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Abstract. Decentralized Finance (DeFi) is increasingly studied and
adopted for its potential to provide accessible and transparent finan-
cial services. Analyzing how investors use DeFi is important for reaching
a better understanding of their usage and for regulation purposes. How-
ever, analyzing DeFi transactions is challenging due to often incomplete
or inaccurate labeled data. This paper presents a method to extract ego
network motifs from the token transfer network, capturing the transfer
of tokens between users and smart contracts. Our results demonstrate
that smart contract methods performing specific DeFi operations can be
efficiently identified by analyzing these motifs while providing insights
into account activities.

Keywords: transaction network, ego network, network motifs, graph
mining, blockchain data, decentralized finance

1 Introduction

Decentralized finance (DeFi) is a financial infrastructure implemented on smart
contracts in blockchains [4]. DeFi replicates traditional financial services with-
out centralized intermediaries. The building blocks of DeFi applications consist
of tokens, protocols, and aggregators. Tokens are digital assets created on the
blockchain that represent value or utility. Tokens can be transferred from any
sender account (i.e., a user or a protocol) to a recipient account. In DeFi proto-
cols, tokens provide specific financial services, such as borrowing, lending, and
exchanging tokens. The user creates a “transaction” by calling a “method” (later,
DeFi method) in the protocol’s smart contract to perform a specific DeFi oper-
ation. A single DeFi method can involve one or multiple token transfers. These
protocols can be “composed” to create more complex financial products and
strategies [13]. For instance, aggregators are platforms that integrate multiple
DeFi protocols, typically allowing their clients to manage complex operations
automatically to optimize their performance, e.g., automatically choosing the
most favorable exchange rate or lending rate among multiple platforms.
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As DeFi applications continue to grow and evolve rapidly, understanding the
nature and usage of its protocols and analyzing user activities becomes increas-
ingly important. Since DeFi trading involves tokens that an account spends or
receives in a transaction, we use ego network motifs to represent these inter-
actions. This approach also offers a more efficient way to collect transfer data
related to specific accounts. This work addresses two research questions which,
to the best of our knowledge, have not been analyzed in previous studies.

1. Can we infer DeFi methods (e.g., depositing, borrowing, swapping, etc.) from
the ego token transfer network?

2. Can we identify users with similar activities using ego network motifs?

Analyzing DeFi methods that perform a specific operation within Ethereum
transactions usually requires data in which the DeFi methods are labeled, ob-
tained from Etherscan, private companies, or smart contract interfaces (Appli-
cation Binary Interfaces, ABIs). While our study utilizes these DeFi method
labels obtained through self-reported or manual labeling, we recognize this as
a limitation, particularly when dealing with transactions that have missing or
inaccurate labels. By leveraging ego network motifs, our approach aims not only
to provide a more accurate and interpretable tool for inferring DeFi methods
but also to analyze trading activities of accounts within DeFi ecosystems, even
when labeled data is incomplete or unavailable.

2 Related Work

The study of blockchain networks has gained significant interest due to the rise of
cryptocurrencies and DeFi applications. Many works study macroscopic proper-
ties, such as degree distribution or clustering coefficient, in various network rep-
resentations [12,21]. Research on meso and microscopic behaviors is emerging,
focusing on illegal activities in Bitcoin (e.g., [1,6]) and Ethereum (e.g., [7,8,19]).

Network motifs play a crucial role in characterizing different groups of be-
haviors within these networks. Kosyfaki et al. proposed an algorithm to identify
significant flow motifs in the large Bitcoin user network [14], while Ba et al. de-
fined triadic closure network motifs and explored their impact on the evolution
mechanisms of platforms [5]. Temporal motifs have been employed in various
tasks, including detecting mixing services in Bitcoin [20], analyzing dark web
marketplaces and NFT wash tradings [3], detecting phishing scam accounts [18],
and identifying account communities [2,17]. Building on these works, we intro-
duce ego network motifs, demonstrating their utility in extracting DeFi method
signatures and characterizing account behaviors.

In addition to behavioral analysis, our research contributes to understand
DeFi trading strategies. Zhou et al. proposed two graph algorithms to identify
cyclic arbitrage in DeFi tradings and calculate the optimal threshold of prof-
itable transactions [22]. The majority of the work in this domain has focused on
Maximal Extractable Value (MEV), which measures the maximum profit that
can be extracted by reordering, including, or excluding transactions within a
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block [9,16]. EigenPhi is a data platform that tracks these transactions in real
time and provides graphs to analyze profitability.1 Park et al. developed a graph
neural network model to detect MEV transactions from token transfer graphs
without relying on smart contract code or ABIs [15].

Our work extends this body of research by proposing a novel motif extrac-
tion technique to infer DeFi methods. These motifs serve as building blocks for
analyzing more complex interactions, including arbitrage and MEV transactions.

3 Data Description

In this work, we focused on a subset of Ethereum accounts labeled on Etherscan
as likely trading with decentralized finance (DeFi) protocols. We obtained the
list of all “fund” accounts from Etherscan2 as of March 2023, which consists of
65 entities. Among these, 25 are identified as associated with Alameda Research,
a cryptocurrency trading firm linked to FTX that was active in DeFi before the
collapse of both entities in November 2022 due to massive fraud. This subset was
chosen to examine the DeFi interactions of notable trading accounts rather than
to analyze the entire blockchain. Although this list does not cover all accounts,
it provides a focused perspective on significant players in the DeFi space.

Token transfer dataset: A transfer is an action of moving Ether (ETH) or
tokens from one account to another. Each transaction can trigger one or multiple
transfers. An account can be either an address controlled by a user account (Ex-
ternally Owned Account, EOA) or a smart contract (CA). The special address
0x00000..., known as NULL, is commonly used for minting and burning tokens.

To construct the ego transfer network (ETN), token transfer data can be col-
lected from Transfer API from Alchemy3. This API provided detailed records of
all token transfers sent or received by our selected accounts, including transac-
tion hashes, sending and receiving accounts, token names, and transfer amounts.
We collected token transfer data from the 65 selected accounts, resulting in
1,598,098 transfers across 1,131,723 transactions. Fig. 1 describes key elements
of the dataset: Fig. 1 (a) shows, for each account, its number of transactions,
number of different tokens used, and fraction of transactions of unknown nature.
Fig. 1 (b) describe the number of token transfers per transaction. We observe
that most transactions consist of a single token transfer (78%), while more than
a hundred thousand transactions have more than one single token transfer.

Token list: Each blockchain has its native cryptocurrency, such as Bitcoin
(BTC) on Bitcoin, Ether (ETH) on Ethereum, and MATIC on Polygon, al-
lowing users to transfer tokens within the network. Besides its native token,
Ethereum blockchain allows the creation of other tokens by implementing smart
contracts that follow standards like ERC-20 (fungible), ERC-721 (non-fungible
or NFT), and ERC-1155 (multi-token). Fungible tokens can be divided into

1 https://eigenphi.io/
2 https://etherscan.io/accounts/label/fund
3 https://docs.alchemy.com/reference/transfers-api-quickstart

https://eigenphi.io/
https://etherscan.io/accounts/label/fund
https://docs.alchemy.com/reference/transfers-api-quickstart
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Fig. 1. (a) Fund accounts in our dataset and (b) Token transfers histogram

varied-price cryptocurrencies (e.g., ETH, DODGE, SHIB) and stablecoins (e.g.,
USDC, USDT, DAI), which are pegged to a fiat currency like the US Dollar.
Synthetic tokens are created to represent underlying assets, often through mech-
anisms such as wrapping, staking, or collateralization within DeFi protocols.

We listed all tokens in our token transfer dataset and applied the following
data processing steps to filter out spam tokens and assign categories:

1. Assigning token categories: We manually verified the top 500 tokens in
our dataset based on the number of transactions and assigned their category
based on Messari’s classification4.

2. Filtering out spam tokens: Spam tokens are created to deceive the recip-
ient into trading or interacting with valueless or harmful contracts. These
spam tokens usually replicate the name and symbol of legitimate tokens or
well-known brands. We checked if the token was on Etherscan’s list of veri-
fied tokens labeled5. If a token was not in this list, we removed transactions
where such a spam token was transferred from our analysis.

3. Unlabeled tokens: Remaining tokens were annotated as “Unlabeled”. Al-
though their specific purpose is unknown, we included them in our analysis
since they are not considered as spam tokens.

Table 1 lists all token categories along with the number of tokens, transac-
tions, and the top 5 tokens in each category. After excluding transactions involv-
ing spam tokens, we have 1,598,098 transfers across 1,095,374 transactions.

Labeled transaction dataset: So far, we know token transfers within the
transaction but don’t know the DeFi method. Thus, we collected the transaction
headers from Etherscan’s transaction list pages for each account6. The details
of any transaction include the transaction hash, DeFi method, block number,
timestamp, source and target accounts, ETH amount, and transaction fees.

4 List of tokens: https://messari.io/assets?view=e88a221b-cb05-4995-96a7-cf2c5e217e79
Classification scheme: https://docs.messari.io/docs/messari-classification-system

5 https://etherscan.io/tokens
6 e.g., https://etherscan.io/txs?a=0x0f4ee9631f4be0a63756515141281a3e2b293bbe

https://messari.io/assets?view=e88a221b-cb05-4995-96a7-cf2c5e217e79
https://docs.messari.io/docs/messari-classification-system
https://etherscan.io/tokens
https://etherscan.io/txs?a=0x0f4ee9631f4be0a63756515141281a3e2b293bbe
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Table 1. Token Categories

Token Category #Tokens (%) #Txs (%) Top-5 Tokens (with %Txs)

Cryptocurrency 17
(2.04%)

483,038
(35.94%)

ETH (17.70%), WETH (14.43%), WBTC (2.14%), SHIB
(1.40%), PAXG (0.12%)

Stablecoin 27
(3.23%)

385,452
(28.68%)

USDT (15.03%), USDC (8.93%), BUSD (1.76%), DAI (1.14%),
TUSD (0.46%)

Marketplace 99
(11.86%)

223,954
(16.66%)

COMP (1.50%), UNI (1.46%), SNX (1.19%), CRV (1.04%), CHI
(1.01%)

Other 100
(11.98%)

98,927
(7.36%)

LINK (1.50%), ENS (0.97%), GRT (0.63%), NMR (0.52%),
CVX (0.35%)

NFT & Metaverse 57
(6.83%)

59,482
(4.43%)

MANA (0.63%), APE (0.58%), CHZ (0.56%), AXS (0.53%),
LOOKS (0.30%)

Network 29
(3.47%)

35,737
(2.66%)

MATIC (1.12%), FTM (0.65%), OMG (0.22%), INJ (0.20%),
LRC (0.10%)

Financial Service 40
(4.79%)

19,794
(1.47%)

CEL (0.32%), BADGER (0.20%), SXP (0.20%), RAY (0.16%),
MTA (0.12%)

Synthetic 339
(40.60%)

18,310
(1.36%)

stETH (0.17%), WNXM (0.13%), UNI-V3-POS (0.07%), XRP-
BULL (0.06%), variableDebtUSDT (0.05%)

Bridge 12
(1.44%)

16,279
(1.21%)

REN (0.65%), SYN (0.15%), QNT (0.12%), T (0.10%), NU
(0.08%)

Unlabeled 115
(13.77%)

3,146
(0.23%)

MIC (0.03%), AKRO (0.03%), XCN (0.01%), POLY (0.01%),
EMB (0.01%)

However, we were able to retrieve DeFi method labels for 55% of transactions,
due to technical constraints of the Etherscan web crawling (limiting access to the
latest 100,000 transactions per account and excluding transactions not created
by the selected accounts).

DeFi method list: The method column in the labeled transaction dataset
specifies the DeFi method. We constructed the ground truth dataset from DeFi
methods occurring in at least 100 transactions, manually grouping each DeFi
method based on its label. Table 2 presents the method groups and their full
names. We merged the “Exchange” and “Swap” method groups as well as the
“Redeem” and “Withdraw” groups since they perform the same function.

Table 2. Method Groups

Group # Txs Full Method Names with ≥ 100 Txs

Transfer 404,130 Complete Transfer, Safe Transfer From, Transfer, Transfer From, Transfer Tokens
Swap 112,387 Swap: Any Swap Out Underlying, Batch Eth Out Swap Exact In, Exact Input

Single, Simple Swap, Swap, Swap ETH For Exact Tokens, Swap Erc20, Swap
Exact ETH For Tokens, Swap Exact Tokens For ETH, Swap Exact Tokens For
Tokens, Uniswap V3Swap, Exchange: Exchange, Exchange underlying

Withdraw 3,619 Withdraw: Remove Liquidity ETH With Permit, Remove liquidity one coin,
Withdraw, Withdraw Erc20, Redeem: Redeem, Redeem Underlying

Deposit 3,325 Add Liquidity, Add Liquidity ETH, Deposit, Deposit ETH, Deposit For
Claim Reward 2,881 Claim, Claim Comp, Claim Reward, Claim Rewards, Claim Token, Get Reward
Borrow 1,389 Borrow
Repay 1,256 Repay, Repay Borrow
Mint 1,189 Mint, Mint many
Exit 276 Exit
Burn 241 Burn
Stake 215 Stake

We chose only the 8 DeFi method groups with more than 1,000 transactions
in our dataset, ensuring a sufficient sample size for our classification models.
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The final dataset results in 530,170 transactions (33% of transactions in the
token transfer dataset) with labeled DeFi method groups. The missing method
data highlights the limits of relying only on labeled data, as is common in the
literature, and thus the interest of our approach, which proposes to automatically
infer functions from the transaction itself, even without the DeFi method label.

4 Ego Network Motifs

For each transaction, we construct the ego transfer network (ETN), represented
as a directed heterogeneous graph. Each account is represented as a node with an
attribute denoting its account type. The account types can be Ego (E), address
(A), contract (C), or the NULL address (N). Each edge represents the token
transfer directed from one account to another, with the edge attribute indicating
the token category (see Table 1). We extract two features for each ego network:
motif counts (denoted as M) and edge lists (E).

Motif counts: Ego motifs from the ETN are directed subgraphs consisting of
2 or 3 nodes, represented in Fig. 2. These motif sizes are chosen based on the
average of 2.09 accounts (SD = 0.40) per transaction. Note that, as our dataset
records ego transfers—thus without edges between non-ego nodes—there are
only 8 possible directed ego network motifs (out of 15 motifs in full networks).
The top node is always an ego node (E) connected to other nodes (denoted i, j).

E i

E i

Motif 1

OR E i

Motif 2

E

i j

Motif 3

E

i j

Motif 4

E

i j

Motif 5

i

E

j

Motif 6

i

E

j

Motif 7

E

i j

Motif 8

Fig. 2. List of all possible ego network motifs

We use the VF2++ algorithm [11] in NetworkX [10], to perform subgraph
isomorphism matching to identify and count each occurrence of the motifs within
the ETN. We then check the node type for each motif found and represent it as a
string with the pattern {motifID}(E, i, j), where {motifID} ∈ {m1,m2, ...,m8},
with motif IDs corresponding to those in Fig. 2, while i, j ∈ {A,C,N}.

Edge lists: Edge list indicates which token an ego received/spent from/to which
account type. We obtain the edge list from the ego network with the token
category. The edge count is represented as a vector (S, T ){token category},
where S is the source node type and T is the target node type. Three examples
of ETNs are presented in Fig. 3, along with motif counts and edge list vectors.

5 DeFi Method Classification

We use supervised learning methods to test whether motif counting and network
features can infer DeFi methods (e.g., deposit, borrow, swap). To determine
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Fig. 3. Examples of transaction description by motifs and edge lists

which motif features can distinguish different DeFi methods, we tested four sets
of training features: ego motifs with node types (M), edge list with token types
(E), the combination of ego motifs and edge list (M+E), and the concatenation
between motifs and edge list features within each motif (M × E).

We trained three classification models: logistic regression (LR), decision tree
(DT), and random forest (RF). For the LR model, we perform one-vs-all multi-
class classifiers. To prevent overfitting while capturing patterns in the minority
class, we set the minimum leaf node to 10 samples in both DT and RF. Given the
dataset’s high skew towards the most common DeFi methods (e.g., transfers and
swaps in Table 2), we assigned inversely proportional weights to the minority
methods in the classification models to mitigate the class imbalance problem.
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Fig. 4. Comparison of classification results with 10-fold CV scores

We evaluated the classification models using stratified 10-fold cross-validation
(10-fold CV), ensuring that each fold contained the same distribution of classes
as the training set. The average F1-score, precision, and recall are reported in
Fig. 4, as accuracy is not a reliable metric for highly skewed classes. The results
indicate that using motifs with node and edge types can infer DeFi methods with
moderate precision and high recall and outperform models using only motifs or
edges. The best model is LR with M + E and M × E features, achieving an F-
score of 71%, followed by the DT and RF model with 70%. The M ×E models
did not significantly improve the F1-score compared to M + E models, despite
having a larger number of features.
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We chose to investigate the DT
model withM+E features further be-
cause it provides a simpler and more
interpretable model while its perfor-
mance is very close to that of the best-
performing model. Focusing on M+E
models, LR has slightly higher preci-
sion and F1-Score, while DT and RF
had 3% higher recall.

The confusion matrix in Fig. 5
shows the number of samples pre-
dicted compared to the actual DeFi
method. The color scale indicates the
percentage of the true method for
each predicted label (row-wise), while
the circle size is proportional to the
percentage predicted compared to the
true class (column-wise). DT model
achieves high recall for most DeFi
methods, although it tends to mispre-
dict transfer as deposit and repay, and
swap as mint and withdraw, indicating the similarity in motif features and re-
sulting in lower precision for these methods.

The classification results confirm that ego network motifs with account and
token types are important features for inferring DeFi methods.

6 Interpretable Method Signatures

While the previous section has shown that one can use machine learning to
classify DeFi methods from ego network motifs, the models remain a black box.
In this section, we study which specific motif can be associated with which DeFi
method to better understand the nature of tradings and make decisions more
interpretable. We used the decision tree (DT) model as a reference because it
offered results comparable to the best-performing logistic regression (LR) model
while achieving higher recall and maintaining interpretability. However, the full
DT model is complex, making it challenging to interpret all the rules.

We performed post-pruning to reduce the tree’s complexity and obtain a man-
ageable set of rules while retaining predictive performance, thus simplifying the
model. Fig. 6 (a) shows post-pruning decision trees with varying cost-complexity
pruning alphas and 10-fold CV scores for each number of leaf nodes. We chose a
pruned tree with 18 leaf nodes (alpha = 0.007326), depicted in Fig. 6 (b), while
(c) shows the predicted class for each leaf node, with probabilities represented
by bars and the number of samples (on a log scale) indicated by a gray line.

We adopt a frequent pattern mining approach to find a maximal set of motif
features with a support of more than 80%, i.e., features that appear in over 80%
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(b) Post-pruning decision tree with alphas = 0.007326
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of the instances at that leaf node. For each leaf node, we start by listing motif
features with support greater than the threshold, incrementally adding more
features until no additional features meet the support criteria. We selected the
longest frequent itemset as the signature motif of the leaf and used it to analyze
token transfer networks of unidentified transactions.
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Fig. 7 displays the DeFi method signatures in 18 leaves of the pruned tree.
Most of the signature motifs reflect the functionality of the labeled methods. The
deposit (28) pattern indicates that an ego deposits tokens into a contract and
receives synthetic tokens as collateral. Conversely, the withdraw method (17,
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25) patterns show that an ego must burn or return synthetic tokens to with-
draw their deposited tokens from the contract. The swap method (31) pattern
shows the exchange of tokens between the protocol’s contract and the account.
However, if the user receives (or sends) synthetic tokens to the contract, it corre-
sponds to the mint (33) or withdraw (32) methods, respectively. These signature
motifs are interpretable, offering insights into transaction mechanisms while also
being useful for investigating transactions with unknown DeFi methods. How-
ever, we found that some signature motifs are overly specific to particular token
categories, even though they could potentially apply to other tokens as well.
For instance, the borrow (13, 16) patterns suggest that accounts (egos) in this
dataset mostly borrowed stablecoins. These results are not yet generalizable as
we trained on a subset of Ethereum transactions. However, we expect the results
to become more precise and applicable when we either filter for known contracts
associated with DeFi protocols or use a larger dataset.

7 Profiling Ethereum Accounts

We demonstrate that extracted signature motifs can also be utilized to analyze
DeFi activities at the account level. For each account, we create a profile by
first counting the transactions associated with each DeFi method signature and
then normalizing these counts by account. Fig. 8 shows a hierarchical cluster
map of accounts and method-leaf. Hierarchical clustering helps us detect groups
of accounts with similar patterns of activity. Since some DeFi methods, like
transfers, are over-represented in all accounts, we show z-score normalization.

Fig. 8. Heat map and hierarchical clustering on fund account profiles

We use the silhouette score to determine the number of clusters (k = 8,
silhouette = 0.42). These 8 clusters are represented by different colors in the
first row of the heat map in Fig. 8, from Cluster 1 to Cluster 8 (left to right).
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Cluster 1 has a higher average z-score for transfer methods, typically re-
ceiving tokens from addresses (leaf 6), while Cluster 2 shows activity in both
receiving and spending tokens (leaves 6 and 34). These accounts likely trad-
ing with off-chain exchange companies. Cluster 8 includes accounts primarily
interacting with DeFi protocols, as indicated by a higher z-score for various
methods, such as claim reward, withdraw, borrow, and repay. Smaller clusters,
with fewer than five accounts, are considered specialized. For instance, Cluster
5 is characterized by higher token swap activities, suggesting interaction with
decentralized exchanges. Cluster 4 is involved in token minting, while Cluster
6 can be identified as liquidity providers, focusing on deposit activities.

This section shows how motif signatures can be used to characterize accounts
in the ego transfer network (ETN), despite unlabeled DeFi methods. These in-
sights help us better understand the different groups of activities in our dataset.

8 Conclusion and Future Work
We demonstrated the effectiveness of using ego network motifs to represent and
decompose token transfers in Ethereum transactions. By leveraging these mo-
tifs as fundamental building blocks, we successfully inferred DeFi methods and
extracted method signatures to investigate transactions lacking labeled data.
These motifs provide a powerful tool for analyzing account activities, allowing
us to characterize different groups of accounts based on their DeFi activities.

The implications of our findings extend beyond academic research. For com-
panies operating in the DeFi space, this approach offers a robust method for
monitoring account activities and detecting trading strategies and anomaly be-
haviors. Researchers can apply these techniques to analyze the evolution of DeFi
protocols and account activities over time, investigating how they respond to
market fluctuations and shock events.

In future work, we plan to apply our method to the full transaction graph
to break down complex tradings, such as flash loans and arbitrage. We will
extract larger motif sizes on an expanded dataset to improve accuracy and motif
generalization. Additionally, we aim to incorporate temporal and higher-order
network motifs to describe the dynamics and trading strategies of ego networks.
This line of work will deepen our understanding of trading strategies and the
evolution of the DeFi ecosystem, helping to identify emerging use cases without
needing fully labeled data.
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