Normalization in the simply typed -calculus $\lambda\mu\mu'\rho\theta\epsilon$-calculus - Archive ouverte HAL
Article Dans Une Revue Mathematical Structures in Computer Science Année : 2022

Normalization in the simply typed -calculus $\lambda\mu\mu'\rho\theta\epsilon$-calculus

Karim Nour

Résumé

In this paper, in connection with the program of extending the Curry-Howard isomorphism to classical logic, we study the λμ-calculus of Parigot emphasizing the difference between the original version of Parigot and the version of de Groote in terms of normalization properties. In order to talk about a satisfactory representation of the integers, besides the usual β-, μ-, and μ -reductions, we consider the λμ-calculus augmented with the reduction rules ρ, θ and ε. We show that we need all of these rules for this purpose. Then we prove that, with the syntax of Parigot, the calculus enjoys the strong normalization property even when we add the rules ρ, θ , and , while the λμ-calculus presented with the more flexible de Groote-style syntax, in contrast, has only the weak normalization property. In particular, we present a normalization algorithm for the βμμ ρθε-reduction in the de Groote-style calculus.
Fichier principal
Vignette du fichier
normalization-in-the-simply-typed-dollarlambda-mu-mu-rho-theta-varepsilondollar-calculus.pdf (508.31 Ko) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-04727997 , version 1 (09-10-2024)

Identifiants

Citer

Péter Battyányi, Karim Nour. Normalization in the simply typed -calculus $\lambda\mu\mu'\rho\theta\epsilon$-calculus. Mathematical Structures in Computer Science, 2022, 32, pp.1066 - 1098. ⟨10.1017/s096012952200041x⟩. ⟨hal-04727997⟩
28 Consultations
5 Téléchargements

Altmetric

Partager

More