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ON THE BLOCH–KATO CONJECTURE AND IWASAWA MAIN CONJECTURE

FOR GO4

GIADA GROSSI, DAVID LOEFFLER, AND SARAH LIVIA ZERBES

Abstract. We prove the Bloch–Kato conjecture for critical values of Asai L-functions of p-ordinary

Hilbert modular forms over quadratic fields (with p split); and one inclusion in the Iwasawa main

conjecture for these L-functions (up to a power of p).

Nous prouvons la conjecture de Bloch–Kato pour la fonction L Asai pour le formes modulaires

Hilbert p-ordinaires associees à une extension réelle quadratique dans laquelle p decompose. Egalement

nous obtenons une inclusion de la Conjecture Principale d’Iwasawa.

1. Introduction

1.1. Setting. The Bloch–Kato conjecture, which relates the dimensions of Selmer groups of geometric
Galois representations to the order of vanishing of their L-functions, is one of the outstanding open
problems of number theory. One of the most successful approaches to this problem so far has been via
the method of Euler systems.

In this paper, we use this method to prove one inclusion of the cyclotomic Iwasawa Main Conjecture
(Theorem 6.3.2) and the Bloch–Kato conjecture (Theorem 6.3.4) for the Asai L-functions of Hilbert
modular forms over real quadratic fields (under various technical hypotheses, see below).

Via a theorem of Ramakrishnan (defining an “Asai transfer” from automorphic representations of
ResF/Q GL2 to automorphic representations of GL4), these L-functions can also be identified as L-
functions of automorphic representations of GL4. Conversely, one knows that any cuspidal automorphic
representation of GL4 /Q which is essentially self-dual (i.e. there exists a character χ such that π ∼=
π∨ × χ) is in the image of one of the following functorial transfers (which are not mutually exclusive):

(a) the spinor transfer from GSp4;
(b) the Rankin–Selberg transfer from GL2 ×GL2;
(c) the Asai transfer from ResF/Q GL2 for F a quadratic field extension.

(Case (a) corresponds to Langlands parameters factoring through GSp4, and cases (b) and (c) correspond
to parameters factoring through GO4, with the projection to GO4 /GSO4

∼= {±1} being trivial in case
(b) and the quadratic character associated to F in case (c).)

The theory of Euler systems has been successfully applied to the first two cases in [KLZ17] and [LZ20]
respectively, so it is natural to focus on case (c). We shall also suppose that π is regular algebraic; then F
must be a real quadratic field (rather than imaginary), and π arises from a Hilbert modular automorphic
representation Π of GL2 /F of weight (k1 + 2, k2 + 2) ⩾ (2, 2) with k1 ̸= k2. Moreover, we shall suppose
k1 = k2 mod 2, so that Π is “paritious”. This implies that the central value of the L-function is at
a half-integer rather than an integer; so the critical values are automatically non-vanishing, and the
Bloch–Kato conjecture becomes the assertion that the Selmer groups of the critical twists of the Galois
representation of π are zero. This is what we show in

1.2. Main results. The main theorems of this paper are the following:

Theorem A. Let Π be an automorphic representation of ResF/Q GL2 of weight (k1+2, k2+2), for some
k1 > k2 ⩾ 0 with k1 = k2 mod 2, and level NΠ; and P a prime of the coefficient field of Π, above some
rational prime p > 2. Suppose that

• p is split in F ,
• Π is unramified and ordinary at the primes above p,
• the Galois representation satisfies a “big image” condition (see Assumptions 6.1.1),
• the local Euler factor Pp(Π, X) does not vanish at pj for any j ∈ Z.

Then:
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• (Theorem 6.3.4) For each j with k2 +1 ⩽ j ⩽ k1, the Bloch–Kato Selmer group of V As
p (Π)∗(−j) is

zero.
• (Theorem 6.3.2) The characteristic ideal of the dual Selmer group of Π over Q(µp∞) divides pr ·
Lp,As(Π) for some r ⩾ 0, where Lp,As(Π) is the p-adic Asai L-function for Π constructed in
[GLZ23a].

For more details of the notations and the definitions of the objects involved, we refer to the body of
the paper.

Although the statements of these theorems involve only a single automorphic representation Π, our
proof relies crucially on the use of p-adic families of automorphic representations (Hida families). More
precisely, we consider a two-parameter family Π of automorphic representations specialising to Π, with
both components of the weight independently varying, and we prove the following theorem:

Theorem B (Theorem 4.5.1). There exists a 3-variable p-adic Asai L-function for Π, interpolating all
critical values of the L-functions for all specialisations of Π.

On the other hand, Sheth [She24] has shown that the Euler system construction of [LLZ18] also
extends to such families; and the regulator formula that we proved in [GLZ23b] gives a relation between
these objects after specialising at suitable (non-classical) points. In order to derive from this an explicit
reciprocity law relating the Euler system and L-function in the critical range, we need to show that the
p-adic Eichler–Shimura comparison isomorphism, relating étale and de Rham cohomology, “interpolates
in Hida families” in a suitable sense (analogous to results of Ohta [Oht00] and Andreatta–Iovita–Stevens
[AIS15] for GL2 /Q). In our setting, we would hope for an isomorphism between two free rank 1 modules
over O(U), where U is a small neighbourhood in weight space over which Π is defined: one module arising
from higher Hida theory which interpolates coherent H1 of Hilbert modular varieties, and another which
is Dcris of a rank-1 subquotient of the Asai Galois representation of Π. The Eichler–Shimura map gives
canonical isomorphisms between the fibres of these modules at classical points, and we would hope for a
single O(U)-module isomorphism having all of these “pointwise” isomorphisms as specialisations. What
we actually prove is something a little weaker:

Theorem C. There exists an isomorphism between the above modules after base-extending to FracO(U),
interpolating the Eichler–Shimura isomorphisms for all but finitely many classical points. Moreover, the
composite of this isomorphism and Perrin-Riou’s regulator map sends the Euler system to the p-adic
L-function.

Note that the proofs of both halves of the theorem are intertwined: we use the Euler system and
regulator formula in order to derive the existence of the meromorphic Eichler–Shimura isomorphism.

Theorem C, together with the results of [LLZ18], immediately imply Theorem A as long as Π is not one
of the finitely many “bad” specialisations. We conjecture that such bad specialisations do not actually
exist, but we cannot rule it out with the presently available techniques1. Hence we carry out a leading
term argument, adapting methods developed in [LZ20] for the standard (rather than Asai) L-functions
of quadratic Hilbert modular forms, to show that one can recover a modified version of the Euler system
which is related to the L-function even at “bad” specialisations. This gives Theorem A.

Acknowledgements. Parts of this paper were written while the authors were in residence at MSRI (now
known as Simons Laufer Mathematical Institute) for the 2023 semester program “Algebraic Cycles, L-
Values, and Euler Systems”. We are grateful to MSRI for offering such a fantastic working environment.

2. Setup: Hilbert modular forms

2.1. Notations. Let F be a real quadratic field of discriminant D, and let G = ResFQ GL2. We fix a
numbering of the embeddings F ↪→ R as {σ1, σ2}. The Weyl group ofG is isomorphic to (Z/2Z)×(Z/2Z),
with generators w1 and w2 (corresponding to the σi).

Let H = GL2, with ι : H ↪→ G the natural embedding. We write BH and BG for the upper-triangular
Borel subgroups.

Let J ∈ {G,H}. For a neat open subgroup K of J(Af), write YJ,K for the Shimura variety of J of
level K, XJ,K for a toroidal compactification, and DJ = XJ − YJ for the boundary divisor.

A weight for G will mean a tuple of integers (k1, k2;w) with w = k1 = k2 mod 2. If µ is a weight, we
have a locally-free sheaf ωµ on XG,K/F , whose sections are Hilbert modular forms of weight µ.

1This would follow from work in progress by Birkbeck and Williams, aiming to prove an interpolation of p-adic Eichler–
Shimura maps in higher Hida, or Coleman, families of Hilbert modular forms using perfectoid methods.
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Note 2.1.1. As an abstract sheaf ωµ does not depend on w; but the action of Hecke operators on it does.
With our conventions, if q is a prime of F which is trivial in the narrow ray class group modulo ZG ∩K,
the action of

(ϖq
ϖq

)
on RΓ(XG,K/F, ω

µ) is multiplication by (#OF /q)
w. ⋄

2.2. Asai L-functions.

Definition 2.2.1. Let Π be the unitary cuspidal automorphic representation of G(A) generated by a
holomorphic Hilbert modular newform of weight (k1 + 2, k2 + 2), for some integers k1, k2 ⩾ 0, and some
level NΠ P OF .

We define a◦n(Π), for each ideal n P OF , to be the Hecke eigenvalues of the new vector of Π, normalised
in the analytic fashion, so that |a◦q(Π)| ⩽ 2 for each prime q ∤ NΠ. For each such prime q we let α◦

q and
β◦
q be the Satake parameters of Πp (so that |α◦

q| = |β◦
q | = 1 and a◦q(Π) = α◦

q + β◦
q).

Note 2.2.2. By a rationality theorem due to Shimura [Shi86, Proposition 1.2], if we choose w with
k1 = k2 = w mod 2 (so that µ = (k1, k2;w) is a weight), there exists a number field L ⊂ C (depending
on Π) such that the quantities N(n)(w+1)/2a◦n lie in L, for all integral ideals n. Extending L if necessary,
we may assume that L also contains the images of the embeddings σi : F ↪→ R; this is automatic if
k1 ̸= k2. ⋄

Definition 2.2.3. We define the imprimitive Asai L-series of Π to be the function

Limp
As (Π, s) = L(N)(χ, 2s)

∑
n∈Z⩾1

a◦n(Π)

ns
,

where χ is the restriction to A×
Q of the central character of Π, and (N) denotes omitting the Euler factors

at the primes dividing N = NΠ ∩ Z.

Note 2.2.4. The imprimitive L-function Limp
As (Π, s) may differ by finitely many Euler factors from the

“true” Asai L-series LAs(Π, s) whose local factors are defined using the local Langlands correspondence.
⋄

Notation 2.2.5. We write LAs(Π, s) for the shifted L-function

LAs(Π, s) = LAs(Π, s− k1+k2+2
2 ),

and similarly for the imprimitive version.

This shift ensures that the Dirichlet-series coefficients of LAs(Π, s) and Limp
As (Π, s) are algebraic inte-

gers; it corresponds to the conventional normalisation for Rankin–Selberg L-functions (which are “Asai
L-functions for the degenerate quadratic field Q×Q”).

Note 2.2.6. The critical values of LAs(Π, s) are the integers satisfying k2 + 2 ⩽ s ⩽ k1 + 1 if k1 > k2,
and similarly if k1 < k2. (There are no critical values if k1 = k2.) ⋄

2.3. Hecke eigensystems. We let U1(NΠ) denote the open compact subgroup {g ∈ G (Af) : g =
( ⋆ ⋆
0 1 ) mod NΠ}, so that the space of U1(NΠ)-invariants of Πf (the new subspace of Πf) is one-dimensional.

Definition 2.3.1. Let S be a finite set of primes containing all those dividing discF/Q ·NmF/Q(NΠ);

and write TS for the abstract Hecke algebra L[G(AS
f )�G(ẐS)] = L[{Tq, Sq, S

−1
q : q /∈ SF }] (where SF is

the set of primes of F above S).

Note 2.3.2. If we choose Π of weight (k1, k2) as above, and also a w such that (k1, k2;w) is a weight,
then ΠS

f ⊗ ∥ · ∥−w/2 is definable over L as a G(AS
f )-module, and hence the action of the Hecke algebra

on its G(ZS)-invariants gives a ring homomorphism

λSΠ : TS → L, Tq 7→ Nm(q)(w+1)/2a◦q(Π), Sq 7→ Nm(q)wχΠ(ϖq),

whose kernel we denote ISΠ. ⋄

Now let p /∈ S be a prime, and assume that p is split in F , say ⟨p⟩ = p1p2. We can, and do, fix a
prime P of our coefficient field L above p such that pi is the preimage under σi of the prime P.

Notation 2.3.3. Let Iw(p) = {g ∈ G(Zp) : g = ( ∗ ∗
0 ∗ ) mod p}, and for i = 1, 2 let Upi and U ′

pi
be the

Iw(p)-double cosets of
(ϖpi

1

)
and

(
1
ϖpi

)
respectively, for any uniformiser ϖpi

at pi.

Definition 2.3.4. By a p-stabilisation of Π, we mean a choice of one of the Satake parameters (which
we denote WLOG by α◦

i ) at each of the primes pi | p.
3



Remark 2.3.5. The p-stabilisation defines choices of eigenvalues for the operators Upi
, or their transposes

U ′
pi
, at level Iw(p). We normalise these operators in such a way that their eigenvalues are

αi := p(ki+1)/2α◦
i (not p(w+1)/2α◦

i ).

This normalisation is less canonical (it depends on the choice of ideal P | p of L), but will work better
for p-adic interpolation; in particular, the valuation of αi lies in the range [0, ki + 1]. ⋄

Definition 2.3.6. For i = 1, 2, we say that Π is ordinary at pi if vp(αi) = 0; and Π is ordinary at
p if it is ordinary at both p1 and p2.

Definition 2.3.7. Let TS
Iw,w1

denote the product of TS∪{p} and the subalgebra of L[G(Qp) � Iw(p)]

generated by U ′
p1

and Up2
[sic; the roles of the primes are not symmetric].

As before, the choice of a p-stabilisation defines a character λSΠ,Iw,w1
of TS

Iw,w1
(sending U ′

p1
to α1 and

Up2 to α2), and we let ISΠ,Iw,w1
be its kernel.

2.4. Coherent cohomology and periods.

Notation 2.4.1. For ⋆ ∈ {sph, Iw}, write YG,∗ for the Hilbert modular variety YG
(
U1(NΠ)

(p)Kp,⋆

)
,

where

Kp,⋆ =

{
G(Zp) when ⋆ = sph

Iw(p) ⊂ G(Zp) when ⋆ = Iw

We assume, for simplicity, that NΠ does not divide 6 discF/Q, so that U1(NΠ) is sufficiently small in
the sense of [LLZ18, Definition 2.2.1]. Then YG,sph and YG,Iw are smooth Q-varieties. Let XG,⋆ be a
smooth projective toroidal compactification of YG,⋆.

Proposition 2.4.2. The space

Sw1
(Π) := H1

(
XG,sph/L, ω

(−k1,k2+2;w)(−DG)
)
[ISΠ]

is 1-dimensional over L, and is independent of the choice of S (and independent of the toroidal boundary
data up to a canonical isomorphism). □

(The label w1 refers to the first generator of the Weyl group (Z/2)×(Z/2); the identity element would
correspond to holomorphic Hilbert modular forms.)

Definition 2.4.3. Let ηΠ be a basis of the space Sw1
(Π) over L.

Remark 2.4.4. Over C this space has a canonical basis given by the comparison between coherent
cohomology and automorphic forms. The ratio between this basis and ηΠ, uniquely defined as an element
of C×/L×, is Harris’ occult period Ω∞(Π) for Π. See [GLZ23a, §6.2]. ⋄

Similarly, we define

Sw1,Iw(Π) := H1
(
XG,Iw, ω

(−k1,k2+2;w)(−DG)
)
[ISΠ,Iw,w1

].

This is also 1-dimensional, and there is an isomorphism Sw1
(Π) → Sw1,Iw(Π) given by

(2.1)

(
1− β1

U ′
p1

)(
1− β2

Up2

)
pr∗

where pr : XG,Iw → XG,sph is the natural degeneracy map (c.f. [GLZ23a, §6.1]).

2.5. P-adic L-functions. We recall the construction of the 1-variable Asai p-adic L-function from
[GLZ23a].

Theorem 2.5.1. Assume that k1 > k2 and Π is ordinary at p1. Then there exists Lp,As(Π; η) ∈ ΛL(Z
×
p )

such that for every s ∈ Z with k2+2 ⩽ s ⩽ k1+1, and every Dirichlet character ν of p-power conductor,
we have∫

Z×p

ν−1(x)xsdLimp
p,As(Π; η) = Ep(As(Π), ν, s− k1+k2+2

2 ) · Γ (s) Γ (s− k2 − 1)

2k1i−1−k2(−2πi)2s−k2+1
· LAs(Π, ν, s)

Ω(Π)
.

Here, Ep(As(Π), ν, s) is the modified Euler factor as defined in [GLZ23a, Def. 1.2.2]. There is also an

imprimitive variant Limp
p,As(Π) interpolating the values of Limp

As (Π).

Proof. This is Theorem C in op.cit. (with s substituted by s− k1+k2+2
2 , and (k1, k2) by (k1 + 2, k2 + 2),

corresponding to the shifts of normalisations for this paper). □
4



2.6. De Rham and étale cohomology.

Definition 2.6.1.

(1) Let V As
P (Π) denote the 4-dimensional Asai Galois representation associated to Π, defined as

V As
P (Π) := H2

ét,c(YG,sph/Q,Vét,LP
)[ISΠ]

where Vét,LP
is the étale local system of LP-vector spaces determined by (k1, k2;w). We twist this

by a power of the cyclotomic character so it is independent of w and has Hodge–Tate weights2

{0, −1− k1, −1− k2, −2− k1 − k2} (c.f. [LLZ18, Def. 4.4.2]).
(2) Let

DAs
P (Π) = LP ⊗L H

2
dR,c(YG,sph/L,VdR,L)[I

S
Π],

where VdR,L is the denotes the vector bundle with connection determined by (k1, k2;w) (c.f. [GLZ23b,
§2.2]).

As p /∈ S, the restriction of V = V As
P (Π) to the decomposition group at p is crystalline; and we have

a canonical comparison isomorphism

Dcris

(
Qp, V

As
P (Π)

) ∼= DAs
P (Π),

compatible with the Hodge filtration.
We also have additional plectic structures on these spaces (cf. [LZ23]). Firstly, the Hodge filtration

can be refined to a “Z2-filtration” in the sense of [NS16]; concretely, this meas that there are two 2-

dimensional subspaces Fil+1 and Fil+2 of DAs
P (Π), whose sum is Fil1 and whose intersection is Filk1+k2+2.

Then Sw1
(Π)⊗ LP is identified with Fil+2 /(Fil

+
1 ∩Fil+2 ).

Remark 2.6.2. Note that if k1 > k2, then Fil+1 is a step in the Hodge filtration, but Fil+2 is not; and vice
versa if k1 < k2. If k1 = k2 then neither of them are. ⋄

Secondly, we have partial Frobenii φ1 and φ2 acting on DAs
P (Π), with φ1φ2 = φ2φ1 = φ; and the

eigenvalues of φi are αi and βi.

Proposition 2.6.3 (see [LZ23, Theorem 2.2]). If α1 has sufficiently small slope, then the intersection
Fil+2 D

As
P (Π) ∩DAs

P (Π)(φ1=α1) is 1-dimensional, and maps isomorphically to

Fil+2
Fil+1 ∩Fil+2

∼= Sw1
(Π)⊗L LP.

If Π is ordinary at p, then the subspace DAs
P (Π)φ1=α1 is weakly admissible, so arises from a 2-

dimensional subrepresentation F+
1 V ⊂ V , and similarly for F+

2 V ; the intersection of these is the unique

one-dimensional unramified subspace. Hence the subspace Fil+2 D
As
P (Π) ∩DAs

P (Π)(φ1=α1) also maps iso-

morphically to Dcris(F+
1 V )/Dcris(F+

1 V ∩ F+
2 V ), and we obtain an isomorphism

(2.2) ESΠ,w1 : Sw1(Π) ∼= Dcris

(
F+

1 V

F+
1 V ∩ F+

2 V

)
Dually, we let F+

i V
∗ ⊂ V ∗ be the annihilator of F+

i V , so we can regard ESΠ,w1(ηΠ) as an isomorphism

Dcris

(
F+

1 V
∗ + F+

2 V
∗

F+
1 V

∗

)
∼=−−→ LP.

3. Hida families

3.1. Families of eigensystems. Let us choose an “initial” weight (k1, k2;w), with ki ⩾ 0. We shall
consider families of eigensystems around a neighbourhood of this weight. Let E be a finite extension of
Qp.

Notation 3.1.1. Let T denote the product of the prime-to-Np Hecke algebra T(Np) (with E-coefficients)
and the polynomial ring in formal variables Up1

, Up2
and their inverses.

Definition 3.1.2. For i = 1, 2 let Ui ⊂ W = (Spf Λ)rigE be an open affinoid containing 0; and let

κUi
: Z×

p → O(Ui)

be the universal weight. A p-adic family of eigensystems over U = U1×U2 of weight (k1 + 2κU1 , k2 + 2κU2 ;w)
and level N is a homomorphism T → O(U1 × U2) with the following property:

2For us the Hodge–Tate weight of the cyclotomic character is 1.
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• For every P = (a1, a2) ∈ U ∩ Z2 with ki + 2ai ⩾ 0 ∀i, the composite homomorphism

T → O(U) → E

given by evaluation at P is the Hecke eigenvalue system associated to a p-stabilisation of Π[P ], for
some cuspidal automorphic representation Π[P ] of GL2 /F of level N and weight (k1+2a, k2+2a2;w)
and some embedding of its coefficient field into E.

We denote such a family by Π. We say that Π is p-ordinary if the Hecke eigenvalues of U ′
p1
, Up2

and
their inverses acting on Π are power-bounded.

By standard results due to Hida, we see that for any given Π of weight (k1, k2;w) and conductor N,
with k1, k2 ⩾ 0, ordinary at p, we may find a p-ordinary family Π over some sufficiently small U1 × U2

passing through Π (i.e. with Π[0] = Π), and this is unique up to further shrinking U1 × U2.

3.2. Interpolation sets. Let Π be a family as above. We now define certain special sets of points in U
and in the product U ×W.

Notation 3.2.1. We write Σcl for the set of P = (a1, a2) ∈ U ∩ Z2 with ki + 2ai ⩾ 0 ∀i, and we call
these points classical points.

We shall also need to consider various loci in the 3-dimensional space U ×W:

Notation 3.2.2. Let (P,Q) ∈ U ×W, with P = (a1, a2) ∈ Σcl.

• We say (P,Q) is geometric if Q = j is an integer with 0 ⩽ j ⩽ min(k1 + 2a1, k2 + 2a2).
• We say (P,Q) is 1-dominant critical if Q = j+χ, with χ a finite-order character, and j an integer
such that k2 + 2a2 < j ⩽ k1 + 2a1.

We write Σ̃geom, respectively Σ̃crit, for the sets of points (P,Q) satisfying these conditions.

Remark 3.2.3. Note that Σ̃crit will be the locus where our p-adic L-function interpolates critical complex

L-values, and Σ̃geom the locus where it interpolates regulators of Euler-system classes. Crucially, both
loci are Zariski-dense in U ×W.

However, while the intersection of Σ̃crit with U1 × {0} ×W is Zariski-dense in this smaller space, this

is not true for Σ̃geom. This is why we need to introduce the second weight variable in order to prove our
reciprocity law. ⋄

4. A three-variable p-adic Asai L-function

We now prove a strengthening of the main result of [GLZ23a] by constructing a 3-variable p-adic Asai
L-function over U1 × U2 ×W, for a Hida family over U1 × U2.

4.1. Geometry of the Iwahori-level Hilbert modular surface. Let YG,Iw denote the canonical
Zp-model of YG,Iw, and write YG,Iw,0 denote its special fibre. This has a stratification as a disjoint union

of 9 smooth strata Y ♢,♡
G,Iw,0, where ♢,♡ ∈ {m,α, ét}. We use the notation

Y •,m
G,Iw,0 := Y m,m

G,Iw,0 ∪ Y
m,α
G,Iw,0 ∪ Y

m,ét
G,Iw,0

which is open in YG,Iw,0. This stratification extends naturally to XG,Iw,0.

Remark 4.1.1. There exists a finite covering of YG,Iw which is a moduli space for Hilbert–Blumenthal
abelian surfaces A over Zp-algebras, equipped with level groups C1 ⊂ A[p1] and C2 ⊂ A[p2] (along with

a prime-to-p polarisation and level structure). The strata Y ♢,♡
G,Iw,0 correspond to the regions where C1 is

(étale-locally) of type ♢ and C2 of type ♡. ⋄

Note 4.1.2. The embedding ι gives rise to finite morphisms

ιsph : YH,sph → YG,sph and ιIw : YH,Iw → YG,Iw. ⋄
6



4.2. Summary of higher Hida theory. Let XG,Iw denote the generic fibre of XG,Iw as rigid analytic
space. We now state the classicality isomorphism of higher Hida theory at Iwahori level generalizing
[GLZ23a, Corollary 2.3.6-Corollary 2.4.1].

Recall that in op. cit. we developed the theory at p1-level: we constructed Hecke operators Up1
and U ′

p1

and certain integral models of the sheaves ω(k1,k2,w)(−DG), ω
(k1,k2,w). After tensoring with Qp, Corollary

2.3.6 (respectively Corollary 2.4.1) in op. cit. state that the Up1
-ordinary part (the U ′

p1
-ordinary part

respectively) of the cohomology of the p1-multiplicative locus (of the p1-multiplicative locus with compact
support towards the p1-supersingular locus respectively) is isomorphic to the corresponding ordinary part
of the cohomology of XG,p1−Iw of the sheaves ω(k1,k2,w)(−DG), ω

(k1,k2,w) when k1 ⩾ 2 (when k1 ⩽ 0
respectively). The theory applies verbatim for p2 and we can define similarly the Hecke operators Up2

and U ′
p2
. We denote by epi

and e′pi
the ordinary projectors for Upi

and U ′
pi

respectively.

For i = 1, 2 let Di−ét be the Cartier divisor such that

XG,Iw,0 −D1−ét = Xm,•
G,Iw,0 and XG,Iw,0 −D2−ét = X•,m

G,Iw,0.

Definition 4.2.1. We define the following complex

M•
m,m(k1, k2) = RΓw1(X

m,m
G,Iw, ω

(−k1,k2+2,w)(−DG))

= lim
←−−
m

colim
−−−−−→

n2

lim
←−−
n1

RΓ(XG,Iw,R/℘m , ω(−k1,k2+2,w)(−DG − n1D
1−ét + n2D

2−ét)),

and let

H1
w1(X

m,m
G,Iw, ω

(−k1,k2+2,w)(−DG)) = H1(M•
m,m(k1, k2)).

We then obtain the following result.

Theorem 4.2.2. If k1, k2 ⩾ 0, then we have an isomorphism

e′p1
ep2

H1
w1(X

m,m
G,Iw, ω

(−k1,k2+2,w)(−DG)) ∼= e′p1
ep2

H1(XG,Iw, ω̃
−k1,k2+2(−DG)),

for some coherent sheaf ω̃(−k1,k2+2)(−DG) isomorphic to ω(−k1,k2+2)(−DG) on the generic fibre of XG,Iw.

Proof. The proof follows as in [GLZ23a]. In particular, one shows that the Hecke operators factor as
follows:

RΓ(X,ωn1
(n2t2D

2−ét)) RΓ(X,ωn1
((n2 + 1)t2D

2−ét))

RΓ(X,ωn1
(n2t2D

2−ét)) RΓ(X,ωn1
((n2 + 1)t2D

2−ét)),

Up2 Up2Up2

for some t2 ∈ Z (see [GLZ23a, Lemma 2.3.3 and Definition 2.3.4]) and where ωn1 = ω(−k1,k2+2,w)(−DG−
n1D

1−ét). And

RΓ(X,ωn2
(−(n1 + 1)t1D

1−ét)) RΓ(X,ωn2
(−n1t1D1−ét))

RΓ(X,ωn2
(−(n1 + 1)t1D

1−ét)) RΓ(X,ωn2
(−n1t1D1−ét)),

U ′p1
U ′p1

U ′p1

for some t1 ∈ Z and where ωn2 = ω(−k1,k2+2,w)(−DG + n2D
2−ét). Using the base change formula as

in op. cit., we hence deduce that the maps in the direct and inverse limits defining M•
m,m(k1, k2) are

quasi-isomorphisms, from which the theorem follows (after fixing a certain choice of twist of the sheaf
depending on t1, t2). Morevoer note that the proof also yields the fact that the cohomology of the
complex M•

m,m(k1, k2) is independent on the order for which we take the inverse and direct limit for
n1, n2. □

Let Λ = Λ(Z×
p ), and denote by κ1, κ2 : Z×

p → (Λ×)2 the universal characters associated to the two

factors of (Z×
p )

2. We consider the following sheaf

(4.1) Ω̃(κ1,κ2) :=
(
(π⋆OIG ⊗ (πIG×IG∨)⋆OIG×IG∨) ⊗̂Λ2

)(Z×p )6

,

where IG denotes the Igusa tower over the (formal completion of the) multiplicative locus and each copy
(Z×

p )
2 acts on π⋆OIG via the action on IG = IG(p∞1 )×IG(p∞2 ) as in [Gro21, Definition 4.2.2]. Moreover

the action of ((xpi
)i, (zpi

)i, (tpi
)i) ∈ (Z×

p )
6 is given on Λ2 by

κ1(x
−2
p1
tp1

)κ2(x
2
p2
t−1
p2

).
7



We remark that here we do not vary the norm variable w as in [Gro21]. In particular, the specialisation

Ω̃(κ1,κ2)[P ] of Ω̃(κ1,κ2) at an integer point P = (a1, a2) is isomorphic to ω(−2a1,2a2;0)
∣∣
Xm,m

G,Iw

.

Remark 4.2.3. Note that this sheaf of Λ-modules is defined over the moduli space, but it can be descended
to a sheaf on the (multiplicative loci of) the Shimura variety. We have an action of x ∈ O×

F,+ on Ω̃(κ1,κ2)

via the tautological isomorphism (since the construction of Ω̃(κ1,κ2) does not use the polarisation)

x∗Ω̃(κ1,κ2) ≃ Ω̃(κ1,κ2).

This action factors through the quotient of O×
F,+ by (K ∩ O×

F )
2 (c.f. [Gro21, 4.2.2]). ⋄

Finally, for our fixed choice of weight (−k1, k2 + 2, w) as above, we let

(4.2) Ω(κ1,κ2) := Ω̃(κ1,κ2) ⊗OX
m,m
G,Iw

ω(−k1,k2+2,w).

The sheaf Ω(κ1,κ2) has the following interpolation property:

Proposition 4.2.4. The sheaf Ω(κ1,κ2) is an invertible sheaf of O(Xm,m
G,Iw)⊗Λ2-modules, and its special-

isation at an integer point P = (a1, a2) is given by

Ω(κ1,κ2)[P ] = ω(−k1−2a1,k2+2a2+2;w)
∣∣
Xm,m

G,Iw

.

We can now define Hecke operators U
′(κ1,κ2)
p1

and U
(κ1,κ2)
p2

acting on the cohomology of the sheaf

Ω(κ1,κ2) and specialising at an integer point P = (a1, a2) to U ′
p1

and Up2
acting on the cohomology

of ω(−k1−2a1,k2+2a2+2;w) (under the isomorphism of the above proposition). The operator U
(κ1,κ2)
p2

is
defined as in [GLZ23a, Definition 3.2.1], namely considering the pullback induced by the universal étale
p2-isogeny (as in (3.4) of op. cit.) and tensoring it with the trace map for p1 and multiplying by

the normalisation factor p−1−w−k2−2
2 . The operator U

′(κ1,κ2)
p1

is defined similarly but considering the
pullback by the dual p1-isogeny (the pullback on the Igusa tower of the map considered in [GLZ23a, §
2.4]), tensoring it with the trace map for p2 and multiplying by the normalisation factor p−

w−k1

2 . The
fact that they specialise to the correct Hecke operators follows as in [GLZ23a, Proposition 3.2.2].

By abuse of notation, we will use e′p1
, ep2

for the ordinary part with respect to U
′(κ1,κ2)
p1

and U
(κ1,κ2)
p2

.

Definition 4.2.5. Define

M•
m,m(κ1, κ2) := e′p1

ep2
RΓw1

(Xm,m
G,Iw,Ω

(κ1,κ2)(−DG)).

The complex M•
m,m(κ1, κ2) is a perfect complex of Λ2-modules, and it has the following interpolation

property (c.f. [GLZ23a, Theorem 3.2.3], [Gro21, Theorem 4.2.13]):

Proposition 4.2.6. For a1, a2 ∈ Z with k1 + 2a1, k2 + 2a2 ⩾ 0, we have

M•
m,m(κ1, κ2)⊗L

Λ2,a1,a2
R ≃ e′p1

ep2RΓ(XG,Iw, ω̃
−k1−2a1,k2+2a2+2(−DG)).

We have a similar picture over Xm
H,Γ0(p)

: write λ : Z×
p → Λ× for the universal character, and let k be

any weight. Then there exists a sheaf ΩH = ωH(λ) of O(X
(m)
H,Γ0(p)

)⊗ Λ-modules whose specialisation at

an integer point a is given by

ΩH(a) = ωk+2a.

Then choosing λ = κ2 − κ1, pullback along ιIw induces a morphism

(4.3) ι∗Iw : RΓw1

(
X

(m,m)
G,Iw ,ΩG(κ1, κ2) (−DG)

)
→ RΓc

(
Xm

H,Γ0(p)
,ΩH(κ2 − κ1)⊗ Ω1

H (−DH)
)
⊗ ∥ · ∥−w.

4.3. P-adic families.

Proposition 4.3.1. Let Π be a p-ordinary family over U1 × U2, and define

M•
m,m(κU1

, κU2
) :=M•

m,m(κ1, κ2)⊗Λ2 O(U1 × U2).

Then H1 of this complex contains a free rank 1 O(U1 × U2)-direct summand H1
m,m(κU1 , κU2)[Π] whose

specialisation at every (a1, a2) ∈ (U1 × U2) ∩ Z2 with ki + 2ai ⩾ 0 is the eigenspace in

e′p1
ep2H

1(XG,Iw, ω̃
(−k1−2a1,k2+2a2+2)(−DG))⊗Zp E

on which T acts via the ordinary p-stabilisation of Π[a].
8



Definition 4.3.2. Write

S(Π) = H1
m,m(κU1

, κU2
)[Π],

and let η be a basis of S(Π) as a O(U1 × U2)-module.

Note 4.3.3. The specialisation of η at P = (a1, a2) is a basis of the space Sw1,Iw(Π[P ])⊗LP
E, which can

be identified with Sw1
(Π[P ])⊗LP

E via (2.1), where LP ⊂ Q is the coefficient field of Π[P ]. However, it
may not descend to a basis of this space over LP . If we choose an algebraic basis ηΠ[P ] defined over LP

(see Remark 2.4.4), then this defines3 a pair of periods

Ωp(Π[P ]) ∈ E× and Ω∞(Π[P ]) ∈ C×. ⋄

4.4. The p-adic L-function. Consider the dual interpolation sheaf Ω∨
H(λ), whose specialisation at an

integer a specializes to ω−k−2a
H with k = k2 − k1. We then have a cup product pairing

⟨ , ⟩ : H0(Xm
H,Γ0(p)

,Ω∨
H(κU1

− κU2
))×H1

c (X
m
H,Γ0(p)

,ΩH(κU2
− κU1

)⊗ Ω1
H (−DH)) → O(U).

Write j : Z×
p → O(W)× for the universal character. We consider Katz’s Eisenstein measure

E
(
k1 − k2

2
+ κU1

− κU2
− j,

k1 − k2
2

+ κU1
− κU2

+ j

)
∈ H0(Xm

H,Γ0(p)
, ω∨

H(κU2
− κU1

))⊗̂O(W);

to lighten the notation, we denote it by EκU1−κU2
(j).

Definition 4.4.1. We define the p-adic Asai L-function by the pairing

Limp
p,As(Π, η)(κ1, κ2, j) =

1

p
(
√
D)−1−(κ1+κ2)/2−j(−1)j ·

〈
EκU1−κU2

(j), ι∗Iw(η)
〉
∈ O(U ×W),

where U = U1 × U2.

4.5. Interpolation of critical values. This function Limp
p,As(Π, η) satisfies the following interpolation

property at p1-dominant critical points:

Theorem 4.5.1. Let (P,Q) ∈ Σ̃crit, with Q = j ∈ Z. Then we have

Limp
p,As(Π, η)(P, j+1) =

Ωp(Π[P ])

Ω∞(Π[P ])
· E (Π[P ], τ) · Γ(j − 1)Γ (j − k2 − 2a2)

2k1+2a1−2i1−k2−2a2(−2πi)2j−k2−2a2−1
·Limp

As (Π[P ], j+1),

where

E(Π[P ], s) =

(
1− ps−1

α◦
P,1α

◦
P,2

)(
1− ps−1

α◦
P,1β

◦
P,2

)(
1−

β◦
P,1α

◦
P,2

ps

)(
1−

β◦
P,1β

◦
P,2

ps

)
and τ = j − k1+2a1+k2+2a2

2 .

Proof. Since the cup-product defining Lp,As(Π, η) commutes with specialisation, and the specialisation
of the Eisenstein series at this point is a classical modular form, the value at (P, j+1) can be written as a
coherent-cohomology cup-product and hence as a zeta-integral. This is a very similar computation as in
the proof of Theorem C in [GLZ23a]; the only difference is that we use a slightly different test vector in
the local zeta-integral computation at p, since our local Whittaker function at p2 is now the normalised
Up2 -eigenfunction, rather than the spherical Whittaker function. However, this makes no difference to
the zeta-integral computation (which only sees the value of the Whittaker function at 1). □

Comparing with the main theorem of [GLZ23a], which gives a 2-variable p-adic L-function varying
analytically over the two-dimensional “slice” U1 × {a2} × W, for any given a2 with k2 + 2a2 ⩾ 0, and

noting that the intersection of Σ̃crit with this set is Zariski-dense, we conclude that the restriction of
Limp
p,As(Π, η) to this slice must coincide with the 2-variable p-adic L-function of op.cit.. In particular, its

restriction to {a1} × {a2} ×W, for any P = (a1, a2) ∈ Σcl with k1 + 2a1 > k2 + 2a2 ⩾ 0, coincides with

the 1-parameter p-adic L-function Limp
As,p(Π[P ]) from Theorem 2.5.1 for the specialisation Π[P ].

3c.f. §7.4 in [GLZ23a]
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5. An explicit reciprocity law

5.1. Étale cohomology and Euler systems in families. We recall some results due to Sheth [She24]
on families of Galois representations associated to Π, and families of Galois cohomology classes for these.

Theorem 5.1.1 (Sheth). For small enough U , there exists a free rank 4 module V = V (Π) over
O(U1 × U2), whose specialisation at each classical point P ∈ Σcl is canonically isomorphic to the Asai
representation Vp,As(Π[P ]).

Let c be an integer coprime to 6pNmF
QN, a a generator of OF /Z, and suppose all prime factors of c

lie in our set S.

Theorem 5.1.2 (Sheth). There exists a family of cohomology classes zm(Π, j) ∈ H1(Q(µm),V∗(−j))
for all square-free integers coprime to pS, which has the following interpolation property at each point

(P, j) ∈ Σ̃geom:

czm(Π, j)(P,Q) =

(
1− pjσp

αP,1αP,2

)(
1− αP,1βP,2

p1+jσp

)(
1− βP,1αP,2

p1+jσp

)(
1− βP,1βP,2

p1+jσp

)
(−1)jj!

(
k1+2a1

j

)(
k2+2a2

j

) × czm(Π[P ], j).

Here czm(Π[P ], j) is the Asai–Flach class in H1(Q(µm), Vp,As(Π[P ])∗(−j)), as constructed in [LLZ18],
and σp is the arithmetic Frobenius at p.

5.2. Localisation at p. By comparison with the standard representation in families, we see that (after
possibly shrinking U) there are free rank 2 subrepresentations F+

i V whose specialisations at all points
P ∈ Σcl of non-parallel weight interpolate the subrepresentations F+

i VP described above.4

Proposition 5.2.1. The localisation of czm(Π, j) at p takes values in the rank 3 subrepresentation
F+

1 V∗ + F+
2 V∗.

Proof. The analogous result for the specialisations at classical points is Corollary 9.2.3 of [LLZ18], and
the result for the family Π follows from this by interpolation. □

We now consider the image of czm(Π, j) in the rank 1 quotient Mp1
= (F+

1 V∗ + F+
2 V∗)/F+

1 V∗.
Note that Mp1

(−k2 − 2κ2 − 1) is unramified, so we can define a Perrin-Riou regulator for Mp1
by

pulling back the regulator for its unramified twist (compare [KLZ17, Theorem 8.2.8]), giving a map of
O(U ×W)-modules

LPR : H1(Qp,Mp1
(−j)) → Dcris(Mp1

(−j)).

Comparing the interpolating property of Perrin-Riou’s map with the preceding theorem (as in the
Rankin–Selberg case, see [KLZ17, proof of Theorem 10.2.2]), we obtain:

Proposition 5.2.2. For (P,Q) ∈ Σ̃geom we have

LPR(cz1(Π, j)) mod (P,Q) =
(−1)k2−j

(k2 + 2a2 − j)!
·

(
1− pj

αP,1βP,2

)
(
1− αP,1βP,2

pj+1

) · log (cz1(Π[P ], j)) .

The following theorem is the main result from [GLZ23b], reformulated in terms of the Eichler-Shimura
isomorphism ESΠ[P ],w1

(see (2.2)):

Theorem 5.2.3. For each (P,Q) ∈ Σ̃geom, say P = (a1, a2) and Q = j, such that α1,Pβ2,P ̸= β1,Pα2,P ,
we have

⟨LPR(cz1(Π[P ], j)), ESΠ[P ],w1
(ηP )⟩ =

(c2 − c−tχ(c)−1) ·
√
D

j+1
(−1)(k1−k2)/2+j+1N t · Limp

p,As(Π, η)(P, j + 1).

Here, t = k1 + k2 + 2(a1 + a2)− 2j, and χ is the restriction to Q of the nebentype character of Π.

4More generally, this applies to any specialisation with αP,1βP,2 ̸= βP,1αP,2, which is automatic in non-parallel weights.

If these two quantities are equal, then the subrepresentations F+
1 VP and F+

2 VP are isomorphic to each other as GQp -
representations, and cannot be distinguished without using the plectic structures; so it is not immediately clear which of
these subrepresentations is the one given by specialising the (uniquely defined) “family” subrepresentations F+

i V.
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5.3. Explicit reciprocity laws and meromorphic Eichler–Shimura.

Definition 5.3.1. Denote by Σ♯
cl ⊂ Σcl the set of P with the following property: there exists a j such

that (P, j) ∈ Σ̃geom and Limp
p (Π[P ], ηP ; j + 1) ̸= 0. (We call these good classical points.)

Lemma 5.3.2. The set Σ♯
cl is Zariski-dense in U .

Proof. Consider a function f vanishing at all these points. Then f · Limp
p (Π, η) must vanish on Σ̃geom.

As Σ̃geom is Zariski-dense, it is identically 0 on U ×W. But Limp
p (Π, η) is not a zero-divisor, since every

component of U × W contains a point where Lp(Π, η) interpolates a non-vanishing complex L-value.
Thus f = 0. □

Write Q(U) for the fraction field of O(U); and let us write cLp,As(Π) for the p-adic L-function multi-
plied by the c-factor (c2 − . . . ) (which clearly interpolates to an element of O(U ×W).

Theorem 5.3.3.

(1) There exists an isomorphism of Q(U)-modules

ES1Π : S1(Π)⊗O(U) Q(U) ∼= Dcris(Mp1
)⊗O(U) Q(U),

depending only on Π, which satisfies the following property: for all P ∈ Σ♯
cl, the specialisation of the

morphism ES1Π at P is well-defined and coincides with the Eichler–Shimura isomorphism ES1Π[P ].

(2) Extending ES1Π to an isomorphism of O(U ×W)-modules, we have an explicit reciprocity law〈
LPR(z1(π, j)), ES

1
Π(η)

〉
= cLimp

p,As(Π, η)(1 + j).

Proof. Let j : S1
Π → Mp1

be some isomorphism. Since Lp(Π, η) is not identically zero, we can consider
the ratio

R =
1

cLimp
p,As(Π, η)(1 + j)

·
〈
LPR(z1(π, j)), j(η)

〉
∈ O(U ×W).

Let (P,Q) be an geometric point such that αP,1βP,2 ̸= βP,1αP,2 and Limp
p,As(Π, η)(P,Q) ̸= 0. Then it

follows from Theorem 5.2.3 that R is regular at (P,Q), and its value is equal to jP /ES
1
ΠP

. In particular,
this ratio depends only on P , and is independent of Q. From the Zariski-density of the set of such (P,Q),
it follows that the meromorphic function R on U ×W is actually independent of the W variable.

Hence R ∈ Q(U)×, regular at all points P ∈ Σ♯
cl, and coinciding at each such point with jP /ES

1
ΠP

. It

follows that if we define ES1Π = R−1j, then ES1Π is regular at all points in Σ♯
cl and coincides at such points

with ES1Π[P ]. By Lemma 5.3.2, this interpolating property uniquely determines ES1Π, and the reciprocity
law holds by construction. □

It follows, in particular, that if (0, 0) ∈ Σ♯
cl (i.e. L

imp
p,As(Π, η) is non-zero for some j in the geometric

range), and α1β2 ̸= β1α2, then we have an equality in Λ(Γ)〈
LPR(z1(Π, j)), ES

1
Π(η)

〉
= cLimp

p,As(Π, η)

for any basis η of Sw1
(Π). However, if (0, 0) /∈ Σ♯

cl then we cannot rule out the possibility that
LPR(z1(Π, j)) is identically 0.

6. Leading-term arguments and applications

6.1. Assumptions. Let Π be an automorphic representation of G(A) as in Definition 2.2.1. We impose
the following assumptions on Π:

Assumptions 6.1.1.

(1) Π is ordinary at p;
(2) the local Euler factor Pp(Π, X) doe not vanish at p−j for any j ∈ Z;
(3) Π satisfies the “big image” condition (BI) of [LLZ18, §9.4], as do all its twists Π⊗ ψ for Dirichlet

characters ψ of p-power order and conductor coprime to some finite set of primes S.

As noted in op.cit., if Π is non-CM, and there is at least one prime which ramifies in F and is coprime
to NΠ, then Π satisfies condition (BI) for a positive-density set of primes P of L (and this can be
upgraded to “all but finitely many primes” if L = Q). The argument easily generalises to show that the
twists Π ⊗ ψ have big image as well, after discarding a finite set of possible primes from the conductor
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of ψ (the primes which ramify in F ′/Q, where F ′ is a finite abelian extension of F determined by the
inner twists of Π, see the proof of Theorem 9.4.6 of op.cit.).

6.2. Leading terms. Let U ′ = U1 ∩ U2, embedded diagonally in U1 × U2. By restricting Π, we obtain
a one-parameter family of Hilbert modular forms with weight (k1 + 2a, k2 + 2a;w) for varying a ∈ U ′.
Note that the restriction of Lp,As(Π, η) to U ′ is well-defined, and non-vanishing at 0.

Let T be a uniformiser at 0 ∈ U ′. From the meromorphic reciprocity law and the non-vanishing of
the p-adic L-function modulo T , we deduce that the T -adic valuation of LPR(z1(π, j))|U ′×W is equal to
the order of the pole of ES1Π(η). Let c ∈ Z⩾0 be this common value.

Repeating the construction with the Eisenstein series replaced by a Dirichlet-character twist (but the
same Π and η), we conclude that in fact LPR(zm(π, j))|U ′×W is divisible by T c, for all m. So not only
the m = 1 class of the Euler system, but in fact all of the classes, have vanishing projection to the
1-dimensional local subquotient at p used to define the regulator map. So specialising at T = 0 gives an
Euler system whose local condition is “too strong”: it has core rank 0 in the sense of [MR04]. Arguing
as in [LZ20], we conclude that in fact the specialisation at T = 0 must vanish identically, for all m; and
we can therefore divide out factors of T repeatedly, and compensate by removing powers of T from the
denominator of ES1Π, until we have c = 0.

Corollary 6.2.1. There exists an Euler system (ẑm) for Vp,As(Π)∗ such that the image of ẑ1 under the
Perrin-Riou regulator is a scalar multiple of cLp,As(Π, η)(1 + j).

Proof. The above construction gives an Euler system mapping to a multiple of the imprimitive L-series

cLimp
p,As(Π, η)(1 + j). However, both the Euler system and the p-adic L-function depend on a choice of

test data at the bad primes for Π, and both have the same equivariance property when the test data
changes. Since the space of linear forms with this equivariance property is 1-dimensional, we obtain the
reciprocity law for any choice of test data, including the (inexplicit) test data which give the optimal
p-adic L-function. □

6.3. Arithmetic applications. Let T ⊂ Vp,As(Π) be a GQ-invariant lattice, and define A = T⊗Qp/Qp.
Let F+

1 A be the corank 2 R-submodule of A dual to the kernel F+
1 Vp,As(Π)∗ →Mp1 .

We can now harvest some applications to the Iwasawa Main Conjecture, following [LLZ18, §9].

Definition 6.3.1. Define the Selmer group

Sel(p1)(Q(µp∞), A) =

{
x ∈ H1(Q(µp∞), A) : locℓ(x) = 0 ∀ ℓ ̸= p
locp(x) ∈ imageH1(Qp(µp∞),F+

1 A)

}
,

and write X(p1)(Q(µp∞), A) for its Pontryagin dual.

Let Γ = Gal(Q(µp∞/Q), and let Λ = R⊗Zp Zp[[Γ]], where R is the ring of integers of LP.

Theorem 6.3.2. Assume that Assumptions 6.1.1 are satisfied. There exists an integer r such that

charΛ

(
X(p1)(Q(µp∞), A)

) ∣∣∣∣ pr · Lp,As(Π, 1 + j).

Proof. It is immediate from Theorem 9.5.3 in op.cit. and Theorem 5.3.3 that the characteristic ideal
of the Selmer group divides prcLp,As(Π, η)(1 + j), for some r. It remains to get rid of the factor (c2 −
c2j−k1−k2χ(c)−1) relating the p-adic L-functions with and without the c-subscript.

If the Dirichlet character χ is non-trivial, then we can choose c such that the c-factor is a unit in the
Iwasawa algebra. If χ = 1, then we use the compatibility of the Iwasawa main conjecture with functional
equations. The functional equation interchanges j with k1 + k2 + 1− j, so the c-factor c2 − c2j−k1−k2 is
coprime to its image under this involution. □

Remark 6.3.3. The arbitrary power of p is inevitable since Lp,As(Π) is itself only well-defined up to an
arbitrary scalar factor. It should be possible to nail down a canonical normalisation up to p-adic units
using integrality of equivariant p-adic L-functions as in [LZ20], but we have not attempted this here for
reasons of space. ⋄

By descent from Q(µp∞) to Q, we also obtain cases of the Bloch–Kato conjecture for critical values
of the L-series.
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Theorem 6.3.4. Assume that the Assumptions 6.1.1 are satisfied. Let j be a critical value. Then the
Bloch–Kato Selmer group

H1
f (Q, Vp,As(Π)∗(−j))

is zero.

Proof. This follows from the previous theorem via the same arguments as in §11.7 of [KLZ17] in the
Rankin–Selberg case, using the fact that the critical L-values are automatically non-zero. □
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