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Abstract. We address the problem of verifying neural networks
against geometric transformations of the input image, including ro-
tation, scaling, shearing, and translation. The proposed method com-
putes provably sound piecewise linear constraints for the pixel val-
ues by using sampling and linear approximations in combination
with branch-and-bound Lipschitz optimisation. The method obtains
provably tighter over-approximations of the perturbation region than
the present state-of-the-art. We report results from experiments on
a comprehensive set of verification benchmarks on MNIST and CI-
FAR10. We show that our proposed implementation resolves up to
32% more verification cases than present approaches.

1 Introduction

Neural networks as used in mainstream applications, including com-
puter vision, are known to be fragile and susceptible to adversar-
ial attacks [18]. The area of formal verification of neural networks
is concerned with the development of methods to establish whether
a neural network is robust, with respect to its classification output,
to variations of the image. A large body of literature has so far fo-
cused on norm-bounded input perturbations, aiming to demonstrate
that imperceptible adversarial alterations of the pixels cannot alter
the classifier’s classification (ℓp robustness). In safety-critical appli-
cations such as autonomous driving, however, resistance to norm-
bounded perturbations is inadequate to guarantee safe deployment.
In fact, image classifiers need to be robust against a number of vari-
ations of the image, including contrast, luminosity, hue, and beyond.
A particularly important class of specifications concerns robustness
to geometric perturbations of the input image [1, 23, 28, 33]. These
may include translation, shearing, scaling, and rotation.

Owing to the highly nonlinear variations of the pixels in geometric
transformations, verifying robustness to these perturbations is intrin-
sically a much harder problem than ℓp robustness. Previous work
over-approximates these variations through hyper-rectangles [33] or
pairs of linear bounds over the pixel values [1], hence failing to cap-
ture most of the complexity of the perturbation region. Developing
more precise methods for verifying geometric robustness remains an
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open challenge. In this paper we work towards this end. Specifically,
we make three contributions:

1. We present a piecewise linear relaxation method to approximate
the set of images generated by geometric transformations, includ-
ing rotation, translation, scaling, and shearing. This construction
can incorporate previous approaches [1, 33] as special cases while
supporting additional constraints, allowing significantly tighter
over-approximations of the perturbation region.

2. We show that sound piecewise linear constraints, the building
blocks of the proposed relaxation, can be generated via suitable
modifications of a previous approach [1] that generates linear con-
straints using sampling, linear and Lipschitz optimisation. We de-
rive formal results as well as effective heuristics that enable us to
improve the efficiency of the linear and Lipschitz optimisations in
this context (cf. Propositions 1—3). As we demonstrate, the re-
sulting piecewise constraints can be readily used within existing
tight neural network verifiers.

3. We introduce an efficient implementation for the verification
method above and discuss experimental results showing consid-
erable gains in terms of verification accuracy on a comprehensive
set of benchmark networks.

The rest of this paper is organized as follows: Section 2 discusses
related work. In Section 3 we introduce the problem of verifying neu-
ral networks against geometric robustness properties. In Section 4 we
present our novel piecewise linear approximation strategy via sam-
pling, optimisation and shifting. In Section 5 we discuss the experi-
mental results obtained and contrast the present method against the
state-of-the-art on benchmark networks. We conclude in Section 6.
Our code is publicly available on GitHub1.

2 Related Work

We here briefly discuss related work from lp-based neural network
verification, geometric robustness and formal verification thereof.

1 https://github.com/benbatten/PWL-Geometric-Verification



ℓp robustness verification. There is a rich body of work on the
verification of neural networks against ℓp-bounded perturbations:
see, e.g., [27] for a survey. Neural network verifiers typically rely
on Mixed-Integer Linear Programming (MILP) [3, 36], branch-
and-bound [4, 5, 7, 13, 19, 39, 42, 46], or on abstract interpreta-
tion [17, 32, 34]. These methods cannot be used to certify geometric
robustness out of the box, as ℓp balls are unable to accurately repre-
sent geometric transformations [23, 33].

Geometric robustness. The vulnerability of neural networks to
geometric transformations has been observed in [10, 11]. A com-
mon theme among these works is their quantitative nature, whereby
measures of invariance to geometric robustness are discussed [22]
and methods to improve spatial robustness are developed. These are
based on augmentation [16, 41], regularisation schemes [43], robust
optimisation [10] and specialised, invariance-inducing network ar-
chitectures [20]. Differently from the cited works, our key aim here
is the qualitative analysis of networks towards establishing formal
guarantees of geometric robustness.

Formal verification of geometric robustness. One of the earliest
works [29] on this subject discretises the transformation domains,
enabling robustness verification through the evaluation of the model
at a finite number of discretised transformations. In contrast to Pei
et al. [29], we here focus on continuous domains, which do not al-
low exhaustive evaluation. Previous work on continuous domains re-
lies on over-approximations, whereby, for each pixel, the set of al-
lowed values under the perturbation is replaced by a convex relax-
ation [1, 23, 33]. In particular, [23] and [33] use an l∞ norm ball
and intervals respectively, resulting in loose over-approximations.
Balunović et al. [1] devise more precise convex relaxations by com-
puting linear approximations with respect to the transformation pa-
rameters. In this work we further improve precision over Balunović
et al. [1] by deriving piecewise linear approximations. While the
above works consider the geometric transformation as a whole (see
Section 3), Mohapatra et al. [28] decompose the transformation
into network layers to be pre-pended to the network under analy-
sis, resulting in looser approximations when using standard neural
network verifiers. More recently, randomised smoothing techniques
have been investigated for geometric robustness [14, 15, 26]: differ-
ently from our work, these only provide probabilistic certificates. Fi-
nally, Yang et al. [44] recently presented a method to train networks
more amenable to geometric robustness verification. Our work is ag-
nostic to the training scheme: we here focus on the more challenging
general case.

3 Geometric robustness verification
Our main contribution is a new piecewise linear relaxation of ge-
ometric transformations to verify robustness of neural networks to
geometric perturbations. We here introduce relevant notation in the
verification problem and present the geometric attack model.

Notation. Given two vectors a, b ∈ Rn, we use a ≥ b and a ≤ b
to represent element-wise inequalities. Given a vector a ∈ Rm and a
matrix A ∈ Rm×n, we denote their elements using a[i] and A[i, j],
respectively.

Neural networks for classification. We consider a feedforward
neural network with L hidden layers f : Rn → Rm. Let x0 ∈ Rn

denote the input and xi denotes the activation vectors at layer i. We
use Li to denote an affine map at layer i, e.g., linear, convolutional,
and average pooling operations. Let σi be an element-wise activation
function, such as ReLU, sigmoid or tanh. The activation vectors are

related by xi+1 = σi

(
Li(xi)

)
, i = 0, 1, . . . , L−1. We are interested

in neural networks for classification: the network output f(x0) =
LL(xL) ∈ Rm represents the score of each class, and the label i∗

assigned to the input x0 is the class with highest score, i.e., i∗ =
argmaxi=1,...m f(x0)[i].

Robustness verification. Let A be a general attacker that takes a
nominal input x̄ ∈ Rn and returns a perturbed input A(x̄) ∈ Rn.
We denote the attack space as Ωϵ(x̄) ⊂ Rn, i.e., A(x̄) ∈ Ωϵ(x̄),
where ϵ > 0 denotes the attack budget. Formally verifying that a
classification neural network f is robust with respect to an input x̄
and its attack space Ωϵ(x̄) implies ensuring that all points in Ωϵ(x̄)
will share the same classification label of x̄. This can be done by
solving the following optimisation problem ∀ i ̸= i∗:

γ∗
i := min

x0,x1,...xL,y
y[i∗]− y[i]

subject to x0 ∈ Ωϵ(x̄), (1a)

xi+1 = σi

(
Li(xi)

)
, i ∈ [L] (1b)

y = LL(xL), (1c)

with (1b) being neural network constraints, (1c) as the neural net-
work output, (1a) denoting the attack model constraint, and L :=
{0, 1, . . . , L − 1}. If γ∗

i > 0 ∀ i ∈ {1, . . . ,m}, the network is
certified to be robust.

Even when Ωϵ(x̄) is a convex set, such as in the case of ℓp pertur-
bations, for which Ωϵ(x̄) = {x ∈ Rn | ∥x − x̄∥p ≤ ϵ}, the non-
convex neural network constraints (1b) make the verification prob-
lem (1) difficult to solve. However, in this setting, tractable lower
bounds γ∗

i
≤ γ∗

i on the solution can be obtained through a variety
of techniques, including: linear relaxations [9, 31, 33, 35, 37, 45],
semi-definite programming [2, 6, 12, 30] and Lagrangian dual-
ity [4, 7, 8, 40, 46]. These techniques lie at the core of the network
verifiers described in Section 2. If γ∗

i
> 0 ∀ i ∈ {1, . . . ,m}, the

network is robust, but a negative lower bound will leave the prop-
erty undecided, pointing to the importance of tight lower bounds.
When considering geometric transformations, the attack model con-
straint (1a) is highly nonconvex, making verification even more chal-
lenging.

Attack model via geometric transformation. A geometric trans-
formation of an image is a composite function, consisting of a spa-
tial transformation Tµ, a bilinear interpolation I(u, v), which han-
dles pixels that are mapped to non-integer coordinates, and changes
in brightness and contrast Pα,β . The spatial transformation Tµ can
be a composition of rotation, translation, shearing, and scaling; see
e.g., [1] for detailed descriptions. The pixel value p̂u,v at position
(u, v) of the transformed image is obtained as follows: (1) the pre-
image of (u, v) is calculated under Tµ; (2) the resulting coordinate is
interpolated via I to obtain a value ξ; (3) Pα,β(ξ) = αξ + β is ap-
plied to compute the final pixel value p̂u,v . In other words, we have
that p̂u,v = Gu,v(α, β, µ), where:

Gu,v(α, β, µ) := Pα,β ◦ I ◦ T −1
µ (u, v). (2)

We consider the following standard bilinear interpolation:

I(u, v) =
∑

δi,δj∈{0,1}

pi+δi,j+δj (1− |i+ δi − u|)(1− |j + δj − v|),

where (i, j) denotes the lower-left corner of the interpolation region
[i, i + 1] × [j, j + 1] that contains pixel (u, v), and the matrix p
denotes the pixel values of the original image. Note that the interpo-
lation function I is continuous on R2 but can be nonsmooth on the
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Figure 1. Comparison of sound and unsound piecewise (PW) linear
domains (our work), sound linear domain (gray area) [33], and interval

bounds (dashed line) [33]. The true pixel value function (the green curve) is
marked for a rotation of 18◦.

boundaries of interpolation regions. Thus, Gu,v(α, β, µ) is in general
nonsmooth with respect to the spatial parameter µ (e.g., rotation).

For simplicity, in the following we will denote the transformation
parameter as κ = (α, β, µ). The geometric attack model assumes
interval constraints on (α, β, µ), denoted by B ⊂ Rd, where d is
the dimension of κ. The attack space Ωϵ(x̄) from (1a) is then de-
fined as the set of all images resulting by the application of Gu,v(κ)
on each pixel (u, v) of x̄, for all κ ∈ B. More formally, given
im : Rn → Rh×w, a mapping re-arranging images into their spatial
dimensions, Ωϵ(x̄) = {x′ ∈ Rn | im(x′)[u, v] ∈ Ωϵ(x̄)[u, v]}, with
Ωϵ(x̄)[u, v] = {Gu,v(κ)| ∀ κ ∈ B}.

Problem statement. The geometric attack model Ωϵ(x̄) defines
a highly nonconvex constraint on the admissible image inputs,
which is not readily supported by bounding techniques designed
for ℓp perturbations. As a result, previous work replaces it by over-
approximations [1, 33], which allow verification through ℓp-based
neural network verifiers. Nevertheless, as described in Section 2,
their over-approximations are imprecise, resulting in loose lower
bounds γ∗

i
. In this work, we aim to derive a tighter convex relax-

ation of the geometric attack model Ωϵ(x̄) based on piecewise linear
constraints. By relying on networks verifiers with support for these
constraints, we will then show that our approach leads to effective
verification bounds for (1).

4 Piecewise linear formulation
As mentioned above, the pixel value function Gu,v(κ) at location
(u, v) is generally nonlinear and nonsmooth with respect to the
transformation parameters κ. This is one source of difficulty for
solving the verification problem (1). In this section, we introduce
a new convex relaxation method to derive tight over-approximations
of Gu,v(κ).

4.1 Piecewise linear bounds

Deriving an interval bound for each pixel (u, v), i.e., Lu,v ≤
Gu,v(κ) ≤ Uu,v , for all κ ∈ B and lower and upper bounds

Lu,v, Uu,v ∈ R, is arguably the simplest way to get a convex re-
laxation [23, 33]. However, even a small geometric transformation
can lead to a large interval bound, making this approach too loose
for effective verification.

This naive interval bound approach has been extended in [1],
where linear lower and upper bounds were used for each pixel value,
i.e.,

wTκ+ b ≤ Gu,v(κ) ≤ wTκ+ b, ∀κ ∈ B. (3)

The linear bounds (3), however, can be still too loose to approximate
the nonlinear function Gu,v(κ) (see Figure 1 for illustration). Our
key idea is to use piecewise linear bounds to approximate the pixel
values:

max
j=1,...,q

{wT
j κ+ bj} ≤ Gu,v(κ) ≤ min

j=1,...,q
{wT

j κ+ bj}, (4)

∀κ ∈ B, where q is the number of piecewise segments, wj ∈
Rd, bj ∈ R, j = 1, . . . , q define the piecewise linear lower bound,
and wj ∈ Rd, bj ∈ R, j = 1, . . . , q define the piecewise linear up-
per bound. We remark that the pixel values constrained by (4) form
a convex set. Furthermore, our approach can include the strategies
in [1, 33] as special cases. Employing the relative constraints among
the piecewise segments will result in a tighter set.

For each pixel value, we would like to derive optimal and sound
piecewise linear bounds by minimizing the approximation error.
Specifically, we aim to compute the lower bound via

min
wj ,bj ,j=1,...,q

∫
B

(
Gu,v(κ)−

(
max

j=1,...,q
{wT

j κ+ bj}
))

dκ

s.t. max
j=1,...,q

{wT
j κ+ bj} ≤ Gu,v(κ), ∀κ ∈ B.

(5)

Computing the upper bound for (4) is similar. This optimisation prob-
lem (5) is highly nontrivial to solve since the integral cost function is
hard to evaluate due to the nonlinearity of Gu,v(κ). Motivated by [1],
we first sample the transformation parameter κi from B to obtain
the sampled pixel values Gu,v(κi), and then solve a sampled version
of (5). The resulting piecewise bound is guaranteed to be sound on
the sampling points κi ∈ B but could be unsound on non-sampled
points. To derive a final sound piecewise bounds for Gu,v(κ), we
bound the maximum violation over the entire B using a branch-and-
bound Lipschitz optimisation procedure.

4.2 Linear optimisation based on sampling points

Here, we first randomly select N transformation parameters κi ∈ B,
i = 1, . . . , N , to obtain a sampled version of (5) as follows

min
wj ,bj ,j=1,...,q

1

N

N∑
i=1

(
Gu,v(κi)−

(
max

j=1,...,q
{wT

j κi + bj}
))

subject to max
j=1,...,q

{wT
j κi + bj} ≤ Gu,v(κi), i = 1,. . . ,N. (6)

We denote the optimal cost value of (6) as β∗. In (6), the number of
piecewise linear segments q is fixed a priori. Still, problem (6) is non-
trivial to solve jointly for all piecewise segments wj , bj , j = 1, . . . , q
unless q = 1 (where (6) is reduced to a single linear program). One
difficulty is to determine the effective domain of each piecewise lin-
ear segment.

To alleviate this, we propose to split the whole domain B into q
sub-domains B1, . . . ,Bq , and then optimize each piecewise linear



segment over Bj , j = 1, . . . , q, individually. We then use the fol-
lowing q independent linear programs to approximate the solution
to (6):

β∗
j := min

wj ,bj

1

N

∑
κi∈Bj

(
Gu,v(κi)−

(
wT

j κi + bj
))

subject to wT
j κi + bj ≤ Gu,v(κi), i = 1, . . . , N,

(7)

for j = 1, . . . , q. Note that in (7), we minimise the approximation
error over only the sample points within a given domainBj ; however,
we force each segment to satisfy the constraints at every sample point
κi ∈ B over the whole domain.

We have the following result for the quality of the solution
from (7).

Proposition 1. Given any subdomains Bj , j = 1, . . . , q, the opti-
mal solutions wj , bj , j = 1, . . . , q, to (7) are suboptimal to (6), i.e.,∑q

j=1 β
∗
j ≥ β∗. There exists a set of subdomains Bj , j = 1, . . . , q,

such that the optimal solutions to (6) and (7) are identical, i.e.,∑q
j=1 β

∗
j = β∗.

Proof. Consider the piecewise linear function in the objective func-
tion (6). Let Bj , j = 1, . . . , q be the effective piecewise domain of
the jth segment, i.e.,

max
j=1,...,q

{wT
j κi + bj} =


wT

1κi + b1, if κi ∈ B1

...
wT

qκi + bq, if κi ∈ Bq.

(8)

Then, the objective function (6) can be equivalently written into

1

N

N∑
i=1

(
Gu,v(κi)−

(
max

j=1,...,q
{wT

j κi + bj}
))

=
1

N

q∑
j=1

 ∑
κi∈Bj

(
Gu,v(κi)−

(
wT

j κi + bj
))

Therefore, (6) is equivalent to

min
wj ,bj ,Bj ,j=1,...,q

q∑
j=1

 1

N

∑
κi∈Bj

(
Gu,v(κi)−

(
wT

j κi + bj
))

s.t. wT
j κi + bj ≤ Gu,v(κi), i = 1, . . . , N, j = 1, . . . q. (9)

Note that the piecewise domains Bj are determined by the linear seg-
ments wj , bj , j = 1, . . . , q implicitly in (8). We need to simultane-
ously optimize the choices of Bj in (10), making it computationally
hard to solve.

A suboptimal solution for (10) is to a priori fix the effective do-
main Bj and optimize over wj , bj , j = 1, . . . , q only, i.e.,

β̂ :=

min
wj ,bj ,j=1,...,q

q∑
j=1

 1

N

∑
κi∈Bj

(
Gu,v(κi)−

(
wT

j κi + bj
))

s.t. wT
j κi + bj ≤ Gu,v(κi), i = 1, . . . , N, j = 1, . . . q, (10)

which is decoupled into q individually linear programs, j = 1, . . . , q

β∗
j := min

wj ,bj

1

N

∑
κi∈Bj

(
Gu,v(κi)−

(
wT

j κi + bj
))

subject to wT
j κi + bj ≤ Gu,v(κi), i = 1, . . . , N.

(11)

Therefore, it is clear that β̂ =
∑q

j=1 β
∗
j ≥ β∗. On the other hand,

suppose the optimal solution to (6) leads to the optimal effective
domains Bj , j = 1, . . . , q in (8). Then, using this set Bj , j =
1, . . . , q, the decoupled linear programs (11) are equivalent to (10)
and (6).

To obtain a good solution (6), choosing the subdomains Bj be-
comes essential. A uniform grid partition is one, naive choice. An-
other is to partition the subdomains based on the distribution of the
sampling points Gu,v(κi). The details of the splitting procedure are
provided in the appendix.

Remark 1. (Explicit input splitting vs. piecewise linear con-
straints) We note that one can perform explicit input splitting
Bj , j = 1, . . . , q, and verify each of them by solving (1) separately
in order to certify the original large domain B. The main drawback of
this explicit input splitting is that we need to call a verifier for each
subdomain Bj which can be hugely time consuming and not scal-
able. On the contrary, it only requires to solve multiple small linear
programs (7) to derive our piece-wise linear constraints. Then, we
only need to call a verifier once to solve the verification problem (1)
over B. For tight verifiers, such as those mentioned in Section 2, this
process is much more efficient than explicit input splitting.

4.3 Lipschitz optimisation for obtaining sound
piecewise linear bounds

The piecewise linear constraints from (7) are valid for the sampling
points κi ∈ B, i = 1, . . . , N . To make the constraints sound over
all κ ∈ B, we must shift them such that all points on the pixel value
function, Gu,v(κ), satisfy the constraints in (4). For this, we define a
new function that tracks the violation of a piecewise bound over the
entire domain B:

ξ∗u,v := max
κ∈B

f
u,v

(κ), (12)

where f
u,v

(κ) = maxj=1,...,q{wT
j κ + bj} − Gu,v(κ). Then, we

naturally have a sound piecewise linear lower bound as

max
j=1,...,q

{wT
j κ+ bj} − ξ∗u,v ≤ Gu,v(κ), ∀κ ∈ B.

However, computing the exact maximum ξ∗ is computationally hard
due to the nonconvexity, nonlinearity and nonsmoothness of f

u,v
(κ).

Instead, given any ϵ > 0, we can use a branch-and-bound Lipschitz
optimisation procedure to find ξ∗ ∈ R satisfying ξ∗ ≤ ξ∗u,v ≤ ξ∗+ϵ.

To establish the branch-and-bound Lipschitz optimisation proce-
dure, we need to characterise the properties of the violation function
f
u,v

(κ).

Proposition 2. The violation function f
u,v

(κ) :=

maxj=1,...,q{wT
j κ + bj} − Gu,v(κ) is nonconvex, nonsmooth,

and Lipschitz continuous over B ⊂ Rd. Furthermore, there exist
Lm > 0, m = 1, . . . , d, such that ∀κ1, κ2 ∈ B

|f
u,v

(κ1)− f
u,v

(κ2)| ≤
d∑

m=1

Lm|κ1(m)− κ2(m)|. (13)



Proof. The pixel value function is given by Gu,v(κ) := Pα,β ◦ I ◦
T −1
µ (u, v). We know that the spatial transformation Tµ(u, v) and
Pα,β are continuous and differentiable everywhere. The interpola-
tion function I(u, v) is continuous everywhere, but it is only differ-
entiable within each interpolation region and it can be nonsmooth on
the boundary. Also, Tµ(u, v) and I(u, v) are generally nonconvex.

In addition, the piecewise linear function maxj=1,...,q{wT
j κ +

bj} is continuous but not differentiable everywhere. Therefore,
the violation function f

u,v
(κ) is nonconvex and nonsmooth in

general. Finally, all the functions Tµ(u, v), Pα,β , I(u, v) and
maxj=1,...,q{wT

j κ + bj} are Lipschitz continuous, so is the viola-
tion function f

u,v
(κ). Thus, there exist Lm > 0, m = 1, . . . , d,

such that (13) holds.

The properties of the violation function f
u,v

(κ) in Proposition 2
are directly inherited from nonconvexity and nonsmoothness of the
interpolation function I(u, v). The Lipschitz continuity is also from
the interpolation function and the piecewise linear function.

With the information of Lm in (13), we are ready to get a lower
and an upper bound for ξ∗ upon evaluating the function at any point
κ0 ∈ B:

f
u,v

(κ0) ≤ ξ∗

= max
κ∈B

f
u,v

(κ)

≤ max
κ∈B

f
u,v

(κ0) +

d∑
m=1

Lm|κ(m)− κ0(m)|

≤ f
u,v

(κ0) +

d∑
m=1

Lmhm,

(14)

where hm > 0 denotes the difference of the lower and upper bound
in each box constraint of B. These lower and upper bounds (14) are
useful in the branch-and-bound procedure.

Still, we need estimate the Lipschitz constant Lm in (13). In our
work, we show how to estimate the constant Lm based on the gradi-
ent of f

u,v
(κ) whenever it is differentiable (note that f

u,v
(κ) is not

differentiable everywhere)

Proposition 3. Let Diff(B) be the subset of B where f
u,v

(κ) is
differentiable. Then, the Lipschitz constants in (13) can be chosen as
Lm = supκ∈Diff(B) |∇fT

u,v
em|, where em ∈ Rd is a basis vector

with only the m-th element being one and the rest being zero.

Proof. This proof is motivated by [21]. In order to prove Propo-
sition 3, we first state a useful result from [21, Lemma 3]. Let
f : Rn → R be Lipschitz continuous over an open set Ω ⊂ Rn.
We denote Diff(Ω) as the subset of Ω where f(x) is differentiable.
We also let D be the set of (x, v) ∈ R2n for which the directional
derivative, ∇vf(x), exists and x ∈ Ω. Finally, we let Dv be the
set Dv = {x ∈ Rn | (x, v) ∈ D}. Then, we have the following
inequality [21, Lemma 3]

sup
x∈Dv

|∇vf(x)| ≤ sup
x∈Diff(Ω)

|∇f(x)Tv|. (15)

We now proceed to prove Proposition 3. Fix any κ1, κ2 ∈ B, and
we define a function h : R→ R as h(t) = f

u,v
(κ1 + t(κ2 − κ1)).

Since f
u,v

(κ) is Lipschitz continuous in B, it is clear that h(t) is
Lipschitz continuous on the interval [0, 1]. Thus, by Rademacher’s
Theorem, h(t) is differentiable everywhere except for a set of mea-
sure zero.

We can further define a Lebesgue integrable function g(t) that
equal to h′(t) almost everywhere as follows

g(t) =

{
h′(t), if h′(t) exists
sups∈[0,1] |h′(s)|, otherwise

.

Note that if f
u,v

(κ) is differentiable at some point, we have

h′(t) = ∇f
u,v

(κ1 + t(κ2 − κ1))
T(κ2 − κ1).

Then we have the following inequalities

|f
u,v

(κ1)− f
u,v

(κ2)| = |h(1)− h(0)| =
∣∣∣∣∫ 1

0

g(t)dt

∣∣∣∣
≤

∫ 1

0

|g(t)|dt

≤
∫ 1

0

sup
s∈[0,1]

|h′(s)|dt = sup
s∈[0,1]

|h′(s)|

≤ sup
κ∈Dκ2−κ1

|∇κ2−κ1fu,v
(κ)|.

Furthermore, considering the inequality in (15) [21, Lemma 3], we
have

|f
u,v

(κ1)− f
u,v

(κ2)| ≤ sup
κ∈Diff(B)

|∇f
u,v

(κ)T(κ2 − κ1)|

≤
d∑

m=1

sup
κ∈Diff(B)

|∇f
u,v

(κ)Tem||κ2(m)− κ1(m)|

where em ∈ Rd is a basis vector with only the m-th element being
one and the rest being zero. Therefore, the Lipschitz constants in (13)
can be chosen as Lm = supκ∈Diff(B) |∇fu,v

(κ)Tem|.

Maximum directional gradient. To bound the maximum violation
ξ∗u,v in (12) using (14), we need to estimate the constant Lm, and
Proposition 3 requires us to calculate the maximum directional gra-
dient |∇fT

u,v
em|. Each component of ∇f

u,v
varies independently

with respect to any constituent of the transformation composition,
Tµ(κm), m = 1, . . . , d. Each Lm depends only on a transformation,
Tµ, and interpolation, Iu,v . The only component that is not differ-
entiable everywhere in the parameter space κ ∈ B, is interpolation
Iu,v(x, y) - this due to it being disjoint across interpolation regions.
We overcome this by calculating the interpolation gradient,∇x,yIu,v
separately in each interpolation region, and taking the maximum
interval of gradients from the union, [∇x,yImin,∇x,yImax] =
[min(∪k=1,...,n∇x,yIk),max(∪k=1,...,n∇x,yIk)], where Ik are the
relevant interpolation regions, and ∪k=1,...,nIk = R ⊂ B. Com-
puting a bound on Lm this way mirrors the IBP-based procedure
outlined in [1]. With this we can calculate an upper bound on Lm to
be applied in the Lipschitz algorithm.
Branch-and-bound Lipschitz optimisation procedure. Similar
to [1], we use a branch-and-bound procedure (See Appendix) where
f
u,v

and B are given as inputs alongside the Lipschitz error, ϵ, and
samples per subdomain, n. The procedure first samples the violation
function f

u,v
, obtaining maximum value candidates, this is placed in

a list of 3-tuples with the upper bound, f
bound,i

, and corresponding
domain, Bi. The key upper bound operation bound(·) is obtained
using (14). We then check whether each 3-tuple in our list meets
the termination criteria, as parameterised by ϵ. If the requirement is
satisfied for all elements then we terminate and return ξ∗. Until the



requirement is met for every list element we iteratively split unsatis-
fied subdomains. This process is repeated until a satisfactory maxi-
mum candidate is found, splitting κ in each iteration. We can ignore
any sub-domain, κn

1 , of κ1 where the function bound f
bound

in κn
1

is smaller than a maximum value candidate f
max

in any other sub-
domain. Deciding how to split subdomains is non-trivial for higher
dimensional parameter spaces. In the case κ ∈ R1 we need only de-
cide where to split on a single axis; for which we use the domain
midpoint. The crux of our algorithm is approximating the gradient of
f
u,v

(κ) when it is differentiable, as stated in Proposition 3 (see ap-
pendix for further details on the branch-and-bound procedure). For
bounding the violation of piecewise linear bounds we can consider
the piecewise bound itself to be made of q linear sub-regions with
each one bounded by the intersection with the neighbouring linear
piece - or the lower and upper bounds on the transformation parame-
ters. We can then bound the Lipschitz constant in the same way as for
a single linear bound, instead starting with q sub-domains. Solving
the Lipschitz bounding procedure for each linear segment over only
its local domain in this way enables us to bound the Lipschitz con-
stant of a piecewise linear bound in the same time as a linear bound
takes.

5 Experimental Evaluation
In this section we present three sets of results: (i) a quantita-
tive study directly comparing the model-agnostic bounds produced
by our piecewise linear approach against the state-of-the-art linear
bounds [1], (ii) an empirical evaluation of verification results ob-
tained using linear and piecewise linear bounds, without input split-
ting and using the same neural network verifier [3], and (iii) a com-
parison of our results against the present state-of-the-art method [1].

5.1 Experimental setup

We consider the MNIST image recognition dataset [25] and CI-
FAR10 [24]. In line with the previous literature [1], we use two fully-
connected ReLU networks, MLP2 and MLP6, and one convolutional
ReLU network, CONV, from the first competition for neural network
verification (VNN-COMP) [38]. The fully-connected networks com-
prise 2 and 6 layers respectively. Each layer of each of the networks
has 256 ReLU nodes. The convolutional network comprises two lay-
ers. The first layer has 32 filters of size 5 × 5, a padding of 2 and
strides of 2. The second layer has 64 filters of size of 4×4, a padding
of 2 and strides of 1. Additionally, we employ a larger convolutional
ReLU network from relevant previous work [1], composed of three
layers: a convolutional layer with 32 filters of size 4 × 4 and strides
of 2, a convolutional layer with 64 filters of size 4 × 4 and strides
of 2, and a fully connected layer with 200 nodes. All experiments
were carried out on an Intel Core i9-10940X (3.30GHz, 28 cores)
equipped with 256GB RAM and running Linux kernel 5.12. DeepG
experiment ANS: we do not use GPU in these experiments.

Once a convex over-approximation of the attack space Ωϵ(x̄) is
computed, (cf. Section 3) a neural network verifier is required to
provide a lower bound on problem (1). Unless stated otherwise, the
verification results reported in this work are obtained using VENUS,
a complete MILP-based verification toolkit for feed-forward neural
networks [3].

5.2 Experimental results

In the following, we will use “L" to denote the linear relaxation from
equation (3), and “PWL" to denote the piecewise linear relaxation

Figure 2. A comparison of area captured by piecewise linear and linear
bounds as a function of transformation parameter. Relative bound area is

defined as 1− (VPWL/VL).

Table 1. Comparison of verification results for piecewise linear constraints
and linear constraints.

Model Attack Verified Falsified Time (s)
L PWL L PWL L PWL

MLP2

R(5) 26 28 74 72 0.7 3.7
Sh(0.2) 20 26 80 74 1.2 12
Sc(1.1) 24 24 76 76 1.1 51
T(0.1) 16 16 84 84 11 54

MLP6

R(15) 0 2 12 32 1602 1253
Sh(0.5) 0 0 16 68 1591 778
Sc(1.3) 0 0 24 78 1404 727
T(0.2) 0 2 26 74 1397 648

CONV

R(10) 20 48 2 0 1447 1044
Sh(0.2) 18 50 0 0 1548 1044
Sc(1.3) 0 10 4 4 1750 1663
T(0.15) 0 32 2 0 1767 1397

from equation (4).

PWL vs L: comparing areas. Figure 2 is a direct comparison of
bound tightness between our piecewise linear bounds and the current
state-of-the-art linear bounds [1]. For each image, linear and piece-
wise linear bounds are generated, each one capturing the reachable
pixel values for a given transformation. We always use two piece-
wise segments (q = 2) and use a Lipschitz error of 0.01 to compute
bounds. The area enclosed by each set of bounds is then calculated
and averaged for every pixel over all images. In each case the piece-
wise linear bounds are guaranteed to be tighter (enclose a smaller
area) than the linear bounds, as in Section 4. Figure 2 shows the rel-
ative area (specifically, 1 − (VPWL/VL) with VPWL and VL being the
volume enclosed by the piecewise linear and linear bounds, respec-
tively) of the two bound types. In Figure 2, there is an initial increase
in relative tightness for all transformations – this is a result of lin-
ear bounds being unable to efficiently capture the increasing non-
linearity in the pixel value curve, Gu,v(κ). After an initial increase,



Table 2. Comparison of L and PWL using VENUS, with verification results taken from DeepG [1].

Dataset Transformation Accuracy (%) DeepG Linear (Ours) PWL (Ours)
Certified (%) Certified (%) Time (s) Certified (%) Time (s)

MNIST R(30) 99.1 87.8 90.8 37.9 92.9 28.3
CIFAR R(2)Sh(2) 68.5 54.2 65.0 239.5 66.0 204.9

the behaviour for different transformations diverges. For rotation, the
relative advantage of the piecewise bounds continues to increase up
to 15 degrees. For scaling, however, there is a peak at 1.25×magnifi-
cation, followed by a decrease in the relative tightness. This result is
explained by a corresponding increase in the complexity of the pixel
value curve. Notably, the piecewise bounds are best suited to non-
monotonic pixel value curves with a single, sharp vertex. For curves
with many vertices and large fluctuations, piecewise linear bounds
become increasingly linear (the gradient of the pieces converge) to
maintain convexity. Though this is the case for q = 2, as we study
here, for larger numbers of piecewise segments the advantage over
linear bounds will continue to hold, as the piecewise bounds approx-
imate the convex hull of the pixel values for q → ∞. The plots for
shearing and translation show a similar pattern to scaling. Although
the relative tightness may decrease for larger transformations, the to-
tal bounded area increases, making any proportional reduction in area
more significant.

PWL vs L: verification results. Table 1 reports the experimental
results obtained for verification queries using VENUS, on the VNN-
COMP networks. For each type of input bound – piecewise linear and
linear – the table shows the percentage of certified images (Verified
column), the percentage of images for which a valid counter example
was found (Falsified column), and the average verification time. We
verify the robustness of each of the networks with respect to one of
four transformations - rotation, scaling, shearing, or translation - on
50 randomly selected images from the MNIST test set. For each ver-
ification query we use a timeout of 30 minutes. We observe a consid-
erable performance advantage using piecewise linear bounds for the
convolution network, in every case, at least doubling the count of ver-
ifiable images. For the 6-layer MLP network, many of the transfor-
mations tried could not be verified, leading to numerous counter ex-
amples and time-outs. However, for every transformation the piece-
wise linear bounds were able to find more counter examples than
linear bounds – this is a result of the improved tightness of piecewise
linear bounds. For the 2-layer MLP, results across the bound types
are very similar, in some cases they are equal. This is due to two fac-
tors, both of which stem from the network’s small size. Firstly, the 2-
layer network is the least robust of all three. Accordingly, our results
are for very small transformations for which the pixel value curve is
approximately linear. In these cases, linear bounds can capture the
input set as well as piecewise linear bounds. Secondly, the advantage
of piecewise linear bounds’ tightness is compounded over each layer
of a network – the 2-layer MLP is so small that this effect is minimal,
further aligning the performance of the approaches. Finally, the use
of piecewise linear constraints result in a reduction of average verifi-
cation times on both the 6-layer MLP and the convolutional network:
this is due to the fact that their relative tightness compensates for the
additional cost of their encoding, leading the employed MILP-based
verifier to positive lower bounds on the verification problem (1) in
less time.

Comparison with literature results. In Table 2 we provide a com-
parison of verification results obtained using VENUS with both linear
and piecewise linear constraints, with the DeepG [1] results, obtained
using linear constraints and the DeepPoly [33] verifier, which relies

on a relatively loose LP relaxation of (1). Further, we use a MILP-
based verifier which enabled us to add the pixel domain constraints
in addition to our transformation-based bounds. This, coupled with
the tighter verifier, enables our linear bounds to out-perform those
from DeepG. We consider MNIST and CIFAR10 benchmark pre-
sented in Balunović et al. [1]. The MNIST example consists of ver-
ifying a 30 degree rotation transformation by way of 10, 3-degree
sub-problems. This is in contrast to Table 1, where each perturba-
tion is represented by a single set of bounds and a single verifier call
per image. Table 2 shows that, even under the small-perturbation set-
ting, the use of tighter verification algorithms (L versus DeepG) in-
creases the number of verified properties. Furthermore, we show that
the method proposed in this work, PWL, leads to the tightest certi-
fication results. The CIFAR10 example comprises a composition of
rotation and shearing of 2 degrees and 2% respectively. This query is
solved via 4 sub-problems (with each transformation domain split in
half). The results show a 12% improvement for the PWL bounds over
the DeepG result. However, much of this gain comes from the verifier
itself. The gap between the linear bounds and their piecewise coun-
terpart is 1%. We attribute this smaller gap to the relatively small
domain over which each sub-problem runs. Nevertheless, we point
out that verifying perturbations through a series of sub-problems is
extremely expensive, as it requires repeated calls to both neural net-
work verifiers, and to the constraint-generation procedure (including
the branch-and-bound-based Lipschitz optimisation). For this reason,
we focus on verification the setting without transformation splitting,
and aim to maximize certifications through the use of tight verifiers
and over-approximations of the geometric transforms.

6 Conclusions

We have introduced a new piecewise linear approximation method
for geometric robustness verification. Our approach can generate
provably tighter convex relaxations for images obtained by geomet-
ric transformations than the state-of-the-art methods [1, 33]. Indeed,
we have shown experimentally that the proposed method can provide
better verification precision in certifying robustness against geomet-
ric transformations than prior work [1], while being more computa-
tional efficient.

Despite the positive results brought by our piecewise linear
approximation method, further topics deserve further exploration.
Firstly, it remains challenging to obtain the optimal piecewise linear
constraints via (6). To get a good set of piecewise linear constraints,
our current method (7) requires to obtain a good heuristic partition
of the domain B1, . . . ,Bq . It will be interesting to further investi-
gate and quantify the suboptimality of the solution from (7). Second,
the number of piecewise linear segment q is a hyperparameter in our
framework. A larger value q leads to a better approximation of the
pixel value function in theory; however, this also results in more lin-
ear constraints for the verification problem in practice. Future work
will investigate how to choose a good value of q based on the curva-
ture of of the pixel value function.
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Appendix

A Linear optimisation over sub-domains

Our discussion below focuses on q = 2 in (6), and with this choice,
we have already found promising improvements in our experiments
(see the main text). With this constraint we can find suboptimal
piecewise bounds by solving two independent linear optimisation
problems, where each problem is applied over a subset of the piece-
wise domain, divided at a given sample point, n. We name the pa-
rameter sub-spaces divided by n, κ1, and κ2 where κ1,κ2 ⊂ B.
Expressing (6) in this way gives

min
w1,b1

1

N

n∑
i=1

(
Gu,v(κi)− {wT

1κi + b1}
)

(16a)

subject to {wT
1κi + b1} ≤ Gu,v(κi), i = 1, . . . , N,

min
w2,b2

1

N

N∑
i=n

(
Gu,v(κi)− {wT

2κi + b2}
)

(16b)

subject to {wT
2κi + b2} ≤ Gu,v(κi), i = 1, . . . , N.

In (16a) and (16b) we optimise the area over over only the sam-
ple points within a piece’s domain, κ1, or κ2; however, we enforce
the constraints at every sample point. By doing this we guarantee
convexity of our piecewise constraints. We develop a heuristic to de-
termine the sample point, n, at which we split B based on the error
between sampled points and optimal linear bounds

n = max
i=1,...,N

(
{wTκi + b} − Gu,v(κi)

)
, (17)

where n is the splitting point for the lower bound. We calculate n
correspondingly using the lower linear bound. There exists a splitting
point, n, that would produce optimal piecewise bounds, but finding
it is infeasible. In practice, we first compute a single linear bound for
lower and upper constraints and then use this bound to compute the
splitting point from 17. Then, once the piecewise bound is obtained,
half of the original linear bound is effectively discarded for the veri-
fication procedure. We compute the bounds in this way for two rea-
sons: firstly, it enables us to apply our splitting heuristic in 17, and
secondly, it is computationally efficient in our experimental setting
where we require the linear bounds for comparison.

B Details of branch-and-bound procedure

With our unsound constraints, our method closely follows that of [1],
with the important exception that we treat our single piecewise bound
as two, separate linear bounds with domains, κ1, and κ2. We first de-
fine a function, f

u,v
, to track the violation of a bound by the pixel

value function, Gu,v . In the case that the lower bound is piecewise,
we will maximise f

u,v
twice over κ1, and κ2, and fu,v once over

B. Maximisation of f
u,v

is done via a branch-and-bound Lipschitz
procedure. Algorithm 1 shows a simplified version of the implemen-
tation we use. For each instance of f

u,v
(κ) where κ ∈ κ1, we first

approximate the Lipshitz constant, Li, and use it to bound f
u,v

f
bound

= Li
κ1

2
+

(
f
u,v

(κi)
)
, (18)

where κi is the midpoint of κ1. We find upper bound candidates by
sampling the violation functionfu,v(κ) at four, evenly spaced points

Algorithm 1 Branch-and-bound Lipschitz Optimisation Procedure
Input: f

u,v
, B, ϵ, n, N

Output: ξ∗

1: f
max

:= maxl=1,...,n f
u,v

(κl), where κl ∈ B.
2: f

bound
:= bound(f

u,v
,∇f

u,v
,B), where the operation

bound(·) refers to (14).
3: L := [(f

max
, f

bound
,B)].

4: while f
bound,i=1,...,N

− f
max,i=1,...,N

> ϵ do
5: for i← 1 to N do
6: if f

bound,i
− f

max,i
> ϵ then

7: Bi,i+N = split(Bi).
8: f

max,i
:= maxl=1,...,n f

u,v
(κl), where κl ∈ Bi.

9: f
bound,i

:= bound(f
u,v

,∇f
u,v

,Bi).
10: Li := [(f

max,i
, f

bound,i
,Bi)].

11: end if
12: end for
13: end while
14: return ξ∗ = maxi=1,...,N f

max,i
.

in κ1; the largest valued obtained becomes the maximum value can-
didate, f

max
. We aim to find a maximum value-bound pair that sat-

isfies f
bound
− f

max
< ϵ, with ϵ given. This process is repeated until

a satisfactory maximum candidate is found, splitting κ in each iter-
ation. We can ignore any sub-domain, κn

1 , of κ1 where the function
bound f

bound
in κn

1 is smaller than a maximum value candidate f
max

in any other sub-domain. This is because we can guarantee that the
maximum value, in this case, is not in the κn

1 sub-domain. We deal
only with 1-dimensional parameter spaces for which we split at the
midpoint. The outline of this procedure is given in Algorithm 1.


