ∆ ⊆ΛL =⇒
∫ ∣∣∣fm1

− f
∣∣∣dP̃(FK)

(bc),L 6 ε.

Then for all L ∈ rN such that ∆ ⊆ΛL, the error term is

∣∣∣∣∣

∫
f dP

(FK)
(bc),∞ −

∫
f dP̃

(FK)
(bc),L

∣∣∣∣∣6 2ε +

∣∣∣∣∣

∫
fm1

dP
(FK)
(bc),∞ −

∫
fm1

dP̃
(FK)
(bc),L

∣∣∣∣∣

We assume without any loss of generality that ∆ + Λr ⊆ Λm1
. Since the function fm1

is
bounded, we have

∫
fm1

dP̃
(FK)
(bc),L =

L→+∞
1

Ld

∫

ΛL−2m1

dv

∫
fm1

(γ + v) P
(FK)
(bc),L(dγ) + o(1) ()

We define the function gm1
: Conf(FK)→ R by

gm1
(γ) =


fm1

(γ0) if ∃γ0 ∈ ConfPerm(FK), γ = Proj∈∆(γ0)
0 otherwise.

This is well defined thanks to ∈-locality of fm1
and it is clear that

∀γ ∈ ConfPerm(FK),
(
gm1
◦Proj∈∆

)
(γ) = fm1

(γ).





Let L> 2m1. Since the map
(FK)←(mp)

ϕ(bc),L commutes with any translation γ 7→ γ + v, we deduce

1

Ld

∫

ΛL−2m1

dv

∫
fm1

(γ+v) P
(FK)

(bc),L(dγ) =
1

Ld

∫

ΛL−2m1

dv

∫ (
gm1
◦Proj∈∆ ◦

(FK)←(mp)
ϕ(bc),L

)
(γ+v) P

(FK)

(bc),L(dγ).

()

Let γ ∈ ConfPerm(mp)
(bc),L such that

•
γ ⊂ Λ2L−2m1

. Since ∆ ⊆ Λm1
, we have

•
γ (bc),L ∩∆ =

•
γ ∩∆.

Then
(
Proj∈∆ ◦

(FK)←(mp)
ϕ(bc),L

)
(γ)

=


[0;β] −→ Rd

s 7−→ x + s
β

[
σ
(mp)
(bc),L(γ,x)− x

]
+
√
βω

(
s
β

) , (x,p,u,ω) ∈ γ
s.t. x ∈ ∆



=


[0;β] −→ Rd

s 7−→ x + s
β

[
σ
(mp)
∞

(
γ(bc),L,x

)
− x

]
+
√
βω

(
s
β

) , (x,p,u,ω) ∈ γ
s.t. x ∈ ∆

.

In the following, we will make a slight abuse of notations by writing (x,p,u,ω) ∈ γ ∩∆.

Case  We assume the condition

∑

(x,p,u,ω)∈γ∩∆

∣∣∣∣∣∣Sausδ−r
√
d

[
s 7→ s

β
rp +

√
βω

(
s

β

)]∣∣∣∣∣∣

α

>
[
cd−1

(
δ − r
√
d
)d−1m1

2

]α
.

Themap Proj∈∆◦
(FK)←(mp)

ϕ(bc),L induces a bijection between the set ofmarked points (x,p,u,ω) ∈

γ ∩∆ and the image set of bridges w ∈
(
Proj∈∆ ◦

(FK)←(mp)
ϕ(bc),L

)
(γ). Then

∑

w∈
(
Proj∈∆◦

(FK)←(mp)
ϕ(bc),L

)
(γ)

|Sausδ(w)|α >
∑

(x,p,u,ω)∈γ∩∆

∣∣∣∣∣∣Sausδ−r
√
d

[
s 7→ s

β
rp +

√
βω

(
s

β

)]∣∣∣∣∣∣

α

>
[
cd−1

(
δ − r
√
d
)d−1m1

2

]α
.

Thus (
gm1
◦Proj∈∆ ◦

(FK)←(mp)
ϕ(bc),L

)
(γ) = fm1

[
(FK)←(mp)

ϕ(bc),L(γ)

]
= 0.

Case  We assume

∑

(x,p,u,ω)∈γ∩∆

∣∣∣∣∣∣Sausδ−r
√
d

[
s 7→ s

β
rp +

√
βω

(
s

β

)]∣∣∣∣∣∣

α

6

[
cd−1

(
δ − r
√
d
)d−1m1

2

]α
.

We use the same reasoning as in example ..: the cylinder whose axis goes from 0 ro
rp with diameter δ − r

√
r has a smaller volume than the Wiener sausage

∀(x,p,u,ω) ∈ γ ∩∆, r‖p‖ 6 1

cd−1
(
δ − r
√
d
)d−1

∣∣∣∣∣∣Sausδ−r
√
d

[
s 7→ s

β
rp +

√
βω

(
s

β

)]∣∣∣∣∣∣6
m1

2
.





Then, for all (x,p,u,ω) ∈ γ ∩∆, the expression σ(mp)
∞

(
γ(bc),L,x

)
only depends on

γ(bc),L ∩
(
∆+Λm1

+Λr

)
⊆ γ(bc),L ∩Λ2m1

= γ ∩Λ2m1
.

We will slightly abuse notations by writing

(
Proj∈∆ ◦

(FK)←(mp)
ϕ(bc),L

)
(γ)

=


[0;β] −→ Rd

s 7−→ x + s
β

[
σ
(mp)
∞

(
γ ∩Λ2m1

,x
)
− x

]
+
√
βω

(
s
β

) , (x,p,u,ω) ∈ γ ∩∆
.

In all cases, we denote

ϕ∗
∆
(γ) :=


[0;β] −→ Rd

s 7−→ x + s
β

[
σ
(mp)
∞

(
γ ∩Λ2m1

,x
)
− x

]
+
√
βω

(
s
β

) ,
(x,p,u,ω) ∈ γ ∩∆ s.t.

N r
∞
( •
γ ∩Λ2m1

,x + rp
)
> 1

.

We define hm1
: Conf(mp)→ R by

hm1
(γ) :=



(
gm1
◦ϕ∗

∆

)
(γ) if

∑

(x,p,u,ω)∈γ∩∆

∣∣∣∣∣∣Sausδ−r
√
d

[
s 7→ s

β
rp +

√
βω

(
s

β

)]∣∣∣∣∣∣

α

6

[
cd−1

(
δ − r
√
d
)d−1m1

2

]α

0 otherwise.

In all cases, hm1
equals gm1

◦Proj∈∆ ◦
(FK)←(mp)

ϕ(bc),L if
•
γ ⊂Λ2L−2m1

. Therefore

1

Ld

∫

ΛL−2m1

dv

∫ (
gm1
◦Proj∈∆ ◦

(FK)←(mp)
ϕ(bc),L

)
(γ+v) P

(mp)
(bc),L(dγ) =

1

Ld

∫

ΛL−2m1

dv

∫
hm1

(γ+v) P
(mp)
(bc),L(dγ).

By combining with equations () and (), we get
∫
fm1

dP̃
(FK)
(bc),L =

L→+∞
1

Ld

∫

ΛL−2m1

dv

∫
hm1

(γ + v) P
(mp)
(bc),L(dγ) + o(1)

=
L→+∞

∫
hm1

dP̃
(mp)
(bc),L + o(1)

because hm1
is bounded.

To sum things up,
∣∣∣∣∣

∫
f dP

(FK)

(bc),∞ −
∫
f dP̃

(FK)

(bc),L

∣∣∣∣∣ 6
L→+∞

2ε +

∣∣∣∣∣

∫
fm1

dP
(FK)

(bc),∞ −
∫
fm1

dP̃
(FK)

(bc),L

∣∣∣∣∣

6
L→+∞

2ε +

∣∣∣∣∣

∫
fm1

dP
(FK)

(bc),∞ −
∫
hm1

dP̃
(mp)

(bc),L

∣∣∣∣∣+ o(1).

Since ϕ∗
∆
: Conf(mp)→ Conf(FK) is ∈-local relatively to Λ2m1

, the function hm1
satisfies the condi-

tions of theorem .. thus

lim
L→+∞

∫
hm1

dP̃
(mp)
(bc),L =

∫
hm1

dP
(mp)
(bc),∞





so
∣∣∣∣∣

∫
f dP

(FK)
(bc),∞ −

∫
f dP̃

(FK)
(bc),L

∣∣∣∣∣ 6
L→+∞

2ε +

∣∣∣∣∣

∫
fm1

dP
(FK)
(bc),∞ −

∫
hm1

dP
(mp)
(bc),∞

∣∣∣∣∣+ o(1).

According to definition ..,

∫
fm1

dP
(FK)
(bc),∞ =

∫
fm1
◦
(FK)←(mp)

ϕ∞ dP
(mp)
(bc),∞

so the final step is to establish the equality

hm1
= fm1

◦
(FK)←(mp)

ϕ∞

P
(mp)
(bc),∞ almost surely and the proof will be complete.

Case  We assume

∑

(x,p,u,ω)∈γ∩∆

∣∣∣∣∣∣Sausδ−r
√
d

[
s 7→ s

β
rp +

√
βω

(
s

β

)]∣∣∣∣∣∣

α

>
[
cd−1

(
δ − r
√
d
)d−1m1

2

]α
.

Then of course hm1
(γ) = 0.

Just like previously, the map Proj∈∆ ◦
(FK)←(mp)

ϕ∞ induces a bijection between the set of

marked points (x,p,u,ω) ∈ γ ∩∆ and the image set of bridges w ∈
(
Proj∈∆ ◦

(FK)←(mp)
ϕ∞

)
(γ).

Then

∑

w∈
(
Proj∈∆◦

(FK)←(mp)
ϕ∞

)
(γ)

|Sausδ(w)|α >
∑

(x,p,u,ω)∈γ∩∆

∣∣∣∣∣∣Sausδ−r
√
d

[
s 7→ s

β
rp +

√
βω

(
s

β

)]∣∣∣∣∣∣

α

>
[
cd−1

(
δ − r
√
d
)d−1m1

2

]α
.

Therefore (
fm1
◦
(FK)←(mp)

ϕ∞

)
(γ) = 0 = hm1

(γ).

Case  We assume

∑

(x,p,u,ω)∈γ∩∆

∣∣∣∣∣∣Sausδ−r
√
d

[
s 7→ s

β
rp +

√
βω

(
s

β

)]∣∣∣∣∣∣

α

6

[
cd−1

(
δ − r
√
d
)d−1m1

2

]α
.

Then

hm1
(γ) =

(
gm1
◦ϕ∗

∆

)
(γ)

= gm1





[0;β] −→ Rd

s 7−→ x + s
β

[
σ
(mp)
∞

(
γ ∩Λ2m1

,x
)
− x

]
+
√
βω

(
s
β

) ,
(x,p,u,ω) ∈ γ ∩∆ s.t.

N r
∞
( •
γ ∩Λ2m1

,x + rp
)
> 1










Just as we argued in the previous case , we know

∀(x,p,u,ω) ∈ γ ∩∆, r‖p‖ 6 m1

2
.

Then for all (x,p,u,ω) ∈ γ ∩∆, the expressions N r
∞
( •
γ,x + rq

)
and σ

(mp)
∞ (γ,x) only depends

on γ ∩Λ2m1
and

hm1
(γ) = gm1





[0;β] −→ Rd

s 7−→ x + s
β

[
σ
(mp)
∞ (γ,x)− x

]
+
√
βω

(
s
β

) ,
(x,p,u,ω) ∈ γ ∩∆ s.t.

N r
∞
( •
γ,x + rp

)
> 1






Since P
(mp)
(bc),∞

(
ConfPerm

(mp)
∞

)
= 1 (see proposition ..), it is clear the conditionN r

∞
( •
γ,x + rp

)
>

1 is almost surely true.

Therefore

hm1
(γ) =

(
gm1
◦Proj∈∆

(FK)←(mp)
ϕ∞

)
(γ).

If γ ∈ ConfPerm(mp)
∞ then

(FK)←(mp)
ϕ∞ (γ) ∈ ConfPerm(FK) and

(
gm1
◦Proj∈∆ ◦

(FK)←(mp)
ϕ∞

)
(γ) =

(
fm1
◦
(FK)←(mp)

ϕ∞

)
(γ).

Again, according to proposition .., the equality is true P
(FK)
(bc),∞ almost surely. �

. Extension of locality

locality in the sense of Proj∈∆ is natural but it does not preserve the cycle structure. This is what
the second part of theorem .. is for.

In section ., we made use of proposition .. in the proof of the first part of the thermo-
dynamic limit. Similarly, we will need the following proposition.

Proposition ..— For any D,δ,ε > 0 and α ∈ [0;1[, there exists m > 0 such that for any L >

4max(δ,D) multiple of r and compact ∆ whose diameter is supx∈∆‖x‖ 6D,

∫ ∑

w∈Proj∩∆(γ)
1w(0)<Λm |Sausδ(w)|α P̃

(FK)
(bc),L(dγ)6 ε.

Furthermore, ∫ ∑

w∈Proj∩∆(γ)
|Sausδ(w)|α P

(FK)

(bc),∞(dγ) < +∞.

Remark ..
Accessing the bridges that only intersect ∆ made us lose a power in the volume of the sausage.
This can be seen at the end of the proof below: an exponent 1+α appears.





Proof (proposition ..)
For any L > 0 multiple of r,

∫
P̃
(FK)
(bc),L(dγ)

∑

w∈γ
1w∩∆,∅1w(0)<Λm |Sausδ(w)|α

6
∑

i∈4δZd∩Λc
m−4δ

∫
P̃
(FK)
(bc),L(dγ)

∑

w∈γ
1w∩∆,∅1w(0)∈i+Λ4δ

|Sausδ(w)|α

6
∑

i∈4δZd∩Λc
m−4δ

∫
P̃
(FK)
(bc),L(dγ)

∑

w∈γ
10∈SausD (w)1w(0)∈i+Λ4δ

|Sausδ(w)|α .

We assume without any loss of generality δ >D. Then

6
∑

i∈4δZd∩Λc
m−4δ

∫
P̃
(FK)

(bc),L(dγ)
∑

w∈γ
10∈Sausδ(w)1w(0)∈i+Λ4δ

|Sausδ(w)|α . ()

per By stationarity of P̃
(FK)

(per),L, this is

6
∑

i∈4δZd∩Λc
m−4δ

∫
P̃
(FK)

(per),L(dγ)
∑

w∈γ
1−i∈Sausδ(w)1w(0)∈Λ4δ

|Sausδ(w)|α .

Dir We directly bound the expression from () by replacing the configuration by its periodized
version

6
∑

i∈4δZd∩Λc
m−4δ

∫
P̃
(FK)
(Dir),L(dγ)

∑

w∈γ(per),L
10∈Sausδ(w)1w(0)∈i+Λ4δ

|Sausδ(w)|α

where we remind γ(per),L =
⋃
k∈Zd (γ + Lk).

If γ is distributed along P̃
(FK)
(Dir),L then the configuration γ(per),L has a stationary distribution.

Thus

6
∑

i∈4δZd∩Λc
m−4δ

∫
P̃
(FK)
(Dir),L(dγ)

∑

w∈γ(per),L
1−i∈Sausδ(w)1w(0)∈Λ4δ

|Sausδ(w)|α

6
∑

i∈4δZd∩Λc
m−4δ

∫
P̃
(FK)
(Dir),L(dγ)

∑

k∈Zd

∑

w∈γ
1−i∈Sausδ(w)+Lk1w(0)+Lk∈Λ4δ

|Sausδ(w)|α .

Under P̃
(FK)
(Dir),L, the set {w(0), w ∈ γ} is included inside Λ2L. Plus, we know Λ4δ ⊆ ΛL. So

the condition w(0) + Lk ∈Λ4δ allows us to restrict the sum to k ∈ {−1;0;1}d

6
∑

i∈4δZd∩Λc
m−4δ

∫
P̃
(FK)
(Dir),L(dγ)

∑

k∈{−1;0;1}d

∑

w∈γ
1−i∈Sausδ(w)+Lk1w(0)+Lk∈Λ4δ

|Sausδ(w)|α .
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In all cases, we can bound the expression from () by

∑

i∈4δZd∩Λc
m−4δ

∫
P̃
(FK)

(bc),L(dγ)
∑

k∈{−1;0;1}d

∑

w∈γ
1−i∈Sausδ(w)+Lk1w(0)∈Λ4δ−Lk |Sausδ(w)|α .

If −i ∈ Sausδ(w) + Lk then

|(−i +Λ4δ)∩ [Sausδ(w) + Lk]|> cdδ
d

where cd is the volume of the d-dimensional unit ball. We deduce

∑

i∈4δZd∩Λc
m−4δ

1−i∈Sausδ(w)+Lk 6
1

cdδd

∑

i∈4δZd∩Λc
m−4δ

|(−i +Λ4δ)∩ [Sausδ(w)+ Lk]|

6
1

cdδd

∣∣∣Λc
m−8δ ∩ [Sausδ(w) + Lk]

∣∣∣.

Therefore
∫

P̃
(FK)
(bc),L(dγ)

∑

w∈γ
1w∩∆,∅1w(0)<Λm |Sausδ(w)|α

6
1

cdδd

∑

k∈{−1;0;1}d

∫
P̃
(FK)
(bc),L(dγ)

∑

w∈Proj∈Λ4δ−Lk (γ)

∣∣∣Λc
m−8δ ∩ [Sausδ(w) + Lk]

∣∣∣ · |Sausδ(w)|α

6
1

cdδd

∑

k∈{−1;0;1}d

∫
P̃
(FK)

(bc),L(dγ)
∑

w∈Proj∈Λ4δ−Lk (γ)

1(Λc
m−8δ−Lk)∩Sausδ(w),∅ · |Sausδ(w)|1+α

6
1

cdδd

∑

k∈{−1;0;1}d

∫
P̃
(FK)
(bc),L(dγ)

∑

w∈Proj∈Λ4δ−Lk (γ)

1|Sausδ(w)|>cd−1δd−1(m−9δ) · |Sausδ(w)|1+α .

Thanks to proposition .., this is enough to conclude on the first part of the proposition.
Infinite volume is managed in a similar way. �

Proposition ..— The (FK) model is time-reversal invariant. More precisely, for any measurable

f : Conf(FK)→R+, ∫
f ◦R(FK)dP

(FK)
(bc),L =

∫
f dP

(FK)
(bc),L

where we define the time-reversal operator as

R(FK) :
Conf(FK) −→ Conf(FK)

γ 7−→
{

[0;β] −→ Rd

s 7−→ w(β − s) , w ∈ γ
}
.

Proof (proposition ..)
One just needs to replace σ ∈ S(ξ) by σ−1 in the definition of P

(FK)

(bc),L. �





We can now prove the second part of theorem .., that is, for any f : Conf(FK) → R ∩n-
regular and ∩n-tame,

lim
L→+∞

∫
f dP̃

(FK)
(bc),L =

∫
f dP

(FK)
(bc),∞.

Proof (theorem .., /)
Let ε,a,δ > 0, α ∈ [0;1[ and a compact ∆. We denote D = supx∈∆‖x‖. According to proposi-
tion .. and proposition .., there exists m0 > 1 such that for any L > 4max(D,δ) multiple
of r,

∫
P̃
(FK)
(bc),L(dγ) Thresh(cd−1δd−1m0)

α+1




∑

w∈γ, w(0)∈∆
|Sausδ(w)|α+1


6

ε

2

∫
P̃
(FK)
(bc),L(dγ) Thresh(cd−1δd−1m0)

α




∑

w∈γ, w(0)∈∆
|Sausδ(w)|α


6

ε

2

∫
P̃
(FK)
(bc),L(dγ)

∑

w∈Proj∩∆(γ)
1w(0)<Λm0

|Sausδ(w)|α 6 ε

where cd−1 is the volume of the d − 1 dimensional unit ball.
For any x1 . . . xn > 0, it is clear that for any b > 0

n∑

i=1

1xi>b xi 6 Threshb



n∑

i=1

xi


.

Then
∫

P̃
(FK)
(bc),L(dγ)

∑

w∈γ, w(0)∈∆
1|Sausδ(w)|>cd−1δd−1m0

[
|Sausδ(w)|α+1 + |Sausδ(w)|α

]
6 ε

∫
P̃
(FK)
(bc),L(dγ)

∑

w∈Proj∩∆(γ)
1w(0)<Λm0

|Sausδ(w)|α 6 ε.

Similarly,
∫

P
(FK)
(bc),∞(dγ)

∑

w∈γ, w(0)∈∆
1|Sausδ(w)|>cd−1δd−1m0

[
|Sausδ(w)|α+1 + |Sausδ(w)|α

]
6 ε

∫
P
(FK)
(bc),∞(dγ)

∑

w∈Proj∩∆(γ)
1w(0)<Λm0

|Sausδ(w)|α 6 ε.

Recursively, according to proposition .. again, there exists a family of positive mi , 16 i 6 n
such that for any i, for any L > 0 multiple of r,

∫
P̃
(FK)
(bc),L(dγ)

∑

w∈γ, w(0)∈Λm0+···+mi−1

1|Sausδ(w)|>cd−1δd−1mi |Sausδ(w)|1+α 6 ε

∫
P
(FK)
(bc),∞(dγ)

∑

w∈γ, w(0)∈Λm0+···+mi−1

1|Sausδ(w)|>cd−1δd−1mi |Sausδ(w)|1+α 6 ε.





For any γ ∈ ConfPerm(FK), we define

γ0
m :=

{
w ∈ Proj∩∆(γ)

/
w ⊂Λm0

}

γ+
m :=


w ∈ Proj∩n+∆(γ)

/
∃0 < k 6 n,

w ⊂Λm0+···+mk
σ(FK)(γ, ·)−k(w)∩∆ , ∅

∀06 i < k, σ(FK)(γ, ·)−i(w)∩∆ = ∅



γ−m :=


w ∈ Proj∩n−∆(γ)

/
∃0 < k 6 n,

w ⊂Λm0+···+mk
σ(FK)(γ, ·)k(w)∩∆ , ∅

∀06 i < k, σ(FK)(γ, ·)i (w)∩∆ = ∅



γm := γ0
m ∪γ+

m ∪γ−m.
The function γ 7→ f (γm) is ∈-local relatively to the compact Λm0+···+mn and is ∈-tame rela-

tively to the same compact. Therefore, according to the first part of theorem ..,

lim
L→+∞

∫
f (γm) P̃

(FK)
(bc),L(dγ) =

∫
f (γm) P

(FK)
(bc),∞(dγ).

Let γ ∈ ConfPerm(FK). By ∩n-regularity,

a
∣∣∣f (γ)− f (γm)

∣∣∣6
∑

w∈Proj∈∆(γ)
1w<γm |Sausδ(w)|α+1 +

∑

w∈Proj∩∆(γ)
1w<γm |Sausδ(w)|α

+
∑

w∈Proj∩n+∆(γ)
1w<γm1σ(FK)(γ,·)−1(w)∈γm |Sausδ(w)|α+1

+
∑

w∈Proj∩n−∆(γ)
1w<γm1σ(FK)(γ,w)∈γm |Sausδ(w)|α+1.

Let w ∈ Proj∩∆(γ). If w < γm then w 1Λm0
, and either w(0) is in ∆ either it is not

∑

w∈Proj∩∆(γ)
1w<γm |Sausδ(w)|α 6

∑

w∈Proj∈∆(γ)
1w1Λm0

|Sausδ(w)|α +
∑

w∈Proj∩∆(γ)
1w(0)<∆|Sausδ(w)|α .

Let w ∈ Proj∩n+∆(γ) such that w < γm and σ(FK)(γ, ·)−1(w) ∈ γm.
Since w ∈ Proj∩n+∆(γ), there exists k ∈ J1;nK such that

σ(FK)(γ, ·)−k(w)∩∆ , ∅ and ∀06 i < k, σ(FK)(γ, ·)−i(w)∩∆ = ∅.
Since w < γm, by definition,

w 1Λm0+···+mk .

Since σ(FK)(γ, ·)−1(w) ∈ γm, we know

[
σ(FK)(γ, ·)

]−1
(w) 1Λm0+···+mk−1 .

We deduce
∑

w∈Proj∩n+∆(γ)
1w<γm1σ(FK)(γ,·)−1(w)∈γm |Sausδ(w)|α+1

6
∑

w∈Proj∩n+∆(γ)

n∑

k=1

1w1Λm0+···+mk and σ(FK)(γ,·)−1(w)⊂Λm0+···+mk−1
|Sausδ(w)|α+1.





We take care of the term in Proj∩n−∆(γ) similarly.
Then

a
∣∣∣f (γ)− f (γm)

∣∣∣6
∑

w∈Proj∈∆(γ)
1w1Λm0

[
|Sausδ(w)|α+1 + |Sausδ(w)|α

]
+

∑

w∈Proj∩∆(γ)
1w<Λm0

|Sausδ(w)|α

+
∑

w∈Proj∩n+∆(γ)

n∑

k=1

1w1Λm0+···+mk and σ(FK)(γ,·)−1(w)⊂Λm0+···+mk−1
|Sausδ(w)|α+1

+
∑

w∈Proj∩n−∆(γ)

n∑

k=1

1w1Λm0+···+mk and σ(FK)(γ,w)⊂Λm0+···+mk−1
|Sausδ(w)|α+1.

Thus

a
∣∣∣f (γ)− f (γm)

∣∣∣6
∑

w∈γ
w(0)∈∆

1w1Λm0

[
|Sausδ(w)|α+1 + |Sausδ(w)|α

]
+

∑

w∈Proj∩∆(γ)
1w(0)<Λm0

|Sausδ(w)|α

+
n∑

k=1

∑

w∈γ
w(0)∈Λm0+···+mk−1

1w1Λm0+···+mk
|Sausδ(w)|α+1

+

n∑

k=1

∑

w∈γ
w(β)∈Λm0+···+mk−1

1w1Λm0+···+mk
|Sausδ(w)|α+1.

The conditions in the indicator functions can be weakened as

a
∣∣∣f (γ)− f (γm)

∣∣∣6
∑

w∈γ
w(0)∈∆

1|Sausδ(w)|>cd−1δd−1m0

[
|Sausδ(w)|α+1 + |Sausδ(w)|α

]

+
∑

w∈Proj∩∆(γ)
1w(0)<Λm0

|Sausδ(w)|α

+
n∑

k=1

∑

w∈γ
w(0)∈Λm0+···+mk−1

1|Sausδ(w)|>cd−1δd−1mk |Sausδ(w)|α+1

+

n∑

k=1

∑

w∈γ
w(β)∈Λm0+···+mk−1

1|Sausδ(w)|>cd−1δd−1mk |Sausδ(w)|α+1.

Given the definitions of m0 . . .mn, the three first terms are uniformly small under P̃
(FK)
(bc),L, L >

0 and P
(FK)
(bc),∞. The fourth term is managed thanks to time-reversal invariance (see proposi-

tion ..)
∫

P̃
(FK)
(bc),L(dγ)

∑

w∈γ
w(β)∈Λm0+···+mk−1

1|Sausδ(w)|>cd−1δd−1mk |Sausδ(w)|α+1

=

∫
P̃
(FK)

(bc),L(dγ)
∑

w∈γ
w(0)∈Λm0+···+mk−1

1|Sausδ(w)|>cd−1δd−1mk |Sausδ(w)|α+1.





We conclude
∣∣∣∣∣ limL→+∞

∫
f (γ) P̃

(FK)
(bc),L(dγ)−

∫
f (γ) P

(FK)
(bc),∞(dγ)

∣∣∣∣∣ 6
L→+∞

2

a
(2ε +2nε) + o(1).

�

. Technical lemmas

We will now prove any limiting model P
(FK)
(bc),∞ to be Gibbs, that is to say, to be solution of DLR

equations. From now on, we will be assuming all hypotheses I to VI.
Most of the technicalities in this section are due to the fact we are stating DLR equations

over trajectories rather than points. Indeed, cutting down the configuration into interior and
exterior configurations respectively to some compact ∆ is not as straightforward as for points.

Firstly, we make use below of hypothesis V and VI to justify H
(FK)
∆

is well defined and write

the Hamiltonian H
(FK)
(bc),L as a sum of  distinct terms. Concerning stationarity, its necessity is

linked to the empirical field. The probability P̃
(FK)

(bc),L can be seen as sampling a configuration

along P
(FK)
(bc),L with the extra randomness of not knowing where is the origin in ΛL. To write DLR

equations in infinite volume, we need some coherence between the distribution of the empirical
field and the original model, and stationarity will ensure that sampling a configuration inside
a compact ∆ is the same as sampling a configuration inside ∆+ v, then shifting it by −v. This is
intuitive, but not guaranteed without stationarity.

Proof (remark ..)
Let ξ ∈ Conf<∞. We denote N = #[ξ ∩ (∆+ΛR)].

Case  ∀ξ ′ ∈ Conf<∞, ξ ∩ (∆+ΛR) = ξ
′ ∩ (∆+ΛR) =⇒ U(ξ ′ ∩∆c) = +∞

Then the equality defining U∆ from hypothesis V becomes +∞ = +∞. In other words, we
can assume without any loss of generality that U∆[ξ ∩ (∆+ΛR)] = C∆,N .

Case  ∃ξ ′ ∈ Conf<∞, ξ ∩ (∆+ΛR) = ξ
′ ∩ (∆+ΛR) and U(ξ ′ ∩∆c) < +∞

Then for any such ξ ′, the equality defining U∆ from hypothesis V becomes

U∆[ξ ∩ (∆+ΛR)] =U(ξ ′)−U(ξ ′ ∩∆c)

Furthermore, according to hypothesis VI,

U(ξ ′)−U(ξ ′ ∩∆c)> C∆,N . �

Lemma ..— Let ∆ ⊂ Rd be a compact be such that ∆ +ΛR ⊆ ΛL. Let γ ∈ Conf(FK) be a finite
configuration. Then

sup
s∈[0;β]

#
[{
w(s), w ∈ γ(bc),L

}
∩ (∆+ΛR)

]
< +∞.

Furthermore

H
(FK)
(bc),L(γ) =H

(FK)
∆

(
γ(bc),L

)
+H

(FK)
∆c,(bc),L(γ)





where

H
(FK)
∆c,(bc),L(γ) =

∫ β

0
U(bc),L

[
{w(s), w ∈ γ} ∩

(
∆(bc),L

)c]
ds

with
∆(Dir),L = ∆ and ∆(per),L =

⋃

k∈Zd
(∆+ Lk).

Proof (lemma ..)
Let us quickly establish the first part of the lemma for each boundary condition.

Dir The configuration γ(Dir),L is finite so the conclusion is trivial.

per The bridges of γ are continuous trajectories, so there exists M > 0 such that the ball cen-
tered in 0 with radiusM contains the whole γ . It is then clear only finitely many bridges
of γ(per),L ever intersect ∆+ΛR.

Let ξ ∈ Conf<∞.
Dir Since ∆ ⊆ΛL, by hypothesis V, it is clear that

U(Dir),L(ξ) =U∆[ξ ∩ (∆+ΛR)] +U(Dir),L(ξ ∩∆c).

where we remind that R is the range of the interaction.

per By definition,

U(per),L(ξ) = lim
K→+∞

1

(2K +1)d
U
(
ξ(per),L ∩ΛKL

)
.

By applying hypothesis V successively for the compacts ∆ + Lk for all k ∈ Zd such that
‖k‖∞ 6 K ,

U
(
ξ(per),L ∩ΛKL

)
=

∑

k∈Zd , ‖k‖∞6K
U∆+Lk

[
ξ(per),L ∩ΛKL ∩ (∆+ Lk +ΛR)

]

+U



ξ(per),L ∩ΛKL ∩

⋂

k∈Zd , ‖k‖∞6K
(∆+ Lk)c



.

Since for all k ∈ Zd , ‖k‖∞ 6 K we have ∆+ΛR + Lk ⊆ΛKL, this simplifies as

∑

k∈Zd , ‖k‖∞6K
U∆+Lk

[
ξ(per),L ∩ (∆+ Lk +ΛR)

]
+U


ξ(per),L ∩

⋂

k∈Zd
(∆+ Lk)c ∩ΛKL


.

By stationarity of the interaction, this equals

(2K +1)dU∆

[
ξ(per),L ∩ (∆+ΛR)

]
+U


ξ(per),L ∩

⋂

k∈Zd
(∆+ Lk)c ∩ΛKL




=(2K +1)dU∆

[
ξ(per),L ∩ (∆+ΛR)

]
+U

{[
ξ(per),L ∩

(
∆(per),L

)c]∩ΛKL

}

=(2K +1)dU∆

[
ξ(per),L ∩ (∆+ΛR)

]
+U

{[
ξ ∩

(
∆(per),L

)c]
(per),L ∩ΛKL

}
.





Therefore
U(per),L(ξ) =U∆

[
ξ(per),L ∩ (∆+ΛR)

]
+U(per),L

[
ξ ∩

(
∆(per),L

)c]
.

So in both boundary conditions,

U(bc),L(ξ) =U∆

[
ξ(bc),L ∩ (∆+ΛR)

]
+U(bc),L

[
ξ ∩

(
∆(bc),L

)c]
.

We conclude by applying this equality over sets {w(s), w ∈ γ} and integrate it over s ∈ [0;β]. �

Then, we need to be able to cut down the permutation part of P
(FK)

(bc),L into the shuffling of

interior points and exterior points respectively.

Lemma ..— Let X be a finite set and Y ⊆ X. For any function f : S(X)→R,

∑

σ∈S(X)
f (σ) =

∑

Z1⊆Y

∑

Z2⊆X\Y

∑

σ int∈S(Y→Z2∪(Y\Z1))

∑

σext∈S(X\Y→Z1∪X\(Z2∪Y ))
f
(
σ int ∪σext

)

where σ int ∪ σext is a notation for the permutation induced on the whole set X by the interior (rela-
tively to Y ) bijection σ int and the exterior bijection σext.

Proof (lemma ..)
For any Z1,Z2 ⊆ X \Y , we denote

SX,Y ,Z1 ,Z2
:=

{
σ ∈ S(X)

/
Z1 = σ(X \Y )∩Y
Z2 = σ(Y ) \Y

}
.

Then we can define the natural map

ϕX,Y ,Z1,Z2
:
SX,Y ,Z1,Z2

−→ S(Y → Z2 ∪ (Y \Z1))× S(X \Y → Z1 ∪X \ (Z2 ∪Y ))
σ 7−→

(
σ int,σext

)

by

σ int :
Y −→ Z2 ∪ (Y \Z1)
x 7−→ σ(x)

and σext :
X \Y −→ Z1 ∪X \ (Z2∪Y )
x 7−→ σ(x).

This map turns out to be bijective. Furthermore, the sets SX,Y ,Z1 ,Z2
for Z1 ⊆ Y and Z2 ⊆ X \ Y

form a partition of S(X). �

We need one last easy result about the sampling of subsets from a Poisson point process.

Lemma ..— For any measurable f : Conf2<∞→R+,

∫
Π∆(dξ)

∑

ζ⊆ξ
f (ζ,ξ \ ζ) = e|∆|

∫
Π∆(dξ1) Π∆(dξ2) f (ξ1,ξ2).





Proof (lemma ..)
For any ξ ∈ Conf<∞,

∑

ζ⊆ξ
f (ζ,ξ \ ζ) =

+∞∑

n=0

∑

ζ⊆ξ, #ζ=n
f (ζ,ξ \ ζ)

= f (∅,ξ) +
+∞∑

n=1

1

n!

∑

x1∈ξ
. . .

∑

xn∈ξ\{x1 ...xn−1}
f ({x1 . . . xn},ξ \ {x1 . . . xn}).

By Mecke formula (see Theorem . p.  in [LP]),

∫
Π∆(dξ)

∑

ζ⊆ξ
f (ζ,ξ \ ζ) =

∫
Π∆(dξ)

+∞∑

n=0

1

n!

∫

∆n
dx⊗nf ({x1 . . . xn},ξ)

= e|∆|
∫

Π∆(dξ) Π∆(dζ) f (ζ,ξ). �

. DLR equations

Now, we make use of the previous lemmas to introduce an auxiliary measure which takes care
of all the exterior sampling (relatively to a compact ∆).

Definition ..— We define the measure Q∆,L over Conf(FK) by stating the following equality for

any measurable f : Conf(FK)→R+

∫
f (γ) Q∆,L(dγ) := e2|∆|

∫
ΠΛL

(dξ) Π∆(dζ1) e
βµ#(ξ∪ζ1)

∑

ζ2⊆ξ

∑

σext
∆
∈S(ξ→ζ1∪(ξ\ζ2))

∫ 

⊗

x∈ξ
W

β,1∆
x,σ(x),(bc),L


(dγ) e

−H (FK)
∆c,(bc),L(γ) f

(
γ(bc),L

)

where
W

β,1∆
x,σ(x),(bc),L

:=W
β
x,σ(x),(bc),L −W

β,⊂∆
x,σ(x).

In the following proposition, we decompose the formula of P
(FK)
(bc),L into an exterior and an

interior sampling.

Proposition .. (non-normalized DLR equations) — Let∆ ⊂ Rd be a compact. Let f : Conf(FK)→
R be a bounded function, ∈-local relatively to some compact∆f . We assume (∆+ΛR)∪∆f ⊆ΛL. Then

∫
ΠΛL

(dξ) eβµ#ξ
∑

σ∈S(ξ)

∫ 

⊗

x∈ξ
W

β
x,σ(x),(bc),L


(dγ) e

−H (FK)

(bc),L
(γ)
f
(
γ(bc),L

)
=

∫
Q∆,L(dγ)

∫
Π∆(dζ) e

βµ#ζ
∑

σ int
∆
∈S(∂γ in

∆
∪ζ→∂γout

∆
∪ζ)

∫



⊗

x∈∂γ in
∆
∪ζ
W

β,⊂∆
x,σ int

∆
(x)



(dη) e−H

(FK)
∆

(η∪γext
∆
) f

(
η ∪γext

∆

)
.





Proof (proposition ..)
Since ∆f ⊆ΛL,

∫
ΠΛL

(dξ) eβµ#ξ
∑

σ∈S(ξ)

∫ 

⊗

x∈ξ
W

β
x,σ(x),(bc),L


(dγ) e

−H (FK)
(bc),L

(γ)
f
(
γ(bc),L

)

=

∫
ΠΛL

(dξ) eβµ#ξ
∑

σ∈S(ξ)

∫ 

⊗

x∈ξ
W

β
x,σ(x),(bc),L


(dγ) e

−H (FK)

(bc),L
(γ)
f (γ).

Since ∆ ⊆ΛL, we rewrite the measure over Brownian bridges as

=

∫
ΠΛL

(dξ) eβµ#ξ
∑

σ∈S(ξ)

∫ ∑

ζ⊆ξ



⊗

x∈ζ
W

β,⊂∆
x,σ(x)


(dη)



⊗

x∈ξ\ζ
W

β,1∆
x,σ(x),(bc),L


(dγ) e

−H (FK)
(bc),L(η∪γ) f (η ∪γ).

We can restrict the summation over subsets of ξ to subsets of ξ∆ = ξ ∩∆

=

∫
ΠΛL\∆(dξ∆c ) Π∆(dξ∆) e

βµ#(ξ∆c∪ξ∆)
∑

ζ⊆ξ∆

∑

σ∈S(ξ∆c∪ξ∆)
∫ 


⊗

x∈ζ
W

β,⊂∆
x,σ(x)


(dη)




⊗

x∈ξ∆c∪ξ∆\ζ
W

β,1∆
x,σ(x),(bc),L


(dγ) e

−H (FK)
(bc),L(η∪γ) f (η ∪γ).

According to lemma .. this equals

=e|∆|
∫

ΠΛL\∆(dξ∆c ) Π∆

(
dξ ′

∆

)
Π∆(dζ) e

βµ#(ξ∆c∪ξ ′∆∪ζ)
∑

σ∈S(ξ∆c∪ξ ′∆∪ζ)
∫ 


⊗

x∈ζ
W

β,⊂∆
x,σ(x)


(dη)




⊗

x∈ξ∆c∪ξ ′∆

W
β,1∆
x,σ(x),(bc),L



(dγ) e

−H (FK)

(bc),L
(η∪γ)

f (η ∪γ)

=e|∆|
∫

ΠΛL
(dξ) Π∆(dζ) e

βµ#(ξ∪ζ)
∑

σ∈S(ξ∪ζ)
∫ 


⊗

x∈ζ
W

β,⊂∆
x,σ(x)


(dη)



⊗

x∈ξ
W

β,1∆
x,σ(x),(bc),L


(dγ) e

−H (FK)
(bc),L(η∪γ) f (η ∪γ)

According to lemma .. this equals

=e|∆|
∫

ΠΛL
(dξ) Π∆(dζ) e

βµ#(ξ∪ζ)
∑

ζ1⊆ζ

∑

ζ2⊆ξ

∑

σ int
∆
∈S(ζ→ζ2∪ζ\ζ1)

∑

σext
∆
∈S(ξ→ζ1∪ξ\ζ2)

∫ 

⊗

x∈ζ
W

β,⊂∆
x,σ int

∆
(x)


(dη)



⊗

x∈ξ
W

β,1∆

x,σext
∆

(x),(bc),L


(dγ) e

−H (FK)
(bc),L(η∪γ) f (η ∪γ)





According to lemma .. again, this equals

=e2|∆|
∫

ΠΛL
(dξ) Π∆(dζ

′) Π∆(dζ1) e
βµ#(ξ∪ζ′∪ζ1)

∑

ζ2⊆ξ

∑

σ int
∆
∈S(ζ1∪ζ′→ζ2∪ζ′ )

∑

σext
∆
∈S(ξ→ζ1∪(ξ\ζ2))

∫ 


⊗

x∈ζ1∪ζ′
W

β,⊂∆
x,σ int

∆
(x)


(dη)



⊗

x∈ξ
W

β,1∆

x,σext
∆

(x),(bc),L


(dγ) e

−H (FK)
(bc),L

(η∪γ)
f (η ∪γ). ()

Since f is ∈-local relatively to ∆f ⊆ΛL, we have

f (η ∪γ) = f
(
η ∪γ(bc),L

)
.

Let η,γ ∈ Conf(FK) be finite configurations. We assume η is only made up of bridges included
in ∆. According to lemma ..,

H
(FK)

(bc),L(η ∪γ) =H
(FK)
∆

[
(η ∪γ)(bc),L

]
+H

(FK)

∆c,(bc),L(η ∪γ)

=

∫ β

0
U∆

[{
w(s), (η ∪γ)(bc),L

}
∩ (∆+ΛR)

]
ds +

∫ β

0
U(bc),L

[{
w(s), w ∈ η ∪γ}∩

(
∆(bc),L

)c]
ds

=

∫ β

0
U∆

[{
w(s), η ∪γ(bc),L

}
∩ (∆+ΛR)

]
ds +

∫ β

0
U(bc),L

[
{w(s), w ∈ γ} ∩

(
∆(bc),L

)c]
ds

=H
(FK)
∆

(
η ∪γ(bc),L

)
+H

(FK)
∆c,(bc),L(γ).

Then equation () becomes

=e2|∆|
∫

ΠΛL
(dξ) Π∆(dζ

′) Π∆(dζ1) e
βµ#(ξ∪ζ′∪ζ1)

∑

ζ2⊆ξ

∑

σ int
∆
∈S(ζ1∪ζ′→ζ2∪ζ′)

∑

σext
∆
∈S(ξ→ζ1∪(ξ\ζ2))

∫ 


⊗

x∈ζ1∪ζ′
W

β,⊂∆
x,σ int

∆
(x)


(dη)



⊗

x∈ξ
W

β,1∆

x,σext
∆

(x),(bc),L


(dγ) e

−H (FK)
∆ (η∪γ(bc),L)−H

(FK)
∆c,(bc),L(γ) f

(
η ∪γ(bc),L

)
.

By definition of the measure Q∆,L, this equals

=

∫
Q∆,L(dγ)

∫
Π∆(dζ

′) eβµ#ζ
′ ∑

σ int
∆
∈S(∂γ in

∆
∪ζ′→∂γout

∆
∪ζ′)

∫



⊗

x∈∂γ in
∆
∪ζ′
W

β,⊂∆
x,σ int

∆
(x)



(dη) e−H

(FK)
∆

(η∪γ) f (η ∪γ).

We have Q∆,L almost everywhere the equality γ = γext
∆

, which is enough to conclude. �

We make use of proposition .. to prove the probability P
(FK)
∆

( ·
∣∣∣γ) is well defined almost

surely.





Proof (lemma-definition ..)
Let L ∈ rN such that ∆+ΛR ⊆ΛL.

According to the first part of lemma .. and the definition of the measure Q∆,L, it is clear
that sups∈[0;β]#[{w(s), w ∈ γ} ∩ (∆+ΛR)] is finiteQ∆,L almost everywhere. So the quantity Z∆(γ)
is well defined Q∆,L almost everywhere.

We know from proposition .. that

Z(bc),L =

∫
Z∆(γ) Q∆,L(dγ) < +∞.

We also know from lemma .. that Z(bc),L < +∞. Therefore Z∆(γ) is finite Q∆,L almost every-
where. Then

P
(FK)
(bc),L[Z∆(γ) is well defined] =

1

Z(bc),L

∫
1Z∆(γ) is well defined Z∆(γ) Q∆,L(dγ) = 1.

Similarly,

P
(FK)

(bc),L[Z∆(γ) = +∞] =
1

Z(bc),L

∫
1Z∆(γ)=+∞ Z∆(γ) Q∆,L(dγ)

= +∞·Q∆,L[Z∆(γ) = +∞] = 0.

and

P
(FK)
(bc),L[Z∆(γ) = 0] =

1

Z(bc),L

∫
1Z∆(γ)=0 Z∆(γ) Q∆,L(dγ) = 0.

In infinite volume, since Z∆(γ) is ∩0-local,

P
(FK)

(bc),∞[Z∆(γ) is well defined, positive and finite]

= lim
L→+∞

P̃
(FK)

(bc),L[Z∆(γ) is well defined, positive and finite]

= lim
L→+∞

1

Ld

∫

ΛL

dv P
(FK)
(bc),L[Z∆(γ + v) is well defined, positive and finite]

By stationarity of the interaction, we have Z∆(γ + v) = Z∆−v(γ) so

P
(FK)
(bc),∞[Z∆(γ) is well defined, positive and finite]

=
L→+∞

1

Ld

∫

ΛL

dv P
(FK)
(bc),L[Z∆−v(γ) is well defined, positive and finite] + o(1)

=
L→+∞

1

Ld

∫

∆−v⊆ΛL
dv P

(FK)
(bc),L[Z∆−v(γ) is well defined, positive and finite] + o(1)

=
L→+∞

1+ o(1)

from the finite volume property we proved beforehand. �

Weestablish the DLR equations in the following last proof, mainly based of proposition ..
and the second part of theorem ...





Proof (theorem ..)
Let f : Conf(FK)→R be bounded and ∈-local relatively to some compact ∆f .

We assume (∆+ΛR)∪∆f ⊆ΛL. According to proposition ..,

∫
f (γ) P

(FK)
(bc),L(dγ) =

1

Z(bc),L

∫
Q∆,L(dγ) Z∆(γ)

∫
P
(FK)
∆

(dη
∣∣∣γ) f

(
η ∪γext

∆

)
.

According to proposition .. again,
∫
f (γ) P

(FK)
(bc),L(dγ) =

∫
P
(FK)
(bc),L(dγ)

∫
P
(FK)
∆

(dη
∣∣∣γ) f

(
η ∪γext

∆

)
.

We call this equality the DLR equations in finite volume.
We establish the DLR equations for the empirical field

∫
P̃
(FK)

(bc),L(dγ)

∫
P
(FK)
∆

(dη
∣∣∣γ) f

(
η ∪γext

∆

)

=
L→+∞

1

Ld

∫

[(∆+ΛR)∪∆f ]−v⊆ΛL
dv

∫
P
(FK)
(bc),L(dγ)

∫
P
(FK)
∆

(dη
∣∣∣γ + v) f

[
η ∪ (γ + v)ext

∆

]
+ o(1).

By stationarity of the interaction, if η is distributed along P
(FK)
∆

( ·
∣∣∣γ + v) then η−v is distributed

along P
(FK)
∆−v ( ·

∣∣∣γ). Therefore

=
L→+∞

1

Ld

∫

[(∆+ΛR)∪∆f ]−v⊆ΛL
dv

∫
P
(FK)
(bc),L(dγ)

∫
P
(FK)
∆−v (dη

∣∣∣γ) f
[
(η + v)∪ (γ + v)ext

∆

]
+ o(1)

=
L→+∞

1

Ld

∫

[(∆+ΛR)∪∆f ]−v⊆ΛL
dv

∫
P
(FK)
(bc),L(dγ)

∫
P
(FK)
∆−v (dη

∣∣∣γ) f
[(
η ∪γext

∆−v
)
+ v

]
+ o(1).

By the DLR equations in finite volume for the compact ∆− v and the function f (·+ v),

=
L→+∞

1

Ld

∫

[(∆+ΛR )∪∆f ]−v⊆ΛL
dv

∫
P
(FK)

(bc),L(dγ) f (γ + v) + o(1)

=
L→+∞

∫
f (γ) P̃

(FK)
(bc),L(dγ) + o(1).

Since the function f is ∈-local and bounded,

lim
L→+∞

∫
f (γ) P̃

(FK)
(bc),L(dγ) =

∫
f (γ) P

(FK)
(bc),∞(dγ). ()

We denote

f∆(γ) :=

∫
P
(FK)
∆

(dη
∣∣∣γ) f

(
η ∪γext

∆

)
.

The function f∆ is ∩0-local relatively to the compact ∆f ∪ (∆+ΛR) and bounded, thus

lim
L→+∞

∫
f∆(γ) P̃

(FK)
(bc),L(dγ) =

∫
f∆(γ) P

(FK)
(bc),∞(dγ). ()

According to the DLR equations for the empirical field and equations () and (),
∫
f (γ) P

(FK)
(bc),∞(dγ) =

∫
f∆(γ) P

(FK)
(bc),∞(dγ).





We just proved the equality of measures P
(FK)
(bc),∞ and E 7→

∫
P
(FK)
(bc),∞(dγ)

∫
P
(FK)
∆

(dη
∣∣∣γ) 1E

(
η ∪γext

∆

)

over the ring of sets of ∈-local events. So by Carathéodory’s extension theorem, the two mea-
sures coincide. �

A Wiener sausage

Definition A..— Let T ,δ > 0. Let ω = (ωt)t>0 be a d dimensional Brownian motion. We denote
the Wiener sausage of thickness δ > 0 and length T > 0 the set

Sausδ,T (ω) :=
{
x ∈ Rd

/
∃t ∈ [0;T ], ‖x −ωt‖ 6 δ

}

and its volume as
∣∣∣Sausδ,T (ω)

∣∣∣.

Theorem A..
Let T ,δ > 0. Let ω = (ωt)t>0 be a d dimensional Brownian motion. There exists ε > 0 such that

E

[
eε|Sausδ,T (ω)|

2
]
< +∞.

The proof of this theorem is heavily based on the proof from [Szn] of finite exponential
moments for the Wiener sausage.

Proof
We define the sequence of stopping times (τi )i∈N by


τ0 := 0

τi+1 := inf
{
t > 0

/ ∥∥∥ωτi+t −ωτi
∥∥∥∞ > δ

}

and the random variable NT := inf
{
n ∈ N

/ ∑n
i=1 τi > T

}
.

It is clear that

Sausδ,T (ω) =
T⋃

t=0

B(ωt ,δ) ⊆
NT−1⋃

i=0




τ0+···+τi+1⋃

t=τ0+···+τi
B(ωt ,δ)


 ⊆

NT−1⋃

i=0




τ0+···+τi+1⋃

t=τ0+···+τi
(ωt +Λ2δ)


 ⊆

NT −1⋃

i=0

(ωt +Λ4δ)

thus
∣∣∣Sausδ,T (ω)

∣∣∣2 6N2
T (4δ)

2d .

For any k > 0 and λ > 0, by Markov inequality,

P(NT > k) = P



k∑

i=1

τi 6 T


6 eλT E

(
e−λ

∑k
i=1 τi

)

Since the stopping times τi , i > 1 are iid, we deduce

P(NT > k)6 eλT E
(
e−λτ1

)k
.





For any non-negative random variable X and λ > 0,

E
(
e−λX

)
= λ

∫ +∞

0
e−λx[1−P(X > x)]dx.

Furthermore, if we denote as ω(i), 1 6 i 6 d the d spatial components of the Brownian motion
ω, then we can write

τ1 = min
16i6d

τ
(i)
1 where τ

(i)
1 := inf

{
t > 0

/ ∣∣∣∣ω
(i)
t

∣∣∣∣ > δ
}
.

Therefore

E
(
e−λτ1

)
= λ

∫ +∞

0
e−λx[1−P(τ1 > x)]dx = λ

∫ +∞

0
e−λx

[
1−P

(
τ
(1)
1 > x

)d]
dx.

By concavity, it is clear that ∀p > 0, 1− pd 6 d(1− p) so

E
(
e−λτ1

)
6 dλ

∫ +∞

0
e−λx

[
1−P

(
τ
(1)
1 > x

)]
dx 6 dE

(
e−λτ

(1)
1

)
.

According to the Handbook of Brownian Motion - Facts and Formulae [BS] (.. p),

E

(
e−λτ

(1)
1

)
=

1

cosh
(
δ
√
2λ

) 6 2e−δ
√
2λ.

For λ = εk2, we get

P(NT > k)6 eεT k
2
(2d)ke−

√
2εδk2 .

We conclude

E

[
eε|Sausδ,T (ω)|

2
]
6 E

(
eε(4δ)

2dN2
T

)
6

+∞∑

k=1

eε(4δ)
2dk2 P(NT > k)6

+∞∑

k=1

eε(4δ)
2dk2eεT k

2
(2d)ke−

√
2εδk2

which converges for ε > 0 small enough. �

B Notation table

We order symbols in an approximate alphabetical order.

Symbol Definition Page

A Superstability constant (see hypothesis II) 

B Superstability constant (see hypothesis II) 

β Inverse temperature -

. . . . . . . . .





Symbol Definition Page

C<∞ σ-algebra over Conf<∞ (see definition ..) 

C(FK) σ-algebra over Conf(FK) (see definition ..) 

C(mp) σ-algebra over Conf(mp) (see definition ..) 

C(ps)
(bc),L σ-algebra over Conf

(ps)

(bc),L (see definition ..) 

C(rl)
(bc),L σ-algebra over Conf

(rl)

(bc),L (see definition ..) 

Conf<∞
{
ξ ⊂ Rd

/
#ξ < +∞

}


Conf(FK)
{
γ ⊂Ωβ

/
γ is locally finite forWβ

}


Conf(mp)
{
γ = (x,px ,ux ,ωx)x∈ξ ⊂ Rd ×Zd × [0;1]×Ω1

/
ξ ⊂ Rd loc. finite

}


Conf
(ps)
(bc),L

{
η ⊂ Loop(bc),L

/
#η < +∞

}


Conf
(rl)
(bc),L

{
η ⊂ Loop

(root)
(bc),L

/
#η < +∞

}


Conf
(rl)
∞

{
η ⊂ Loop

(root)
(Dir)

/
η is locally finite in W

(root)
(Dir)

}
(see remark ..) 

ConfAuth
(mp)
(bc),L

{
γ ∈ Conf(mp)

/
∀(x,p,u,ω) ∈ γ, N r

(bc),L

( •
γ,x + rp

)
> 1

}


ConfAuth
(mp)
∞

{
γ ∈ Conf(mp)

/
∀(x,p,u,ω) ∈ γ, N r

∞
( •
γ,x + rp

)
> 1

}


ConfPerm
(mp)
(bc),L

{
γ ∈ ConfAuth(mp)

(bc),L

/
∀y ∈ •γ, ∃!x ∈ •γ, π(bc),L

[
σ
(mp)
(bc),L(γ,x)

]
= π(bc),L(y)

}


ConfPerm
(mp)
∞

{
γ ∈ ConfAuth(mp)

∞
/
∀y ∈ •γ, ∃!x ∈ •γ, σ(mp)

∞ (γ,x) = y
}



ConfPerm(FK)
{
γ ∈ Conf(FK)

/
γ is permutation-wise

}


ConfPerm
(ps)
(bc),L

(
(FK)←(ps)

ϕ(bc),L

)−1(
ConfPerm(FK)

)


ConfPerm
(rl)

(bc),L

(
(FK)←(rl)
ϕ(bc),L

)−1(
ConfPerm(FK)

)


∂γ in
∆

See lemma-definition .. 

∂γout
∆

See lemma-definition .. 
•
γ {x, (x,p,u,ω) ∈ γ} 

γ(bc),L γ(Dir),L := γ and γ(per),L :=
⋃
k∈Zd (γ + Lk) 

γext
∆

{w ∈ γ /
w 1 ∆} 

H
(FK)

(bc),L γ 7→
∫ β
0
U(bc),L[{w(s), w ∈ γ}]ds 

H
(mp)

(bc),L Hamiltonian in (mp) framework (see lemma-definition ..) 

H
(ps)

(bc),L Hamiltonian in (ps) framework (see definition ..) 

H
(rl)

(bc),L η 7→
∫ β
0
U(bc),L[

{
w(βj + s), 06 j < ℓ(w), w ∈ η}]ds 

H
(FK)
∆

γ 7→
∫ β
0
U∆[{w(s), w ∈ γ}]ds 

I(·|·) See definition .. 

. . . . . . . . .
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ℓ Length of a loop (see definition .. and definition ..) -

ΛL [−L/2;L/2[d 

Leb(d) d dimensional Lebesgue measure 

Loop
(root)
t Subset of continuous trajectories R→ Rd (see definition ..) 

Loop
(root)
(bc),L Space of rooted loops (see definition ..) 

Loop(bc),L Quotient space (see definition ..) 

µ Chemical potential -

N r
(bc),L

( •
γ, ·

)
z 7→ #

[ •
γ (bc),L ∩ (z +Λr)

]


N r
∞
( •
γ, ·

)
z 7→ #

[ •
γ ∩ (z +Λr )

]


ν Probability measure over Zd such that ∀p ∈ Zd , ν(p) > 0 

Ωt Set of continuous [0; t]→Rd 

(FK)←(ps)
ϕ(bc),L Transition map from (ps) to (FK) (see definition ..) 

(FK)←(rl)
ϕ(bc),L Transition map from (rl) to (FK) (see definition ..) 

(mp)←(FK)
ϕ(bc),L Transition map from (FK) to (mp) (see definition ..) 

(ps)←(FK)
ϕ(bc),L Transition map from (FK) to (ps) (see definition ..) 

(rl)←(ps)
ϕ(bc),L Transition map from (ps) to (rl) (see definition ..) 

(FK)←(mp)
ϕ∞ Transition map from (mp) to (FK) in infinite volume (see def. ..) 

(FK)←(rl)
ϕ∞ Transition map from (rl) to (FK) in infinite volume (see def. ..) 

π(bc),L See definition .. 

ΠΛL
Poisson point process over ΛL with intensity 1 

Π
(mp)
L Poisson process over ΛL ×Zd × [0;1]×Ω1 (see definition ..) 

Π
(ps)

(bc),L Poisson process with intensity measureW
(bc),L 

Π
(rl)

(bc),L Poisson process with intensity measureW
(root)

(bc),L 

P
(FK)

(bc),L Probability measure over Conf(FK) (see lemma-definition ..) 

P
(mp)

(bc),L Probability measure over Conf(mp) (see lemma-definition ..) 

P
(ps)

(bc),L Probability measure over Conf
(ps)

(bc),L (see lemma-definition ..) 

P
(rl)

(bc),L Probability measure over Conf
(rl)

(bc),L (see lemma-definition ..) 

P̃
(xx)

(bc),L

∫
f dP̃

(xx)

(bc),L
:= 1

Ld

∫
ΛL

dv
∫
f (γ + v) P̃

(xx)

(bc),L(dγ) for (xx)=(FK), (mp) or (rl) 

P
(xx)

(bc),∞ Infinite volume (xx) model (see theorems .., .. and ..) -

P
(FK)
∆

(·
∣∣∣γ) Conditional measure over Conf(FK) (see lemma-definition ..) 

. . . . . . . . .


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Proj?∆ Projection map over Conf(FK), for ? being ∈, ∩, ... (see def. ..) 

Q∆,L Measure over Conf(FK) (see definition ..) 

r Superstability constant (see hypothesis II) 

R Range of the interaction U (see hypothesis V) 

R(FK) γ 7→ {s 7→w(β − s), w ∈ γ} 

S(X) Set of permutations over X 

S(X→ Y ) Set of bijections from X to Y 

σ(FK)(γ, ·) Natural permutation over γ ∈ ConfPerm(FK) (see definition ..) 

σ
(mp)

(bc),L(γ, ·) Encoded permutation in finite volume (see definition ..) 

σ
(mp)
∞ (γ, ·) Encoded permutation in infinite volume (see definition ..) 

T
(ps)
s η 7→ {{w(·+ s), w ∈w}, w ∈ η} 

Threshm x 7→ x ·1x>m 

U Conf<∞→ R∪ {+∞} 

U(bc),L Adaptation of the interaction in (bc) (see definition ..) 

U∆ Local interaction (see hypothesis V) 

W t
x,y Wiener measure over Brownian bridges (see definition ..) 

W
β,⊂∆
x,y W

β,⊂∆
x,y (dw) := 1w⊂∆W

β
x,y(dw) 

W t
x,y,(bc),L W t

x,y,(Dir),L
:=W t

x,y andW
t
x,y,(per),L

:=
∑
k∈ZdW

t
x,y+Lk 

W
β,1∆
x,σ(x),(bc),L W

β
x,σ(x),(bc),L −W

β,⊂∆
x,σ(x) 

W
(root)

(bc),L

∫
ΛL

dx
∑
j>1

e−βj
j W

βj
x,x,(bc),L 

W
(bc),L Quotient measure (see lemma-definition ..) 

W1
0,0 W 1

0,0

/
W 1

0,0(Ω1) 

Wt Borelian σ-algebra over Ωt associated to the uniform norm 

W (root)
(bc),L σ-algebra over Loop

(root)
(bc),L (see lemma-definition ..) 

W(bc),L σ-algebra over Loop(bc),L (see lemma-definition ..) 

Wt Topology over Ωt associated to the uniform norm 

W
(root)
(bc),L Topology over Loop

(root)
(bc),L (see lemma-definition ..) 

W(bc),L Topology over Loop(bc),L (see lemma-definition ..) 

Z(bc),L Partition function (see lemma-definition ..) 

Z∆(γ) Local partition function (see lemma-definition ..) 


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