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We quantitatively analyze the thermal emission by anisothermal structures. By comparing the
heat flux radiated by simple multilayered systems calculated using the classical Kirchhoff’s law to
the exact flux derived from fluctuational-electrodynamics theory we highlight the limits of validity of
the radiometric theory to predict the thermal emission with respect to the geometric configuration,
the temperature gradient and the type of materials, and highlight discrepancies as high as 50%.

Kirchhoff’s law [1, 2] of thermal radiation states that a
body in thermal equilibrium absorbs as much energy as
it emits. Hence, by measuring the absorptivity of a body
(i.e. the fraction of the energy of the incident light that is
absorbed by the body) we can deduce its emissivity. This
emissivity quantitatively defines the ratio between the en-
ergy emitted by this body and that of a blackbody, i.e.
a perfect absorber/emitter in far-field regime, for which
the emissivity is equal to 1 by definition. It is known that
this law can be violated in specific situations. Hence, for
instance, by breaking the optical (Lorentz) reciprocity in
the system [3] it is possible to observe a deviation be-
tween the emissivity and the absorptivity. A generaliza-
tion of Kirchhoff’s law to systems out of thermal equilib-
rium was also introduced in the 50’s by Rytov [4, 5] in
the context of the so-called fluctuational-electrodynamics
theory. This theory has been recently revisited by Greffet
et al. [6] to deal with the spontaneous emission by semi-
conductors under optical or electrical pumping. However,
despite these theoretical advances no quantitative study
has been done so far to evaluate the discrepancy between
the predictions made by the classical Kirchhoff’s law and
the rigorous calculation made in the theoretical frame-
work of fluctuational-electrodynamics theory. Neverthe-
less, recently important efforts have been made to de-
sign photonic structures, including photonic crystals and
metamaterials, in order to sculpt either spectrally [7–
15] or directionally [16–30] their thermal emission. In
these structures a notable spatial variation of temper-
atures can appear, making a quantitative assessment of
the validity of the classical Kirchhoff’s law even more rel-
evant. In this Letter we investigate to what extent this
law still remains valid in the presence of a local tempera-
ture variation. To this end we study the thermal emission
of multilayer systems made with polar material or metals
which are submitted to a spatial variation of temperature
and we compare the predictions made from the classical
Kirchhoff’s law with its generalization derived from fluc-
tuational electrodynamics.

To start let us consider the system sketched in Fig. 1
made of a slab of thickness e and of dielectric permittivity
ε2 placed above a semi-infinite medium of permittivity ε1

T1 

T2= T2+ΔT 

ε1 

ε2 

ε=1 

e 

d 

θ 
𝜑 

Figure 1: Schematic of a system made of a layer of thickness
e and permittivity ε2 above a substrate of permittivity ε1.
The layer is separated from the substrate by a vacuum gap of
thickness d. The substrate is held at temperature T1 and a
temperature difference ∆T is applied between the substrate
and the layer. The whole system radiates a directional heat
flux ϕ toward the surrounding environment.

and separated from it by a vacuum layer of thickness d.
We now assume that the substrate is held at tempera-
ture T1 while the slab is at temperature T2 = T1 + ∆T .
According to radiometric theory (geometrical optics) the
heat flux radiated in the direction θ with respect to the
normal to the surface, reads

ϕRA(θ) = 2π cos θ sin θ

× 1

2

∑
k=s,p

∫ ∞
0

dω[εdr
1,k(θ, ω)L0

ω(T1) + εdr
2,k(θ, ω)L0

ω(T2)]

(1)

where L0
ω(T ) = Θ(ω, T ) ω2

4π2c2 is the Planck function (Θ
being the mean energy of Planck oscillator) and εdr

i,k is
the dressed emissivity for the polarization state k = (s, p)
(toward the top) of medium i in the presence of medium
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j 6= i. These emissivities read, respectively [31],

εdr
1,k(θ, ω) =

ε1,k(θ, ω)T2,k(θ, ω)

1−R1,k(θ, ω)R2,k(θ, ω)
, (2)

and

εdr
2,k(θ, ω) = ε2,k(θ, ω) +

ε2,k(θ, ω)T2,k(θ, ω)R1,k(θ, ω)

1−R1,k(θ, ω)R2,k(θ, ω)
,

(3)

where the presence of neighboring objects has been taken
into account through Fabry-Pérot like denominator. In
Eqs. (2) and (3), Ri,k represent the intrinsic reflection
coefficients of substrate (i = 1) and slab (i = 2) while
T2,k is the intrinsic transmission coefficient of the slab in
polarization k. In these expressions εi,k = 1−Ri,k−Ti,k
denotes the intrinsic emissivity of medium i. Notice that
the apparent emissivity used in the radiometric theory
equals the average of the emissivities in the two polariza-
tions, namely εdr

i = (εdr
i,s + εdr

i,p)/2.
Beside this approximated result which is limited to the

realm of geometrical optics a rigorous calculation of heat
flux can be performed in the theoretical framework of
fluctuational electrodynamics [4, 5]. In this framework
the radiative heat transfer originates from the electro-
magnetic feld produced by the random thermal motion
of partial charges inside the system which behave like
radiating dipoles. In this case the energy flux can be
written as [32, 33]

ϕFE(θ) = 2π cos θ sin θ × 1

2

∑
k=s,p

∫ ∞
0

dω
[
τ1,k(θ, ω)L0

ω(T1)

+ [τ2,k(θ, ω)− τ1,k(θ, ω)]L0
ω(T2)

]
,

(4)

where τi,k are the energy transmission coefficients

τ1,k(θ, ω) =
ε1,k(θ, ω)T2,k(θ, ω)∣∣1− ρ1,k(θ, ω)ρ2,k(θ, ω)ei2kzd

∣∣2 , (5)

τ2,k(θ, ω) = 1− |ρ12,k(θ, ω)|2, (6)

ρi,k being the optical reflection coefficients of body i

(Ri,k =
∣∣ρi,k∣∣2) which read

ρ1(k, ω, p) = rp1(k, ω), (7)

and

ρ2(k, ω, p) =
rp2(k, ω)

(
1− e2ikzδ

)
1− [rp2(k, ω)]2e2ikzd

. (8)

In these expressions, rTE
j = (kz − kzj)/(kz + kzj) and

rTM
j = (εjkz−kzj)/(εjkz+kzj) are the Fresnel reflection
coefficients of the vacuum-medium interfaces and kzj =

(a) (b)

(c) (d)

Figure 2: Thermal emission of the three-layer structure
sketched in Fig. 1 and made of a gold layer on top of a SiC
substrate at temperature T1 = 300K . A temperature varia-
tion ∆T = 10K is applied between the substrate at the upper
layer. (a) Net heat flux (in W/m2) radiated by the layer in
the presence of substrate and calculated from the radiometric
(RA) and the fluctuational-electrodynamics (FE) theory. (b)
Heat flux (in W/m2) radiated by the substrate in the pres-
ence of the top layer. (c) Ratio between the net flux emitted
by the whole structure using both approaches. The solid line
represents the isoline φRA/φFE = 1. (d) Vertical sections of
the plot shown in (c).

√
εj(ω)ω2/c2 − k2 is the normal component of the wave

in medium j of permittivity εj(ω) while in the cavity it
simply reads kz =

√
ω2/c2 − k2, c being the speed of

light. As for the reflection coefficient of block system
layer/substrate it reads

ρ12,k = ρ2,k + t22,kρ1,ke
2ikzd/

(
1− ρ1,kρ2,ke2ikzd

)
,

(9)
where t2,k the transmission coefficient of the slab (T2,k =∣∣t2,k∣∣2) and k = ω

c sin θ the parallel component of
wavevector.

From Eq. (4) we can identify the apparent emissivities
of substrate and slab in terms of the energy transmission
coefficients as

εa1,k(θ, ω) = τ1,k(θ, ω), (10)

εa2,k(θ, ω) = τ2,k(θ, ω)− τ1,k(θ, ω). (11)

The comparison of Eqs. (2), (3), (10) and (11) shows the
origin of differences between the radiometric approach
and the electrodynamic theory. In the former, the wave
nature of electromagnetic field is neglected and interfer-
ence effects are not taken into account in the layer and
in the vacuum cavity separating the layer from the sub-
strate.
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Figure 3: Ratio φRA/φFE between the predictions of
the radiometry (approximated) theory and the (exact)
fluctuational-electrodynamics theory for the same structure
as in Fig. 2 with (a) ∆T = 10K, (b) ∆T = 100K, (c)
∆T = −10K and (d) ∆T = −100K. The solid line repre-
sents the isoline φRA/φFE = 1.

Let us now assess quantitatively, in concrete situations,
the discrepancy between the thermal emission predicted
by the radiometric approach and the one derived from
fluctuational electrodynamics. To this end we first con-
sider a system made of a polar substrate and a metallic
film. We describe the dielectric properties of the po-
lar material by means of a Drude-Lorentz model [34]
ε(ω) = ε∞(ω2−ω2

L + iγω)/(ω2−ω2
R + iγω). For concrete

calculations we choose ε∞ = 6.7, ωL = 1.825×1014 rad/s,
ωT = 1.494 × 1014 rad/s and γ = 0.9 × 1012 rad/s, the
parameters corresponding to silicon carbide (SiC). As
far as the metal is concerned its diectric permittivity is
given by the Drude model ε(ω) = 1− ω2

p/ω(ω + iγ). For
the calculations we take ωp = 13.71 × 1015 rad/s and
γ = 4×1013 rad/s which correspond to the gold (Au) pa-
rameters [34]. We assume the substrate at temperature
T1 = 300 K and a temperature gradient ∆T = ±10 K
is applied between it and the layer. In Fig. 2 we plot
the partial flux φslab,sub

RA,FE =
∫ π/2
0

dθϕslab,sub
RA,FE (θ) radiated

by the slab and the substrate as well as the net flux
φRA,FE = φslab

RA,FE + φsub
RA,FE radiated by the whole struc-

ture. These fluxes are calculated by using both the radio-
metric approach (RA) and fluctuational-electrodynamics
theory (FE).

As shown in Fig. 2(a) the radiometric approach over-
estimates the flux radiated by the slab at subwavelength

Figure 4: Ratio φRA/φFE between the predictions of the ra-
diometry and the fluctuational-electrodynamics theory with
respect to the film and cavity thicknesses for the structures
shown in the insets. Same conditions as in Fig. 2.The solid
line represents the isoline φRA/φFE = 1.

separation distances while the emission of substrate is ap-
proximately the same following the two approaches. In
Figs. 2(c) and (d) we see that an error between 10 to 28%
is observed when the thickness of the cavity is smaller
than 2µm and the film thickness is below 10 nm. Notice
that these values must be taken with precaution when
the film thickness is smaller than a dozen of atomic layers
(e ∼ 4 nm), the dielectric property of metal becoming size
dependent below this thickness [35, 36]. Of course the ob-
served discrepancy between the radiometric theory and
the exact calculation of the thermal emission depends on
the temperature difference between the substrate and the
slab. The enhancement of the thermal emission as pre-
dicted by the fluctuational-electrodynamics theory (see
Fig. 2) in comparison with the predictions from the ra-
diometric theory is due to the presence of interference
effects in the cavity which tend to magnify light absorp-
tion. In Fig. 3 we see that the error magnitude does not
significantly depend on the sign of temperature gradi-
ent but mainly on its magnitude. Hence by comparing
Figs. 3(a) and 3(c) with Figs. 3(b) and 3(d) we remark
that the error is doubled when the temperature varia-
tion is increased by an order of magnitude. To highlight
the purely wave effects we have added in Fig. 3 the ra-
tio of heat flux calculations coming from the radiomet-
ric approach to the one obtained with the fluctuational-
electrodynamics theory in the case where ∆T = 0. The
comparison of this plot with those in the presence of a
temperature gradient shows that the magnitude of wave
effects is weighted by the Planck functions associated to
the different parts of the structure. We also plot in Fig. 3
the isoline φRA/φFE = 1 in order to identify in the space
of geometric parameters where the radiometric approach
fails to describe the thermal emission of system. Finally,
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in Fig. 4 we show how this error is sensitive to the nature
of materials. When the film is made of a polar material
[Figs. 4(a) and (b)], we see that the radiometric approach,
unlike the case shown in Fig. 2, underestimates the flux
at subwavelength scale. This difference of behavior is
due to the fact that, in this case, light is not completely
screened by the film and it can penetrate inside the cav-
ity. Then interference mechanisms can increase light ab-
sorption and therefore the overall emission of system.

In summary, in this work we have investigated to what
extent the radiometric theory can be used to predict the
thermal emission of anisothermal systems. Although this
work was limited to simple systems it clearly demon-
strates the limitations of the classical Kirchhoff’s law to
predict the heat flux radiated by anisothermal structures.
When the temperature gradient is smaller than about
ten degrees, the flux predicted by the radiometric the-
ory is tainted by an error which is generally less than
20%. But if the temperature gradient rises to around a
hundred degrees this discrepancy can become larger than
50% within simple multilayered structure. We can expect
enev stronger discrepancies in more complex structures
where interference mechanisms can be more relevant.
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