

Methane oxidation minimizes emissions and offsets to carbon burial in mangroves

Luiz Cotovicz, Gwenaël Abril, Christian Sanders, Douglas Tait, Damien

Maher, James Sippo, Ceylena Holloway, Yvonne Yau, Isaac Santos

► To cite this version:

Luiz Cotovicz, Gwenaël Abril, Christian Sanders, Douglas Tait, Damien Maher, et al.. Methane oxidation minimizes emissions and offsets to carbon burial in mangroves. Nature Climate Change, 2024, 14 (3), pp.275-281. 10.1038/s41558-024-01927-1. hal-04727945

HAL Id: hal-04727945 https://hal.science/hal-04727945v1

Submitted on 9 Oct 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

2 Methane oxidation minimizes emissions and offsets to carbon burial in mangroves

3

4 Author list

- 5 Luiz C. Cotovicz Jr.^{1,2,*}; Gwenaël Abril^{3,4}; Christian J. Sanders⁵; Douglas R. Tait^{5,6}; Damien T.
- 6 Maher⁶; James Z. Sippo⁶; Ceylena Holloway⁵; Yvonne Y. Y. Yau⁷; Isaac R. Santos^{5,7}
- 7

8 Affiliations

- 9 1 Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
- 10 2 Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará, Fortaleza, Brazil
- 11 3 Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067,
- 12 Muséum National d'Histoire Naturelle, CNRS, IRD, SU, UCN, UA, Paris, France
- 13 4 Programa de Pós-Graduação em Geociências, Universidade Federal Fluminense, Brazil
- 14 5 National Marine Science Centre, Southern Cross University, Coffs Harbour, Australia
- 15 6 Faculty of Science and Engineering, Southern Cross University, Lismore, Australia
- 16 7 Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- 17

- 19
- 20
- 21
- 22
- 23
- **ว**⊿
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33

^{18 *}corresponding author: luiz.cotovicz@io-warnemuende.de

34

35 Abstract

- 36 Maximizing carbon sequestration in mangroves is part of the global effort to combat the climate crisis.
- 37 However, methane (CH₄) emissions can partially offset carbon sequestration in mangroves. Previous
- 38 estimates suggested that CH₄ emissions offset organic carbon burial by 20% in mangroves with
- 39 significant freshwater inputs and/or highly impacted. Here, we resolve the magnitude and drivers of
- 40 the mangrove CH₄ offset using multiple isotopic tracers across a latitudinal gradient. CH₄ emission
- 41 offsets were smaller in high salinity (\sim 7%) than freshwater-influenced (\sim 27%) mangroves. Carbon
- sequestration was disproportionally high compared to CH₄ emissions in understudied tropical areas.
 Low CH₄ emissions were explained by minor freshwater inputs minimizing CH₄ production in saline,
- 43 Low CH4 emissions were explained by minor restrivater inputs minimizing CH4 production in same,
 44 high sulphate conditions and intense CH4 oxidation in porewaters and surface waters. CH4 oxidation in
- 45 mangrove surface waters reduced potential aquatic CH_4 emissions by 10-33%. Overall, carbon
- 46 sequestration through mangrove preservation and restoration is less affected by CH₄ emissions than
- 47 previously thought.

48

49 Main text

Mangroves are a blue carbon ecosystem with high productivity and carbon sequestration 50 51 efficiency^{1,2}. Enhancing mangrove carbon sequestration has been suggested as a nature-based solution to climate change³. The major pathways of mangrove carbon fluxes have been quantified during the past 52 decade. Primary production in global mangroves is 218 ± 72 Tg C yr^{-14,5}. Much of this carbon is exported 53 to the ocean as dissolved carbon following tidal flushing of intertidal soils ^{4,6,7}. A further large partion 54 is recycled and emitted as carbon dioxide (CO₂) to the atmosphere $(34.1 \pm 5.4 \text{ Tg C yr}^{-1})^{8}$. A similar 55 quantity of organic carbon (41 Tg C yr⁻¹) is buried in sediments⁹. The buried organic carbon in 56 mangroves consists predominantly of autochthonous sources mixed with minor allochthonous sources¹⁰ 57 that are preserved due to the anoxic sediment conditions¹¹. However, major components of mangrove 58 carbon cycling such as CH₄ emissions remain poorly resolved. 59

Mangroves release methane (CH₄) to the atmosphere following organic matter degradation in 60 sediments¹²⁻¹⁴. Accounting for CH₄ emissions is important to resolve net carbon sequestration because 61 62 CH₄ is a 45-96 times more powerful greenhouse gas than CO₂ on a mass basis, considering the sustainedflux global warming potential (SGWP) for 100-year and 20-year time horizons, respectively¹⁵. Recent 63 investigations questioned the blue carbon benefits of mangroves due to the high global warming 64 potential of methane emissions^{14,16-18}. Some studies suggested that the methane emissions can 65 partially^{14,19} or fully counteract¹⁶ the climatic benefits of mangrove carbon burial. Estimated methane 66 emission offsets of 17-23%¹⁴ have large, unknown uncertainties because they are based on limited data 67 in deltaic and estuarine mangroves that receive methane-enriched freshwater inputs. This freshwater can 68 lead to a misassignment of CH₄ emissions to mangroves when in reality methane may come from 69 upstream sources²⁰. Furthermore, the in situ production of CH₄ is significant in freshwater-dominated 70 mangroves²⁰. The lack of data in seawater-dominated mangrove ecosystems prevents reasonable global 71 72 estimates of CH₄ emissions.

73 The rate of CH₄ oxidation is another key process regulating CH₄ emissions. Tidal flushing 74 supplies oxygen to organic-rich sediments, oxidizing organic matter and releasing nutrients and $CO_2^{5,21,22}$. Large amounts of CH₄ can be oxidized to CO_2 in lakes and the ocean before it reaches the 75 atmosphere^{23,24}. However, CH₄ oxidation has rarely been quantified in mangrove ecosystems²⁵. If 76 oxidation is significant, CH₄ emissions could be significantly reduced with climate consequences at 77 geological and contemporary time-scales²⁶. The fractionation of ¹³C during methanogenesis leads to 78 depleted δ^{13} C signatures of CH₄, whereas ¹³C fractionation during oxidation gradually increases residual 79 $\delta^{13}C^{27,28}$. It is essential to document CH₄ oxidation rates in mangroves to resolve whether it minimizes 80 81 CH₄ emissions.

82 Here, we resolve mangrove CH₄ emissions, oxidation and offsets to the net radiative forcing 83 associated with organic carbon burial in sediments across a latitudinal gradient including understudied tropical mangroves (Extended Data Fig. 1, Supplementary Information Table S1-S7). We then 84 85 combine our new observations with earlier datasets to reevaluate global estimates of mangrove 86 methane emissions. We hypothesize that previous estimates of aquatic CH₄ emissions from mangroves 87 are overestimated due to an observation bias towards freshwater-influenced mangroves. Our 88 observations reveal that oxidation minimizes CH₄ emissions as an offset to carbon burial in mangroves. Global upscaling with our new observations showed that methane emissions in seawater-89 90 dominated mangroves are ~14 times lower than in freshwater-influenced mangroves, requiring a 91 reevaluation of mangrove carbon budgets.

92

93 Salinity controls mangrove CH4 emissions

High resolution observations of dissolved CO_2 and CH_4 concentrations and $\delta^{13}C$ signatures in six seawater-dominated mangrove creeks across a latitudinal gradient revealed clear tidal cycles 96 (Extended Data Figs. 2-5). Tidal flushing of porewater enriched with products of organic matter 97 degradation explains higher CH₄ concentrations and lighter δ^{13} C signatures during low tide than high 98 tide ^{22,29,30}. Indeed, CH₄ concentrations exhibited positive correlations with radon (²²²Rn, a natural 99 porewater tracer) in all mangrove creeks (Extended Data Fig. 6), providing further evidence that 100 porewater is the dominant CH₄ source.

101 Previous estimates of CH₄ emissions from mangrove waters focused on ecosystems receiving large amounts of freshwater (Fig. 1A)^{5,14,31}. Maximum CH₄ is generally observed in periods of high 102 freshwater discharge^{14,32}. However, freshwater-influenced mangroves can shift to seawater-dominated 103 conditions during dry conditions³². Here, we quantify emissions from mangroves with salinity >30. 104 Hence, our observations mostly represent mangrove ecosystems rather than upstream freshwater 105 106 sources (Fig. 1A). Dissolved CH₄ concentrations in seawater-dominated mangroves ($42 \pm 34 \text{ nmol } \text{L}^{-1}$) were much lower than previous observations in freshwater-influenced mangroves. Our new 107 observations lower the global average of 245 ± 49 nmol L⁻¹, as reported across nine systems³³, to 143 108 \pm 59 nmol L⁻¹ based now on fifteen mangrove sites. The ranges of aquatic CH₄ emissions in our 109 latitudinal transect (40.3 \pm 2.7 to 137.2 \pm 3.2 μ mol m⁻² d⁻¹) are 15-47% of earlier observations in 110 freshwater-influenced mangrove ecosystems (288.0 \pm 73.2 µmol m⁻² d⁻¹, ¹⁴). While CH₄ 111 concentrations and emissions in freshwater-influenced mangroves have pronounced seasonal 112 variability^{14,32}, seawater-dominated mangroves have minor seasonality due to the major influence of 113 oceanic water and minor freshwater inputs^{34,35}. 114 Overall, the relationship between CH₄ and salinity in all local-scale studies (Fig. 1) further 115 supports our suggestion that earlier global estimates of methane emissions from mangroves were 116 overestimated due to freshwater inputs. Higher CH₄ emissions in mangroves receiving freshwater can 117 be explained by (1) substantial external CH₄ inputs from rivers or upstream freshwater wetlands³⁶; and 118 (2) enhanced in situ methanogenesis in systems with low sulphate concentrations and high organic 119 matter^{37–39}. The positive relationship between CH₄ emissions and carbon dioxide (CO₂) (Fig. 1B) and 120 the natural tracer radon (²²²Rn) (Extended Data Fig. 6) indicates an analogous porewater source. 121 However, the steeper slope of CO₂ to CH₄ for brackish mangroves (Fig. 1B) implies reduced CH₄ 122 production when seawater sulphate is available³⁷. Indeed, the lowest emissions of CH₄ and CO₂ were 123 reported in arid, carbonate mangroves exhibiting the highest salinities⁴⁰ and in our seawater-dominated 124 mangroves. 125 In addition to the water-atmosphere diffusive fluxes quantified here, there are other potential CH₄ 126

emission pathways in mangroves, including soil-atmosphere²⁰, plant-mediated transport^{41,42}, and 127 water-atmosphere ebullitive fluxes¹². The few investigations of CH₄ emissions by emerged mangrove 128 soils revealed values similar or lower than aquatic emissions $(59.3 \pm 93.0 \ \mu mol \ m^{-2} \ d^{-1})^{13,34}$. The 129 strong negative relationship between soil-atmosphere emissions of CH4 and salinity suggests similar 130 controlling factors and low emissions in high salinity mangroves²⁰. Plant-mediated CH₄ emissions 131 remain understudied⁴¹⁻⁴³. Living mangrove tree-stems⁴¹ can release $37.5 \pm 5.8 \ \mu mol \ m^{-2} \ d^{-1}$ of CH₄ but 132 plants can also act as CH₄ sinks depending on salinity and microbial activity⁴². Ebullitive fluxes of 133 CH₄ may be significant in freshwater-dominated, polluted mangroves^{12,44,45,46}. In some degraded 134 freshwater-influenced Indian mangroves, CH₄ emissions via ebullition (30 to 190 μ mol m⁻² d⁻¹) 135 negatively correlated to salinity⁴⁵. Bubble formation in marine sediments may occurs below the sulfate 136 depletion depth²⁶, however, in seawater-dominated mangroves, this zone is likely constrained to 137 deeper sediment layers⁴⁷. In coastal sediments, CH₄ ebullition is tightly coupled to the variation of the 138 tidal height and occurs almost exclusively around low tide when freshwater reaches mangroves⁴⁸ and 139 due to a reduction in hydrostatic pressure⁴⁹. However, no studies have demonstrated bubble ebullition 140 as a significant CH₄ release pathway in high salinity, pristine mangrove systems. 141

142 Increasing sulfate concentration with salinity offers an ample source of electron acceptors for 143 sulfate-reducing bacteria that outcompete methanogens for substrate⁵⁰. Therefore, methanogenesis 144 occurs in deep, anoxic layers of the sediment⁵¹. Anaerobic oxidation of methane coupled to sulfate 145 reduction can also occur in anoxic marine sediments, representing an important $CH_4 sink^{51,52}$. The 146 amount of CH_4 escaping anaerobic oxidation in deep layers diffuses to the upper sediment layers,

- 147 where it can be partially oxidized by methanotrophs 53 . In freshwater sediments, organic matter
- 148 mineralization can be dominated by methanogenesis⁵⁴. However, in coastal marine systems, tidal
- 149 pumping supplies sulphate and oxygen that inhibit methanogenesis 55 . Indeed, CH₄ fluxes are
- 150 significantly reduced at salinities $>15^{39,54,56,57}$, and CH₄ production can be reduced by $\sim94\%$ in marine
- sediments compared to freshwater sediments⁵⁷. The relationship between salinity and dissolved CH_4
- established in local studies^{39,58,59} clearly holds on a global scale (Fig. 1) with major implications to
 how we interpret the role of mangroves as carbon sinks. Including upstream freshwater sources clearly
- 155 now we interpret the role of mangroves as carbon sinks. Including upstream freshwater sources cle 154 overestimates the role of methane as an offset to mangrove carbon sequestration.
- 155
- 156

157 Small CH₄ offset to mangrove carbon sequestration

158 Earlier observations in mangroves influenced by freshwater suggested that aquatic emissions of 159 CH_4 offset ~20% of the net radiative forcing benefit of organic carbon sequestration in mangrove sediments¹⁴. However, this potential offset was based on 24-h time series observations in three 160 freshwater-influenced mangroves combined with earlier data from six other freshwater-influenced and 161 often anthropogenically-impacted mangroves. These previous studies also used global averages of 162 carbon burial rates rather than local estimates to define the CH₄ offset. Our longer observations 163 164 focusing on six seawater-dominated mangroves across a broad latitudinal gradient with locally estimated burial rates (Supplementary Information Table S4, S5, Fig. S7) revelead an average CH₄ 165 offset of only 9% (Fig. 2A). This offset decreases further to 8% if we consider nitrous oxide (N_2O) 166 uptake in nitrogen-limited mangrove creeks⁶⁰ (Supplementary Information Table S7). The N₂O sink 167 and smaller CH₄ source in seawater-dominated mangroves are a clear contrast to mangroves 168

169 influenced by freshwater inputs and pollution.

Carbon burial and biomass increase towards the tropics where most mangroves occur^{9,61,62}. The 170 lowest CH₄ offset (2.2%) and highest rate of organic carbon burial (216 ± 17 g C m⁻² yr⁻¹ or 791 g CO₂ 171 $m^{-2} yr^{-1}$) occurred in the tropics (Fig. 2A,B). This sequestration rate compares well with the global 172 average of 194 ± 15 g C m⁻² yr⁻¹ (or 711 g CO₂ m⁻² yr⁻¹)⁹. Our most tropical mangrove system had 173 large tidal variability and deeper waters (4.3 m, Supplementary Information Table S1) that favor CH₄ 174 oxidation and minimize CH₄ emissions⁶³. Freshwater-influenced mangroves also have the lowest 175 offset (1.4%) in the tropics¹⁴. Therefore, the ratio of organic carbon burial to CH₄ emissions are much 176 higher in understudied tropical mangroves. Interestingly, our average rate of organic carbon burial 177 $(102 \pm 66 \text{ g C m}^{-2} \text{ yr}^{-1} \text{ or } 374 \text{ g CO}_2 \text{ m}^{-2} \text{ yr}^{-1})$ in the six mangroves nearly matches a recent mean 178 global estimation of carbon burial for open coast and lagoon mangrove biophysical types (103 g C m⁻² 179 yr^{-1} or 377 g CO₂ m⁻² yr⁻¹, ⁶⁴). The highest offset (latitude 32° S) coincided with the lowest average 180 organic carbon burial (50 ± 6 g C m⁻² yr⁻¹ or 293 g CO₂ m⁻² yr⁻¹). Even our maximal aquatic CH₄ 181 offset (~17%) is lower than earlier global averages biased by freshwater methane. 182

Previous estimates of high CH₄ offsets¹⁴ relied on several major assumptions. First, all emissions 183 were assumed to be due to mangroves rather than upstream freshwater inputs. Mangroves with low 184 185 freshwater influence emits less CH₄ (Fig. 1A,B) but represent >32% of the global mangrove area⁶⁵. A new global mangrove typology shows that 40.5% of mangrove systems are deltaic, 27.5% are 186 estuarine, 21.0% are open coast, and 11.0% are lagoonal⁶⁵. We consider that seawater-dominated 187 mangroves include lagoonal and open coast types. However, even deltaic and estuarine mangroves 188 include regions with salinity >30, and freshwater-influenced mangroves can be dominated by seawater 189 190 during low flow conditions³². For instance, mangroves on the Amazon delta are all classified as deltaic, but several areas have tidal creeks with salinity $>30^{29}$. Second, local CH₄ emissions were 191 compared to global rates of organic carbon burial¹⁴. We did not find a significant link between CH₄ 192 emissions and organic carbon burial (Fig. 2B). This implies that CH₄ offsets to organic carbon burial is 193 194 site-specific. The rates of mangrove organic carbon burial and aquatic CH4 emissions can span over 195 three orders of magnitude^{31,64}. Therefore, comparing local estimates of CH₄ emissions with the global

average of organic carbon burial introduces biases due to different spatial representations of eachcarbon pathway. Hence, considering pristine seawater-dominated systems increases mangrove's net

- 198 global radiative forcing benefit.
- 199

200 *CH*⁴ oxidation minimizes *CH*⁴ emissions

We also reveal how CH₄ oxidation in mangrove porewater and surface water reduces potential 201 CH₄ emissions (Extended Data Fig. 3). Fractionation during oxidation enriches the heavier isotope in 202 the residual CH4^{26,27}. Our measured CH4 isotope values in porewaters were less negative than the 203 theoretical source calculated from surface creek water data using keeling plots and a conservative 204 mass balance (referred to here as the conservative δ^{13} C-CH₄ in porewater, Fig. 3A). This implies CH₄ 205 oxidation in porewater. δ^{13} C-CH₄ in porewaters reached a maximal enrichment of 27‰ in subtropical 206 207 mangroves compared to a porewater end-member theoretical signature of -80% to -65%. The low CH₄ concentrations in ¹³C-enriched shallow porewaters further implies oxidation is taking place 208 (Supplementary Information Fig. S5). Porewater δ^{13} C-CH₄ was occasionally heavier than creek water 209 210 at low tide, implying the mobilization of deeper porewater with tidal pumping.

High organic carbon deposition rapidly consumes O₂, minimizing aerobic methane 211 oxidation⁶⁶. The mean δ^{13} C-CH₄ value in porewater was negatively correlated to the mean organic 212 carbon burial (Fig. 3B). However, data clustered in two groups. Despite a significant correlation, these 213 results should be interpreted with caution. The mean δ^{13} C-CH₄ value in porewater was also negatively 214 correlated to porewater exchange rates (Fig. 3C). Surface water penetrates sediments on tidal time 215 216 scales⁶⁷. Hence, rapid porewater exchange likely prevents some CH₄ oxidation due to the short residence time. Rapid porewater flushing would transfer methane to surface waters prior to oxidation. 217 The geomorphic and sedimentary settings⁶⁵ and the physiognomy⁶⁸ of mangroves drive water 218 residence time⁵³, which influences CH₄ production, oxidation and dispersion (outwelling). 219

The fraction of CH₄ oxidation in surface waters could be calculated only for the two tropical 220 mangroves where the observed and the calculated conservative δ^{13} C-CH₄ signatures matched the 221 222 signature observed in porewater (Fig. 3A, 3D). The fraction of CH₄ oxidation in tidal creek water was highest in the most tropical mangrove Darwin at 12° S ($34 \pm 11\%$) where low CH₄ concentrations in 223 surface waters were linked to high oxidation (Fig. 3D). CH₄ oxidation within the water column was 224 likely a result of oxygen-rich seawater inputs⁶⁹. Maximal rates of CH₄ oxidation in Darwin are related 225 to a large tidal range and deep waters (~8 m). Deeper water increases the residence time of CH₄ and 226 227 therefore favors oxidation versus emission⁶³. CH₄ oxidation in Darwin averaged $20.9 \pm 8.9 \ \mu mol \ m^{-2}$ d^{-1} about half of the CH₄ outgassing (40.5 ± 2.0 µmol m⁻² d⁻¹). Methane oxidation at Hinchinbrook 228 Island (18°S) (15.3 \pm 2.7 µmol m⁻² d⁻¹) was equivalent to about 10% of CH₄ outgassing (137.9 \pm 3.2 229 μ mol m⁻² d⁻¹). This large natural variability highlights the importance of site-specific measurements of 230 231 CH₄ oxidation.

Overall, we reveal that CH₄ oxidation in high salinity mangroves minimizes the potential for 232 aquatic CH₄ emissions. In saline, arid Mexican mangroves, low concentrations of CH₄ in porewaters 233 $(<30 \text{ nmol } \text{L}^{-1})$ were due to anaerobic oxidation rather than the inhibition of methane production by 234 sulfate reducers²⁵. Very few studies have quantified CH₄ oxidation in freshwater-influenced 235 mangroves^{70–72}. In freshwater-influenced mangroves of the Sundarbans, average CH₄ oxidation in 236 surface water was 20.6 nmol L⁻¹ d⁻¹ (or 72.1 μ mol m⁻² d⁻¹ for a water column depth of 3.5 m)⁷⁰. This 237 rate is 3-4 times higher than observed in our seawater-dominated mangroves. Sundarbans sediments 238 have strong oxidation in the aerobic zone with steep vertical gradients from 20 μ mol m⁻² d⁻¹ at 60 cm 239 to 3380 μ mol m⁻² d⁻¹ at the surface oxic soil ⁷². CH₄ oxidation in Sundarbans removed ~40% of the 240 241 total CH₄ produced in sediments⁷¹. In high salinity, pristine Mexican mangroves, oxidation removed about 80% of the total CH₄ produced²⁵. Our data revealed average oxidation rates in surface water of 242

tidal creeks ranging between 10% and 35%. Further research research is needed to resolve the scale of

- 244 CH₄ production and oxidation in mangroves influenced by freshwater and those dominated by
- seawater, both in sediments/porewaters and in surface waters.
- 246

247 Implications

Methane emissions and the carbon budget of saline, pristine mangroves are significantly 248 different from those in the previously studied freshwater-influenced and sometimes anthropogenically 249 impacted mangrove ecosystems^{5,14}. High upstream CH₄ inputs and low sulfate explain higher CH₄ 250 emissions in freshwater-influenced mangroves. CH₄ oxidation in creek waters of tropical, seawater-251 dominated mangroves prevents 10 to 33% of the CH₄ outgassing. Large tidal ranges, deeper waters, 252 high porewater exchange, and high organic carbon burial are associated with high oxidation rates in 253 254 surface waters and low oxidation in porewater. Overall, porewater oxidation plays a major role 255 regulating CH₄ emissions.

Our global upscaling revealed that CH4 emissions from seawater-dominated mangroves were 256 0.010 Tg CH₄ yr⁻¹ (or 1.02 Tg CO₂ yr⁻¹ as CO₂e, using SGWP₂₀), with 60% of emissions originating 257 from the water-atmosphere interface (Fig. 4; Extended Data Fig. 7; Supplementary Information Table 258 S8). These emissions resulted in a relatively small offset of only 7% to sediment organic carbon burial. 259 260 CH₄ emissions from freshwater-dominated mangroves were on average 14 times higher than seawaterdominated mangroves at 0.146 Tg CH₄ yr⁻¹ (or 14.09 Tg CO₂ yr⁻¹ as CO₂e, SGWP₂₀) with a similar 261 contribution from sediment-atmosphere (54%) and water-atmosphere (46%) emissions. Freshwater-262 263 influenced mangroves could thus offset 27% of mangrove organic carbon burial. However, a large portion of that methane likely originates from upstream freshwater sources (Figure 1A). Indeed, a 264 global compilation demonstrated that aquatic CH₄ emissions are 3 to 4-fold higher from rivers than 265 mangroves³¹. Using the median fluxes for the entire dataset (still biased towards freshwater), the total 266 global mangrove methane emissions are 0.068 Tg CH₄ yr⁻¹ (or 6.54 Tg CO₂ yr⁻¹ as CO₂e, SGWP₂₀), 267 giving an offset of 15% which is lower than previous estimates of $\sim 20\%^{14}$ (Fig. 4). Earlier global 268 269 estimates used Global Warming Potential (GWP) metrics rather than the Sustained-Flux Global Warming Potential (SGWP) used here. The SGWP is generally larger and considered more realistic 270 than the GWP for the comparison of the radiative forcing of different greenhouse gas emissions of 271 natural ecosystems¹⁵. Therefore, accounting for seawater-dominated mangroves revealed that CH₄ 272 emissions are a smaller offset to organic carbon burial in mangroves. 273

274 Organic carbon burial and CH₄ emissions rates can vary significantly between 3 to 4 orders of magnitude in mangroves^{31,64}. Thus, local rates of carbon burial and CH₄ emissions should be 275 compared. Unfortunately, concomitant data on carbon burial and CH₄ emissions remain scarce. 276 277 Organic carbon burial depends on sedimentary (terrigenous or carbonate-dominant) and geomorphic (delta, estuaries, lagoons, open coasts) conditions⁶⁴. We reveal that mangrove typologies and climates 278 also influence CH₄ emissions. Tropical mangroves systems that account for \sim 85% of the world's 279 280 mangrove area have the lowest offsets in both freshwater-influenced and seawater-dominated conditions. Therefore, our inclusion of distinct climates, typologies and the full latitudinal range offers 281 282 a refined global mangrove CH₄ budget that decreases previously-estimated global offsets.

283 Our findings of higher ratios of CH_4 to CO_2 emissions in freshwater- than seawater-dominated 284 pristine mangroves have implications for carbon budgets. Furthermore, pristine seawater-dominated 285 mangroves can be a sink for N_2O^{60} . CH_4 and N_2O are powerful greenhouse gases, so the conservation 286 and restoration of mangroves should aim not only to enhance carbon burial, but also prevent 287 greenhouse gas emissions to the atmosphere. We reveal much lower CH_4 offsets to carbon burial than 288 previously thought. Preserving and restoring blue carbon ecosystems can partially contribute to the 289 global efforts to sequester CO_2 from the atmosphere and prevent additional emissions. The lower

- 290 methane emissions revealed in our investigation enhance the perceived climate benefits of mangrove
- ecosystem restoration. We highlight, however, that potential blue carbon ecosystem restoration could
- draw down an additional 841 (621-1,064) Tg CO₂e per year by 2030 amounting to ~3% of the actual
- 293 global anthropogenic emissions³. Hence, blue carbon ecosystems play a small role in mitigating
 294 climate change on a global scale¹⁸. A significant reduction in anthropogenic greenhouse gas emissions
- remains as the top priority to minimize climate change.
- 296

297 Acknowledgements

- 298 Funding for field investigations and analytical instrumentation was provided by the Australian
- 299 Research Council to IRS (LE120100156 and DE140101733). Some of the analysis and travel were
- 300 funded by the Swedish Research Council to IRS (2020-00457). GA was supported by the French-
- 301 Brazilian International research project VELITROP (CNRS, INEE). LCCJr thanks the Fundação
- 302 Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP, INT- 00159-
- 303 00009.01.00/19) and the Post Graduate Program in Tropical Marine Sciences of the Federal University
- 304 of Ceará (UFC-PRPPG) for a visiting researcher grant at the Marine Sciences Institute (LABOMAR).
- 305 LCCJr also thanks the German Federal Ministry of Education and Research through the Project
- Carbostore, grant nr. 03F0875B, for the Postdoctoral Fellowship Grant. The symbols used in the Fig. 4
- and in the Extended Data Fig.7 are a courtesy of the Integration and Application Network (IAN),
- 308 University of Maryland Center for Environmental Science (ian.umces.edu/media-library).
- 309

310 Author contribution statement

- 311 LCCJr performed most of the data analysis, made tables and figures, and wrote the first draft with
- support from IRS, GA, and others. IRS designed, managed and obtained funding for the project. GA
- supported the interpretation of methane isotopic composition and calculation of oxidation rates. CJS
- was responsible for sediment analysis and carbon burial estimates. DT, JZS, CH and DM helped
- design the field campaign and performed field and laboratory work. DTM and JZS calculated methane
 emissions and drafted some of the methods section. YYY drafted the introduction and performed some
- of the literature review. All authors edited the manuscript and approved its submission.
- 318

319 Competing Interests Statement

- 320 The authors declare no competing interests.
- 321

322 Figure Legends/Captions (for main text figures)

Fig 1. Dissolved CH₄ concentrations and emissions in seawater-dominated and freshwater-influenced

mangroves. A) Dissolved CH₄ concentrations is driven by salinity in mangrove tidal creeks. Compiled
 literature data^{5,14,32,73} (blue crosses) had overall significant freshwater influence. Our new data in

seawater-dominated mangrove creeks (red crosses) reveal much lower CH₄ concentrations and

- emissions. Each cross in the graph (blue or red) represents a single measurement. The error bars
- represent the mean \pm SD in each tidal creek. The dashed line represents the 3rd order polynomial
- regression incorporating all data points ($R^2=0.22$; n=9122). B) Compiled data of CH₄ versus CO₂
- aquatic emissions in mangrove creeks revealing different trends for freshwater-influenced (salinity <
- 331 30) and seawater-dominated (salinity > 30) mangroves (Extended Data Fig. 1)⁷⁴. The lines represent
- 332 linear regressions. The raw data are provided in the open data repository Figshare
- 333 (https://doi.org/10.6084/m9.figshare.24204351).

- Fig. 2. Site-specific CH₄ emissions and offsets to organic carbon burial in seawater-dominated,
- 335 pristine mangroves. A) The methane offset to organic carbon burial in mangroves. The dotted black
- line represents the previous global average based mostly on freshwater-dominated mangroves¹⁴.
- 337 Details of offset calculation appear in Methods. B) The relationship between mean aquatic CH₄
- emissions and mean organic carbon burial in seawater-dominated, pristine mangrove sediments
- 339 spanning a latitudinal gradient. The error bars represent the standard deviation. Notice that the size of
- 340 some data points in the graphs surpasses the standard deviation bars.
- Fig. 3. Large CH₄ oxidation in mangroves revealed by δ^{13} C-CH₄. (A) The comparison between mean
- 342 δ^{13} C-CH₄ signatures observed in mangrove porewater and those calculated from expected conservative
- in mangrove creek waters. The line represents a ratio of 1:1. (B) The relationship between mean δ^{13} C-
- 344 CH₄ signatures in porewater and mean rates of sediment OC burial. The trend line is a linear
- regression (p < 0.05). (C) The relationship between mean porewater exchange⁶⁷ and mean δ^{13} C-CH₄
- 346 porewater signatures. The trendline is a linear regression (p < 0.005). (D) The fraction of CH₄
- 347 oxidation in the tidal creeks versus CH_4 concentrations. The results represent the mean \pm SD of the 348 two isotope fractionation models. The curve represents a two-phase association nonlinear regression
- that was fitted, incorporating all available data points ($R^2=0.87$; n=199). Details on the approach
- appear in Methods. All error bars represent mean \pm SD. The size of some data points exceed standard
- 351 deviation bars.
- Fig. 4. Global upscaling of annual CH₄ emissions and organic carbon burial in sediments. Median
- 353 (interquartile range) rates of CH₄ emissions and organic carbon burial in global mangroves were also
- calculated for seawater-dominated and freshwater-influenced ecosystem (Extended Data Fig. 7).
- 355 Global mangroves were assumed to be inundated 50% of the time (water-atmosphere flux) and
- 356 exposed 50% of the time. Plant-mediated CH₄ emissions were not included in the global upscaling due
- to lack of data and CH₄ ebullition was considered negligible. The fluxes were extracted from recent
- 358 global compilations of mangrove CH_4 emissions³¹ and organic carbon burial in mangrove sediments⁶⁴,
- and complemented by our observations. Fig. 7 in the Extended Data contrasts global budgets for
- 360 seawater-dominated and freshwater-influenced mangroves.
- 361

362 **References**

- McLeod, E. *et al.* A blueprint for blue carbon: Toward an improved understanding of the role
 of vegetated coastal habitats in sequestering CO2. *Front. Ecol. Environ.* 9, 552–560 (2011).
- 365 2. Serrano, O. *et al.* Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. *Nat. Commun.* 10, 4313 (2019).
- 367 3. Macreadie, P. I. *et al.* Blue carbon as a natural climate solution. *Nat. Rev. Earth Environ.* 2, 826–839 (2021).
- 369 4. Bouillon, S. *et al.* Mangrove production and carbon sinks: a revision of global budget
 370 estimates. *Glob. Biogeochem. Cy.* 22, (2008).
- Santos, I. R., Maher, D. T., Larkin, R., Webb, J. R. & Sanders, C. J. Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands. *Limnol. Oceanogr.* 64, 996–1013 (2019).
- Maher, D. T., Santos, I. R., Golsby-Smith, L., Gleeson, J. & Eyre, B. D. Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: The missing mangrove carbon sink? *Limnol. Oceanogr.* 58, 475–488 (2013).
- 377 7. Reithmaier, G. M. S. *et al.* Carbonate chemistry and carbon sequestration driven by inorganic carbon outwelling from mangroves and saltmarshes. *Nat. Commun.* 14, 8196 (2023).

- Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. & Eyre, B. D. Seasonal and temporal
 CO2dynamics in three tropical mangrove creeks A revision of global mangrove
 CO2emissions. *Geochim. Cosmochim. Acta* 222, 729–745 (2018).
- Wang, F. *et al.* Global blue carbon accumulation in tidal wetlands increases with climate change. *Natl. Sci. Rev.* 8, (2021).
- 384 10. Saintilan, N., Rogers, K., Mazumder, D. & Woodroffe, C. Allochthonous and autochthonous
 385 contributions to carbon accumulation and carbon store in southeastern Australian coastal
 386 wetlands. *Estuar. Coast. Shelf Sci.* 128, 84–92 (2013).
- 387 11. Kristensen, E., Bouillon, S., Dittmar, T. & Marchand, C. Organic carbon dynamics in mangrove ecosystems: A review. *Aquat. Bot.* 89, 201–219 (2008).
- Barnes, J. *et al.* Tidal dynamics and rainfall control N2O and CH4 emissions from a pristine mangrove creek. *Geophys. Res. Lett.* 33, 4–9 (2006).
- 391 13. Kristensen, E. *et al.* Emission of CO2 and CH4 to the atmosphere by sediments and open waters in two Tanzanian mangrove forests. *Mar. Ecol. Prog. Ser.* 370, 53–67 (2008).
- Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. H. & Eyre, B. D. Methane emissions
 partially offset "blue carbon" burial in mangroves. *Sci. Adv.* 4, (2018).
- Neubauer, S. C. & Megonigal, J. P. Moving Beyond Global Warming Potentials to Quantify
 the Climatic Role of Ecosystems. *Ecosystems* 18, 1000–1013 (2015).
- 397 16. Al-Haj, A. N. & Fulweiler, R. W. A synthesis of methane emissions from shallow vegetated
 398 coastal ecosystems. *Glob. Chang. Biol.* 26, 2988–3005 (2020).
- Rosentreter, J. A. & Williamson, P. Concerns and uncertainties relating to methane emissions
 synthesis for vegetated coastal ecosystems. *Glob. Chang. Biol.* 26, 5351–5352 (2020).
- 401 18. Williamson, P. & Gattuso, J.-P. Carbon Removal Using Coastal Blue Carbon Ecosystems Is
 402 Uncertain and Unreliable, With Questionable Climatic Cost-Effectiveness . *Frontiers in*403 *Climate* vol. 4 at https://www.frontiersin.org/articles/10.3389/fclim.2022.853666 (2022).
- 404 19. Liu, J. *et al.* Methane emissions reduce the radiative cooling effect of a subtropical estuarine mangrove wetland by half. *Glob. Chang. Biol.* 26, 4998–5016 (2020).
- 406 20. Borges, A. V. & Abril, G. Carbon Dioxide and Methane Dynamics in Estuaries. Treatise on
 407 Estuarine and Coastal Science vol. 5 (2011).
- 408 21. Bouillon, S. *et al.* Importance of intertidal intertidal sediment processes and porewater
 409 exchange on the water column biogeochemistry in a pristine mangrove creek (Ras Dege,
 410 Tanzania). *Biogeosciences* 4, 311–322 (2007).
- 411 22. Call, M. *et al.* Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring-neap-spring timescales in a mangrove creek. *Geochim. Cosmochim. Acta*413 150, 211–225 (2015).
- 414 23. King, G. M. Ecological Aspects of Methane Oxidation, a Key Determinant of Global Methane
 415 Dynamics BT Advances in Microbial Ecology. in (ed. Marshall, K. C.) 431–468 (Springer
 416 US, 1992). doi:10.1007/978-1-4684-7609-5_9.
- 417 24. Van Der Nat, F. J. W. A., De Brouwer, J. F. C., Middelburg, J. J. & Laanbroek, H. J. Spatial
 418 distribution and inhibition by ammonium of methane oxidation in intertidal freshwater
 419 marshes. *Appl. Environ. Microbiol.* 63, 4734–4740 (1997).
- 420 25. Sánchez-Carrillo, S. *et al.* Methane production and oxidation in mangrove soils assessed by
 421 stable isotope mass balances. *Water (Switzerland)* 13, 1–22 (2021).

- 422 26. Whiticar, M. J. *The Biogeochemical Methane Cycle. Hydrocarbons, Oils and Lipids: Diversity,*423 Origin, Chemistry and Fate (2020). doi:10.1007/978-3-319-54529-5_5-1.
- 424 27. Whiticar, M. J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation
 425 of methane. *Chem. Geol.* 161, 291–314 (1999).
- 426 28. Bastviken, D., Ejlertsson, J. & Tranvik, L. Measurement of Methane Oxidation in Lakes: A
 427 Comparison of Methods. *Environ. Sci. Technol.* 36, 3354–3361 (2002).
- 428 29. Call, M. *et al.* High pore-water derived CO 2 and CH 4 emissions from a macro-tidal mangrove creek in the Amazon region. *Geochim. Acta* 247, 106–120 (2019).
- 30. Rosentreter, J. A., Maher, D. T., Erler, D. V, Murray, R. & Eyre, B. D. Factors controlling
 seasonal CO2 and CH4 emissions in three tropical mangrove-dominated estuaries in Australia. *Estuar. Coast. Shelf Sci.* 215, 69–82 (2018).
- 433 31. Rosentreter, J. A. *et al.* Half of global methane emissions come from highly variable aquatic
 434 ecosystem sources. *Nat. Geosci.* 14, 225–230 (2021).
- 435 32. Borges, A. V, Abril, G. & Bouillon, S. Carbon dynamics and CO2 and CH4 outgassing in the
 436 Mekong delta. *Biogeosciences* 15, 1093–1114 (2018).
- Alongi, D. M. Carbon cycling in the world's mangrove ecosystems revisited: Significance of non-steady state diagenesis and subsurface linkages between the forest floor and the coastal ocean. *Forests* 11, 1–17 (2020).
- 440 34. Chen, G. C. *et al.* Rich soil carbon and nitrogen but low atmospheric greenhouse gas fluxes
 441 from North Sulawesi mangrove swamps in Indonesia. *Sci. Total Environ.* 487, 91–96 (2014).
- 442 35. Barroso, G. C. *et al.* Linking eutrophication to carbon dioxide and methane emissions from
 443 exposed mangrove soils along an urban gradient. *Sci. Total Environ.* 850, 157988 (2022).
- 36. Sadat-Noori, M., Maher, D. T. & Santos, I. R. Groundwater Discharge as a Source of
 Dissolved Carbon and Greenhouse Gases in a Subtropical Estuary. *Estuaries and Coasts* 39,
 639–656 (2016).
- 37. Martens, C. S., Albert, D. B. & Alperin, M. J. Biogeochemical processes controlling methane
 in gassy coastal sediments—Part 1. A model coupling organic matter flux to gas production,
 oxidation and transport. *Cont. Shelf Res.* 18, 1741–1770 (1998).
- 38. Gonsalves, M.-J., Fernandes, C. E. G., Fernandes, S. O., Kirchman, D. L. & Bharathi, P. A. L.
 Effects of composition of labile organic matter on biogenic production of methane in the
 coastal sediments of the Arabian Sea. *Environ. Monit. Assess.* 182, 385–395 (2011).
- 453 39. Poffenbarger, H. J., Needelman, B. A. & Megonigal, J. P. Salinity Influence on Methane
 454 Emissions from Tidal Marshes. *Wetlands* 31, 831–842 (2011).
- 40. Sea, M. A., Garcias-Bonet, N., Saderne, V. & Duarte, C. M. Carbon dioxide and methane
 fluxes at the air-sea interface of Red Sea mangroves. *Biogeosciences* 15, 5365–5375 (2018).
- 457 41. Jeffrey, L. C. *et al.* Are methane emissions from mangrove stems a cryptic carbon loss
 458 pathway? Insights from a catastrophic forest mortality. *New Phytol.* 224, 146–154 (2019).
- 459 42. Gao, C.-H. *et al.* Source or sink? A study on the methane flux from mangroves stems in
 460 Zhangjiang estuary, southeast coast of China. *Sci. Total Environ.* **788**, 147782 (2021).
- 461 43. Zhang, C. *et al.* Massive methane emission from tree stems and pneumatophores in a subtropical mangrove wetland. *Plant Soil* 473, 489–505 (2022).
- 463 44. Krithika, K., Purvaja, R. & Ramesh, R. Fluxes of methane and nitrous oxide from an Indian mangrove. 94, (2008).

- 465 45. Padhy, S. R. *et al.* Seasonal fluctuation in three mode of greenhouse gases emission in relation
 466 to soil labile carbon pools in degraded mangrove, Sundarban, India. *Sci. Total Environ.* 705,
 467 135909 (2020).
- 468 46. Chuang, P. C. *et al.* Methane fluxes from tropical coastal lagoons surrounded by mangroves,
 469 Yucatán, Mexico. *J. Geophys. Res. Biogeosciences* 122, 1156–1174 (2017).
- 470 47. Li, C.-H., Zhou, H.-W., Wong, Y.-S. & Tam, N. F.-Y. Vertical distribution and anaerobic
 471 biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments in Hong Kong,
 472 South China. *Sci. Total Environ.* 407, 5772–5779 (2009).
- 473 48. Middelburg, J. J. *et al.* Organic matter mineralization in intertidal sediments along an estuarine gradient. *Mar. Ecol. Prog. Ser.* 132, 157–168 (1996).
- 475 49. Chanton, J. P., Martens, C. S. & Kelley, C. A. Gas transport from methane-saturated, tidal
 476 freshwater and wetland sediments. *Limnol. Oceanogr.* 34, 807–819 (1989).
- 477 50. McGenity, T. J. & Sorokin, D. Y. Methanogens and Methanogenesis in Hypersaline
 478 Environments BT Biogenesis of Hydrocarbons. in (eds. Stams, A. J. M. & Sousa, D.) 1–27
 479 (Springer International Publishing, 2018). doi:10.1007/978-3-319-53114-4 12-1.
- 480 51. Boetius, A. *et al.* A marine microbial consortium apparently mediating anaerobic oxidation of
 481 methane. *Nature* 407, 623–626 (2000).
- 482 52. Reeburgh, W. S. Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513 (2007).
- Marchand, C., David, F., Jacotot, A., Leopold, A. & Ouyang, X. Chapter 3 CO2 and CH4
 emissions from coastal wetland soils. in *Estuarine and Coastal Sciences Series* (eds. Ouyang,
 X., Lee, S. Y., Lai, D. Y. F. & Marchand, C. B. T.-C. M. in C. W.) vol. 2 55–91 (Elsevier,
 2022).
- 487 54. Weston, N. B., Dixon, R. E. & Joye, S. B. Ramifications of increased salinity in tidal
 488 freshwater sediments: Geochemistry and microbial pathways of organic matter mineralization.
 489 J. Geophys. Res. Biogeosciences 111, (2006).
- 490 55. Martens, C. S. & Berner, R. A. Methane Production in the Interstitial Waters of Sulfate491 Depleted Marine Sediments. *Science (80-.).* 185, 1167–1169 (1974).
- 492 56. Bartlett, K. B., Bartlett, D. S., Harriss, R. C. & Sebacher, D. I. Methane emissions along a salt marsh salinity gradient. *Biogeochemistry* 4, 183–202 (1987).
- 494 57. Chambers, L. G., Reddy, K. R. & Osborne, T. Z. Short-Term Response of Carbon Cycling to
 495 Salinity Pulses in a Freshwater Wetland. *Soil Sci. Soc. Am. J.* 75, 2000–2007 (2011).
- 496 58. Maher, D. T., Cowley, K., Santos, I. R., Macklin, P. & Eyre, B. D. Methane and carbon dioxide
 497 dynamics in a subtropical estuary over a diel cycle: Insights from automated in situ radioactive
 498 and stable isotope measurements. *Mar. Chem.* 168, 69–79 (2015).
- 499 59. Yau, Y. Y. Y. *et al.* Alkalinity export to the ocean is a major carbon sequestration mechanism
 500 in a macrotidal saltmarsh. *Limnol. Oceanogr.* (2022) doi:10.1002/lno.12155.
- Maher, D. T., Sippo, J. Z., Tait, D. R., Holloway, C. & Santos, I. R. Pristine mangrove creek
 waters are a sink of nitrous oxide. *Sci. Rep.* 6, 1–8 (2016).
- 503 61. Twilley, R. R., Chen, R. H. & Hargis, T. Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. *Water. Air. Soil Pollut.* **64**, 265–288 (1992).
- 505 62. Sanders, C. J. *et al.* Are global mangrove carbon stocks driven by rainfall? J. Geophys. Res. G
 506 Biogeosciences 121, 2600–2609 (2016).
- 507 63. Abril, G. & Iversen, N. Methane dynamics in a shallow non-tidal estuary (Randers Fjord,

508		Denmark). Mar. Ecol. Prog. Ser. 230, 171–181 (2002).
509 510 511	64.	Breithaupt, J. L. & Steinmuller, H. E. Refining the Global Estimate of Mangrove Carbon Burial Rates Using Sedimentary and Geomorphic Settings. <i>Geophys. Res. Lett.</i> 49 , e2022GL100177 (2022).
512 513	65.	Worthington, T. A. <i>et al.</i> A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. <i>Sci. Rep.</i> 10 , 1–12 (2020).
514 515 516	66.	Iversen, N. Methane Oxidation in Coastal Marine Environments BT - Microbiology of Atmospheric Trace Gases. in (eds. Murrell, J. C. & Kelly, D. P.) 51–68 (Springer Berlin Heidelberg, 1996).
517 518	67.	Tait, D. R., Maher, D. T., Macklin, P. A. & Santos, I. R. Mangrove pore water exchange across a latitudinal gradient. <i>Geophys. Res. Lett.</i> 43 , 3334–3341 (2016).
519 520	68.	Lugo, A. E. & Snedaker, S. C. The Ecology of Mangroves. Annu. Rev. Ecol. Syst. 5, 39–64 (1974).
521 522 523 524	69.	Reithmaier, G. M. S., Ho, D. T., Johnston, S. G. & Maher, D. T. Mangroves as a Source of Greenhouse Gases to the Atmosphere and Alkalinity and Dissolved Carbon to the Coastal Ocean: A Case Study From the Everglades National Park, Florida. <i>J. Geophys. Res. Biogeosciences</i> 125 , 1–16 (2020).
525 526 527	70.	Dutta, M. K., Mukherjee, R., Jana, T. K. & Mukhopadhyay, S. K. Biogeochemical dynamics of exogenous methane in an estuary associated to a mangrove biosphere; The Sundarbans, NE coast of India. <i>Mar. Chem.</i> 170 , 1–10 (2015).
528 529	71.	Dutta, M. K., Bianchi, T. S. & Mukhopadhyay, S. K. Mangrove methane biogeochemistry in the Indian Sundarbans: A proposed budget. <i>Front. Mar. Sci.</i> 4 , 1–15 (2017).
530 531 532	72.	Das, S., Ganguly, D., Chakraborty, S., Mukherjee, A. & Kumar De, T. Methane flux dynamics in relation to methanogenic and methanotrophic populations in the soil of Indian Sundarban mangroves. <i>Mar. Ecol.</i> 39 , e12493 (2018).
533 534	73.	Linto, N. <i>et al.</i> Carbon Dioxide and Methane Emissions from Mangrove-Associated Waters of the Andaman Islands, Bay of Bengal. <i>Estuaries and Coasts</i> 37 , 381–398 (2014).
535 536	74.	Giri, C. <i>et al.</i> Status and distribution of mangrove forests of the world using earth observation satellite data. <i>Glob. Ecol. Biogeogr.</i> 20 , 154–159 (2011).
537		

538 Methods

539 Study sites

540 This study combines new observations from six seawater-dominated mangroves across a latitudinal

- 541 gradient (Extended Data Figs. 1-5; Supplementary Information Table S1) with literature data
- 542 (Supplementary Information Table S8) to resolve the contribution of methane emissions as an offset to
- 543 mangrove carbon sequestration. Field studies were undertaken in pristine mangrove tidal creeks on the
- northern, eastern and southern Australian coastlines over a latitudinal range covering all climatic
 regions relevant to mangroves. Field study sites had low-lying catchments (< 5.5 m) and had minimal
- freshwater inputs with no riverine water sources. Site characteristics followed a latitudinal trend, with
- an overall increased average rainfall, temperature, and mangrove diversity at lower latitudes
- 548 (Supplementary Information Table S1). Tidal amplitude ranged from a macrotidal system in Darwin
- 549 (4.2 m), mesotidal systems at Hinchinbrook Island (2.4 m) and Seventeen Seventy (2.4 m), and
- 550 microtidal systems at Moreton Bay (1.5 m), Newcastle (1.1 m) and Barwon Heads (0.7 m). This work
- expands on studies at the same locations which examined porewater exchange⁶⁷, alkalinity dynamics⁷⁵,

- nitrous oxide fluxes⁶⁰, trace metal fluxes⁷⁶, carbon stock estimates⁶² and exchangeable dissolved
- organic carbon⁷⁷. All the CH₄ concentration and stable isotopes as well as sediment carbon burial
 datasets are original.
- 555

556 Surface water and porewater observations

557 Dissolved CO₂ and CH₄ concentrations and δ^{13} C isotopes were measured near the mouth of mangrove 558 tidal creeks at the six field sites (Extended Data Fig. 1). The continuous, real-time measurements of

dissolved CH₄ lasted between a minimum of ~101 hours (~4.2 days, Melbourne mangrove) to a maximum deployment of ~409 hours (~17 days, Moreton Bay mangrove). This is an unprecedented sampling effort as the large majority of studies investigating dissolved CH₄ concentrations and fluxes

only sampled over semi-diurnal (~13 hours) or diel (~24 hours) time scales.

- 563 High-precision concentrations and isotopes were measured using a cavity ring-down spectrometer
- 564 (CRDS; Picarro G2201-I)^{78,79}. Water column CH₄ and isotopes were measured by continuously
- pumping water from a depth of \sim 25 cm via a submersible pump (Rule 500 GPH) at \sim 2.8 L into two
- 566 connected showerhead gas equilibration devices^{80,81}. The first equilibrator, which is vented to the
- atmosphere via 2 m of coiled gas tight tubing (Bev-A-Line® IV; (1/8" ID, 1/4" OD), prevents the
- build-up of pressure in the main equilibrator, thus reducing analytic uncertainties⁸¹. Equilibrated
- headspace air from the second equilibrator was then pumped through gas-tight tubing into a desiccant
 cannister (Drierite) and then into the CRDS. Concentrations and isotopes of dissolved gases were
- 570 reasured at one-second intervals and then averaged over one-minute intervals. The response time for
- 572 equilibration using the system was approximately 30 minutes⁷⁹ which was accounted for in presenting
- the data. Instrument precision for CH_4 concentrations given by the manufacturer is 60 ppb + 0.05%.
- 574 The CRDS was calibrated using 0, 400 and 2000 ppb gas standards (Air Liquide, Australia), both
- 575 before and after measurements at each site. Instrument drift was < 1% between calibrations.

High-resolution measurements of water depth and current velocity were taken at the same sites using
an acoustic doppler current profiler (SonTek Argonaut), with measurements taken at one second
intervals and averaged over one-minute intervals. Additional water parameters (salinity, temperature
and luminescent dissolved oxygen) were measured at one-minute intervals using a multi-parameter
water quality sonde (Hydrolab DS 5X).

- 581 Dissolved CH₄ concentrations were calculated from pCH₄ using the temperature and salinity 582 dependant solubility equations of Wiesenburg and Guinasso (1979)⁸². Emissions of CH₄ (FCH₄) from
- 583 surface waters were calculated according to:

584 FCH₄ =
$$k\alpha(\Delta pCH_4)$$

(Eq. 1)

- where k is the transfer velocity, α is the temperature and salinity solubility⁸² and Δp CH₄ is the 585 difference between atmospheric pCH_4 and water column pCH_4 . The water pCH_4 was measured with 586 the continuous measurement system described above. The atmospheric pCH_4 was determined from 587 observations (at least three measurements for each day, between the aquatic measurements). The gas 588 transfer velocity was calculated using four different empirical relationships^{83–86} in order to provide 589 ranges of estimations. The air-water CH4 exchanges (diffusive fluxes) were calculated over two 590 complete tidal cycles (integrating ~24 hours and 50 minutes), and averaged daily for the entire 591 period^{5,6}. The time series deployment ranged between a minimum of 101 hours (~4-day period; 592 593 Melbourne mangrove) to a maximum of 409 hours (~17-day period; Moreton Bay mangrove). In each 594 catchment area, a digital elevation model (DEM) was used to create a delineated catchment using LiDAR data (1 m resolution with ± 0.2 m elevation accuracy). Catchment water volume was 595
- calculated for each site at ten-minute intervals using the DEM and ARC GIS Hydrology toolbox^{6,67,75}.

- 597 Considering all six mangroves, the maximal inundated area during flooded tide was >80%, on 598 average⁶⁷.
- 599 The groundwater sampling occurred simultaneously with time series deployment in surface waters.
- 600 Groundwater pCH_4 and $\delta^{13}C$ -CH₄ were measured via headspace equilibration. Briefly, bores were dug
- at 10-12 sites along each mangrove creek at the low tide mark. Water was pumped using a peristaltic
- 602 pump into opaque 250 ml bottles, from which samples were extracted using the discrete headspace
- 603 method⁸⁷. Concentrations were calculated using the methods described by Hope et al. (1995)⁸⁸
- 604 exchanging the Henry's Law constant for that of CH₄. An isotope mass balance was used to estimate
- 605 the original δ^{13} C-CH₄ of groundwater by accounting for the ambient air headspace in the bottles at the
- start of the equilibration. No porewater data were available for the Moreton Bay site (27°S).
- 607

608 Sedimentary organic carbon analysis and rates of organic carbon burial

- 609 At each of the study sites, sediment cores were extracted from near the mangrove fringe (lower tidal),
- and well within the forest (upper tidal) using a Russian Peat Auger at low tide. Each sediment core
- 611 was sectioned at 2-cm intervals from the surface to a 10 cm depth, and at 5-cm intervals until a 50 cm
- depth. The dry bulk density (DBD) (g cm⁻³) for each interval was determined as the dry sediment
- 613 weight (g) divided by the sediment core interval initial volume (cm³). A homogenized portion of each
- sediment interval was acidified to remove carbonate material, then dried and ground to powder for
- 615 organic carbon (OC) analyses, using a Flash Elemental Analyser coupled to a Thermo Fisher Delta V
- 616 IRMS (isotope ratio mass spectrometer). The analytical precision of these analyses was 0.1%.
- 617 The procedures for ²³⁹⁺²⁴⁰Pu measurements followed well established approaches developed by
- 618 Ketterer et al.⁸⁹ and adopted for coastal wetland sediments⁵. The detection limits for this procedure
- 619 were determined through the analyses of powdered rock samples devoid of detectable Pu and used as
- 620 negative controls. Aliquots of a U.S. Department of Energy control sample (Mixed Analyte
- 621 Performance Evaluation Program (MAPEP; 01-S8) were found to be very similar to the experimental
- 622 results found herein ($\pm 2\%$). For a sample of nominal 10 g mass, the detection limit was established as
- 623 0.01 Bg kg⁻¹ of $^{239+240}$ Pu.
- 624 In the upper and lower tidal area of each of the six sites, two sediment cores were taken for $^{239+240}$ Pu
- dating, as in previous studies⁹⁰. This dating model is based on the fact that $^{239+240}$ Pu-activities are
- anthropogenic in origin and were not introduced into the environment before the 1950's. Therefore,
- 627 material below the first occurrence of $^{239+240}$ Pu activity represents pre-bomb deposited sediments
- 628 (Supplementary Information Fig. S7). This appropriately affixes an upper limit on the sediment
- 629 accretion at each study site. The carbon burial estimates were based on the sediment accretion, dry
- bulk density (DBD) and carbon content of each sediment core, with 144 samples in total
- 631 (Supplementary Information Fig. S7). The carbon burial results highlight that mangroves bury carbon
- at different rates along coastal settings characterized by different climates, sediment types, tidal
- amplitudes and by variations in geomorphologies, as has also been noted in global estimates⁹.

634

635 CO₂ equivalent emissions of CH₄ (CO₂e) and offset calculations

- 636 To compare the radiative forcing of greenhouse gases we applied the Sustained-Flux Global Warming
- 637 Potentials (SGWPs)⁹¹ instead of the Global Warming Potential (GWP). Although the measured CH₄
- emissions and carbon burial rates operate over very different timescales, we assumed that CH₄
- 639 production has been in steady state over the longer time frame of carbon burial¹⁴. The SGWPs of CH_4
- 640 are 96 and 45 for time horizons of 20 and 100 years, respectively. Since CH₄ has a short lifetime in the
- atmosphere (9.1 \pm 0.9 years), we choose the time horizon of 20 years (SGWP₂₀). For comparison

- 642 purposes we also present the SGWP₁₀₀ time horizon. The CO₂ equivalent emissions of CH₄
- 643 (FCH₄(CO_{2eq})) were calculated as:
- $644 \quad FCH_4(CO_2e) = FCH_{4emission} * SGWP$ (Eq. 2)

645 Where $FCH_{4emission}$ is the mangrove aquatic emission of CH_4 (Mg CH_4 yr⁻¹); SGWP is 96 and 45 for 646 time horizons of 20 and 100 years, respectively.

647 The CH₄ offset relative to carbon burial was calculated using modified calculations from Rosentreter 648 et al.¹⁴ where the authors compared global CH₄ emissions to global carbon burial. Here, we compared 649 local rates of aquatic emissions of CH₄ with local rates of organic carbon burial to obtain a more

- appropriate offset estimate. The aquatic emissions of CH₄ as CO₂e for the time horizon of 20 years
- $(SGWP_{20})$ were compared with carbon burial rate as CO_2e , in each mangrove. For comparison
- 652 purposes, we used the conversion factor of 3.6667 (44/12) to convert the organic carbon burial (Mg C yr^{-1}) to CO₂e (Mg CO₂ yr^{-1}).
- 654

655 Methane oxidation in surface waters of tidal creeks

The calculation of CH₄ oxidation was based on the ¹³C fractionation considering that δ^{13} C-CH₄ is 656 gradually elevated during CH_4 oxidation^{26,28}. Here, we modified a method originally applied to lakes²⁸. 657 Methane oxidation was calculated in surface waters based on CH₄ concentrations and δ^{13} C-CH₄ data 658 and ¹³C fractionation. We first estimate the δ^{13} C signature of the CH₄ added by methanogenesis at each 659 site. The δ^{13} C of the added CH₄ was calculated in two ways: (1) By considering a simple conservative 660 mixing between two sources (porewater and tidal creek surface water) and (2) using keeling plots⁹². 661 662 The two methods gave consistent results, and we considered the source signature as the average between these two values. Two models of isotope fractionation for open systems at steady state^{93,94} 663 664 were then applied:

665
$$f_{open} = (\delta s - \delta p) / ((\alpha - 1) * 1000)$$
 (Eq. 3)

666
$$f_{open} = (\delta p - \delta s) / ((\delta s + 1000) ((1/\alpha) - 1))$$
 (Eq. 4)

where f_{open} is the fraction of the porewater CH₄ entering the tidal creek water that becomes oxidized. δs 667 and δp are the $\delta^{13}C$ values measured in the tidal creek and in the porewater, respectively. Both models 668 yielded comparable results within 10%, and the fopen values are presented as averages between the two 669 models. We compared the measured δ^{13} C-CH₄ values in porewaters (Supplementary Information 670 Table S3) with the added δ^{13} C-CH₄ calculated in each tidal creek (referenced to as a "conservative" 671 δ^{13} C-CH₄ values). The measured δ^{13} C-CH₄ of porewater in the two mangroves where the observed and 672 conservative δ^{13} C-CH₄ were similar and close to the 1:1 line was used to calculate the oxidation rates 673 in surface water of tidal creeks (Fig. 3A). Our method of calculating CH₄ oxidation in the tidal creek 674 (surface water) is based on the comparison between the δ^{13} C-CH₄ values observed in the porewater 675 end-member and δ^{13} C-CH₄ in surface waters. From the five mangrove sites where we sampled the 676 porewater end-member, the averaged δ^{13} C-CH₄ values matched that predicted through Keeling plots in 677 two sites (the two tropical ecosystems; Darwin and Hinchbrook), suggesting no significant oxidation 678 in the porewater. The Keeling plot approach is based upon mass conservation considerations during 679 the exchange of carbon between two reservoirs⁹⁵. In the three other mangroves, the δ^{13} C-CH₄ from the 680 keeling plot was much lighter than that measured in the porewater (Fig. 3A) revealing the occurrence 681 of methane oxidation in porewater. However, CH₄ oxidation rates in the mangrove porewaters could 682 not be calculated because these difference were not only due to oxidation, but also to the fact that tidal 683 exchange mobilized porewater from different depths with different CH₄ concentrations and isotopic 684 signatures. The isotope fractionation factor α can be variable in marine habitats (1.012-1.043^{25,96}). We 685 used the values of 1.025 and 1.033 found in wetlands⁹⁷. By multiplying the fraction of CH₄ oxidation 686

687 by the aquatic CH_4 emissions we calculated the rates of CH_4 oxidation in creek surface waters by 688 considering that the emitted CH_4 represents the fraction escaping oxidation²⁸, as follows:

689
$$Mox_{tidalcreek} = f_{open} * FCH_4/(1 - f_{open})$$

(Eq. 5)

 $\begin{array}{ll} \textbf{690} & \text{Where Mox}_{tidalcreek} \text{ is the rate of } CH_4 \text{ oxidation in the tidal creek, and } FCH_4 \text{ is the aquatic emission of} \\ \textbf{691} & FCH_4. \end{array}$

692

693 Global Upscaling

We performed a global upscaling of CH₄ emissions with three scenarios: global freshwater-influenced 694 mangroves (salinity < 30), global seawater-dominated mangroves (salinity > 30), global mangroves 695 (freshwater-influenced and seawater-dominated mangroves), and compared to the rates of organic 696 carbon burial in sediments. Median (and interquartile) values of CH₄ emissions and organic carbon 697 698 burial were calculated separately for each data set: global seawater-dominated mangroves, global 699 freshwater-influenced mangroves, and global mangroves. The freshwater-influenced mangroves were considered the "deltaic (54,972 km²)" and "estuarine (37,411 km²)" types, while the seawater-700 dominated mangroves were considered the "lagoonal (14,993 km²)" and "open coasts (28,493 km²)" 701 according to the typology of Worthington⁶⁵. We compiled data of the CH₄ fluxes provided in the latest 702 global assessment of CH₄ emissions³¹, which were complemented by our six seawater-dominated sites. 703 We only included studies that present information about the interface of CH₄ emission (sediment-704 atmosphere, water-atmosphere) and salinity. The organic carbon burial data in mangrove sediments 705 were taken from the last global compilation⁶⁴, and were also complemented by the results of our six 706 707 seawater-dominated mangroves as well. This last global compilation also used the biophysical typology of Worthington (delta, estuary, lagoon, and open coast mangroves) to refine the global 708 709 estimate of mangrove carbon burial. Therefore, we compared rates of CH₄ emissions and the rates of 710 carbon burial for similar mangrove biophysical typologies. Mangrove ecosystems were considered being inundated 50% of the time (water-atmosphere flux) and exposed 50% of the time (sediment-711 atmosphere flux) in freshwater-influenced mangroves¹⁴. For seawater-dominated sites, the mangroves 712 were considered being inundated 65% of the time (water-atmosphere flux) and exposed 35% of the 713 time (sediment-atmosphere flux)⁶⁷. The CO₂ equivalent emissions of CH₄ and offset calculations were 714 calculated similarly as described in previous sections. We used median values instead of mean values 715 716 due to the non-normal distribution of the data. Plant-mediated CH₄ emissions were not included in the 717 global upscaling due to the very low data availability. Ebullition based water-atmosphere emission 718 was considered negligible as in coastal sediments CH₄ ebullition is tightly coupled to the variation of 719 the tidal height and occurs almost exclusively around low tide when hydrostatic pressure is minimal²⁰. In the case of intertidal ecosystems like mangroves, ebullition potentially occurs during the sediment 720 721 emersion period and is thus captured by static chambers and included in the sediment-atmosphere

722 fluxes⁴⁸.

723 Data availability statement

The raw data sets of all new observations and literature compilation are available on Figshare
 (https://doi.org/10.6084/m9.figshare.24204351)⁹⁸.

726

727 Methods-only references

728 75. Sippo, J. Z., Maher, D. T., Tait, D. R., Holloway, C. & Santos, I. R. Are mangroves drivers or
729 buffers of coastal acidification? Insights from alkalinity and dissolved inorganic carbon export
730 estimates across a latitudinal transect. *Global Biogeochem. Cycles* 30, 753–766 (2016).

- 731 76. Holloway, C. J. *et al.* Manganese and iron release from mangrove porewaters: A significant
 732 component of oceanic budgets? *Mar. Chem.* 184, 43–52 (2016).
- 733 77. Sippo, J. Z. *et al.* Mangrove outwelling is a significant source of oceanic exchangeable organic
 734 carbon. *Limnol. Oceanogr. Lett.* 2, 1–8 (2017).
- 735 78. Maher, D. T. *et al.* Novel use of cavity ring-down spectroscopy to investigate aquatic carbon
 736 cycling from microbial to ecosystem scales. *Environ. Sci. Technol.* 47, 12938–45 (2013).
- 737 79. Webb, J. R., Maher, D. T. & Santos, I. R. Automated, in situ measurements of dissolved CO 2
 738 , CH 4 , and δ 13 C values using cavity enhanced laser absorption spectrometry: Comparing response
 739 times of air-water equilibrators. *Limnol. Oceanogr. Methods* n/a-n/a (2016) doi:10.1002/lom3.10092.
- Pierrot, D. *et al.* Recommendations for autonomous underway pCO2 measuring systems and
 data-reduction routines. *Deep Sea Res. Part II Top. Stud. Oceanogr.* 56, 512–522 (2009).
- 81. Santos, I. R., Maher, D. T. & Eyre, B. D. Coupling automated radon and carbon dioxide
 measurements in coastal waters. *Environ. Sci. Technol.* 46, 7685–91 (2012).
- Wiesenburg, D. A. & Guinasso, N. L. Equilibrium solubilities of methane, carbon monoxide,
 and hydrogen in water and sea water. *J. Chem. Eng. Data* 24, 356–360 (1979).
- 746 83. Wanninkhof, R. Relationship Between Wind Speed and Gas Exchange. J. Geophys. Res. 97,
 747 7373–7382 (1992).
- Raymond, P. a. & Cole, J. J. Gas Exchange in Rivers and Estuaries: Choosing a Gas Transfer
 Velocity. *Estuaries* 24, 312 (2001).
- 85. Borges, A. V., Delille, B., Schiettecatte, L., Talence, F.- & Frankignoulle, M. Gas transfer
 velocities of CO 2 in three European estuaries (Randers Fjord ,. 49, 1630–1641 (2004).
- 752 86. Ho, D. T., Ferrón, S., Engel, V. C., Larsen, L. G. & Barr, J. G. Air-water gas exchange and
 753 CO 2 flux in a mangrove-dominated estuary. *Geophys. Res. Lett.* 41, 108–113 (2014).
- 87. Gatland, J. R., Santos, I. R., Maher, D. T., Duncan, T. M. & Erler, D. V. Carbon dioxide and
 methane emissions from an artificially drained coastal wetland during a flood: Implications for
 wetland global warming potential. *J. Geophys. Res. Biogeosciences* 119, 1698–1716 (2014).
- 757 88. Hope, D., Dawson, J. J. C., Cresser, M. S. & Billett, M. F. A method for measuring free CO2
 758 in upland streamwater using headspace analysis. *J. Hydrol.* 166, 1–14 (1995).
- 759 89. Ketterer, M. E., Hafer, K. M., Jones, V. J. & Appleby, P. G. Rapid dating of recent sediments
 760 in Loch Ness: inductively coupled plasma mass spectrometric measurements of global fallout
 761 plutonium. *Sci. Total Environ.* 322, 221–229 (2004).
- 90. Sanders, C. J. *et al.* Elevated rates of organic carbon, nitrogen, and phosphorus accumulation
 in a highly impacted mangrove wetland. *Geophys. Res. Lett.* 41, 2475–2480 (2014).
- 91. Neubauer, S. C. & Megonigal, J. P. Correction to: Moving Beyond Global Warming Potentials
 to Quantify the Climatic Role of Ecosystems. *Ecosystems* 22, 1931–1932 (2019).
- Abril, G. *et al.* Export of 13C-depleted dissolved inorganic carbon from a tidal forest
 bordering the Amazon estuary. *Estuar. Coast. Shelf Sci.* 129, 23–27 (2013).
- 768 93. Happell, J. D., Chanton, J. P. & Showers, W. S. The influence of methane oxidation on the
- stable isotopic composition of methane emitted from Florida swamp forests. *Geochim. Cosmochim. Acta* 58, 4377–4388 (1994).

- 771 94. Tyler, S. C., Bilek, R. S., Sass, R. L. & Fisher, F. M. Methane oxidation and pathways of
 772 production in a Texas paddy field deduced from measurements of flux, δl3C, and δD of CH4. *Global*773 *Biogeochem. Cycles* 11, 323–348 (1997).
- Köhler, P., Fischer, H., Schmitt, J. & Munhoven, G. On the application and interpretation of
 Keeling plots in paleo climate research deciphering δ¹³C of atmospheric CO₂ measured
 in ice cores. *Biogeosciences* 3, 539–556 (2006).
- Holler, T. *et al.* Substantial 13C/12C and D/H fractionation during anaerobic oxidation of
 methane by marine consortia enriched in vitro. *Environ. Microbiol. Rep.* 1, 370–376 (2009).
- Ward, N. D. *et al.* Pathways for Methane Emissions and Oxidation that Influence the Net
 Carbon Balance of a Subtropical Cypress Swamp. *Front. Earth Sci.* 8, 1–16 (2020).
- 781 98. Cotovicz, L.C. et al. Methane oxidation minimizes emissions and offsets to carbon burial in
 782 mangroves. Data sets. figshare. https://doi.org/10.6084/m9.figshare.24204351 (2023).

CH₄ emissions (CO₂e, SGWP₂₀, Tg CO₂ year⁻¹) in global mangroves 4.21 (14.21) 2.32 (6.87) Sediment-atmosphere Water-atmosphere (diffusion) **Plant-mediated**