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Abstract 
Motivation: The molecular identity of a cell results from a complex interplay between heterogeneous molecular layers. Recent advances in 
single-cell sequencing technologies have opened the possibility to measure such molecular layers of regulation.
Results: Here, we present HuMMuS, a new method for inferring regulatory mechanisms from single-cell multi-omics data. Differently from the 
state-of-the-art, HuMMuS captures cooperation between biological macromolecules and can easily include additional layers of molecular regula
tion. We benchmarked HuMMuS with respect to the state-of-the-art on both paired and unpaired multi-omics datasets. Our results proved the 
improvements provided by HuMMuS in terms of transcription factor (TF) targets, TF binding motifs and regulatory regions prediction. Finally, 
once applied to snmC-seq, scATAC-seq and scRNA-seq data from mouse brain cortex, HuMMuS enabled to accurately cluster scRNA profiles 
and to identify potential driver TFs.
Availability and implementation: HuMMuS is available at https://github.com/cantinilab/HuMMuS.

1 Introduction
Cells within a multicellular organism are remarkably hetero
geneous, spanning many different molecular identities 
(Morris 2019). The molecular identity of a cell is the result of 
a complex interplay among different layers of molecular reg
ulation, all of which can vary because of intrinsic and extrin
sic factors. Recent advances in single-cell sequencing 
technologies have opened the possibility to measure such mo
lecular layers of regulation, a.k.a. omics, at the resolution of 
the single cell. Examples of omics data currently accessible at 
single-cell resolution are chromatin accessibility (scATAC), 
methylation (snmC), expression (scRNA) (Method of the 
Year 2019: Single-cell multimodal omics 2020). In addition, 
sequencing technologies providing the joint profiling of mul
tiple single-cell omics from the same cell have been developed 
(Mimitou et al. 2019, Lee et al. 2020). Examples of them are 
10xGenomics Multiome platform, jointly profiling transcrip
tome and chromatin accessibility from the same cell, and 
CITE-seq, simultaneously quantifying cell surface proteins 
and transcriptome within a single cell (Stoeckius et al. 2017). 
All these data provide the unprecedented opportunity to re
veal how different molecular layers interact through complex 
regulatory mechanisms to define cell identity.

Several methods, co-analysing single-cell omics data to 
elucidate the regulatory mechanisms that encode cellular 
identities, have been recently developed (Fleck et al. 2022, 
Jiang et al. 2022, Kartha et al. 2022, Skok Gibbs et al. 
2022, Bravo Gonz�alez-Blas et al. 2023, Kamimoto et al. 

2023, Ma et al. 2023). The output of these methods are 
Gene Regulatory Networks (GRNs), corresponding to 
graphs linking transcription factors (TFs) with their inferred 
target genes and/or peaks (Pratapa et al. 2020, Kang et al. 
2021, McCalla et al. 2023). The GRNs are obtained by all 
methods performing TF–peak–gene associations based on 
binding motif databases [e.g. JASPAR (Castro-Mondragon 
et al. 2022)], then filtered through scRNA and scATAC 
data analysis. All these methods ignore intra-omics cooper
ation between biological macromolecules, which is crucial 
in biology. Indeed, TFs can cooperate in the regulation of 
gene expression by forming dimers and multiple DNA 
regions can co-regulate the expression of the same gene. In 
addition, state-of-the-art methods only consider TF–gene 
interactions present in binding motifs databases and miss 
all those interactions that are not reported there. 
Furthermore, all these methods infer GRNs by integrating 
scRNA and scATAC data, thus ignoring all other comple
mentary layers of molecular regulation (e.g. methylation, 
proteome). Finally, many methods require either paired 
data, or perform cell pairing before GRN inference (Fleck 
et al. 2022, Jiang et al. 2022, Kartha et al. 2022, Ma et al. 
2023). This is a major limitation, as paired single-cell 
multi-omics data are still rare and performing cell pairing 
in dataset profiled from different cells forces a decrease in 
the size of one of the two datasets thus reducing the rich
ness of its information content.

Here, we introduce HeterogeneoUs Multilayers for MUlti- 
omics Single-cell data (HuMMuS), a flexible tool based on 
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Heterogeneous Multilayer Networks (HMLNs) to reconstruct 
regulatory mechanisms from multiple single-cell omics data. 
HuMMuS considers not only inter-omics interactions (e.g. 
peak–gene, TF-peak), as done by the state-of-the-art, but also 
intra-omics ones (e.g. peak–peak, gene–gene, TF–TF) thus 
allowing to capture cooperation between biological macromole
cules. This inclusion of intra-omics interactions allows 
HuMMuS to explore new TF–gene interactions not present in 
binding motif databases. In addition, HuMMuS is a flexible 
framework, that can be used both for paired and unpaired 
single-cell multi-omics data or easily extended to deal with addi
tional omics data, thus not limiting the regulatory mechanisms 
analysis to only scRNA and scATAC, as it is currently done in 
the state-of-the-art.

We extensively benchmarked HuMMuS with respect to the 
state-of-the-art on four independent datasets of scRNA and 
scATAC. This benchmarking included the prediction of TF 
targets, TF binding regions, regulatory regions, and the asso
ciation of its communities with known biological processes. 
Finally, by applying HuMMuS to unpaired scRNA, scATAC, 
and snmC data from mouse cortex, we showed that its GRN 
allows to accurately cluster scRNA profiles and to identify 
regulators relevant to mouse brain cortex.

HuMMuS is available at https://github.com/cantinilab/ 
HuMMuS as R package, together with a tutorial for its usage.

2 Materials and methods
2.1 HuMMuS a new tool for molecular mechanisms 
reconstruction from single-cell multi-omics data
We developed HeterogeneoUs Multilayers for MUlti-omics 
Single-cell data (HuMMuS), a new tool for regulatory mecha
nisms inference from single-cell multi-omics data (Fig. 1, 
https://github.com/cantinilab/HuMMuS).

HuMMuS is based on Heterogeneous Multilayer Networks 
(HMLNs). A HMLN is a network M ¼ ðVm;Em;

LÞ; m ¼ 1; . . . ;M, composed of M, layers each of them con
taining different nodes Vm and different intra-layer links 

Em � Vm�Vm. Nodes of different layers are connected by 
inter-layers links encoded in L (Kivel€a et al. 2014, Baptista et al. 
2022). As summarized in Fig. 1, we reconstruct HMLNs com
posed of three layers: The TF layer, containing unlinked TFs, 
the scATAC layer containing peak co-accessibility information 
inferred from scATAC data and the scRNA layer encoding tran
scriptional regulation inferred from scRNA data. TF interac
tions were not considered here to compare HuMMuS fairly 
with respect to the state-of-the-art. An additional version of 
HuMMuS, called HuMMuSþTF, is also considered in the fol
lowing to test the effect of TF–TF links on the performances. 
For all details on the layers’ construction see Supplementary 
Text. Of note, we here focused on this combination of omics 
data to not advantage HuMMuS by the additional information 
provided by other single-cell omics data. However, as the 
HMLN structure is flexible, HuMMuS can easily integrate 
other single-cell omics data, such as methylation (snmC) or Hi- 
C data, and additional information on known interactions, such 
as Protein-Protein interactions in the TF layer to capture TFs 
cooperativity. Once the HMLN is constructed, HuMMuS uses 
Random Walks with Restart (RWR) (Baptista et al. 2022) to 
mine the HMLN and extract different outputs: (i) the prediction 
of the targets of a TF, based on RWRs starting from each TF in 
the TF layer and exploring the full network until the scRNA 
layer; (ii) the prediction of the peaks bound by a given TF, based 
on RWRs starting from each TF in the TF layer and exploring 
the scATAC layer; (iii) the prediction of the regulatory regions 
(proximal and distal enhancers) associated to a given gene, 
based on RWRs starting in each gene of the scRNA layer and 
exploring the scATAC layer; (iv) the reconstruction of Gene 
Regulatory Networks (GRNs), based on RWRs starting in each 
gene of the scRNA layer and exploring the full network until 
the TF layer; (v) the extraction of communities in the GRN, 
reflecting tightly connected macromolecules in the HMLN fre
quently involved in the regulation of the same biological process 
or pathway (Barab�asi and Oltvai 2004). Of note, both the pre
diction of TF targets (output i) and the reconstruction of the 
GRNs (output iv), in principle lead to a TF–gene network. The 

Figure 1. Schematic view of HuMMuS workflow.
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choice of reconstructing GRNs by exploring the HMLN from 
genes to TFs is justified by the need of having a competition 
among different TFs in the regulation of a gene, as done in most 
of the GRN inference approaches (Pratapa et al. 2020, Kang 
et al. 2021, Jiang et al. 2022, Skok Gibbs et al. 2022, Fleck 
et al. 2022, Kartha et al. 2022, Bravo Gonz�alez-Blas et al. 2023, 
Kamimoto et al. 2023, Ma et al. 2023, McCalla et al. 2023). 
On the contrary, when predicting the targets of a TF, we want 
to treat each TF independently from the others and make genes 
compete among themselves.

For this reason, we obtain the output (i) by exploring the 
HMLN from TFs to genes. See Supplementary Table S1 and 
Supplementary Fig. S1 for a computational comparison be
tween the two approaches and methods for all details on the 
parameter choice for the RWR and the possible outputs.

Thanks to the use of a HMLN structure, HuMMuS has 
multiple advantages with respect to the state-of-the-art. First, 
it captures not only inter-omics interaction (e.g. peak–gene, 
TF-peak), as done by the state-of-the-art, but also intra-omics 
ones (e.g. peak–peak, gene–gene, TF–TF). This allows 
HuMMuS to capture cooperation between biological macro
molecules and use it to predict, e.g. TF–gene interactions not 
present in binding motifs databases. In addition, HuMMuS is 
a flexible framework, that can be used both for paired and 
unpaired single-cell multi-omics data or easily extended to 
deal with additional omics data, thus not limiting the regula
tory mechanisms analysis to only scRNA and scATAC, as it 
is currently done in the state-of-the-art.

In the following we extensively benchmark HuMMuS 
against SCENICþ, CellOracle and Pando (Fleck et al. 2022, 
Bravo Gonz�alez-Blas et al. 2023, Kamimoto et al. 2023), 
being the most famous published works in the field. 
Interestingly, CellOracle is the only existing method consider
ing some cooperation at the peaks level. In addition, we in
cluded GENIE3 (Huynh-Thu et al. 2010) in the benchmark 
as a baseline for performances when considering scRNA 
alone. All the benchmarking is performed on four test cases 
(see Supplementary Text and Supplementary Table S2): two 
datasets (called in the following Chen and Liu) of human 
Embryonic Stem Cells (hESCs), jointly profiled for scRNA 
and scATAC (i.e. paired data), and two unpaired scRNA and 
scATAC datasets of mouse Embryonic Stem Cells (mESCs) 
(called in the following Duren and Semrau). For details on 
HuMMuS layers structure in these four datasets see 
Supplementary Table S3. Of note, in Duren and Semrau, be
ing the data unpaired, the scRNA and scATAC information 
has been profiled from different cells all extracted from 
mESCs. These last two test cases thus allow to test the impact 
of cell pairing on the performances of the different methods. 
The choice of these four test cases is justified by the availabil
ity of ChIP-seq and TF perturbation experiments in hESCs 
and mESCs from McCalla et al. (2023). These additional 
data, already used in benchmarking works (McCalla et al. 
2023), allow indeed to build good ground truths for the 
different tests presented in the following sections.

3 Results
3.1 HuMMuS outperforms the state-of-the-art in TF 
target prediction
We first focused on benchmarking HuMMuS with respect to 
the state-of-the-art based on the quality of its TF targets pre
dictions. This analysis has been performed on the four test 

cases presented above, corresponding to scRNA and scATAC 
profiling of hESCs and mESCs. As ground truth of the TF- 
targets interactions we used the intersection between ChIP- 
seq and TF perturbations experiments, as done in (McCalla 
et al. 2023). This choice represents indeed the best estimation 
of TF targets we can get for real data, as it assures the pres
ence of a binding site for the TF on the promoter of the target 
gene and, at the same time, a downregulation of the target 
gene once the TF is knocked down/out.

As described in Fig. 2A, in each of the four test cases, 
HuMMuS and the other state-of-art algorithms have been in
dependently applied, a ranking of putative targets for each 
TF is then identified and compared with the ground truth de
scribed above. The ranking of putative gene targets for a TF 
is obtained for the state-of-the art methods as the list of genes 
linked to the TF. The genes are ordered according to the 
weight of their links. For HuMMuS instead, we perform a 
Random Walk with Restart (RWR) starting from each TF 
and going across all the HMLN, thus obtaining a ranking of 
putative target genes based on their closeness to the TF. The 
overlap for all methods with the ground truth is then ana
lyzed when cutting the ranking at different levels (3, 5, 10, 
15, 20, 30, 40, 50, 75, 100).

As shown in Fig. 2B, HuMMuS outperforms the state-of- 
the-art in all the four tested datasets at every threshold, ex
cept when focusing on the very top of the ranking (3–5 first 
inferred TF–gene links), where SCENICþ shows better per
formances. In addition, the performances of HuMMuS get 
further improved once including TF–TF interactions in the 
network (HuMMuSþTF). In Semrau the results of state-of- 
the-art methods are close to random, here represented with a 
black curve. Of note, even when pairing the cells in the two 
unpaired datasets, the performances observed for HuMMuS 
are not affected (see Supplementary Fig. S2). To then test 
whether the observed performances were driven by a sub
group of TFs or consistent for a high number of them, we 
computed the number of TFs having a significant number of 
targets in their top predicted targets (see Supplementary Text 
for details). As shown in Fig. 2C, overall, all methods get few 
TFs with a significant amount of correctly predicted targets. 
In this test too, HuMMuS gets the best performances in three 
out of four test cases. Taken together these two results sug
gest a high potential for HuMMuS in TF targets prediction.

3.2 HuMMuS outperforms the state-of-the-art in 
regulatory region identification
We then benchmarked HuMMuS with respect to the state-of- 
the-art based on known regulatory regions identification. 
This benchmark was realized in two steps: first, the ability to 
predict the peaks bound by a TF is tested; then, the quality of 
the regulatory regions (proximal and distal enhancers) pre
dicted for each gene is evaluated. As GENIE3 does not pro
vide any information on regulatory regions, it was excluded 
from this part of the benchmarking.

As shown in Fig. 3A, to test the quality of the peaks associ
ated with a TF, in HuMMuS we used RWRs from each TF as a 
proxy of the compatibility between a TF and peaks and filtered 
the obtained peak ranking at different levels (100%, 80%, 
60%, 20%). For SCENICþ, CellOracle and Pando instead, we 
considered the peaks retained by the model as associated with 
each TF (see Supplementary Text for details). In CellOracle dif
ferent peak co-accessibility correlation thresholds have been 
considered 0.05, 0.2, and 0.8, with the last being the default 
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threshold. We finally compared the predictions obtained by the 
various methods with the ground-truth composed of ChIP-seq 
experiments results on the biological system under analysis 
(mESCs and hESCs) from Hammal et al. (2022).

See Supplementary Text for further details on the analysis.
Overall, as shown in Supplementary Fig. S3A, HuMMuS 

identifies more peaks associated with a TF than alternative 
methods. This result is not surprising as, differently from the 
state-of-the-art, HuMMuS leverages all the peak layer 

without constraints neither on genomic windows nor on 
known TF motifs. This choice of considering TF-peak inter
actions outside of TF binding motif databases allows to in
clude interactions that are missing in such databases and 
situation where, due to cooperation between TFs (e.g. con
densates), there is a modification in the binding region (Guo 
and Gifford 2017, Kribelbauer et al. 2023). More interest
ingly, as shown in Fig. 3B, once checking the quality of the 
identified TF-peak associations based on F1 score, HuMMuS 

Figure 2. Transcription Factor (TF) targets prediction benchmarking. (A) schematic view of the performed benchmarking. (B) average number of correctly 
predicted targets per TF. (C) number of TFs having a significant amount of correctly predicted targets (Fisher’s exact test P-value <0.05). In (B and C) 
results for different methods are provided: HuMMuS þTF, HuMMuS, SCENICþ, Pando, CellOracle, GENIE3, and random.
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Figure 3. Regulatory regions benchmarking. (A) schematic view of the benchmarking performed for TF-peak associations. (B) F1 score of the intersection 
between the ground-truth TF-peak associations and those inferred by Pando, CellOracle, SCENICþ and HuMMuS; the 100%, 80%, 60%, 20% 
thresholds of HuMMuS correspond to the number of nodes retained from the predictions. For CellOracle instead, 0.05, 0.2, and 0.8 correspond to the 
correlation thresholds of the model, with 0.8 being the default one. (C) schematic view of the benchmarking performed for gene-peak associations. (D) 
F1 score of the intersection between the ground-truth gene-peak associations and those inferred by CellOracle, SCENICþ and HuMMuS. In (B, D) results 
for different methods are provided: HuMMuS, SCENICþ, Pando, CellOracle. The thresholds are the same as those of panel (B).
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outperforms the state-of-the-art in three out of four datasets 
and it performs comparably to CellOracle in the fourth data
set. Regarding the percentage of true positives 
(Supplementary Fig. S3B), HuMMuS and CellOracle are 
among the best performant methods in three out of four data
sets, once focusing on comparable numbers of tested predic
tions (1%–10% filtering of HuMMuS). On the other hand, 
SCENICþ is among the best performing methods in only one 
dataset out of four. Overall, these results suggest that consid
ering peak co-accessibility favorably helps reconstruction of 
TF-peak interactions.

We then focused on the regulatory regions associated with 
each gene. As shown in Fig. 3C, in HuMMuS, peaks are 
ranked based on the RWR starting from the gene. For 
CellOracle and SCENICþ instead, the model directly pro
vides a set of peaks associated to a gene. Regarding thresh
olding, HuMMuS and SCENICþ were filtered to have a 
comparable number of predictions (see Supplementary Text), 
while CellOracle was filtered with different correlation 
thresholds: 0.05, 0.2, and 0.8, with the last being the default 
one. The obtained predictions were finally compared with a 
ground truth composed of gene-regulatory regions associa
tions available from different databases (Visel et al. 2007, 
Forrest et al. 2014, Naville et al. 2015, Bai et al. 2020, 
Cl�ement et al. 2020, Gao and Qian 2020, Moore et al. 
2020). For all details on the analysis, see Supplementary 
Text. GENIE3 and Pando have been excluded from this 
analysis as they did not provide an output allowing for this 
type of evaluation.

As shown in Supplementary Fig. S4A, overall HuMMuS 
gets more enhancers associated with each gene. Again, this re
sult is not surprising given that the intrinsic structure of 
HuMMuS allows it to predict new peak–gene associations, 
without genomic windows constraints. In addition, as shown 
in Fig. 3D HuMMuS and SCENICþ comparably overper
form CellOracle. Same results apply when considering the 
percentage of true positive (Supplementary Fig. S4B). 
Overall, the obtained results indicate that the enhancers pre
dicted by HuMMuS and SCENICþ tend to more frequently 
reflect known ones.

Taken together these two results suggest that HuMMuS 
can powerfully predict regulatory regions associated with 
TFs or genes. Also in this case, the results observed for 
HuMMuS in the two unpaired data (Duren and Semrau) are 
not affected by cell pairing (Supplementary Fig. S5).

3.3 HuMMuS outperforms the state-of-the-art in the 
biological relevance of its gene communities
We benchmarked HuMMuS with respect to the state-of-the- 
art based on the biological relevance of their gene communi
ties. Indeed, gene communities in biological graphs have been 
previously shown to frequently reflect known pathways and 
biological processes (Barab�asi and Oltvai 2004, Cantini et al. 
2015, Choobdar et al. 2019).

As shown in Fig. 4A, the Louvain algorithm (Blondel et al. 
2008) was applied to the HuMMuS GRN and to those of the 
state-of-the-art and the biological relevance of the obtained 
communities was evaluated based on the percentage of com
munities enriched in pathways [KEGG (Kanehisa and Goto 
2000, Kanehisa et al. 2023) and REACTOME (Gillespie 
et al. 2022)] and Gene Ontologies (Ashburner et al. 2000, 
Gene Ontology Consortium 2021). Before running commu
nity detection, as most of the GRNs are highly dense (density 

> 0.8 in half of networks see Supplementary Table S4), a fil
tering was applied to the links to make all networks equally 
dense. Regarding the community detection, as the Louvain al
gorithm depends on the resolution parameter, we here run it 
with resolution varying in the range 0–2 and choose for each 
method the resolution giving best performances and a reason
able number of communities (�10). See Supplementary Text 
for details on the analysis, Supplementary Table S5 for per
formances across different resolution values.

Figure 4B shows the results of the comparison. Regarding 
the number of enriched communities, all methods vary in a 
range of 5–31 communities, depending on the test case and 
the database under analysis. Concerning the enrichment in 
pathways and Gene Ontologies, in three out of four test cases 
(Liu, Duren, and Semrau), HuMMuS gets the highest per
centage of enriched communities in most of the databases. 
Interestingly, in two out of these three datasets HuMMuS 
performances get even better once including TF–TF links (see 
HuMMuS þ TF in Fig. 4B). In the remaining test case 
(Chen), CellOracle gets better results. Of note, no evident 
correlation emerges between the number of identified com
munities and the performances of the different methods (see 
Supplementary Table S5).

3.4 HuMMuS is robust to unbalanced cell type 
proportions across omics
Most of the state-of-the-art methods for GRN inference in 
single-cell multi-omics data require paired data. This require
ment is due, on one side, to the use of regression models to infer 
the interactions, which intrinsically requires paired data, and, 
on the other side, to the fact that different cell type proportions 
might impact GRN inference. As HuMMuS is here proposed as 
a tool that can deal with unpaired data, we evaluated its robust
ness with respect to unbalanced cell type proportions across 
omics. For this we employed scRNA (Saunders et al. 2018) and 
scATAC (atac_v1_adult_brain_fresh_5k—Datasets—Single 
Cell ATAC—Official 10x Genomics Support) data profiled 
from mouse cortical neurons. We only considered three cell 
populations: MGE, Layer 2/3 and Layer 6; corresponding to a 
total of 1143 cells. We then tested four scenarios (i) full data
sets; (ii) half scRNA cells for Layer 2/3 and everything else unal
tered; (iii) half scATAC cells for Layer 6 and everything else 
unaltered, and (iv) half scRNA cells for Layer 2/3, half scATAC 
cells for Layer 6 and everything else unaltered. We then used 
HuMMuS to construct GRNs for all the four scenarios and 
computed the Spearman correlation between the full dataset 
(scenario 1) and all others. As shown in Supplementary Fig. S6, 
such correlations resulted to be 0.91–0.95, indicating a robust
ness of HuMMuS to different cell type propositions across dif
ferent omics, thus making it particularly suitable for unpaired 
single-cell data.

Of note, as shown in Supplementary Fig. S6, we do not ob
serve the same robustness in the individual layers (Spearman 
correlations of 0.66–0.68). Thus, further suggesting that the 
use of RWRs helps to compensate for false and/or missing 
links in the single layers.

3.5 Challenging HuMMuS in mouse cortex profiled 
for scRNA, scATAC, and snmC
We finally challenged HuMMuS in the reconstruction of mo
lecular mechanisms of the mouse brain cortex. Differently 
from the state-of-the-art, here for the first time we take into 
account three single-cell omics data: scRNA (Saunders et al. 
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2018), scATAC (atac_v1_adult_brain_fresh_5k—Datasets— 
Single Cell ATAC—Official 10x Genomics Support), and 
snmC (Luo et al. 2017). The data of size 55 803 cells in 
scRNA, 2317 cells in scATAC and 3386 cells in snmC are un
paired, obtained by profiling mouse cortical neurons.

Following the HuMMuS pipeline, we reconstructed two 
HMLNs, one composed of four layers (TF layer, scATAC 
layer, snmC layer, and scRNA layer; see Fig. 5A) and one 
composed of three layers (TF layer, scATAC layer, and 
scRNA layer). The second HMLN is intended to test the 
added value brought by methylation in the analysis. Then 
RWRs from the scRNA layer have been used to extract a 
GRN composed of 637 regulons, each corresponding to a TF 
and its associated genes ranked by the strength of association 
(Badia-i-Mompel et al. 2022).

As a first observation, the activity of the obtained regulons, 
computed according to Badia-i-Mompel et al. (2022) and 
Teschendorff and Wang (2020), is able to correctly cluster 
the cells according to their area of origin in the mouse cortex 
(see Fig. 5B). This suggests that the regulons identified by 
HuMMuS can nicely recapitulate the known heterogeneity 
present between the analyzed cells and already reported in 
Saunders et al. (2018) and Cao and Gao (2022). These 

conclusions apply with and without the additional methyla
tion layer (See Supplementary Fig. S7A).

We then focused on the results obtained with HuMMuS 
when methylation is included in the multilayer. We then vali
date in the literature the top five differentially active regulons 
associated to each cell population (Fig. 5C, Supplementary 
Text for details). Of the obtained 34 regulons, 76% of their 
TFs have an already reported association with either neurons, 
cortex, or brain (see Supplementary Table S6). In particular, 
five of them (Esx1, Pgr, Nr3C1, Smad1/5, Mnt) are reported 
in the Bgee database as expressed in the brain (Bastian et al. 
2021). Nine of them Zfp711 (Kleine-Kohlbrecher et al. 
2010), Pou4f3 (Zou et al. 2012), Mbd2 (Hendrich and Bird 
1998), Wt1 (Dame et al. 2006), Olig3 (M€uller et al. 2005), 
Dmrtc (Casado-Navarro and Serrano-Saiz 2022), Mlxipl 
(Russ et al. 2021), Hoxa1 (Gavalas et al. 1997) are docu
mented in publications associating them with either brain or 
neurons and thirteen of them [Tbx1/Tbx10 (Flore et al. 
2017), Rfx3 (Callaway et al. 2021, Bravo Gonz�alez-Blas 
et al. 2023), Neurog1 (Dixit et al. 2014), Vdr (Gezen-Ak 
et al. 2011), Pou4f1/Pou4f2 (Turner et al. 1994), Sebox 
(Cinquanta et al. 2000), Setbp1(Cardo et al. 2023), Pbx2/ 
Pbx4 (Golonzhka et al. 2015), Maz (Wang et al. 2013, Ning 

Figure 4. Community detection benchmarking. (A) Schematic view of the benchmarking performed for community detection. (B) Heatmaps of 
percentage of enriched communities in each benchmarked method across the five biological databases. The values reported in the table correspond to 
the percentage of enriched communities, while those in parentheses are the actual number of enriched communities.

Molecular mechanisms reconstruction from single-cell multi-omics data with HuMMuS                                                                                        7 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/5/btae143/7625061 by Institut Pasteur -  C
eR

IS user on 09 O
ctober 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae143#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae143#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae143#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae143#supplementary-data


et al. 2015), Arntl (Okano et al. 2001), Mitf (Ohba et al. 
2016), Lef1 (Nagalski et al. 2013), Tcf7l2 (Nagalski et al. 
2013)] are reported in publications specifically referring to 
the mouse cortex. Of note, four of these TFs were also al
ready documented to be associated to the specific region of 
the cortex where HuMMuS found them to be differentially 
active. This is the case for Rfx3 and Neurog1, that we find as
sociated with Layer 2/3 and that had been previously associ
ated with this exact brain region (Dixit et al. 2014, Gray 
et al. 2017, Callaway et al. 2021, Bravo Gonz�alez-Blas et al. 
2023). In addition, Lef1 and Tcf17l2 have been documented 
to be associated with deep layers of the cortex and HuMMuS 
identifies them in layer 6 (Nagalski et al. 2013).

Finally, HuMMuS suggests the possible regulatory role of 
MAZ in CGE-derived cortical inhibitory interneurons. 
Through bibliographic research MAZ is documented to have 
a role in neuronal stem cells differentiation and as potential 
regulator in Purkinje cells, a GABAergic inhibitory neuron 
population (Wang et al. 2013, Ning et al. 2015). HuMMuS 
associates it to the Caudal Ganglionic Eminence (CGE) re
gion, producing a high proportion of cortical inhibitory neu
rons (30%) (Williams and Riedemann 2021). In addition, in 
the top 10% of the 9341 inferred targets of MAZ, we can 
find Cntnap3, Dlx5, Sp9, Dlx6, Nr2c2ap, Dlx2, Arx, Grik3, 
all genes documented to be differentially expressed in inhibi
tory interneurons in The Mouse Organogenesis Atlas 
(MOCA) (Cao et al. 2019).

Once methylation is excluded, five TFs are lost: Zfp711 in 
Layer 2/3, Sebox and Pou4f3 in Layer 5a, Dmrtc2 in 
Claustrum and Klf15 in MGE. Of note, Zfp711, Pou4f3 and 
Dmrtc2 had been validated on existing literature to be 

neuron/brain specific, while Sebox had been validated in the 
literature to be associated with Layer 5a neurons. The five 
regulons that are lost once excluding methylation are 
replaced by the following TFs: Trp63 for Layer 2/3, Myt1l 
and Olig3 for Layer 5a, Hoxb2 in Claustrum and Plag1 in 
MGE. Of them, Olig3 (M€uller et al. 2005), Plag1 (Alam et al. 
2005), and Myt1l (Mall et al. 2017) have been previously as
sociated with neurons/brain and Hoxb2 (Davenne et al. 
1999) is a known marker of Claustrum. Altogether these 
results suggest that methylation has an impact on the selec
tion of the differentially active regulons associated to each 
cell population. However, whether such effect is an improve
ment or not, depends on the cell population under analysis. 
Indeed, the selection of TFs in Layer 2/3 and Layer 5a 
improves when methylation is considered, while for 
Claustrum and MGE the quality of the regulons is higher 
when methylation is excluded.

4 Discussion
Cell identities result from the joint activity of different molecu
lar layers of regulation. These molecular layers can be measured 
nowadays thanks to single-cell sequencing technologies, such as 
scRNA, scATAC, and snmC.

Different methods have been recently designed to recon
struct molecular mechanisms from different single-cell omics 
data. Here we proposed HeterogeneoUs Multilayers for 
MUlti-omics Single-cell data (HuMMuS), a flexible tool 
based on Heterogeneous Multilayer Networks (HMLNs) to 
reconstruct regulatory mechanisms from multiple single-cell 
omics data. HuMMuS is found to have better performance 

Figure 5. Challenging HuMMuS on scRNA, scATAC and snmC from mouse cortex. (A) HMLN used in HuMMuS to reconstruct regulatory mechanisms 
from scRNA, scATAC and snmC. (B) UMAP plot obtained from HuMMuS regulon activity. Cells are colored according to the labels present in their original 
publication and in previous analyses (Saunders et al. 2018, Cao and Gao 2022). (C) Heatmap of activity for the top five TFs per cell population. Colors are 
used to denote the type of validation available; arrows indicate TFs lost once methylation is excluded from the analysis.
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than the state-of-the-art in the prediction of TF targets, TF 
binding regions, regulatory regions and in the identification 
of biologically relevant gene communities. Once applied to 
the integration of scRNA, scATAC, and snmC data profiled 
from mouse cortex, HuMMuS identified relevant regula
tory mechanisms.

Overall, the main advantages of HuMMuS are the ability 
to capture intra-omics cooperation between biological mac
romolecules and its flexibility, allowing to easily integrate ad
ditional omics or prior information (e.g. pathway databases) 
and to work with both paired and unpaired data.

For simplicity, we here only explored inter-layer links 
based on databases. However, such links could be improved 
in concrete biological applications considering inter-layer 
links derived from experimental evidence (e.g. resulting from 
ChIP-seq experiments instead of generalist motif databases). 
In addition, further developments of HuMMuS could allow 
to include additional single-cell data modalities, cell–cell 
interactions, and interactions from knowledge-based data
bases (e.g. REACTOME, GO). Finally, we here focused on 
community detection in GRNs to have a comparable output 
between HuMMuS and the current state-of-the-art. 
However, HuMMuS could further include in the future meth
ods for community detection in HMLNs, thus allowing to de
tect cross-omics communities, providing a better picture of 
the complex interactions driving some biological processes.
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