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DLR equations for the superstable Bose gas at any
temperature and activity

G. Berror,”" D. DereuDpre*f aND M. Maipa*$

October 10, 2024

Abstract

We construct a thermodynamic limit for the grand canonical Bose gas (in its Feynman-Kac
representation) with superstable interaction. Although we do not prove the presence of infi-
nite cycles, our infinite volume model is naturally a distribution over configurations of finite
loops and interlacements. We prove the limiting process to be solution of DLR equations.
We will work within the framework of Dirichlet and periodic boundary conditions, for any
inverse temperature > 0, chemical potential y € R and dimension d > 1.

Keywords: Gibbs point process, thermodynamic limit, entropy, random permutations, inter-
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1 Introduction and results

Since the celebrated lesson of Ginibre in Les Houches [Gin7o], it has been formally established
that, under broad hypotheses, a canonical ensemble of N bosons in a domain A C R? at thermal
equilibrium at inverse temperature > 0 interacting through a potential U : AN — R U {+co}
can be modeled as a point process. More precisely, if we denote as Sy the N’th permutation

group and W,f;,CA the un-normalized Wiener measure over Brownian bridges w : [0;8] —» A
going from x to y then the function

n B
(x1ox5) > ) j[@ wﬁ;iﬁi)(dwi)] exp[—JO U(wy(s)...wx(s))ds

UGSN

is proportional to the square modulus of the Bose gas wave function. This is the Feynman-Kac
formula in the case of Dirichlet boundary condition. By extension, the process sampling the
interacting Brownian bridges wy ... wy realizing the permutation o is called the Feynman-Kac
(FK) representation of the Bose gas.

For technical reasons, like some other authors in the literature ([AFY21], [Vog23], etc), we
will prefer studying the grand canonical ensemble, where the number of points in the point
process is random, and the average density is controlled by a parameter y € R (the chemical
potential).

A standard approach to the study of the Bose gas from point processes consists in taking its
thermodynamic limit, which means inflating the domain grow to infinity A T R?. One may then
hope to deduce facts about the physical Bose gas from the properties of this infinite volume
model. In particular, the community is most interested in proving when and how much the
Bose gas undergoes Bose-Einstein condensation (BEC). In the non-interacting case (U = 0), a
lot of this work has already been done and the literature provides a good picture of the free
Bose gas. Sutd ([Siitg3], [Siito2]) has proven Feynman’s conjecture [Feys3] that the emergence
of infinite cycles in the permutation (interlacements) in infinite volume is equivalent to BEC.
Later, it has then been proven in various ways and frameworks ([BUog], [AFY21], [Vog23]) that
these interlacements appear through a saturation effect, beyond some critical density p. > 0.

The publications of Siitd proved the equivalence of interlacements and BEC for the free
and mean-field case, but it is expected to fail in the non-ideal gas. Nonetheless, figuring out
whether or not the thermodynamic limit samples infinite cycles is considered an interesting
question. First, interlacements do not only appear in Bose gas models and are a more general
notion [Sznog]. But more importantly, understanding exactly how Feynman’s prediction fails
necessitates investigating both when BEC and interlacements happen.

Of course the community has been interested with the more realistic picture of the interact-
ing Bose gas but it is much more difficult than the free case. Even taking the thermodynamic




limit — although it really is the very first step — is not trivial. Several authors have investigated
general interacting Bose gases with various strategies (JACK11], [SKS20], [BV23]). But drawing
conclusive results becomes significantly harder at high densities. This is why some ingenious
approximations were proposed in the literature ([CJK22], [DV24]) to approach the behavior of
the true interacting Bose gas and provide some precious insight.

We believe a major reason why the general approach had trouble at high densities is due
to its usual loop soup formulation. Indeed, some authors ([AFY21], [BV23], [DV24], etc) prefer
sampling the Brownian cycles entirely instead of generating the points and the permutation
beforehand, and only then drawing the Brownian bridges. One may get rid of that complicated
procedure and directly sample the whole loops as marks of a point process. Although much
more mathematically elegant, this method has a drawback: loops are fundamentally non-local
objects. At high enough densities, they are expected to become very large and this comes at
odds with the desire to control their behavior. Indeed, the widely used [GZ93]’s theorem only
states that the integral of local functionals is preserved by taking the limit. Furthermore, in
the event that one really could control those loops and conclude to an infinite volume model,
this limit model would only sample finite loops, by construction. This will be illustrated in
section 2.1. Of course this broad description should be amended. Vogel [Vog23] for example
used a loop soup model to conclude to the presence of interlacements at the thermodynamic
limit in the free case.

As titled, the major assumption we will make on the interaction between bosons is its super-
stability, which is a very standard hypothesis. For the classical superstable gas, Ruelle originally
provided some probability estimates and general results ([Rueyo]). Park successfully extended
these bounds on the point-wise part of the quantum bosonic gas several decades ago ([Par84],
[Par85]). In our work, we were able to preserve the cycle structure in our thermodynamic limit,
not just the point-wise part. Our setting includes every > 0 and u € R, which could potentially
allow the Bose gas to reach any density. Therefore, our results provide some hope to eventually
detect infinite cycles in infinite volume at high enough densities.

Our results are stated in the well-known (FK) representation. As it is not very tractable, we
constructed an original marked point view of the Bose gas which serves as an encoding of the
(FK) representation. Even though it does not appear in the title, nor in the results, we believe
our main contribution really is this encoding. It turns out this idea of using a custom marked
point process to model the Bose gas was first thought of by Georgii and mentioned in private ex-
changes. Our new formulation, although convoluted, was tailor-made for the crucial advantage
to have a uniformly bounded entropy along some Poisson point process. This allows the use
of standard entropic tools and the encoded Bose gas does go through a thermodynamic limit.
Then we decode the newly defined infinite volume model and prove it really is the thermody-
namic limit of the original (FK) model, thanks to the encoding being local-wise. Our approach
is purely probabilistic and does not use operator theory.

Once the thermodynamic limit is stated in its full generality, we establish DLR equations
with little additional work. More precisely, the difficulty to write those DLR equations is due to
the nature of the sampled objects (curves instead of points) rather than the range of the interac-
tion, as it is assumed finite (we only add this finite range hypothesis for the DLR equations).

1.1 Interaction and assumptions

Definition 1.1.1 — Let us denote the set of finite point configurations in R (d > 1) as

Conf_y, = {5 cR? /#5 < +oo}




where #¢& is the cardinal of £. We equip this space with the smallest o-algebra C., making measurable
the maps & v+ #(& N E) for every Borelian E C R,

Let U: Conf.,, = RU{+oco} measurable be an interaction.

Hypothesis I — We assume the interaction to be non-degenerate U(() < +oo.

Hypothesis I — We assume the interaction to be superstable [Rueyo], that is to say there exist
A>0,B>0andr>0 such that

V& € Conf_, U(E) > —A#E +B Z #HEN(z+A))

zerzZA

where A, := [—r/2;r/2[d.

REMARK 1.1.2
Superstability is a very standard assumption for an interaction. We refer to Proposition 1.2
from [Rue7o] for criteria for a pairwise interaction to be superstable.

If the interaction is superstable for some constants (A, B,r) then it is not true it will satisfy
superstability’s inequality for (A, B,r’) for all 0 <’ < r. But we were not able to find interesting
counterexamples. In the following pages, we will consider domains A} = [-L/2;L/2[" only for
L multiple of r but this really is a technical artifact rather than a limitation.

We are going to investigate the Bose gas in Dirichlet (Dir) and periodic (per) boundary con-
ditions. An indeterminate boundary condition among those two will be denoted (bc).

The boundary condition we work in will have consequences on the interaction we do cal-
culations with. In Dirichlet boundary condition, we need to add an infinite exterior potential
restraining the particles inside the domain A, while in periodic boundary condition, the inter-
action needs to be periodized. We define below the relevant adaptations of the interaction.

Our conclusions still hold for several other boundary conditions, including Neumann’s. But
we think presenting our results in full generality would have damaged readability without en-
riching significantly the theorems. We believe presenting the proofs for both Dirichlet and
periodic boundary conditions already paints a complete enough picture.

Definition 1.1.3 — Let L € rN. We define Up,) 1 : Conf.o, — R U {+00} by

Ul) ifEcAL
+00 otherwise

Upir),L(&) = {

. 1
Utper),L(€) = Klgiloo 2K+ 11 U

U (E+Lk)N A(2K+1)L}

kezd

if the limit exists in R U {+co}.




Hypothesis III — If the boundary condition is periodic, we assume the limit

) U (& +Lk)NApksi)r

kezd

€ RU {+o0}

lim ———
K—+oo (2K +1)4

to exist for any L € rN and any & € Conf_,.

It is not obvious this way of defining U(per). in full generality is relevant. The following
proposition helps to support its validity.

Proposition 1.1.4 — Let us assume the interaction is pairwise, that is to say there exists a radial
potential ® : R? — R such that

V& e Conf.y, U(E) = Z D(x—y).
x,V€EE

X#Y

If there exists a decreasing function i : R* — R such that
+o00
j rilyp(r)dr <400 and  Vx eRY, |®(x)| < (|x])
0

then for any L > 0 the periodic version of the interaction Uper)r is well defined. Furthermore, it is
pairwise up to a linear term

U(per),L(é) = Z q)(per),L(x - ZJ) +#& [q)(per),L(O) - (D(O)]
x, V€&

X#Y

where
cI)(per),L(x) = Z (D(X + Lk).
kezd

The hypotheses of this subsection will always be considered throughout the following pages
and not stated anymore. Similarly, the numbers A > 0, B> 0 and r > 0 will always refer to the
superstability constants of hypothesis II. Other assumptions will be added when needed.

1.2 Feynman-Kac state space

Definition 1.2.1 — For any t > 0, we denote as Q, the set of continuous functions from [0;t] to R,
This set is equipped with the topology W, associated to the uniform norm ||-||,. We denote as W; the
associated Borel o-algebra.

On the set (4, we consider the Wiener measure W}ﬁ’y weighing Brownian bridges going from x to
vy in time t, whose finite-dimensional distributions are given by

n 2
t _ 1 o \d2 Nlziv1 —zill
dWx,y[w(sl) =2z1...0(8,) =z,] = |i:0| [27¢(Si41 = Si)] exp[ —2(5i+1 =5) dz;...dz,




with 0 = sy <--- <s,,1 =t and the convention zy = x and z,,; = y. This measure is unnormalized,
as

- 1
Wi, (Q,) = (2mt) exp(—EH}} - tz).

For any L > 0 multiple of r, we define a version of the Wiener measure for both boundary conditions

onAp
t R t t - t
Wx,y,(Dir),L =Wy, and Wx,y,(per),L = Z WeysLk:
kezd

Since we are studying the Bose gas at thermal equilibrium at inverse temperature > 0, we

will be focusing on the t = § case. The parameter § > 0 is fixed in the sequel and omitted in
most notations.

Definition 1.2.2 — We denote the set of Feynman-Kac configurations (FK) as
Conf(FK) .= {7/ c Qg / y is locally finite for wﬁ}

and we equip this configuration set with the smallest o-algebra C'®) making measurable the maps
y > #(y NE) for every bounded E € Wg.

Definition 1.2.3 — A Feynman-Kac configuration y € Conf™ is said to be permutation-wise if
the following condition is satisfied

Atw’ ey, w'(0) =w(p)

v )
wey {El!w” €y, w(0)=w"(B).

We denote
ConfPerm'F) := {7/ € Conf(f¥) / Y is permutution-wise}.

For any y € ConfPerm™8), we define the permutation

Yy — 7

G(FK)(
w > w such that w’(0) = w(p).

V)

In finite volume, all probability measures will be defined so that they are supported on
permutation-wise configurations. We will later prove the thermodynamic limits to have the
same property.

1.3 Thermodynamic limit
Definition 1.3.1 — For each boundary condition, we define a Hamiltonian over finite configurations
y € ConfF®) with

B
FK
H((bc),)L(V) = J; Upe),L[{w(s), w € y}]ds € RU {+oo}.




We will justify in remark 3.1.3 this integral is well defined.

Definition 1.3.2 — For any compact A C R?, we denote as 1, the Poisson point process over A with
intensity 1.

We introduce the Feynman-Kac representation of the grand canonical Bose gas interacting
through the potential U at inverse temperature > 0 and chemical potential y € R. The param-
eter u controls the average density of the Bose gas at some given temperature. Just like g, the
parameter y is fixed in the sequel and omitted in the notations.

Lemma-definition 1.3.3 (proof: see remark 3.1.4) — Let LerN, $>0and peR.
(FK)

(bo)L OVer ConfFK)

In both boundary conditions, there exists a well-defined probability measure IP

which satisfies for any measurable f : ConfF®) — R* the following equality

FK ~HN
de]pEbC)TL = eE I, (dé) Z Je o [® ] (d7)
oeS(&) x€&
where S(&) is the set of permutations over & and
Y@Dir),L ‘==Y V(per),L = U (7/ + Lk)
kezd

with

# o), B
Zw Jeﬁ" “T,,(dE) ) J v [ Wx,a<x>,(bc),L](d7/)~
xeé&

oeS(&

We illustrate for each boundary condition the kind of configurations sampled by IPEES?L in

fig. 1. The points of £ are indicated with “e” and we represent smooth trajectories instead of
Brownian bridges, both for readability purposes and by lack of expertise in the usage of TikZ.
We also did not represent bridges that intersect each others because, although common, this
situation could make the drawings less clear.

REMARK 1.3.4
By construction, it is clear that IP’( )) (Coanerm(FK)) =1.

By periodicity of the (FK) configuration under ]P’ FK)

L outside of degenerate cases (like the
interaction Ujper),r only authorizing empty conﬁguratlons) there is a positive probability for
the permutation ¢(FX)(y,-) to include infinite cycles. This situation is illustrated in fig. 1b. This
is amusing as the sampled o € S(£) is only made up of finite cycles. Unfortunately, we have not

found a way to conclude to the presence of infinite cycles in infinite volume from this fact.




Figure 1: Example of (FK) configurations

Definition 1.3.5 — For any L € rN, we define the empirical field ]P’ L over Conf™¥) py

J\fdﬂfﬁgg? : J dvjf (y+v)P d)/)

for any measurable f : ConfF — R*,

One should think the empirical field as a partially stationarized version of the probability

PEEE?L. In the case of periodic boundary conditions, by stationarity of the original model,

=(FK) _ (FK)
(per),L = F(pen, L

According to [GZg3], the functionals whose integral is compatible with the thermodynamic
limit are local functionals. For marked point processes, locality just means the function can
only depend on points inside some compact. But in our setting this is not so simple.

Definition 1.3.6 — Let A C R? be a compact. We define the following projections Conf™X) —
Conf(FK)

Projes(y) = 1{w ey [w(0) € A}
Projop(y):={wey /wnA=0}.

For any integer n > 1, we also define

dwg...wr_1 € woNA=0

Projoua(y) = WGV/HkG[[l?"Hx Yoy wina=0
Vie [0;k—1], wi(B) =wi1(0)

WomAiw

Projaua(y) i=qwe y/Elk € [1;n], HWO"A'I'“;";\} €y , WrNA=0
k Vie[0;k—1], wiy1(B) =w;(0)




Finally, for any n > 0 we define

Projna () ifn=0

Proju =
rOjra(¥) {ProjnA(y/)UProjmﬁA(y)UProjnnA(y) ifn>1.

The following notions of locality ensue.

Definition 1.3.7 — A function f defined over Conf™® is said to be e-local if there exists a compact
A c RY such that

Projea(y) = Projes(y') = f(¥)=f (")
A function f defined over ConfPerm ™) with the same property will also be called e-local.

Let n > 0. Similarly, a function f defined over Conf'f™) is said to be N"-local if there exists a
compact A C RY such that

Projup(y) = Projaa(y) = f(y)=f ().

We also need to define some notions of tameness which are compatible with our respective
definitions of locality.

Definition 1.3.8 — For any trajectory w € Qg and 6 > 0, we define its Wiener sausage of thickness
o as
Sausy(w) := {x e R? [Is € [0; 4], [lx—w(s)]| < o}

whose volume we denote |Sausg(w)|.
A function f : ConfFX) 5 R is said to be e-tame if there exists a,6 > 0, a € 10;2[, and a compact
A c R such that for any y € ConfF¥),

af|<t+ ) ISauss(wl*,

WEPTOj A ()

A function f : ConfPerm™) — R with the analogous property will also be called e-tame.
Let n > 0. A function f : ConfFX) 5 R is said to be N"-tame if there exists a,6 > 0, a € ]0;2],
and a compact A C R? such that for any y € ConfF¥),

af)|<t+ ) Isausy(w)l”.

WEPTO0j\np(Y)

A function f : ConfFX) 5 R is said to be N"-regular if there exists a,6 > 0, @ € |0;1[, and a
compact A C R? such that for any y € ConfPerm™X) and y' Cv,

df-fe\Y< ) Saussw)t+ ) [Sausy (W)l

WePTojep (y)NY’ weProjn, (y)Ny’

1+a
+ Z ]IU(FK)(%.)71(w)éy,|Sausé(w)|
weProjora ()’

+ Z lla(FK)(%w)Ey,|Sau55(w)|1+“.

WEePTojnp(y)Ny’




REMARK 1.3.9
A function f being N"-regular should be thought of as some kind of Lipschitz property for f; if
the configuration y is slightly modified then the value f(y) only marginally changes.

EXAMPLE 1.3.10
We provide a few examples of functions which are local, tame or regular in various ways.

* f,: Conff¥) — R defined by
=) wE)-wo)
wey, W(O)E[O;l]d

is e-local and e-tame.

Locality is clear. Tameness comes from the following fact: a cylinder whose axis goes from
w(0) to w(p) with radius 6 has a smaller volume than Sauss(w). Therefore

cg-10" 7 |[w(B) - w(0)|| < Saus;(w)|

where ¢;_; is the volume of a d — 1 dimensional unit ball.

* f,: ConfPerm™ — R defined by
1

- 1
wey, WC[O;l]d lnf{] 2 1 / [O.(FK)(y;')]](W) = W}

is e-local and e-tame.

Ly)=

viez, [ (y,) ] (wiclo;1]?

Indeed, the function f, counts the number of disjoint cycles in the cycle structure of y
which are completely included inside [0; l]d. Locality is then intuitive. Tameness is clear
because f,(y) < #Proje[o;l]d()/).

¢ f3:Conf®) _ R defined by
Ay =#{wey [wnlo1]? =0} 1 ol
3\Y V4 4 #{wey / wn[0;1] ==Q)l is even
is N%local and N°-tame, but not N"-regular for any n > 0.
There is no hope of regularity because the variations of f; can be arbitrarily large.
¢ f3:Conf®) 5 R defined by

_ . , w’(0) =w(B)
f4(7/) = #{W € Prole[o;l]d(y) /HW e W,(ﬁ) =w(0)
is N!-local, e-tame and ﬂl-regular.

If y € ConfPerm™), then fy(y) counts the number of bridges w € y starting in [0;1]"
which are part of a cycle of length 1 or 2.

10



None of the examples above are bounded. So we will state the thermodynamic limit in the
most general possible way, without restricting ourselves to bounded functions. This will allow
us to state corollary 1.3.15.

REMARK 1.3.11
If a function f : Conff®) — R is N"-regular, then its restriction to ConfPerm!
because by definition

FK) is n"-local

Vye Coanerm(FK),

F() = fIProjrua(7)]] = 0.

Theorem 1.3.12 (Thermodynamic limit, proof pp. 48,55)
Under hypotheses I to IlI, for any inverse temperature § > 0, chemical potential y € R, boundary

)

condition (bc) = (Dir) or (per), there exists a stationary probability measure Pzig’m over ConfF®)

and an increasing sequence (Ly,),,~ o of multiples of r such that,

(FK)

* for any measurable f : ConfPerm""™ — R which is e-local and e-tame

« for any measurable f : Conf™®) — R which is N"-regular and N"-tame for some n >0

then
. =(FK) (FK)
mIEPoJf AP e L, = J f AP )00

In the following, we will abbreviate this fact as

. =(FK) _ (FK)
lim deIP’(bc),L = deIP(bC),m.

L—+c0

REMARK 1.3.13

The first part of theorem 1.3.12 concerns functions defined on ConfPerm(X)

. This is not a

limitation, quite the contrary. Any function defined on the whole Conf™® can be restricted to
ConfPerm™®). But the reverse is not as trivial: extending f, from example 1.3.10 to the whole
configuration space while keeping locality and tameness would be unpleasant.

The second part of the theorem unfortunately forces us to go through this obnoxious exer-
cise. This is why we defined f; from example 1.3.10 on the entire Conf(f),

Proposition 1.3.14 (proof: see remark 3.5.2) — PEES?W(Coanerm(FK)) =1.

The event “y € ConfPermfX)

is not a trivial result.

Unfortunately, we were not able to prove the induced permutation o ¥,+) to comprise
infinite cycles at low enough temperature (or high enough chemical potential). But we believe
our construction naturally includes this possibility, because it is a local to global construction,
rather than a cycle-wise definition like in loop soup models.

” is not local in any of the senses from definition 1.3.7 so this

(FK)(

11



Corollary 1.3.15 — The proportion of Brownian bridges which are part of an infinite cycle in the
limiting process is the limiting proportion of bridges which are part of an arbitrarily large cycle in
finite volume. More precisely,

J#{w € Proje[o;l]d()/) / Vi>1, [G(FK)(%_)]J(W) - w} ng?m(dy)

= lim lim #{w € Proj g, y1() / vie [l [0y, w) ¢w} B (),

n—+00 L—+c0

To prove this corollary, we apply the second half of theorem 1.3.12 to the functions f, :
ConfFK) _, R, n > 1, defined by

fn(y) =#Pr0j€[0;1]d (7)

_#{we Proj o414 (») /Hj € [1;n],

Wog=W, =W

Awo- . Wi€y e [0;5=1], wis1(0) :Wi(ﬁ)}
j

which makes it N"-regular and e-tame.

On ConfPerm™, the quantity fa(y) is the number of bridges starting in [0;1
part of a cycle of length larger than n.

]d which are

1.4 DLR equations

. . . s FK
In the previous section, we stated the existence of an infinite volume model P:b )

C),00
boundary condition. Since this probability measure is a thermodynamic limit, we can hope
to calculate the probability of some events as limits, but we did not provide any information

on this infinite volume distribution itself, apart from proposition 1.3.14. Unfortunately, it is
(FK)

(be),c0
definition 1.3.3, because an infinite volume Hamiltonian would always value any infinite config-

uration to an infinite energetic cost. The solution is to write DLR (Dobrushin-Lanford-Ruelle)
equations, that is to say, write the conditional distribution of the infinite configuration inside
some compact A, given the configuration outside A.

for each

not possible to describe the probability [P as simply as we did in finite volume in lemma-

Hypothesis IV — We assume the interaction to be stationary

V& € Conf.y, Yv e RY, U(& +v) = U(&).

Hypothesis V— We assume the interaction to be finite range with range R > 0, that is to say for
any compact A C R4, there exists a local interaction Uy : Conf., — R U {+oo} such that

V& € Conf.y, U(E) = UalE N(A+Ag)] + U(E NAS)

where A + Ay is the Minkowski sum of those two sets.

The existence of such a U, implies heredity of the original interaction U.

12



Proposition 1.4.1 — Let us assume the interaction is pairwise (see proposition 1.1.4) with potential
®: RY - RU (+0o) such that

VxeRY, ||x]| >R = ®(x)=0.

Then the interaction is finite range with range R and for any compact A C R9,

V& € Confy, Up(E) = Z D(x—p)+2 Z Z D(x—).

xpeENA x€ENA ye&N[(A+AR)\A]

X%y

Hypothesis VI — We assume the interaction to be uniformly regular from below, that is to say,
for any compact A C R and integer N > 0, there exists Cp y € R such that

V& e Conf, #[EN(A+AR)]=N = U(&) > U(ENA®)+ CyN-

In other words, we assume the energetic value of a configuration £ (with a given number of
points close to A) not to decrease by an arbitrarily large value when adding a given number of
points inside A.

This could probably be guaranteed by some weak regularity criteria (hence the name of hy-
pothesis VI) because we were not able to find an example of interaction which would check
hypotheses I to V but not the VI'th. A finite range pairwise interaction satisfies the hypothesis
as long as the potential is bounded from below, which is guaranteed by superstability.

REMARK 1.4.2 (PROOF P. 58)
Thanks to hypothesis VI, we can assume without any loss of generality that for any compact

A CcR? and integer N > 0,
Vé € COl’lf<oo, #[5 N (A+AR)] =N — UA[é ﬁ(A'l‘AR)] 2 CA,N'

Definition 1.4.3 — For any compact A C R?, we define the local Hamiltonian H

(FK)
A over

{7/ € Conf®) / sup #[{w(s), wey}Nn(A+Ag)] < +oo}
s€[0;B]

by
B
Hy, “(y)= L Ual{w(s), we y}N(A+ Ag)]ds € RU {+00}.

According to remark 1.4.2, the integrand is bounded from below by ming¢i<n Cax Where

N = sup #[{w(s), we y}N(A+Ag)]
s€[0;B]

so the integral is well-defined.

13



Lemma-definition 1.4.4 (proof p. 64) — Let AC R be a compact and y € Conf(FK)
We define the exterior configuration relatively to A as
ext .

Y= {wey /waA)

If supe(o;p) #[{w \AS yZXt} (A+ AR)] is finite, then one can define the constant

(FK) ex
= jHA(dC) ePr#e ) wh iﬁ i et 1)
ointes(dyinug—ayHtur) xedytue

where we denote
S(X—>Y):={0:X —>Y /o is bijective}

i
}

the inward and outward boundaries are the finite point configurations

ext

i Iweyd, x=
n,_ A
aVA = {XEA/ VWE')/ZXt; X£W

w(p)
(0)

ou Fw eyt x =w(0)
IR {xe A/ Yw e yg"t, x = w(p)

and we define the measure
WA (dw) i= Toyca WE, (dw).

The constant Zx(y) is well defined, positive and finite ]P’E almost surely for any L € rN such

that A+ Ag C Ap. It is also true IP’EbC))OO almost surely.

If ZA(y) € ]0; +oo[ then we define the probability measure P ( ‘)/) over Conf®) py

1
P(AFK)(d’ﬂV) = mJHA(déA) efiea Z

lmeS(Qy UEAHQ)/OL"UEA)

® wﬁcnﬁ q)e*H(A (nurg*).

xe&ylA“UEA

Otherwise we define the measure by ]P’(AFK)( . b/) =0.

We illustrate in fig. 2 the detail of exterior and interior configurations.

Only points inside A and bridges intersecting the compact are represented. The bridges of
y$Xt are drawn in dashed lines and those of I := » \ ¢ in solid lines. Points of dy " are
represented by “m”, points of dy3"' by “a

Points which both start and end solid bridges are represented by “e”, those which start and

end dashed bridges are represented by “4”.

« n
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Figure 2: Exterior and interior configurations relatively to A
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REMARK 1.4.5
If the exterior configuration y§* is far enough from the compact A :

Ywey, wn(A+Ag)=0

then the conditional distribution does not depend on the exterior configuration :

PUOC ) =P o).

In fact, it coincides with a finite volume model on A with Dirichlet boundary conditions.

Theorem 1.4.6 (DLR equations, proof p. 65)
Let A ¢ RY be a compact. Under hypotheses I to VI, for any inverse temperature > 0, chemical

potential y € R, boundary condition (bc) = (Dir) or (per), for any measurable f : Conff® - R*,
FK FK) FK)
JECE R jUf(n 078) Byl | B ()

The resampling of the interior configuration in the DLR equations consists in the following:
we erase e points and solid bridges, then sample new interior e points, a new interior bijection

OiAnt € S(mUe —AUe) and the associated solid bridges. This is illustrated in fig. 3.

2 Equivalent models

As we mentioned previously, there is more than one formulation of the Bose gas. The expression
closest to the physics is Feynman-Kac’s and we chose to express our main results in this setting.
We will also properly introduce 3 other equivalent models. Transitions from these various
points of view are summed up in fig. 4.

Of course, the respective definitions will make the diagram of fig. 4 commute.

As we announced in the general introduction, the marked point (mp) framework will be es-
sential to establish the thermodynamic limit. The path soup (ps) framework will be necessary

15
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Figure 3: Resampling in the DLR equations

Objects are loops Objects are local

FK) (mp)

(ps) — Coanerm(bC)’ L

Coanerm(bz)’L «—— ConfPerm!

e

(r1)

Coanerm(lr)C)’ L

Figure 4: Equivalence of models in Ay

because of proposition 2.2.8 which states the invariance of the Bose gas under a time-shift of
the Brownian bridges in the configuration. This will be useful in the proof of the (mp) entropic
bound. The rooted loops (rl) framework, commonly referred to as loop soup in the literature, is
more secondary. It is necessary to introduce the (ps) model, and it will be interesting to ascer-
tain how incompatible the topologies of (rl) and (FK) thermodynamic limits are.

2.1 Rooted loops

A usual formulation of the Bose gas is the loop soup one ([BV23], [DV24], etc). Instead of sam-
pling separately N different Brownian bridges which happen to draw a permutation o € S(N),
this model samples directly the cycles of o as Brownian loops w : R — R?. This model can be
naturally interpreted as a process sampling marked points: the position is the root w(0) of the
loop, and the mark is the loop itself. This is why we will call this representation the rooted loop
(rl) model of the Bose gas. We will see this representation has some flaws that prevent us from
studying interlacements.

Definition 2.1.1 — For any w € Q,, we define the continuation @ : R — R? of the trajectory
@(s +1q) = w(s) + glw(t) ~ (0)]

forqe Z and s € [0;1[.

16



We introduce the set
root)

Loop; ={w, weQ}.

root

The map w +— @ induces the respective topology UJt Y and o- algebra W

We understand it is not reasonable to call loops the trajectories in Loop(tmOt), but we are going

to investigate specific subsets of Loop(tmOt), so we believe this notation is fairly justified.

For Dirichlet boundary condition, we will call rooted loops continuous trajectories w : R —
R? which are fj-periodic for some j > 1.

In periodic boundary condition, a loop is not forced to return to its starting point w(0). It
can go to some periodic copy w(0) + Lk, k € Z¢ instead.

(root)

Definition 2.1.2 — We define the length {(w) of a given w € |3, Loopﬁ] ) to be the integer

{(w) = inf{j >1 /w € Loopngt)}.

We define
(root) (root) [ L(w) =]
LOOp(Dlr)L —U{weLoopﬁ] / w(Bj) = w(0)
j=1
L (root) L (root) €(w) =]
OOP (per) L L>J1 w e Loopg; w(Bj) - w(0) € LZ4
j=

Trajectories in a set Loop L ) will be called rooted loops.

ot)

Lemma-definition 2.1.3 — Defining Loop({; as a discrete disjoint union of subsets induces a

topology and o-algebra over this space, which we will denote w (root) o nd W respectzvely

The topological space (Loop }rf;m) wErb(;c;tL)) is Polish for the dzstunce

+00 otherwise.

S(w,w') = {SUPSG[OMHW(S) —well i j=lw)=w)

(root)

It is clear 0 : Loop (bo), (root)

1 xLoopy . — RU {+0co} metrizes the topology of the spaces LoopﬁrJOOt)

for all j > 1. Hence it metrizes the topology of the subsets of Loop ﬁr]o , j 2 1, in the definition

of Loop mOtL. Finally, 6 sets a +co distance between those subsets, which is coherent with a

discrete dlS]Oll’lt union.

The property of being Polish is necessary to ensure that a Poisson point process can be de-
fined on this space.

17



Definition 2.1.4 — For each boundary condition, we call a rooted loops configuration (rl) a set y
in

Conf(r {17 - Loop / #n < +oo}
and we equip this configuration set with the smallest o-algebra C 1 making measurable the maps
n +— #(n NE) for every bounded E € W ro;)t)

Definition 2.1.5 — On the set of rooted loops, we introduce a measure for Dirichlet and periodic
boundary conditions

(Dir),L

=
root e Fi
per J\ dx Z Z X, x+Lk

j=1 j kezd

-Bj ;
pyroot ::j dx E e—Wfi
AL j=1

We denote by H | the Poisson point process over Conf L with intensity measure W((m)Ot)

The weight e~/ is not standard but we add it to make these measures finite. This additional
factor will be compensated by increasing the chemical potential of the Gibbs model we will
introduce in lemma-definition 2.1.7.

Definition 2.1.6 — For both boundary conditions, we define a Hamiltonian for rooted loops config-
urations

B
rl . .
Hip)) () = L Utpe),L[(w(Bj+5), 0 < j <(w), wen}]ds

Lemma-definition 2.1.7 (proof: see remark 3.1.4) — Let L € rN. The probability measure over
ConfElr)l)
c),L

(rI)
H(bc)’L(dn )-

Bu+1)) Lw)=H) (1)

wen

rl) L
P bc),L(dq) T

d (root) (root)

e—L +W( ba),L (Loop(bc)’L)

exp
Z(bo),L

where Z 1) 1 is the same normalization constant as in lemma-definition 1.3.3, is well defined. We call
this probability the rooted loops model of the Bose gas.

FK)«(rl
Definition 2.1.8 — For each boundary condition, we define the map ( )(p(gc) L Conf L Conf'F

of transition from a rooted loops configuration into a Feynman-Kac configuration as

(FK)«(rl) 0; R4
n ::{[ pl —

P (Din),L ,0<j<l(w), we 17}

= w(pj+s)
(FK)«—(rl) [0;8] — R4 . 4
= < .
ﬁo(per),L(W { s w(ﬁj+s)+Lk,0\]<€(w),wen,keZ

18
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Furthermore, we denote

@ FEea |\ (FK)
Coanerm(bc)’L.: P (be) L (Coanerm )

The following proposition states the Feynman-Kac and rooted loops models are equivalent.
Proposition 2.1.9 (proof: see remark 3.1.4) — For any measurable f : Conff - R*,
Jf o (FK)(P(i(i:CI;,L d]P)Egc)),L = Jf dﬂ”ggl
We will see in remark 2.1.17 this result may only be true in finite volume.

REMARK 2.1.10

In the case of Dirichlet boundary condition, the state space does not depend on the size L of the

t) .
domain. So from then on, we are going to drop the L in the notation of the space Loop ]r;lcr) ), its

root

topology W D1r , its o-algebra W ) and Conf" D1 . Additionally, we are going to introduce a

I'
more general conﬁguratlon space to construct a rooted loops thermodynamic limit.

Definition 2.1.11 — We define a set of rooted loops configurations as

Confgol) = {17 C Loopz / 1 is locally finite in w! Oit }

and we equip this space with the smallest o-algebra c&i,” making measurable the maps 1 — #(n N E)

for every bounded E € W S:St .

. .. o (FK)«—(rl) (1) (FK)
We also define the transition map infinite volume — @ (pjy) o : Confee’ — Conf™™ by

—(r . —> d
(FK)«(rl) (17)1={ [0; 8] R

P (Dir),c0 S — w(fj+s)’ 0<j<lw), we 11}

REMARK 2.1.12

Trivially, we have the inclusion Config)ir) C Confg,l), so we can consider the models ]P’(rl)

(bo).L to be

probability measures over Conf‘(,z,1 )

Definition 2.1.13 — For any L € rN, we define the empirical field P ) over Conf by

ffdﬁgggr) :—J dvff (7 +2) Plphy 1 (d7)

for any measurable f : Conf(ozl) - R
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Definition 2.1.14 — A function f : Confgol) — R is said to be (rl)-tame local if there exists a > 0
and a compact A C R? such that

Vi e Confll), f() = f({wen [ w(0) € A))

and
Vi € Confey, af ()| < 1+#{w e [ w(0) € A).

Theorem 2.1.15 (proof p. 34) ,
There exists a stationary probability measure ]P’E iy ir), 00 OVET Conf) and an increasing sequence (Ly,),,~

of multiples of r such that, for any (rl)-tame local measurable f : Confs) — R,
. (rl) _ (rl)
im J f AP pin1,, = J fdP

Corollary 2.1.16 — By construction, IP (11 C Loop (Dir )) =1

REMARK 2.1.17
With corollary 2.1.16, one may conclude that the Feynman-Kac model IP’ ) o Just as IPEDL)

only produces finite cycles. But this is not so trivial. The infinite Volume models ]P)(Dlr)) and

()

(Dir),co TAY 10% be equivalent, as we conjecture :

-1
(rl) (FK)«(r])
]P(Dir),oo [( P (Dir),c0 (E)

for some event E € CFX), because the topologies of convergence for Feynman-Kac and rooted
loops models are fundamentally incompatible. At first glance the class of functions on which
rooted loops models converge seems strictly stronger. Indeed, (rl)-local functions can depend
on whole loops, whereas N"-local functions can only see # Brownian bridges beyond the bound-
ary of some compact A. However (rl)-local functions are limited as they can only see loops
whose root is inside A, contrary to N"-local functions. Those two modes of convergence can not
be compared and we believe this is not just a technicality.

We could have chosen a more general notion of tameness for the (rl) framework but this
would not have changed the discussion above because the problem comes from locality.

(FK)

# P pir) 0 (E)

2.2 Path soup

The information of which point is the root of the cycle is not native. In the (FK) model, any
point could be considered the root of its cycle; this additional information is not natural. When
presented with a rooted loop w, we are not interested about knowing which one of the points
w(pj), 0 < j < f(w) is its starting point w(0) (its root). We were inspired by the work from
[AFY21] and refer to it for a similar presentation, used to inquire the Bose gas without interac-
tion.
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Definition 2.2.1 — We define my,)r ‘R 5 R gs
TU(Dir),L(X) = X T(per),L(X) € AL such that T((per)’L(x) —xelLz?
and introduce an equivalence relation defined over Loop m finite volume as

W =(po) W & Jj€Z, Vs €R, mtpe)r[w(s)] = Toe),L[w(s + )]

In the quotient space LOOP p) 1, := Loop giot)

path w. We will abuse notations and denote as {(w) the common length of representatives w € w.

=(bc),L» We denote as w the equivalence class of a rooted

That is to say, in Dirichlet boundary condition, 2 rooted loops are identified if they are con-
stituted of the same set of trajectories [0; 8] — R4,

ot) root

Lemma-definition 2.2.2 — We define dist ), : Loop bc X Loop [ — RU{+0co} by

inf sup ||w(s+ﬁi)—w'(s)|| if j =l(w) =L(w)
dist(Dir),L(w,w') = IEZSG[O;ﬂj]
+00 otherwise

inf inf sup Hw(s + pi) —w/(s) +Lk|| if w(t) —w(0) = w’'(t) — w’(0)

dist (per),L L(w,w’) = kezd 1€Z se[0;8/] j=Lt(w)={(w)

+00 otherwise.

The function dist(y), is compatible with the equivalence relationship =) 1. We then define the
quotient function dist(yc), L : LOOP 1) X LOOP 1,¢) = RU{+00} which is a distance.
This distance makes the space Loop ) ; Polish and the quotient map

t - .
(Loop ;ZOL,E)) — (Loop(bc)!L, dlSt(bC),L)
w — W
continuous.
We denote as w(bcm and Wy, the respective topology and Borelian o-algebra induced on

Loop )1, by dist(pe) L

)

We define W( | the quotient measure of W over Loopy,) 1

Definition 2.2.3 — In finite volume, we call a path soup configuration (ps) a finite set 1 in
(ps)
Conf(gi)’L = {17 C Loop )1 / #n < +oo}.

We equip this space with the smallest o-algebra C((E;)L making measurable the maps 1 +— #(y N E) for
every bounded E € W y) L

We denote the Poisson point process on Conff with intensity measure W, ; by TT
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Definition 2.2.4 — The quotient map Loop —> Loop ) 1, induces a quotient over configuration
spaces

- (t]) (ps)
(ps)(P((;l)) L Conf(bc)’L — Conf(bc)’L
) n —> {W, w e 7’]}

For all s € [0;B], the map 1 +— Upe),t[{w(Bj +5), 0 < j <€(w), w e n}] is compatible with this
quotient over configurations so we define the quotient map

ConfEEi;’L — RU{+oo}
1 > Uppe),t {w(Bj +5), 0 < j<l(w), wen}]

and the path soup Hamiltonian by
(ps) P . — =
H(bc)’L(T]) = o Ulbe) L[{ w(j+s), 0<j<l(w), we W}]ds
We did everything necessary to define yet another equivalent model of the Bose gas.

Lemma-definition 2.2.5 (proof: see remark 3.1.4) — Let L € rN. For both boundary conditions,
the probability measure

d
e—L +Wbc L

(be), (Loop(bc)' ) s
exp|B(u+1) ) C(w -Hg p ()
Z(be),L [ L;

P () = ey ()

where Z ) 1 is the same normalization constant as in lemma-definition 1.3.3, is well defined.

Definition 2.2.6 — We define the transition map

Conf® 5 ConflF¥)
(FK)—(ps) (be).L (0,5] R
Pbe)L - 5 — _
g — U{ s — w(s) we w}
we?]
and the set .
(ps) . [(FK)<(ps) |
Coanerm(bc)’L = ( P (be) L (Coanerm(FK))

Let y € ConfPerm™). We write the permutation s™)(y,-) as a product of disjoint cycles c;, i € I
a™(y,) = Oerci

For anyone of these c;, there are many possible labelings lab; = (wi,]-, j€ Z) of its support in a way
compatible with the permutation :

U(FK)(%Wi,j) =Wij+1-

For any cycle labeling lab;, we define the rooted loop wi,p, : R — R? as

Wiab, (0) = w;o(0)
Wiab, (5 +Bj) = wiap, (B]) +w; j(s) —w;;(0) forj =0, s€]0;p]
Wi, (S+Bj) = wiap, [B( + )] +w; j(s) —w;j(B)  for j<—1, s€[0;p].
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Finally we define

(ps)—(FK) ConfPermf®)  — CoanermEEz; L
Pbe)L - ’ .
(b9 4 — (UieI{wlabir lab; labeling ofci})/ =(bo),L -

e . .. (ps)(FK) |
The advantage of the root-less vision is to be able to define a transition P ® (). Without the

issue of having to choose which w(fj), j € Z is the root.

Proposition 2.2.7 (proof: see remark 3.1.4) — For any measurable f : Confzgz;,L — RY,
J o otz = [ reegd,

Furthermore, for any measurable f : ConfFX) _ R+,
[ e, - [ raei,

and for any measurable f : ConfEEE;’L - R*,

(ps)(FK) (FK) (ps)
Jf ° PP = Jf dP o),

Proposition 2.2.8 (proof p. 29) — The path soup model is time-shift invariant. More precisely, for

any s € R and measurable f : Confzgz; —~ R,
(ps) gm(Ps)  _ (ps)
ff o T dP ) = deIP’(bc)’L
with the time-shift operator Ts(ps) defined as

(ps) (ps)
Ts(ps): Conf(bc)’L — Conf(bc),L

1 — {{w(-+s), wew}, wen).

2.3 Marked points

We present now the framework in which most of the work has been done. But it unfortunately
also is the least elegant one. We encode the Feynman Kac representation into a configuration
of marked points (mp). The goal is to localize the global information of the permutation ¢ into
marks, so that the mark of each point x is enough to know o(x).

Definition 2.3.1 — We define

Conf(™p) .= {y = (X, P Uy, Wy ) yeg C RY x 7% x [0;1]x Q) /é is locally finite in Rd}.
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and for any y € Conf'™P) we denote its spatial component
)'/ ={x, (x,pu,w)ey}C RY.

For any finite y € Conf™P), we denote

Vowe =y and V= (7 +Lk)
kezd

and . .
N(rbc),L(V* Z) = #[V(bc),L N(z+ Ar)]

We define the set of authorized configurations as
ConfAuth!™ '—{ € Conf(mp)/ v is finite, simple and ¥ ( )€y, N/, (' > 1}
oL =1V Y , simple and ¥(x,p,u,w) € y, Npo r(7,x+ rp) > 1.

For any authorized configuration y € Coanuth L, we define the map Gbc (y, ) : 7'/ N 7./(bc),L
such that for any (x,p,u, w) € y,
o((g‘si)L(%x) = [N(rbc),L(y'/,x + rp) ] ‘th element 0f7/ L Nx+rp+A;)

if we order them lexicographically. Finally we call an authorized configuration permutation-wise if
it satisfies

Vyey, Ax ey, mpo,L [ o (7/, )] T(be),L (V)

and we denote

CoanermE : {7/ € Coanuth / Y is permutation- wzse}
FK)«—
Definition 2.3.2 — We define the transition map( )(p((r;:;’)L : Coanerngg)),)L — ConfPerm®) by
tKemp) [ [0:p] — RE
®Din,L(¥) = s s x4 fg[ Dlr ] \/—w % , (pu,w)ey
FK)—mp) [ [0:f] — R L
P(pen),L(¥) 1= s . %[ (peIr) ] \/—w(%) Lk (,pu,w)ey, ke .

Definition 2.3.3 — Let v be a probability measure over Z¢ such that Vp € Z%, v(p) > 0.
Woo

We also denote as W(l) o the probability measure W(l) 0= =1 .
’ ’ W()’()(Ql)

We denote as H(me) the Poisson point process with intensity measure Leb¥ @ v @ Leb(!) ®Wé,0
over configurations y € Conf™P) such that y C Aj.

We chose the reference measure W(l) o so that the state space (3; does not depend on f3, unlike
the (rl) and (ps) frameworks, and chose a normalized measure for mathematical elegance (the
intensity measure’s mass is exactly L%).
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Lemma-definition 2.3.4 (proof: see remark 3.1.5) — We define a Hamiltonian over finite marked

points conﬁgumtions as follows
mp)

ifye Coanerm be) L
H((SCII;)L(y):z Z {zlog (2mB) + “ Y, X) —x“ +log[v(p ]—log[N y,x+rp)]}
(x,p,u,w)ey

+ﬁf (be),L X+S ((b S)L(V,X)—X)+\/Ew(s), (x,p,u,w) € y}]ds

else H((ézi)L(y) = 4o00.
Then for any L € N, the probability measure over Conf(™P)

1
Pan(dy) = o . exp| Bty - i, (00| ™ ()
C),

where Z ) 1 is the same normalization constant as in lemma-definition 1.3.3, is well defined.

REMARK 2.3.
The model P ? p | does not depend on the chosen density v : 74 > R.

This horrendous formulation of the Bose gas is equivalent to the previously defined models.

Proposition 2.3.6 (proof: see remark 3.1.5) — For any measurable f : Conf®) — R*,
(FK)e
[ 7o ™o arr = | rars).

Definition 2.3.7 — A function f : Conf™) — R is said to be (mp)-tame local if there exists a,& >
0, a €[0;2[ and a compact A c R? such that

¥y € Confl™), f(y) = f[{(x,p,u,w) €y [ x € A}]

and
o

Sausg

Vy € Conf™P), a}f(y)} <1+ Z
(wpuw)ey

[[0;/5] — R ]
s — %rp+\/ﬁw(%)

Definition 2.3.8 — For any L € rN, we define the empirical field ]P’ L over Conf(™P) py

=(m 1 m
[ s Fzhan = L av [ fiy+v Pibf;,)L<dy>.
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Theorem 2.3.9 (proof p. 40)
There exists a stationary probability measure ]P’E be),c0 OVET Confl™P) and an increasing sequence (Lin)m>0

of multiples of r such that, for any (mp)-tame local measurable f : Conf™P) — R,
. —(mp) (mp)
mlHPwa B oe)r,, = J f AP
)

This theorem is the one unlocking everything. The probability PEE‘CI;OO will be used to di-

rectly define P through an infinite vol iti (FOIP) e will introduce 1
y define Py ' through an infinite volume transition map = "¢, we will introduce later.

3 Proofs

3.1 Equivalence of models

The following proposition establishes a link between (FK) and (rl) frameworks. It proves that,
if the models (FK) and (rl) are well defined, then they are equivalent.

Proposition 3.1.1 — For any measurable f : ConfF®) — R*,

! {11, @e) fo Yobons [(X) ] (dy)

oeS(& xe
W(root) Loop(mm) FK)«(rl) 1
—e i )J (f o <P(bc),L)(17) exp| Z.g(w)_ch))’L(”)

wen
where we remind

YDir)L =Y and  Y(pen,L = U (y + Lk).
kezd

PROOF (PROPOSITION 3.1.1)
The following proof is heavily inspired by the proof of Lemma 2.1 p. 358 from [Gin7o].
By definition of the standard Poisson point process,

JHALdé ij Yoos) e oo [(X) ]dw

O'ES xe&

N
iy A &N ot () B
=e NZ_(') NI J:\L dx Jf Yibo)L b )L [ l Wxi,x(,(i),(bc),L](dV)'

21

Let N > 0 and o € S(N). We denote as ¢;, 1 <i < n the respective cycle lengths of o.
We can re-order the variables (x;); ;< into (xi,]-)0<j<€ L<i<n such that

O(Xi,j) = Xij+1
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with the convention x; ,. = x; 9. Then
H(FK)

N
N oL (?) B
L dx® J F(Vperr) € Tl [@Wxi’xom’(bc)’L](dy)
L

i=1

LL(g)de ff Yibo) L [(1721)@ i, (b0) ](d)/)

In the case of Dirichlet boundary condition, for any g: Qg x Qs — R,

2
fA dy g(wW1,w2) L, ca, Why(dwy) Ty,cn, Wia(dws) = g(Wlio,sp, Wi gp1) Twea, Wet (dw).
L

In the case of periodic boundary condition, for any g : Q3 x Qg — R" which is L-periodic in
each variable,

B B ﬁ
[ ap gt waIWE, o (@I (002) =g sy Wl ). o 0,
L
Therefore, by integrating over A, we can assemble the respective Brownian bridges into
Brownian loops, along the cycle structure of o

HFK)

L®dx jf Vo) e {@é@ oyt (0c) ](dw

i=1 j=0

(FK)e—(rl)
:L dx®”J(fo (p(bc),L [ w C,L](dq).
L

For any given sequence 6 € N such that Y i>179j =N, there are N!- ]_[]>1 b permutations

o € S(N) which have exactly 9; cycles of length j, for any j >
Furthermore, for any g: NN — RY,

1 N — N
(5%1[,];[5'] ,;Eh;mj;g( g > #ie[Ln]/ji=q) )

Where Z(b])
entries.
We conclude

+00 1 N H(FK
Z’ ﬁ J;\ dx® Jf bC e . ® Xi Xo (i) d)/)
N=0

i1 is a summation over sequences of integers with a finite number of non-zero

-y L ) l l dxmj( v ) a [ whii ] ")
bilia s 5 ]n At Xir%i,(be),
= Z%(fo (FK)(PH(gCI;,L)(W) PLiztJi ey (1) {@J dxl e .ﬁb Wf’];’ bo), ](dn)
n=0 ji=1
_ Mo (Loor(i ) (FK)() () ()
=e€ ) j(f o (P(bc),L)(W) exp|p Z€(w) _H(bc),L(n) H(bc),L(dfl)
wET]
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(root)

because the measure W( has finite mass. O

As mentionned previously, proposition 3.1.1 proved neither (FK) nor (rl) models to be well
defined. This is what lemma 3.1.2 is for.

Lemma 3.1.2 — ForallLerN, f>0and peR,

z(bc),L::Jeﬁﬂ#‘anL(dg) Z Je ot [® ]d)/)e]O +o9].

oeS(&) xe&

PrOOF (LEMMA 3.1.2)
According to proposition 3.1.1,

7Ld+W( o) Loop(rOOt 1
Z(bc),L —e (be),L ( (be) )Jexp H(;c)),L(dq)

Blu+1) Ze (1)

wen

If L is a multiple of r, we deduce immediately from hypothesis II and definition 1.1.3 that for
any ¢ € Conf_,,

Upe,L(6) > ~A#E+B ) Njp (€,2).

zerzAd
(z+Ar)NAL=0

In particular,

(4 DFE=Up ()< ) (A+p+1)Njy 1 (6,2)=B-Njy 1 (£2),

zerZ4
(z+Ar)NAL 2D

Soforany f>0and peR,

YA+p+1)

(o 1€ = U () < (7)) 2 (1)

Let 11 € Confg)lc)),L. By applying inequality (1) to sets {w(Bj +s), 0 <j<{€(w), wen} for any s €
[0; 8] and integrating it, we conclude

r d A 12
ﬁ(”+1)Z€(w)‘H<(blc)>,L(’7)<ﬁ(%) (+4;473+)' (2)

wern

Since the measure W( has finite mass,

(root) (root)

—LiwW, Loop (A+ +1)
o <A £ B

< .
4B +00

Since the interaction is non-degenerate,

Zipepr = exp[-L% = BUjpo) 1(0)] > 0.

0%
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REMARK 3.1.3
If we apply inequality (1) for p = -1, it is clear the interaction Uy, 1 is bounded from below by

a finite quantity. The integral from the formula of H((tfg,)L is then well defined.

REMARK 3.1.4

Together, proposition 3.1.1 and lemma 3.1.2 are enough to prove lemma-definition 1.3.3, lemma-
definition 2.1.7 and proposition 2.1.9. Moreover, the fact the path soup model (ps) is well

defined (lemma-definition 2.2.5) and equivalent to the previous models (proposition 2.2.7) di-
rectly follows from this, as it is basically defined as the quotient of the (rl) model. The second

and third equalities of proposition 2.2.7 are corollaries of proposition 2.1.9 and the first equal-

ity.
Now we quickly justify the time-shift invariance property of the (ps) model.

PROOF (PROPOSITION 2.2.8)

First, it is clear that both measures 13- LW ((dw) and W er),L AT€ time-shift invariant :

Dir),L
for any measurable f : Loop ;) — R,

-
Vs eRR, Jf[w( +5)] Lgca, W(Dir)!L(dW) = ) f(w) lgca, W(Dir),L(dW)

and for any measurable f : Loop (per),L R*,

VseR, f FI+ 5] Wi () = | f () Wiy, ()

where we denote
w(-+s):={w(-+s), we ﬁ}.

We deduce immediately that the processes ]lchL Dir), (dn) and H ) are time-shift in-
variant too :

for any measurable f : Confﬁg)ir)’L

— R*Y,

VseR, J(foTs(ps))(”) e 1 Dlr L(dn) = Jf Tyca, Dl)r) (dn)

and for any measurable f : Confg)le)r)’L — R*,

VseR, Jf oy ariY) | den oL

Since the Hamiltonian H((ECS)) L 1s also time-shift invariant :

(ps) (ps) _ 77(ps)
VseR, H(bc),LOTS =H ’

we conclude on the probability measure ]P’EEE;L O
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REMARK 3.1.5
Proving the (mp) model to be both well defined (lemma-definition 2.3.4) and equivalent to the
(FK) model (proposition 2.3.6) can be done with only the proposition below.

Proposition 3.1.6 — For any measurable f : ConflFX) - R+,

[riaa fo Yoot N Qw! ]dy)

oeS(& xe&

K)«—(mp) _g™P)
:f (f o fmbc),L)(y)e ear?) 1) (),

PROOF (PROPOSITION 3.1.6)
Let & ={xy...x5} C AL be a finite simple configuration.

Sampling uniformly a permutation o € S(£) is the same as sampling independently and
uniformly the image of each x € £ among all possible images, conditioned to the whole map
being indeed a permutation over . Therefore

N
“l;z() () Wﬁ (d )
f Y(be),L e x;,0(x;),(be),L [\4Y

i=1

oeS(&
= Z Z ﬂ(xiHyi)eS(E)J\f(y(bc) [® Xi,9i( ] )/)
€L YNEE

The end point of a Brownian bridge sampled by the measure W)lcg,y,(bc),L is not always y, depend-
ing on the boundary condition. We take this into account

H(FK

= Z Z ]l[XiHﬂ(bc),L(})i)]GS(é)ff(y(bc)’L e (bol [® x,y,]

V1€, L YNEE(be)L

where &pir)r := & and & := Ugeza (€ + Lk).
We then introduce the encoding of the permutation of the (mp) model. First the p mark :

= Z Lo in(xy+rpy +A,)20 Z Z Lo snen+rpn-+A,)20

p1€Z4 V1€, LN(X1+7p1+A,)  pyeZAd YNEE(be), LN(XN +TPN+AS)
N
(FK)
) B
[xzr—m be)L jf Y(be),L (bc)'L ® Wxi,yi (d)/).
i=1

Next, we add the u mark so that the map 0((;;%()/, -) can be defined

1 1
= Z N(rbc)’L(é,xl +rp1)J; duy .. Z Nbc (&, xN‘”PN)J duy

prezd pNEZA

HE 00 | on b
1 m (o)L W
ﬂ(bc).LOf’((bcf)L(%-)68(5) J f (y(bc)'L) € ® X100 (7.,%7)
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Finally, all the additional factors are assembled into the (mp) Hamiltonian

= Z v(pl)Jlduljwé,o(dwl)-~- Z V(pN)J

p1€zf 0 pnEZA 0

1
(FK)«(mp)
d”NJW(l),O(dC‘)N) (fo <P(bc),L)(7/) e a1 ?)

where y = {(x;, p;, u;, w;), 1 <i < N} O

3.2 Entropic method

Unfortunately, to the best of our knowledge, there is no reference in the literature fully expos-
ing the entropic method as we are using it here, much less proving it from start to finish. We
state here the plan we follow to establish the thermodynamic limits of the (mp) and (rl) models
and quickly justify its validity.

Let M be a Polish space, called the mark space. We denote X := R? x M. We define the
configuration space

Conf(X) := {7/ = (% Vx)es / & cR? is locally ﬁnite}

which we equip with the smallest o-algebra C(X) making measurable the maps y +— #(y NE)
for all bounded Borelian E C X.

H%eb“”@v

Let v be a finite measure over M. We denote by the Poisson point process over

Ap x M with intensity measure Leb g v.

Definition 3.2.1 — Let P and Q be measures over Conf(X). We define the relative entropy of P over
Qby

log(c‘%)dp ifP<xQ

00 otherwise.

[(PIQ) := {{

We also define the specific entropy of P with reference measure v by

1 b
I,(P) = sup L—dl(]P’lAL ;e ®“)

L>0

where P|p is the restriction of P to Ay defined by
[ ras, = [ i ey /xe e
Let ¢ : M — R such that

VA>0, Je’\‘/’(l’)v(dy) < +oo.

We call a function f : Conf(X) — R local and tame if there exists a > 0 and a compact A ¢ R?
such that

Vy € Conf(X), f[{(x,p) €y /xeA}]=f(y)
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and

Vy € Conf(X ,a‘f | 1+ Z P(y

(x,v)ey, xeA

Let (Pr);( be a family of probabilities over Conf(X) such that

sup I(]P’L‘HILJEb(d@”)
L>0

We define for all L > 0 the associated empirical field P; by

[ raE - Ll—deLdvfﬂwv) Py(dy)

for any measurable f : Conf(X) —» R™. _
We also define the associated stationary field IP; by

deIP’L ——f dvf [Uyk+Lk+v]®IPL (dyy)

kezd kezd

for any measurable f : Conf(X) —» R™.

Lemma 3.2.2 — For any V,e > 0, there exists some m > 1 such that for any L > 0 multiple of r and
any compact A of volume V,
JThresh

where we define the threshold function

)| Pr(dy) <

Y

(xp)ey, xeA

0 ifx<m
x ifx>m.

Thresh,,(x) := {

PROOF (LEMMA 3.2.2)
First let us justify inequality

J Thresh,, Z P(y

(x,v)ey, xeA

)| Pr(dy) <

We are merely restating Lemma 5.2 from [GZg3] with one subtle difference: the compact A can
depend on L, as long as its volume remains constant. This slight generalization is not exclusive
to our model and could be stated for any Gibbs point process of marked points. Indeed the
proof of Lemma 5.2 from [GZ93] never involves the shape of A and exclusively uses its volume.
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From there, it is clear

J Thresh,, Z P(y

(x,v)ey, xeA

)| Pr(dy) < J vaThresh | Z ¥(p)

(x V)EY+V, XxEA

g%LLdvahresh Z Z () ®PL(d7k)

kezd (x,y)eyi+Lk+v kezd
< JThresh

x€A
is sequentially compact. More precisely, for any sequence (L,),cn, there exists

Pr(dy)

Y

(x,v)ey, xeA

Theorem 3.2.3
The family (]P)L)L>0
a subsequence (L)), and a probability distribution P, over Conf(X) such that for any local tame

f:Conf(X) - R
nLI)IPooJ\fdPLn = de]P)‘X’

Furthermore, for any compact A,

J Z P() Peo(dy) < +o0.

(x)ey, xeA

PROOF (THEOREM 3.2.3)
According to Proposition 15.52 (p. 330) from [Geo11],

5y 1 Leb@g
L(FL) = L—dI(PL}nLe “).

The setting in [Geo11] is discrete, but the result is still valid in a continuous setting. We deduce
immediately

sup IU(EL) < +oc0.
L>0
According to Proposition 2.6 from [GZg93], this is enough to prove sequential compactness of

the family (FL)L>O' which we will abusively write as

lim deﬂ - de]P’oo
L—+00

for all local tame functions f. Furthermore, according to Lemma 5.2 from [GZ93] again,

JZz,b o(dy) < +co.

(xy)ey

According to sections 2.1 and 2.2 from [Der1g], the empirical field has the same limit

lim de]P’L - dep
L—+c0
for all local bounded functions f.

Thanks to lemma 3.2.2, we can extend this limit to any local tame function. O
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3.3 Entropic bounds

In this section, we prove the thermodynamic limits of theorem 2.1.15 and theorem 2.3.9. This
will be done by uniformly bounding the relative entropy of the finite volume probabilities.

PROOF (THEOREM 2.1.15)
The goal of this proof is to establish

L ()
sup —I(IP’
LerN d (be).L

(1)
H(bc),L) < 400.

According to inequations (2) and (3) from the proof of lemma 3.1.2,

YA+ u+1)?

(r]) (rl) (root) (root) L
I(]P)(bc),L‘H(bc),L) < WibopL (LOOP( ) + BUbe),L(0) + /5(?) 15

In the case of Dirichlet boundary condition,

(root) (root) d Bj
W(Dir),L(LOOp(D ir),L ) L Z WO O(Qﬁ)
j=1

1 e Pi
<L ——.
(271[3)"”2 ];, ]d/2+1

For periodic boundary condition,

-Bj L2 2
(root) (root) d € — g7 Ikl
W(per),L(L per ) L Z Z 27-(/5] d/Z Sanant 7

j=1 kezd
d
-Bi 1 21 Bj
dZe e d/2(1+\/Lﬁ]]_
j=1 J

Either way, there exists Wy > 0 such that forany L > r, W((;:;?z)(Loongoc;t)) < WL,

Therefore
1 (A+pu+1)?

()
, H(bc),L)< W0+ﬁr—d-—4B < +o00.

1
limsup — I(
LerN L4

According to theorem 3.2.3, this is enough to prove the thermodynamic limit. The class of
tame functions is defined by the choice ¢ = 1. O

To prove the thermodynamic limit of the (mp) model, we first need the following technical
result.

Lemma 3.3.1 — Let L > 0 be a multiple of r. For any y € Coanerm such that y C Ay,

64 Z log[N y,x+rp)]<log(2d)#7/+ Z N(rbc)’L(y'/, log[N 7/, )]

(x,pu,w)ey zerZA4
(z+Ap)NAL 20
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PROOF (LEMMA 3.3.1)
Let (x,p,u, w) € y. It is clear that

Nipoyi(7rx+7p) = N(r‘l)c),L[7./' TC(be),L (X + rp)]-

If for any y € R? we denote as |y ] the closest point to p in the lattice rZ% + 5(1...1), then

Nbc),L(i/'y) < N(%)rc),L(i/' L}}J)

Furthermore, let z € rZ4 + +5(1...1) such that (z+ A,) N Ap =0, then z is the closest point of that
lattice to some 7ty 1 (X + 7p) at most N ()/, ) times. Thus

) log{NpgulPmwonteerplf< ) tog{Ng 5| meosterp)]

(xp,u,w)ey (x,pu,w)ey

Y Nl o)
zerZA+%(1...1)

(z+Ap)NAL %0
Since for any z € rZ4 + 5(1...1),
1 2r . L] r .
2_dN(bC) Z N (y,z+ Eé)
ee{+1
by convexity of x — xlog(x) then
Y Niu(i2) 1ogNi, 1 (72)]
zerZA+5(1...1)
(z+Ar)NAL 2D
d 2r y * r
< Z log(2 )Nbc ()/, ) Z N (7/,2+ e) log[ (7/,2+§£)] .
zerZA+5(1...1) eel{x1)4
(z+Ar)NAL 20

We take care of the first term

Z Nzr (7'/, ) Z Z L()'/,z+%e).

zerZA+5(1..1) zerZA+5(1..1) ee{x1})d
(z+Ar)NAL =0 (z+Ap )mAL;t@

As illustrated in fig. 5, for each z € rZ% such that (z+ Ay, )N A = 0, the term N’ (7/, ) appears

in the summation at most Zd times.

Thus
2r * d r *
Y Noguliz)<2® ) Niguli2)
zerZd+5(1...1) zerZ4
(z+Ar)NAL 20 (z+A,)NAL 0

< 2] ey, V(AL + Agr)| < 2%#(P ey, N AsL) < 6%y
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+ + + + + +
+ + + + + +
d, r

ecrZ®+5(1...1)

+ + + + + + — limits of a cell of size 2r centered in a e
’

+ + + + + + +erzd

—- limits of a cell of size r centered in a +
+ + + + + +
+ + + + + +

Figure 5: Counting the N(rbc),L(7./’Z)’ zerZt

We control similarly the second term

Z Y N (y,z+ )log[ (7'/,z+%€)]

zerZA+ ) ee(x1}d
(z+A )mA L:(Z)
Y Ny (32) 10g[Njpe 1 (72)]
zerZA4

(z+Ap, )NAL =0

For any z € rZ¢, the condition (z + A,,) N Ay = 0 implies (z+ A,) N A3y # 0. Therefore

Z Nioe1(7:2) 1og Niye) 1 (72)] < Z Nipey,1(72) - 10g[Njpe) 1 (7:2) ]

zerZ4 zerZ4
(z+App )NAL =0 (z+Ar)NA3L =0

Since 7'/ C A, we conclude

Y Nioou(P2) 1og[Niy o (72)] <30 ) Nigou(7:2) 10g[Njey 1 (72)]

zerZ4 zerZ4
(z+Ar)NA3L 0 (z+A)NAL %0 O

As previously, proving the thermodynamic limit is done by uniformly bounding the relative
entropy.

Proposition 3.3.2 — Let k € |0;1[. Assume

2(1 d/2 2
e I I o e

Then, there exists A > 0 such that

L (pmp) |ppim
sup — ( ‘H ) < +o0
Ley LA\ (PO
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where Hi\m is the Poisson process of intensity measure Am with m := Leb” @ v@ Leb!) ®W(1)’0.

PROOF (PROPOSITION 3.3.2)
First, we know that

1
—exg ey~ HI @y
C),

(mp) _
P(bc),L(dV) =7

S (mp) A
" ZibopL eXp{/\ +[Bu—log(A)}#y - H(bc),L(V)}HLm(dV).

We will uniformly bound the relative entropy by dealing separately with each non-trivial term
of the density

o —10g(Z(pe)1)
* _Z(x,p,u,w)ey{%HG((II)ICIE;J(V’ x) - XHZ + 108[1/(17)]}

* Lispuwey log[N(’bc)’L()'/,x + rp)] —interaction term

We will proceed in this order then conclude.

* According to inequation (3) from the proof of lemma 3.1.2,
~108(Zpe),L) < L + BU(pe,1(0).

* Forany y € CoanermEgch;’)L and (x,p,u,w) €y,

ot 70 =] = (1ol - V),
Given the admitted formula of v,

2

201 2
ulm}Lﬂ_mmuﬁ)

2np 28

Thus there exists C, € R such that for any (x,p,u,w) €y,

log[v(p)] > glog[

#”"5&52(”) -XHZ +log[v(p)] > Cy.

* According to lemma 3.3.1,

Z log[N(’bc)’L(y'/,x+rp)]<6d log(2d)#y+ Z N(rbc)’L(y'/,z)-log[N(’bc)’L(y'/,z)] .

(xpu,w)ey zerZAd
(z+Ap)NAL 20

To deal with that problematic xlog(x) term, we will use the interaction’s superstability.
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By the equivalence of models (mp), (FK) and (ps) from proposition 2.3.6 and proposi-
tion 2.2.7,
Jo

[t (et -s)o 5} somane
rB

- [ RES@n | ds [-Unaatomts) we )

rB

= [ 2l e | as (-Uolimpi+9), 0< <e@), T ).

rB

ds (— U(bc),L

We remind that the meaning of 7 — Uy [{w(Bj+5), 0<j<{l(w), wenl] is that of a
quotient function. We refer to definition 2.2.4 for more details.

By choosing y = —1 in inequality 1 from the proof of lemma 3.1.2, the function —Uy,) 1 is
bounded, thus integrable. So

B
[ @ [ as (-Upoutimpi+o), 0<j<a@), wen))

B
=j0 ds [ BED () (U@ +5), 0.< j < @), e ),

By time-shift stationarity, this equals
B
[ s 7@ (~vpaul@pi, 0 << e, we 1o o

6 | B ) (-Unol(@(Bi), 0 < < @), e ),

By equivalence of models again,
[ (ps) — S —
P2 (d1) (U LI{® (), 0 < j < (@), wen}])

r

= | PER (@) [~ Utpor(7)]

J
-
(mp) 5,z2)
< PRdpdy |A#y =B ) N (i2) |
zerZ4
(z+Ar)NAL20

There exists C(*) € R such that 67xlog(x) — Bx> < C(¥) for any x > 0. We deduce

Z log[N(’bc)’L(f/,x + rp)] —interaction term < [6d log(Zd) +Aﬁ]#7/ - (%)dcw).

(x,pu,w)ey
Therefore,
1(P™P) |mim) <1 4+ gU. 0 c(0 y
(be),L|" 'L | +p (bc),L( )+ 1_r_d

d
By —log(A)+ 0 log(2mp) — C,c + 6% log(Zd) +AB [#y IPErbnc};’)L(dy/).

J

38



For A > 0 large enough, the integrand is non-positive and we conclude

1 (mp) | Am
sup —I(IP’ IT )< +00.
Loy L4\ OLITL 0
We need to justify the choice
=1S [Olﬁ] - Rd ¢
L e I P e

for all @ €[0;2].

Lemma 3.3.3 — Let a € [0;2[ and 6 > 0. There exists k € 10;1[ small enough such that for any

A>0,
Jexp[z\

Sauso[

201 _ d/2 2
wip =| 20| I exp| 3501 Kl

[0:5] — R ]
s — %rp+\/ﬁw(%)

o
]vk(dp)Wé,o(dw) <+oo

with

PrOOF (LEMMA 3.3.3)
For any y € R?, we denote as |y | the point of the lattice Z% closest to x.
If a random vector Y € RY has a Gaussian distribution given by

r2(1 -«)
2np

da/2 1’2 )
6 s1-0(d) - exp|- 550 -l |ay

then | Y |’s distribution is v,.. Therefore
s s

jexp[)\ Sausb(s — Erp + \/ﬁw(ﬁ))

< Jexp[A

< Jexp[)\

<(1- 1<)d/2 Je%”y”z exp[/\

If Y is a random vector with Gaussian distribution of variance f and w is a Brownian bridge
from 0 to 0 in time f§, then the trajectory s %Y + w(s) has the distribution of a Brownian
motion, up to time . So

Je%”V”zexp[A

ng{e%Hw(ﬁ)“z exp[/\‘Sausmr\/E(w)V]}.

a
]Grm)(dy)wa,o(dw)

Sausbﬂ\/g(s - %ry + \/ﬁw(%))

]Gl_K(dy)Wﬁ,o(dm

Sausmr\/g(s - %y + w(s))

]Gudeﬁ,o(dw)

Sausbﬂ\/g(s — %y + w(s))

]gl<dy>W'§,o(dw>

Sausmr\/g(s — %y + w(s))
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where the expectancy is taken along the standard Brownian motion.
We repeat the reasoning we made for f; in example 1.3.10. The cylinder whose axis goes

from 0 to w(p) with radius 0 + rVd has bigger volume than the Wiener sausage. Then
1

cd_l(é + r\/ﬁ)

where we denote as c;_; the volume of the d — 1 dimensional ball of radius 1.
Thus

-1 |Sausé+r\/g(w)|

w(®) <

Ew{eﬁﬂw(ﬁ)“z exp[/\‘Sausmr\/E(w)V]}

K 2
<E,qexp zd_2|Sausé+Nz(a))} +/\}Sausé+r\/§(w)

2/5c§_1(5 + r«/E)

|0(

To prove this integral is finite, it is sufficient to prove

K 2
E,{exp 2d2|Sausb+r\/3(w)“ < +o00

Zﬁcil (6 + r\/E)

which is true for x small enough, according to theorem A.o.2. O

PROOF (THEOREM 2.3.9)
Finally, according to lemma 3.2.2, the uniform bound from proposition 3.3.2 on the entropy

is enough to prove the existence of the thermodynamic limit ]P’(rbnp)

(bc),e0”
enough to prove tightness of the sequence f]f’FEE?;’)L, L € rN, hence the existence of a converging

More precisely, this is

subsequence.
The class of tame functions is justified by lemma 3.3.3. O

3.4 Permutation in infinite volume

In section 2.3 we constructed the (mp) framework to encode the permutation of the (FK) model
into the p, u and w marks. We just proved the (mp) model to have a thermodynamic limit, but
does the encoding pass to the limit ? Is it only possible to define an infinite volume permutation
with those marks ? Thankfully the answer is yes.

Definition 3.4.1 — For any y € Conf™P) and z € R%, we denote
N;,(f/,z) = #[)/ N(z+ Ar)].
In infinite volume, we define the set of authorized configurations as

Coanuthg,np) = {7/ € Conf(™p) / 7'/ is simple and ¥Y(x,p,u, w) € y, Noro(f/,x + rp) > 1}.
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For any authorized configuration y € ConfAuth{2, we define the map oiomp)(y,-) :y — v such that
forany (x,p,u,w) €y,
Oéomp)(y,x) = [Ngo(f/,x + rp) . u-|’th element of y N (x +rp + A,)
if we order them lexicographically. Finally, in infinite volume, we call an authorized configuration
permutation-wise if it satisfies
Vyey, Axey, aéomp)()/,x) =y
and we denote

Coanerm(oronp) = {7/ € Coanuthglp) / Y is permutation—wise}.

FK)«—
Definition 3.4.2 — We define the transition mup( )(p(:p): ConfPermn® — ConfPerm FX) by

(FK)<—(mp)( \ (0;8] — R4 e
= ’ x; ,u,(l) .
V4 s — X+ /3[000 (y,x ] \/_a)(%) p V4

o0

Proposition 3.4.3 — IP’E p) (Coanerm‘(x, p)) =1.

PROOF (PROPOSITION 3.4.3)
If we are given a configuration y, the map ooo (7/, -) is a well-defined bijection if and only if

o. The marked point configuration y is simple.
1. Y(x,p,u,w) €y, Ngo(f/,x + rp) > 1 so that the mark is not pointing to an empty region of
space. The map aiomp)(y,-) is then well defined.

2. Y(X,p,1,0) €Y, YLix p/u')ey ]lggnp < 1 so that the map is injective.

()=
3. The map créomp)()/, -) is surjective.

)OO almost surely.

We will check that those 4 properties hold P:glf;
Step o Let us assume Pzg)’)m()/ is not simple) > 0. So there exists a compact A ¢ R? such that

P(mp (¥ NAis not simple) >

This event is local so there exists L > 0 such that

— 1
]PEI;ICI;)L()/ N A is not simple) = FJ dvP mpL[ ¥ +v)N A is not simple] > 0

which is wrong.
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Step 1 Let us denote as (x1,p1, U1, w1) € ¥ the closest point to 0 in the configuration. We assume
(mp) .
P EICI;’OO[N;(y,xI + rpl) = O] > 0.
Then there exists ¢ > 0 and D > 0 such that
L] D
Pt [NL (70 +rp1) = 0 and | < D and ] < 2 > e

This event is local so there exists Ly > 0 such that for any L > L,

. D] _ e
Pt [NC (51 +1p1) = 0 and ]| < D and lps | < =2 | > 5.
By definition of the empirical field,
~ . D
B[NG5+ rpr) = 0 and ll < D and Il < 2 =
1
izl dvIP’mp [Nr 7/+v xlv+rp1,,) 0 and Hx”” D and le,,” ]+0(1)

Ar-2p—r
where we denote as (x; ,,p1,,, 41, @w1,,) the point of y + v which is closest to 0.
So there exists L > Ly, 6 >0 and v € A;_,p_, such that

PE&I;)L[N;(& +V,X1 + rpl,,,) =0and ”xL,,H < D and ”PLVH < ?] > 0.

Since v € A;_pp_;, if HXLVH < D and ||p1’VH < %, then we have

(}(bc)’L + v) N(X1p+1p1v+A,) = [}(bc)’L N(X1,p—V+71p1y + Ar)] +v
= [7/ N(X1,p—v+7p1y+ A,)] +v
= (7/ + v) N(x1,y +7p10 +Ar).

Thus . .
N;,(y +U,X, + rpl,v) = N(’bc)’L(y +V,Xy + rpl,v).

Therefore
L[N 7/+vxlv+rp1v O]>6.

If we denote as (x’l’,p'l’, uj ,a)l) the point of y which is closest to —v, this translates to
L[N )/,x1 +rp1 0]>6

which is not true because IP’E I; (Coanuth ) 1.
We have proven
PP INL(7x +rpy) > 1] =1

and with the same procedure, we can prove this equality for the n’th closest point to 0 in
the configuration, for any n > 1. Finally

P(glcl)),io[\”” >1, NG(Poxu+rpa) 2 1] = 1.
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Step 2 We will follow a similar proof path in step 2. We assume

(mp)
]P)(bc),oo Z ]log,np)(y,x’):xl >1(>0.

(x,p’ ', w’)ey

Then there exists € > 0 and D > 0 such that

(bc),00 ]lcho()./,X'+rp')>1]laiomp)(y,x’)le >1and ”xl” < D|>e.

(x,p/ ' w')Ey
I ll<D, Ip’l|<D/r

Since this event is local, there exists Ly > 0 such that for any L > Ly,

=(mp) €
° < —.
IED(bC),L 1N§o(7,x’+rp’)>l]lagnp)(y,x’):xl >1and x|l <D|> 2
(x’,p’,u’,m’)ey
[I<’l|<D. |lp’||<D/r
By definition of the empirical field,
(mp)
L] < =
]P)(bc),L nN&,(y,x’Jrrp’)}l]lg((:,np)(y,x’):xl >1and ”le <D L—+00
(x/,p' ', w’)ey
[I’l|<D, |lp’||<D/r
L dv PP Yo g 1 >1and ||x,, || <D|+o(1)
L4 ALaps (be),L Ngo(y+v,x’+rp’)>1 aiqmp)(y+v,x’):x1,,, Lol =

(x,p’ ', w’)ey+v
[I’l<D, [lp’l|<D/r

where we denote as (x4, P14, 41,9, w1, ) the point of y + v which is closest to 0.

So there exists L > Ly, 6 >0 and v € A;_,p_, such that

(mp) 8
]P’(bc),L Z ]lNJQ()./JrV:x/“’P,)?l]lg(mp)(yﬂz,x’):xl’v >1 and HXLVH <D|>6é.

oo
(x/,p/u',w’)ey+v
[IXI<D. |lp’ll<D/r

Since v € A;_rp_,, if ||X’|| < D and ||p’|| < %, then we have
(%(bc)’L + v) N +rp’+A,) = [}(bc)’L N +rp’ —v+ A,)] +v
= [7'/0(x’+rp’—v+A,)]+v
= (7'/+v)m(x’+rp’+A,).
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Therefore

(mp) Z S
]P)(bc),L ]lN(bc (y+v x'+1p )>111a(($fi(y+v,x’):xll,, >11>o.
(x/,p" ') ey+v ’

[l <D. [lp||<D/r

If we denote as (x’l’,p’l’, uf,a)’l’) the point of y which is closest to —v, this translates to

p{mp) Z 1 >1|>6

(x"p" w0’ )ey
l’ll<D. |lp’||<D/r

L] ]l
N(ﬁac),L(V'x’”p )>1 ‘7((1;2?) (yx')=x]

which is not true because o' bc (7/, ) is ]P’ almost surely injective.

Once again, we conclude by generahzmg the procedure for any n’th closest point to 0 of
the configuration.

Step 3 We will prove a seemingly weaker, yet sufficient result :

VkeZ, Z 11 'y x)erk+A, #[7./ N(rk+ Ar)]'

(x,p,u,w)e

By stationarity, it is enough to prove it for k = 0.

By injectivity, we already know

Z 11 Py, x)eA, < ()/ﬂA)

(x,p,u,w)e

To prove the equality more easily, we introduce a discretized version of the configuration

Y — |yl
(xpuw) — (l_xj,{oiomp)(y,x)J—l_xJ)

where, for x € Rd, the point | x| is the closest point of 7% to x.
Then

(mp) _ (mp)
jp(bc),m(dy) Z ]lagnp)(y,x)e/\r - jP(bc),m(dV) Z ]1z+k:0

(xpu,w)ey (zk)elv]
- (mp)
—ZJP(bC)’m(dV) Z ]lz:rjllk:—rj-
jezd (zk)ely]
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The probability measure IP’( I))) is stationary so | ¥ |'s distribution is 7Z“-stationary. Thus

ZJ W(dY) ) ol

ez4 (zk)ely]

:J\P(anl)),oo(dy) Z 1.0

(zkely]

( .
_ fp(g;,{m (dy) #(7 N A, ).
(mp)

We conclude )y, 1w)ey ]loéomp)( #(7‘/ N A,) is true P almost surely.

Y,x)EA
We know each cell of the lattice receives the good number of marks pointing to it. By

injectivity of the map oéomp)(y, -), it guarantees all points in the cell are reached. O

3.5 Thermodynamic limit

Section 3.3 was dedicated to the thermodynamics limits of (mp) and (rl) models. We then
proved (section 3.4) the marks of the (mp) infinite volume model to still have meaning and still
encode a (FK) representation.

FK)

Definition 3.5.1 — We define the probability measure ]P)Ebc),oo over Conf(FK) by

-1
FK)«
Plon(E) i= Plpey L,[(( )(p(::p)) (E N ConfPerm("¥))

for any event E € CFK

But is this new (FK) model the thermodynamic limit of the finite volume (FK) model we
presented in lemma-definition 1.3.3 ? We claimed this is true in our main thermodynamic limit
result (theorem 1.3.12) and the current section will prove this statement.

REMARK 3.5.2
Proposition 1.3.14 is a direct corollary of proposition 3.4.3.

Corollary 3.5.3 — For any V,0,& > 0 and a € [0;2], there exists m > 1 such that for any L > 0
multiple of r and compact A of volume V,

J Thresh,, Z

(x,p,u,w)ey, xeA

a

Pt (dy) < e

Sauso[s - %rp + \/Ew(%)}

Furthermore

Sausb[s — %rp + ﬂw(%)” IP’EbC (dy) < +oo.

]

(x,p,u,w)ey, xeA
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Proor
This is immediate from lemma 3.2.2 and lemma 3.3.3 (see section 3.2). g

We establish a result analogous to corollary 3.5.3 for the (FK) models.

Proposition 3.5.4 — For any V,8,e >0, a € [0;2[ and K € N, there exists m > 0 such that for any
L > 0 multiple of r and compact A of volume V, if A C Ak then

JThreshm Z |Sausg(w)|*

wey, w(0)eA
FK
Z |Saus;s(w)|* szc)foo(dy) < +oo.

(FK)
]P’(bc)’L(dy) < e

Furthermore
wey, w(0)eA

PROOF (PROPOSITION 3.5.4)
By definition,

(FK)
Plpe,1(dy)

JThreshm Z |Saus;s(w)|*

wey, w(0)eA

1 (FK)
=L_dJAL vaThreshm Z [Saus,(w)|* | Ppey ()

Llwey+v, w(0)eA

1
== f dv JThreshm ) [Saus, (w)|* | Blpe) (). (4)
L A ’
L lwey, w(0)eA—v ]
Dir Trivially, this is equal to
1 (FK)
T J;\L dv JThreshm E |Sauss(w)|* P pin), (d7)-

wey, w(0)Em(pir),L(A-v)

per Since A+v C Ay for all v € Ap, each term w(0) € 7(per), (A —v) of the sum appears at
most (K +1)¢ times. This makes the expression from (4) smaller than

1 FK
T JAL dv JThreshm (K+1) Y |Saus;s(w)|* ngejm(dy).

wey, w(O)en(Per),L(A—v)

So in all cases, the expression from (4) is smaller than

(K +1)* FK
- ) X dv | Thresh_n_ ) |Sauss(w)|* Pgbc)fL(dy).
L

wey, W(0)Em (b, L(A-V)
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FK)«(mp)

According to proposition 2.3.6 and the definition of the map ( )(P(bc),L’ this equals

s 1= 20—

d
(K +d1) j dv j Thresh _m _ Z
L AL (K+1)d

(x,pu,w)ey
xen(bc)lL(A—v)

Then

(K + 1
J:\L dv JThresh e Z

(x,pu,w)ey
XEZLfv

ol

where A := U (A + Lk).
keZ?, Ikl <K
By approximating the trajectory by s — %rp + \/ﬁw(%),

a

Sausbﬂ\/g[s - %rp+\/ﬁw(%)}

K + 1
J;\L dv J Thresh _m _ K+1 Z

(x,p,u,w)ey
XEKL;U

g LL dv f Thresh_m _ K+1 Z

(x,p,u,w)ey+v
XEKL

(K +1)4
< m
ST Ta ThreShW >

(x,pu,w)ey
XEZL

Sausmr\/g[s - %rp + \/Ew(%)]

Finally we just need corollary 3.5.3 to conclude.
With a very analog procedure as in finite volume, we can show that

FK
Y 1Sauss(W)® Pl (d7)
wey, w(0)eA

<JZ

(x,p,u,w)ey, xeA

a

(mp)
P(bc)’m(dy).

Sausmrﬁ[s - %rp + \/Ew(%)]

which is finite by corollary 3.5.3.

We can now prove the first part of theorem 1.3.12, that is, for any f : ConfPerm™X)

e-local and e-tame,
) =(FK) (FK)
Jim [ raf S = [ rae

sl

O

- R
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PROOF (THEOREM 1.3.12, 1/2)
Let ¢ >0 and f : ConfPerm*®) — R e-local such that

Vy € ConfPermfX), a|f()/)| <1+ Z [Sausg(w)|“.

weProjcp ()

We assume without any loss of generality that & > rVd.
For any m > 1, we define f,, : ConfPerm™ — R by

. d-1,1%
FO)Hf Lyveprojy(y)ISauss(w)l < [cd_l(é—rﬁ) 71]

0 otherwise.

fm(Y) =

For m > 1 large enough, the error between f and f,, will be proven to be arbitrarily small.

Our goal is to write the integrals of the f,, as integrals of local bounded h,, : Conf™P) — R. By
using the thermodynamic limit of the (mp) model, this will be enough to conclude.

The functions f,,, m > 1 are uniformly dominated by the e-tame bound of f, which is inte-
(FK)

(bc),00
my > 1 large enough such that

grable under P (see proposition 3.5.4). So by dominated convergence theorem there exists

FK
Vm 2 mo, J = FlABG <.
Furthermore, according to proposition 3.5.4, there exists m; > m such that
VLerN, ACA, = J|fml ~ fldPye); <e.

Then for all L € N such that A C Ay, the error term is

(FK) ~(FK) (FK) ~(FK)
|ff dP(bc),oo - Jf CHED(bc),L ffml d]P)(bc),oo - mel CHED(bc),L

< 2e+

We assume without any loss of generality that A+ A, C A, . Since the function f,, is
bounded, we have

~(FK 1 FK
[ = [ @ [ fbren B o (5)
L-2my

L L‘)=+C>O L4
We define the function g, : Conf® - R by

m (V) = fm1 (o) ifdyoe€ Coanerm(FK)’ Y =Projea (7o)
m 0 otherwise.

This is well defined thanks to €-locality of f,,, and it is clear that

Yy e ConfPerm &), (gm1 o ProjeA)(y/) = fm1 (7).
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(FK)(
Let L > 2m;. Since the map qo(r;s’)L commutes with any translation y — y + v, we deduce

1 FK 1 . (FK)«(mp) (FK
il dv ffml (y+v) ]P’Ebc)?L(d)/) = ﬁ L dv J(gml o Projgp o P(be),L (y+v) P(bc)?L(dV)'
L-2my

Ld AL—Zml
(6)
Let y € CoanermErb‘lI;)L such that 7'/ C Aop_op,- Since A C A, , we have 7./(bc),L NA= 7'/0 A.
Then

. (FK)«(mp)
(PfOJeA o ﬁo(bc),L)(V)
: d
[ L0p] — R (x,p,u,w) €y
- s - x+%[o(($§£(y,x)—x]+\/ﬁw(%) 7 st.xeA
%

_[ oA R (x,pu,@) €y
B s — X+ %[aiomp)(y(bc),bx) —x] + \/ﬁw(%) " ost.xeA '

In the following, we will make a slight abuse of notations by writing (x,p,u,w) € y N A.

Case 1 We assume the condition

)

(x,p,u,w)eyNA

a

> [eas(o-rva) ™ 2L

Sausoﬂ/g[s - %rp + \/Ew(%)]

FK)e—
The map Proj., o( )go((rlf;’)L induces a bijection between the set of marked points (x,p, u, w) €
FK)«
¥ N A and the image set of bridges w € (ProjeA o( )(p((r;g;’)L)()/). Then

) Saus,(w)* > )

. (FK)e(mp) (x,p,u,w)eEyNA
WE[Projeao  @qpe)r |(7)

a

Sausb_r\/g[s - %rp + \/ﬁw(%)]

> [Cd,l(é - T\/E)d_l % a.

Thus

FK)«— —
(FK)«—(mp) (mp) ]z 0

, (FK)
(gm1 oProjep o (P(bc),L)(V) = fml[ Poe)L(7)

Case 2 We assume

)

(x,p,u,w)eyNA

a

< [cd_l(é - r\/E)EH %]a

Sausoﬂ/g[s — %rp + \/Ew(%)

We use the same reasoning as in example 1.3.10: the cylinder whose axis goes from 0 ro
rp with diameter & — rv/r has a smaller volume than the Wiener sausage

! Sausb_r\/g[s»—> %rp+\/ﬁw(%)]

m
V(x,p,u,0) €y N A, rlpll < - <2

ci_1lo—rvd
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(mp)

Then, for all (x,p,u,w) € y N A, the expression oo P ()/(bc),L,x) only depends on

Y(be),L N (A + Aml + Ar) € YbeL N A2m1 =ynN A2m1 .

We will slightly abuse notations by writing

. (FK)<—(mp)

(PTOJeA ° @(bc),L)(V)
[0;8] — R4

:{ s s x+ia(mp)( AA x)—x +\/ﬁw(£),(X,p,u,w)eyﬁA .

BV Y 2my s B
In all cases, we denote
()= [0;8] — RY (x,p,u,w) €y NAs.t.
Paly)= s — X+ %[oiomp)(y ﬁAzml,x)—x]+\/Ew(%) ! Ngo(y'/ﬂAzml,x+rp)>1 ’

We define h,,, : Conf™P) 5 R by

(gn11 O(PZ)(V) if Z

hml (y):= (x,p,u,w)EYNA
0 otherwise.

a

< [Cd,l(é — T\/E)d_l % ‘

Sausb_r\/g[s - %rp + \/ﬁw(%)]

. (FK)e(mp) . .
In all cases, hy,, equals g, oProjea o @) if ¥ € App-om, - Therefore

1 . (FK)«(mp) 1
— j dv J(gml oProjg, o (P(bc),L)(V‘H’) PE&I;)L(dy) =— j dv j hy, (y+v) IPErbnc};’)L(dy/).
L AL-om, L AL-om,

By combining with equations (5) and (6), we get

K)o 1 (mp)
J.fml dP(bc),L L*:roo Ld LL . va\hml (7/ + 'V) P(bc),L(dV) + 0(1)
—2mq

= jhml dP") +o(1)

L—+c0

because h,,, is bounded.

To sum things up,

(FK) (FK) . (FK) (FK)
‘J.fd]P)(bc),oo - J.fd]P)(bc),L L_ioo 2e+ J.fml d]P)(bc),oo - mel dP(bc),L
. (FK) (mp)
L_ioo 2e + J.fm‘ d]P)(bc),oo —Jhml d]P(bc),L +0o(1).

Since ¢}, : Conf™P) — ConfFXK) is e-local relatively to Ay, , the function h,,, satisfies the condi-
tions of theorem 2.3.9 thus

. —(mp) _ (mp)
lim | hy, dP ) = J-hml dP 0) oo

L—+c0
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SO

(FK) FEK)
U fdP) - f fdPen| +o(1).

< 2e+
—+00

(FK) (mp)
ff my dP(bc),oo - J hm1 dp(bc),oo

According to definition 3.5.1,
(FK) (FK)e(mp) _ (mp)
jfml AP )0 = jfml ° Po APy
so the final step is to establish the equality

(FK)«<(mp)
hn11 = fm1 © (P

o0

]P’Eglf;)oo almost surely and the proof will be complete.

Case 1 We assume

)

(x,p,u,w)eyNA

[e4

> [cd_l(é - ﬂ/ﬁ)dﬁl % a.

SausoNg[s - %rp + \/Ew(%)]

Then of course h,, () = 0.

FK)«
Just like previously, the map Projc, o( )(p(::p) induces a bijection between the set of

(FK)—(mp)
)(7)-

o0

marked points (x,p,u,w) € y N A and the image set of bridges w € (ProjGA o
Then

a

Y Bauswit> )

FK)— x,p,u,w)EYNA
we(Projer‘ )q)i'f‘”)w) (opa @)y

Sausér\/g[s > %rp + \/Ew(%)}

> [eas(o-rva) 2L

Therefore
(FK)«(mp)
(fm1 o (Poo )(V):Ozhml(V)

Case 2 We assume

)

(x,p,u,w)eyNA

a

< [Cd—l(é - r\/E)d_l m]a.

2

Sausb_r\/g[s - %rp + \/Ew(%)

Then

hml (y)= (gn11 ° (PZ)(V)

B [0;8] — R¢ (x,pu,w)eyNAs.t.
—&m s — x+%[aiomp)(yﬂAzml,x)—x]+\/Ea)(%) ! Ngo(f/ﬂAzml,x+rp)>1
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Just as we argued in the previous case 2, we know

Yix,p,u,w)eyNA, r|p|| < %

Then for all (x,p,u,w) € y N A, the expressions Ngo(7'/,x + rq) and (réomp)()/,x) only depends
on yNAy, and

[(0;8] — R (x,pu,w)eynNAs.t.
oy (7) = &my s — x+%[cf§omp)(7/,x)—x]+\/ﬁw(%)’ Ngo(f/,x+rp)>1

Since PE&I;’LO(Coanermgnp)) =1 (see proposition 3.4.3), it is clear the condition Ngo(f/,x + rp) >

1 is almost surely true.

Therefore

 (FK)—(mp)
hy, (y) = (gm1 oProjep  ¢o )(7/)-

FK)«—
If ye Coanermg,np) then( )(p(::p)(y) e ConfPerm'f) and

. (FK)—(mp) (FK)—(mp)
(gmloPrO]er Poo )(7)=(fmlo Poo )(y)-

Again, according to proposition 3.4.3, the equality is true ng)oo almost surely. O

3.6 Extension of locality

locality in the sense of Proj., is natural but it does not preserve the cycle structure. This is what
the second part of theorem 1.3.12 is for.

In section 3.5, we made use of proposition 3.5.4 in the proof of the first part of the thermo-
dynamic limit. Similarly, we will need the following proposition.

Proposition 3.6.1 — For any D,0,& > 0 and a € [0;1], there exists m > 0 such that for any L >
4max(0, D) multiple of r and compact A whose diameter is sup,,||x|| < D,

—(FK
Y duen, Sauss(w)l Py (dy) <e.

WEPTOj (7)
Furthermore,

FK
Y Isausy(w)® Pgbc)fw(dy) < +oo.

WEPTO0j A ()

REMARK 3.6.2
Accessing the bridges that only intersect A made us lose a power in the volume of the sausage.
This can be seen at the end of the proof below: an exponent 1 + a appears.
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PROOF (PROPOSITION 3.6.1)
For any L > 0 multiple of r,

~(FK
JBESL@n Y tunsatuoen, Sausswl®

wey

S Z J 1(d) Z LywnazoTw(o)eira,,1Sauss(w)l®
ie4SZANAS, wey

< Z J d)/ ZHOGSausD w(0 )€z+/\4blsausb( )|a.
i€4Z9NAS, s wey

We assume without any loss of generality 6 > D. Then

<y f L)Y Tocsausyo Lu(0)cis A g Sauss (Wl )

i€40ZNAS, s wey
per By stationarity of IP’ per WL this is
S Z J. (per),L 7/) ZﬂfiGSausb(w)llw(o)e/\%|Sau55(w)|a.
z€4bZdﬁAC wey

Dir We directly bound the expression from (7) by replacing the configuration by its periodized
version

S Z J. D1r dV Z ]lOeSausb (0)ei+A4élsaUS5(W)|a

iC4ZANAS, WEY (per)L
where we remind y(per),L = UkeZd(y + Lk).

If y is distributed along IP’ , then the configuration y(per),r has a stationary distribution.
Thus

< Z, J D1r d)/ Z ]l—zeSausb (o)eA%ISausé(wn“

i€40ZANAS, s WEY(per),L
a
< Z f D1r ZZ]l—leSauso J+Lk Lw(0)+LkeA 4, [Sauss(w)|™.
i€46ZINAS s kezdwey

Under FEFDI;))’L, the set {w(0), w € y} is included inside A,;. Plus, we know A5 € A;. So
the condition w(0) + Lk € A5 allows us to restrict the sum to k € {—1;0;1}%

< Z J. D1r Z Zﬂ—zeSausb +Lk11 ()+LkeA4o—|SaUS5(W)|a.

i€40ZANAS,_ys ~1;0;1}4 Wey
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In all cases, we can bound the expression from (7) by

—~(FK
Z JPEbC)TL(dV) Z Z]l—ieSausa(w)JrLk]lw(O)e/\%—Lklsausé(W”a-

1€40ZANAS,_ys ke{-1;0;1}4 WeY
If —i € Sauss(w) + Lk then
(=i + Aug) N [Sauss(w) + Lk]| = ;6

where ¢, is the volume of the d-dimensional unit ball. We deduce

1 .
Y ek S g5 ) i+ Ag) 0 [Sauss(w) + LK]
i€40ZANAS, s 17" jeaszanAc

m—46
1
< W‘Afnigé N [Sauss(w) + Lk]‘.

Therefore

=(FK
JPEbCfL(dy) Y Twnasolw(open, [Sauss(w)l®

wey
1 ~(FK
<— ) fpfbc)fL(dy) YA g N[Sauss(w) + Lk]| - Saus, (w)|
17 kel-10;1)¢ weProjen . 1i(7)
1 (FK) 1
<o L f Ploor@r) ) L(ag i tirsausiwieo - 1S2uss (W)l
d ke{-1;0;1)4 WEPTojep o 1x(Y)
1 S(FK 1
< c.od Z J\P(bc)?L(dy) Z 11|Sausé(w)|>cd,16d*1(m—%) : |Sausé(w)| .
d ke(-1;0;1)4 WEProjep o 1x(7)

Thanks to proposition 3.5.4, this is enough to conclude on the first part of the proposition.
Infinite volume is managed in a similar way. O

Proposition 3.6.3 — The (FK) model is time-reversal invariant. More precisely, for any measurable

f: ConfFK) 5 R+,
FK (FK) (FK)
f foR! )dIP’(bC)’L = f fdP

where we define the time-reversal operator as

Conff®) 5  Conf(FK)

REFE): [0;8]) — R
4 — { s — w(/ﬂ—s)’wey}'

PROOF (PROPOSITION 3.6.3) -
One just needs to replace o € S(£) by 0! in the definition of ]P)Ebc))L'
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We can now prove the second part of theorem 1.3.12, that is, for any f : Conff — R n"-

regular and N"-tame,
. S(FK) (FK)
lim J fdBES), = J. fdpls)

L—+c0

PROOF (THEOREM 1.3.12, 2/2)

Let £,4,0 > 0, @ € [0;1[ and a compact A. We denote D = sup,,l|x||. According to proposi-
tion 3.5.4 and proposition 3.6.1, there exists my > 1 such that for any L > 4max(D, ) multiple
of r,

JPEbC)TL(dV) Thresh, sty )0 [Saus, ()" | < 5

wey, w(0)eA

=(FK
prbc)?L(dy) Thresh,, bdlmo)a[ Y [Sauss(w)l®
wey, w(0)eA

&
S3

~(FK
JPEbC)TL(dV) Z Liv(ojen,, [Sauss(w)|* <&

WEePToj A (7)

where c;_; is the volume of the d — 1 dimensional unit ball.
For any x1...x, > 0, it is clear that for any b > 0

n n
Z]lxi>b x; < Threshb[in].
i=1

= i=1

Then
=(FK
Jpzbc)) (dV) Z ]l|5aus(>(w)|>c,171 5d71m0[|8au55(w)|a+1 + |SaUS5(W)|a] <e
wey, w(0)eA
=(FK
JPEbC)TL(dV) Z ]lW(O)EAmO [Sauss(w)|® < e.
WEPToj(y)
Similarly,
FK
f Pibc; (dy) Z ﬂlSausa<w>|>cd,l5d—1mO[ISaus(s(W)I““ + ISausé(w)|“] <e
wey, w(0)eA
FK
JPEbc)?m(dV) Z ]IW(O)EAmO [Sausg(w)|* < e.
WEPTO0j A ()

Recursively, according to proposition 3.6.1 again, there exists a family of positive m;, 1 <i < n
such that for any 7, for any L > 0 multiple of r,

(FK) 1 .
Jp(bc),L(dV) Z T iSaus, (w)[>cq_s o0-1m; 1SaUSs (W) 70 < e
wey, W(O)eAmo+u+mi,1
(FK) 1 .
JP(bc)m(dw Z T iSaus; (w)l>cp 60-1m; 1Sauss (W) < e

wey, W(O)eAmo+u+m,~,1
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For any y € ConfPerm™®), we define

Y= {w € Proij(y)/w C AmO}

W CApyytimy

Vi =W € Projrua(y) /EIO <k<mn, o(FK)(y,-)_’f(w) NA=0
Vo<i<k, o™ (y, ) (w)nA=0
W C Ay pimy
Vo i= weProjN,A(y)/30<k<n, G(FK)()/,-)k(w)ﬂA:t(Z)

vo<i<k, o (y, ) (w)nA=0
Y= VUV UV

The function y — f(y,,) is €-local relatively to the compact A, ,..,,, and is e-tame rela-
. . . 0 n
tively to the same compact. Therefore, according to the first part of theorem 1.3.12,

Jim Jf V) By (d7) = jf (V) Pbe),o0(d7)-
—+00
Let y € ConfPerm¥¥. By N""-regularity,
Af)=fm < ) Ly, Saus,w)*+ ) Ty, [Sauss(w)l®
wePT0jcp () WEPT0j A ()

1
+ Z ]lwe;/m]lg(FK)(%.)*l (w)eym|5au85(w)|a+

WEPTojn A ()

Y ey, Lo ey, [Sauss (W)

WEPTO0j 1A (Y)
Let w € Proj,(y)- If w & y,,, then w ¢ A, , and either w(0) is in A either it is not
Y L, Saus(WI < ) dyea, [Saus,(w)T ) TiygjealSausy(w)l”.
weProj A () wePTojca(y) wEePT0j A ()
Letwe Projmm()/) such that w ¢ y,,, and G(FK)(y,-)_l(w) € V-
Since w € Proju, (), there exists k € [1;7] such that
Ky, 7 ¥ w)ynaz0 and Vvo<i<k, o™y, ) (w)nAa=0.

Since w & y,,,, by definition,
wd¢ Am0+~~~+mk~

Since G(FK)(y,-)fl(w) € ¥m, We know

-1
[O'(FK)(V’ )] (w)e Am0+---+mk,1-
We deduce
Z Ly, Loy, (e, S2Uso (W)™

weProjrﬂA(y)

n

< _ a+1.
= Z ZILW(ZArn0+~~+nzk and C’(FK)(%') l(W)CAmOJr»»erk,l |Saus(5(w)|
weProjmﬁA(y) k=1
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We take care of the term in Proju()) similarly.

Then
1
aAf)=fom < ) Luea, [Sauss (W)™ + SaussW)I* [+ ) Ten,, [Sausy (W)l
WEPTojcp () WEPTO0j A ()
n
a+1
DD Tugny o and o Ay 1S3USH(W)]
weProjrﬁA(y) k=1
n
+1
+ Z Z]lw(zAmm...ﬂnk and oK) (9, W)CA g 4oimy_, |Sauss(w)|" .
WeProj i (7) k=1
Thus
1
alf ) = Frm| € ) e, [ISaussw)* +Saussw)* ]+ ) Tiojen,, [Sauss(w)l®
“"’ZOE)Z/A WEPT0j A ()
n
1
£ ) Lgagy i, [Sauss (W)
k=1 wEy

W(0)EA G+t _q

n

1

+ E E LT N— |Saus(w)|" .
k=1

wey
W(B)EA MG+t my_q

The conditions in the indicator functions can be weakened as

alf D) = FOm] € ) Disausy(oolze o-1m [1Sauss (W) +[Saus,(w)|* ]

wey
w(0)eA

a
+ Z Ly(0)e,, [Sauss(w)l
WEPTO0j A ()
n

a+1

+ Z Z Lisauss(w)|=cq_y 64-1 my [SaUS5(W)|
k=1 wEy

W(0)EA g bty

n
a+1
+ Z Z Lisauss (w)|>cq 641 my [SaUS5(W)[" .
k=1

wey
W(B)EA MG+ +my_q

Given the definitions of my...m,, the three first terms are uniformly small under ﬁEES)L’ L>

0 and PEES)W. The fourth term is managed thanks to time-reversal invariance (see proposi-
tion 3.6.3)

o 1
Jp(bc),L(dV) Z ]l|Saus(>(w)|>cd,l(Sd*lmk|Sausc‘5("v)|wr
wey

W(B)EAm G+ +my_y

=l a+l
Fipeyr(dy) Z Lisaus, (w)[>cq_ 041y [Sauss (W)
wey
W(0)eA Mg+ tmmp_q
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We conclude

lim Jf d)/ Jf dy)| < 2(2‘»:+2n<€)+0(1). O

L—>+o0 L—+co 4

3.7 Technical lemmas

)

We will now prove any limiting model ]P’ -, to be Gibbs, that is to say, to be solution of DLR

equations. From now on, we will be assummg all hypotheses I to VI.

Most of the technicalities in this section are due to the fact we are stating DLR equations
over trajectories rather than points. Indeed, cutting down the configuration into interior and
exterior configurations respectively to some compact A is not as straightforward as for points.

FK)

Firstly, we make use below of hypothesis V and VI to justify H, ("X i well defined and write

the Hamiltonian H(( )) as a sum of 2 distinct terms. Concerning stationarity, its necessity is

linked to the empirical field. The probability ]P’ | can be seen as sampling a configuration

b c))L with the extra randomness of not knowmg where is the origin in A;. To write DLR

equations in infinite volume, we need some coherence between the distribution of the empirical
field and the original model, and stationarity will ensure that sampling a configuration inside
a compact A is the same as sampling a configuration inside A + v, then shifting it by —v. This is
intuitive, but not guaranteed without stationarity.

along IP’(

PROOF (REMARK 1.4.2)
Let & € Conf_.,. We denote N = #[& N (A + Ag)].

Case1 Y& eConf., EN(A+AR)=E"N(A+AR) = U(E'NAS) =+o0

Then the equality defining U, from hypothesis V becomes +co = +c0. In other words, we
can assume without any loss of generality that Up[E N (A + ARg)]=CaN-

Case 2 3&’ e Conf., EN(A+AR)=&"N(A+Ag)and U(E' NA) < +00
Then for any such &’, the equality defining Uy from hypothesis V becomes

UalEN(A+AR)]=U(E)-U(E' NAY)
Furthermore, according to hypothesis VI,

U(E)-UE"NAS) = Can- 0

Lemma 3.7.1 — Let A C RY be a compact be such that A+ Ag C Ap. Let y € Conf™™ pe a finite
configuration. Then

sup #[{ , WE y(bc),L}ﬂ(A+AR)] < +o00.

s€[0;8]
Furthermore

( (FK)
H(bc),L(V) :HA (V(bc),L) + HAC,(bC),L(V)
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where

B
FK c
HLC,(I),C),L()/) = L U(bc),L[{W(S)r weyin (A(bc),L) ]dS

with
Apin,L =A and Aper)L = U (A + Lk).
kezd

ProOOF (LEMMA 3.7.1)
Let us quickly establish the first part of the lemma for each boundary condition.

Dir The configuration y(pj) is finite so the conclusion is trivial.

per The bridges of y are continuous trajectories, so there exists M > 0 such that the ball cen-
tered in 0 with radius M contains the whole y. It is then clear only finitely many bridges
of Y(per),L ever intersect A+ Ap.

Let & € Conf_,.
Dir Since A C A, by hypothesis V, it is clear that
Upir), (&) = Ua[E N (A + AR)]+ Upir), (€ NA°).
where we remind that R is the range of the interaction.

per By definition,

. 1
U(per),L(ff) = Kli)l}rloo m U(ff(per),L n AKL)-
By applying hypothesis V successively for the compacts A + Lk for all k € Z? such that
Iklloo < K,
U(é(per),L N AKL) = Z UA+Lk[5(per),L NAgr N (A+Lk+ AR)]

ke, Kl <K
+ U|&(pen,. N Ak N ﬂ (A +Lk)|.
kezd, [IKlo <K

Since for all k € Z4, ||k||., < K we have A + Ag + Lk C Ag, this simplifies as

Z UA+Lk[<f(per),L N(A+Lk+ AR)] +U
keZa, ||kl <K

E(per),L N ﬂ (A+Lk)" N Ak
kezAd

By stationarity of the interaction, this equals

(2K + 1) Up[€pen, . 0 (A+ AR)] + Ul Epen,s 0 [ ) (A+ LK) N Agy

kezd
=(2K + 1) Ua[E(pery 2 N (A + A)]+ U{[€pen, N (Apen,) | N Ak
=(2K + 1)d UA[‘E(per),L N (A + AR)] + U{[‘S N (A(per),L )C](per),L N AKL}-
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Therefore c
U(per),L(é) = UA[é(per),L N (A + AR)] + U(per),L[é N (A(per),L) ]

So in both boundary conditions,

Ulpe)L(&) = UA[é(bc),L N(A+ AR)] + U(bc),L[é N (A(bc),L)c]-

We conclude by applying this equality over sets {w(s), w € ¥} and integrate it over s € [0; §]. O

K)

Then, we need to be able to cut down the permutation part of ]P’Eic)’L

into the shuffling of
interior points and exterior points respectively.

Lemma 3.7.2 — Let X be a finite set and Y C X. For any function f : S(X) - R,

) fe=) ) )3 )3 Sl uo)

oeS(X) Z1CY ZrCX\Y ginteS(Y—Z,U(Y\Z;)) 0XteS(X\Y—>Z;UX\(Z,UY))

where 0™ U 0™ is a notation for the permutation induced on the whole set X by the interior (rela-
tively to Y) bijection o™ and the exterior bijection o®**.

PROOF (LEMMA 3.7.2)
For any Z,Z, C X\ 'Y, we denote

Sx,v,z,,2, = {a €S(X) / 2 z Zg)\\l;) Ny }

Then we can define the natural map

SX,Y,ZI,ZZ —_—> S(Y—)ZzU(Y\Zl))XS(X\YﬁzlUX\(ZzUY))

PX,v,2,,2, o N ( oint Gext)
by
oint . Y — ZU(Y\Z) and ot X\Y — Z;UX\(Z,UY)
x +— o(x) X —  o(x).

This map turns out to be bijective. Furthermore, the sets Sy )y 7, 7, for Z; C Y and Z, C X\ Y
form a partition of S(X). O

We need one last easy result about the sampling of subsets from a Poisson point process.

Lemma 3.7.3 — For any measurable f : Confioo — R,

[ s Y reere = [ maen maen) fie o)
[ger3
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PRrROOF (LEMMA 3.7.3)
For any & € Conf_,,

+00

Zf(C,E\C)=Z Z f(C,E\T)
ccé n=0 CC&, #C

= F0.6)+ lZ... Y flrexd &\ )

n!
n=1 x1€&  x,€&\{x1..x,1}

By Mecke formula (see Theorem 4.1 p. 27 in [LP17]),
s reevo - [ e Z AR !
CCE "

_ jm(de) A (dC) £(C,€). 0

3.8 DLR equations

Now, we make use of the previous lemmas to introduce an auxiliary measure which takes care
of all the exterior sampling (relatively to a compact A).

Definition 3.8.1 — We define the measure Q5 1 over ConfFX) by stating the following equality for
any measurable f : Conff®) — R*

[ 10 @astari= e [ 11y, @y gy ebeeen 3

C2CE 0¥ eS(E—C1U(ENL,))
gz _y
J [® Wx,a<x>,<bc>,L](dV) e

A%, (be), () f(V(bC)rL)

xe&
where g p g
b L = Weo(, oL ™ Wro(-

. s FK) . .
In the following proposition, we decompose the formula of szc))L into an exterior and an
interior sampling.

Proposition 3.8.2 (non-normalized DLR equations) — Let A C RY bea compact. Let f : Conf¥

R be a bounded function, €-local relatively to some compact Ag. We assume (A+ Ag)UAg C Ap. Then

JH,\L(dé)eﬁ"#‘g Z J.[(X) ]dV) Huoa) F(YoorL) =

oeS(&) xe&

f@A,L(dwjnA(doeﬂ”#C > J Q) When [ e g uyp

‘”‘GS(ay CeayX“tUC) xe&y‘A" uc

61

)



PROOF (PROPOSITION 3.8.2)
Since A fC Ap,

JHA (d&) ePr#e Z J[(X) ] dy)e Hipar ) f(V(bc),L)

oeS(& xe&
(FK)
J Ty, (d€) e Y~ J [® ]dﬂ Hear® f(y)
oeS(& xeé&

Since A C A, we rewrite the measure over Brownian bridges as

A A -HY)

fruasoer 2T Ei@nEfoa( @ imafone S s
oeS(& CCE\ xeC x€&\C

We can restrict the summation over subsets of & to subsets of 4 =& NA

:JHAL\A(déAC) ITA(dEp) ePr#(EacUis) Z
CCEN 0€S(EpacUE)

A (ZA
@utifan| @ wihuufan e o sy
According to lemma 3.7.3 this equals

x€C x€EAcUEANC

—elAl JHAL\A(déAC) HA(dég) I1,(dQ) eﬂﬂ#(éAcUE'AUC) Z

0€S(EncUELUT)
cA zA )

f{@wf,oix)](d”) & Wisimmor [dr)e a1 £(y0 )

xeC XEEACUEA

=elAl JHAL(d’S) T1A(dC) ePH#(EV0) Z
0€S(EUC)
A A ~HY

J{(X) Weato [® Wet ] (dy) e el £ 0 y)

X€C xe&

According to lemma 3.7.2 this equals

= {11 @) gy B YT Yy y

C1EC 6EE oiMteS(C—T,UL\E) o eS(E-C1UENE,)
[ [@

xeC

g,
[® Wﬁ oS ,L](dy) e w0 £ uy)

xe&
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According to lemma 3.7.3 again, this equals

=8 [ Tl (d6) TTa(C') Ty #ECe) 5 ) Yy

C2E¢8 oiMteS(C U’ —0UL) o eS(E—T1U(E\LL))
A
| [ ® Wi, )](dm

XEClUC’

ZA HS (
QW M](dw ot @) £ U y). (8)

xeé&

Since f is €-local relatively to Ay C Ap, we have

finuy)= f('7 U V(bc),L)-

Let 1,y € Conff® be finite configurations. We assume 7 is only made up of bridges included
in A. According to lemma 3.7.1,

(FK) 2

1(mUy)=H, [(’7 U 7/)(bc),L] + ng((l))c),L(q uy)
/5 p c
:fo UA[{ s (MUY o), } (A+/\R)]ds+f0 U(bc)’L[{w(s), wenUy}ﬂ(A(bc),L) ]ds

B c
:f Ua[{w(s), 11U ¥ oL} 0 (A"'AR)]dS"'L Upey L[ (w(s), w € 7} 0 (AL ) |ds

(FK (FK)
= Hy (’7U7/(bc), )+HA° o)L (V):

H

Then equation (8) becomes

=e [ 11, (46) Ty(de) Ta(dcy ePesea) 3y Y

CrCE alntGS(QUC,"CzUC/) €Xt€S(§*>(1U(§\(2))
B,CA B.zA _H(FK)(qu(bc)’L)_H(FCK)C )
J[ @( i o )](dq) ®W ox(x ),(bC),L](dV)e ! Abat f(’?UV(bc),L).
xXe(q ’

xe&

By definition of the measure Q4 1, this equals

- [ eastdy) [ Matacy eh >

mteS(aylAnucf_)ayoutUc)

(FK)
&) Wi, [@m e fuy).
xedyinur’ o
We have Q, ; almost everywhere the equality y = ye"t which is enough to conclude. O

We make use of proposition 3.8.2 to prove the probability P(AFK) (- |7/) is well defined almost
surely.




PROOF (LEMMA-DEFINITION 1.4.4)
Let L € rN such that A+ Ag CAj.

According to the first part of lemma 3.7.1 and the definition of the measure Q4 1, it is clear
that SUPe(0;p] #[{w(s), w e y} N (A + Ag)] is finite Q4 ; almost everywhere. So the quantity Z,(y)
is well defined Q4 ; almost everywhere.

We know from proposition 3.8.2 that

Z(be),L = JZA(V) Qa,L(dy) < +oo.

We also know from lemma 3.1.2 that Z,); < +co. Therefore Z,(y) is finite Q4 ; almost every-
where. Then

FK . .
LS [2a)is well defined] = 2 [ 1) vt etned Za() @a(dp) = 1.

(be),L
Similarly,
(FK) 1
Bloa[2a(y) = +eol = 7022 fﬂm)m Za(7) Qar(dy)
=+00-Qp[ZA(y) = +00] = 0.
and
SN P | 1 7 dv) =
oy L[Zaly)=0]= ool Za(y)=0 Za(y) Qa,L(dy) = 0.

In infinite volume, since Zx(y) is N°%-local,
PO 17, (1) is well defined, positive and fini
(bc),m[ A(y) is well defined, positive and finite]

:Llirpmﬁzig?L[ZA(y) is well defined, positive and finite]

1
:Llirpm — LL dv ]P’Eig?L[ZA()/ +v) is well defined, positive and finite]
By stationarity of the interaction, we have Zx(y +v) = Zx_,(¥) so

P:ES?N[Z A(y) is well defined, positive and finite]

1
T . dv PEES?L[ZA,V()/) is well defined, positive and finite] + o(1)
L
1 K)

LTl dv ch) [Za—v(y) is well defined, positive and finite] +o(1)
—te A-vCAL !

=1 1
L—+o0 +0( )

from the finite volume property we proved beforehand. O

We establish the DLR equations in the following last proof, mainly based of proposition 3.8.2
and the second part of theorem 1.3.12.




PROOF (THEOREM 1.4.6)
Let f : Conff — R be bounded and €-local relatively to some compact Ag.
We assume (A + Ag)UAs C Ar. According to proposition 3.8.2,

]. ex
[ roneSuan = 5 [ @uutar) 2 [ B slrorie)

According to proposition 3.8.2 again,

ff(y) PX) (dy) = JPEEISTL(dV>fPfK)<dWIV> Fruse)

We call this equality the DLR equations in finite volume.
We establish the DLR equations for the empirical field

—~(FK FK X
JPEbCﬁL(dV)JP(A Ndnly) F(ru )

1 f J (FK) J (FK) -
= — dv | P (dy) | P (dnyly +v) U(y+v)5y [+o(1).
Loteo L4 [(A+Ag)UAS |-veA, (be),L\4Y A ’7}7/ f[’? YTVIA ]

By stationarity of the interaction, if # is distributed along IP(AFK)( . }y +v) then 1 —v is distributed
along IP(AF_I?( . b/). Therefore

1
= _d dv J
Lotoo LT J[(A+AR)UAf]-vEA,

1 (FK) (FK) ¢
S va]P’ B )J]P’ “dnly) fl(nuret ) +v]+o(1).
L—+oo L4 [(A+AR)UAf]-vEAL be) L1 A-v 17‘)/ f[(” ra V) ]

B [ PRy sl 000 o)

By the DLR equations in finite volume for the compact A —v and the function f(-+v),

-1 (EK)
»(FK)
L—>:+<>0Jf(7/) IED(bc),L(dV) + 0(1)-

Since the function f is €-local and bounded,

~

tim [ £0) Fgshtan) = [ 10 PES (9

L—+c0
We denote
FK ex
A= [ E @l £(y095°).

The function f, is N%-local relatively to the compact Af U (A + Ag) and bounded, thus

tim [ 00 Bt = [ 00 B (). (10)

L—+c0

According to the DLR equations for the empirical field and equations (9) and (10),

[ 2078 tan) = [ o S
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We just proved the equality of measures ngw and E — IPEES?m(dy) fIP’(AFK)(dnb/) ]lE(n Uy

over the ring of sets of e-local events. So by Carathéodory’s extension theorem, the two mea-
sures coincide. O

A  Wiener sausage

Definition A.o.1 — Let T,0 > 0. Let w = (wy);>( be a d dimensional Brownian motion. We denote
the Wiener sausage of thickness 6 > 0 and length T > 0 the set

Sausy 7() = {x e R? [3t € [0;T], |lx— wyl| < 5}
and its volume as }Sausé,T(a))|.

Theorem A.o.2
Let T,6> 0. Let w = (wy);» be a d dimensional Brownian motion. There exists ¢ > 0 such that

E |:e£|5aus(>,T(w)|2:| < +oo.

The proof of this theorem is heavily based on the proof from [Szn87] of finite exponential
moments for the Wiener sausage.

Proor =0
We define the sequence of stopping times (7;);cy by {: - inf{t >0 / ||w o H . 6}
i+1 - — =z T+t T Wil o

and the random variable Nt := inf{n eN / Y Ti> T}.
It is clear that

T Nr—1[ 7o+ +Tj41 Nr—1Ttg++Ti41 Nr-1

Saus (@) = JB@,o)c | J| [ B(wt,é)}g U (@ +A2)| S | (i +Ag)
t=0 i=0 Lt=T1p++T; 1=0 Lt=To+-+T; =0

thus

[Sauss, r(@)|” < N2(48).
For any k > 0 and A > 0, by Markov inequality,

k
P(Nr = k) = P[Zﬁ < T] < e”]E(e”‘Zf:I Ti)
i=1

Since the stopping times 7;, i > 1 are iid, we deduce

P(Np > k) < M TE(e )"
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For any non-negative random variable X and A > 0,

E(e ") = AJM e ™1 -P(X > x)]dx.
0

Furthermore, if we denote as w!’), 1 <i < d the d spatial components of the Brownian motion
w, then we can write

T; = min T{i) where T{i) = inf{t =0 / |w§i)| > 6}.
1<i<d

Therefore

+00 +00

dx.

E(e")= /\J

. e [1-P(; >x)]dx = )\J

d
e’\x[l — P(Til) > x)
0

By concavity, it is clear that Vp >0, 1 - p? <d(1-p)so

]E(e*’\r1 ) < d/\J

0

+00

(1)
e*’\x[l —P(Til) > x)] dx < dIE(e*”\Tl )
According to the Handbook of Brownian Motion - Facts and Formulae [BSo2] (3.0.1 p218),

E(e_’”i])) -1 < 2e79V21,

cosh(é\/ﬁ) A

For A = ¢k?, we get
P(Ny = k) < e£TF (2d)ke= V20K

We conclude

+00 +00
E[et‘lSausb‘T(w)lz] < E(eg(z;a)sz;) < Zeg<45)2dk2P(NT > k)< 265(46)2dkzeeTk2(2d)ke—\/56k2
k=1 k=1
which converges for ¢ > 0 small enough. O
B Notation table
We order symbols in an approximate alphabetical order.
Symbol Definition Page
A Superstability constant (see hypothesis II) 4
B Superstability constant (see hypothesis II) 4

p Inverse temperature -




Symbol Definition Page
Ceoo o-algebra over Conf_, (see definition 1.1.1)
CFK) o-algebra over Conff®) (see definition 1.2.2)
c(mp) o-algebra over Conf™P) (see definition 2.3.1) 23
C((ECS))’L o-algebra over ConfzgC . (see definition 2.2.3) 21
C((Ir)lc))’L o-algebra over Confg)lc)) | (see definition 2.1.4) 18
Conf_, {é cRRY /#5 < +oo} 3
Conf(F}) {7/ cQp / y is locally finite for 11)/5} 6
Conf(™mP) {7/ (X, Pres thyey W) yeg C RY x 74 x[0;1] x Q; /E c R? loc. ﬁnite} 23
(ps)
Conf(gz)’L {17 C Loop, bc L / #n < +oo} 21
1
C nfErbc))’L nc Loop bc /#17 < +oo} 18
Conf) nC Loop / 1 is locally finite in UJ } (see remark 2.1.10) 19
CoanuthErbncF;’)L {7/ € Conf(™P) /V x,pu,w) €y, N ()/,x + rp) > 1} 23
Coanuthg,np) {7/ € Conf(™p) /V x,p,u w) €y, N, (y,x + rp) > 1} 40
Coanermf{)rg)L VAS Coanuthf Vyey, Alxey, T (be),L [ (7/, )] T (be),L (y)} 23
Coanerrng?p) VAS CoanuthLo ) Yy e )'/, dlx e 7'/, aéomp)()/,x) = y} 40
ConfPermfX) {7/ € ConflFK y is permutation- w1se} 6
=]
FK)«—
Coanermgz;’L (( )qo((scs))’L) (Coanerm(FK)) 22
-1
r FK)«(rl
Coanermzblc))’L ( ( )(p(i:C;’L) (Coanerm(FK)) 18
8)/“‘ See lemma-definition 1.4.4 14
dyR™ See lemma-definition 1.4.4 14
y b (o p,1,0) €7} 23
V(bo), YDin)L =Y and Y(per) L := Ukeza (y + Lk) 7
gt wey/waal 14
R I = [F Uy liw(s), w e y}]ds 6
(be),L V= Jo Pibe)L P WEY
H((Ir)rc1 f))L Hamiltonian in (mp) framework (see lemma-definition 2.3.4) 25
H((gcs)) L Hamiltonian in (ps) framework (see definition 2.2.4) 22
1 .
H((;c))’L 17|—>J0 LHw(Bj+s), 0<j<l(w), wen}lds 18
FK
Hi ) yr—>fo UA[w(s,wey}]ds 14
I(:|) See definition 3.2.1 31
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Symbol Definition Page
l Length of a loop (see definition 2.1.2 and definition 2.2.1) -
Ar [-L/2;L/2[ 4
Leb@ d dimensional Lebesgue measure 24
Lo (tmOt) Subset of continuous trajectories R — R? (see definition 2.1.1) 16
Lo 2{)2())1) Space of rooted loops (see definition 2.1.2) 17
Loop e 1 Quotient space (see definition 2.2.1) 21
U Chemical potential -
Niu(7r) 2o #{iponiz+A0)] 23
Ngo(7'/,-) zn—>#[)°/ﬂ(z+Ar)] 40
v Probability measure over Z¢ such that ¥Yp € Z4, v(p) > 0 24
Q, Set of continuous [0;¢] — RY 5
(FK)%E((SCS))L Transition map from (ps) to (FK) (see definition 2.2.6) 22
(FK)(E(SCI; L Transition map from (rl) to (FK) (see definition 2.1.8) 18
(mp);(fcl())L Transition map from (FK) to (mp) (see definition 2.3.2) 24
(pS);((I;I;)L Transition map from (FK) to (ps) (see definition 2.2.6) 22
(rl)(q_o((isc)),L Transition map from (ps) to (rl) (see definition 2.2.4) 22
(FK)?)(:IP) Transition map from (mp) to (FK) in infinite volume (see def. 3.4.2) 41
(FK)(;D(:l) Transition map from (rl) to (FK) in infinite volume (see def. 2.1.11) 19
T (be) L See definition 2.2.1 21
[Ty, Poisson point process over A; with intensity 1 7
H(me) Poisson process over Ay X 7% x[0;1]x Q) (see definition 2.3.3) 24
HE{:;L Poisson process with intensity measure Wibo)L 21
HE;IC)’L Poisson process with intensity measure W((gg)o 9 21
P:ES)L Probability measure over Conf(* K) (see lemma-definition 1.3.3) 7
P:&I;)L Probability measure over Conf(™P) (see lemma-definition 2.3.4) 25
P:EE;L Probability measure over Conf:gz; (see lemma-definition 2.2.5) 22
P:;lc))’L Probability measure over Confzgc) | (see lemma-definition 2.1.7) 18
P, [FdPpn = A V[ F(y+v) P | (dy) for (xx)=(FK), (mp) or (rl) 8
IPEE)C())’OO Infinite volume (xx) model (see theorems 1.3.12, 2.3.9 and 2.1.15) -
IED(AFK)(-|)/) Conditional measure over Conf(X) (see lemma-definition 1.4.4) 14




Symbol Definition Page

Proj,p Projection map over Conf X, for ? being €, N, ... (see def. 1.3.6) 8
Qar Measure over Conf("K) (see definition 3.8.1) 61

r Superstability constant (see hypothesis II) 4

R Range of the interaction U (see hypothesis V) 12
R0 y = fsow(p-s), wey) 54
S(X) Set of permutations over X 7
S(X—=Y) Set of bijections from X to Y 14
U(FK)()/, ) Natural permutation over y € ConfPerm™¥) (see definition 1.2.3) 6
G((QISE)L(V") Encoded permutation in finite volume (see definition 2.3.1) 23
aéomp)()/, ) Encoded permutation in infinite volume (see definition 3.4.1) 40
Ts(ps) - {{w(-+s), wew), wen} 23
Thresh,, X x-T1ysy, 32
U Conf_,, & RU {+o0} 4
Ulbe),L Adaptation of the interaction in (bc) (see definition 1.1.3) 4
Un Local interaction (see hypothesis V) 12
W;‘,y Wiener measure over Brownian bridges (see definition 1.2.1) 5
wh WL (dw) i= Toyca WE, (dw) 14
Wy, (bo)L Wy, iny = Way and Weo oo p = Ykezd Wy 5
Cotbor Weotawer ™ Wea 61
Wféﬁfi) ) A, 94X e;i Wf,i,(bc),L 18
W(bc),L Quotient measure (see lemma-definition 2.2.2) 21
W%),o Wol,o/wol,o(Ql ) 24
Wy Borelian o-algebra over (), associated to the uniform norm 5
W(%S;), tL) o-algebra over LoopErb(;(;tL) (see lemma-definition 2.1.3) 17
Wibe),L o-algebra over Loop o)1 (see lemma-definition 2.2.2) 21
W, Topology over (), associated to the uniform norm 5
ll)g;;(;tg Topology over Loopzlr)i(;tL) (see lemma-definition 2.1.3) 17
Wipe),L Topology over Loop )1 (see lemma-definition 2.2.2) 21
Z(be),L Partition function (see lemma-definition 1.3.3) 7
ZA(y) Local partition function (see lemma-definition 1.4.4) 14
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