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Tools for solving the div − curl problem with

mixed boundary conditions in a polygonal domain.

P. Ciarlet, Jr.

ENSTA/UMA, 32 boulevard Victor, 75739 Paris Cedex 15

March, 1999
Following [2], we continue to study the resolution of two-dimensional problems in

non convex domains. In this previous paper, we considered several methods for solving
Maxwell’s equations (stationary or instationary) with a perfectly conducting boundary
condition.

In the present report, we provide mathematical tools for solving the general div −curl
problem:
Find u ∈ L2(Ω) such that

div u = f in Ω, (1)

curl u = g in Ω, (2)

u · ~τ = η on ΓC , (3)

u · ~ν = µ on ΓS . (4)

Here, Ω is a polygonal domain and its boundary Γ is made up of two parts ΓC and ΓS ,
and ~τ and ~ν are vectors, respectively tangent and normal to Γ. The solution u is a vector

valued function which belongs to the Sobolev space L2(Ω)
def
= L2(Ω)2, f and g are both

in L2(Ω), and η and µ are distributions defined on ΓC and ΓS respectively.

The report is organized as follows. Using the work of Grisvard concerning the Laplace
problem [14], we determine an orthogonal decomposition of L2(Ω). Next, we deduce from
this decomposition a splitting of the solution to the div −curl problem into a regular part
and a singular part. Then, we derive a method for the explicit computation of the singular
part. Last, we obtain a way of computing numerically the regular part of the solution by
using a standard finite element method. All these results will be mathematically justified.

Note that we use, without detail, a number of results proved in [2] for singularities
which occur at reentrant corners in the presence of a (locally) uniform boundary condition,
that is either (3) or (4). We also rely on Grisvard’s theory [13]-[14].
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Chapter 1

Notations and functional spaces

Let Ω be an open, connected and simply connected polygon in R2, and let Γ be its
boundary. We assume that Γ is split up into two non empty subsets ΓC and ΓS . ΓC and
ΓS can be disconnected, and we call (ΓkC)0≤k≤K (respectively (ΓkS)0≤k≤K) the connected
components of ΓC (resp. ΓS), and Γ∗C = ΓC \ Γ0

C (resp. Γ∗S = ΓS \ Γ0
S).

Furthermore, it is possible to decompose each actual geometrical edge γ of the boundary
Γ into γC = γ ∩ΓC and γS = γ ∩ΓS , both of them possibly divided into several connected
components. In other words, two cases might occur: either (for instance) γC is empty
and to the geometrical edge γ corresponds a single generalized edge (itself), or both γC
and γS are not empty and γ is made up of two or more generalized edges. From this local
decomposition, one can then split up Γ, ΓC and ΓS into sets of generalized edges:

Γ =
⋃

j∈C∪S
Γj , Γj ∩ Γk = ∅ for j 6= k

ΓC =
⋃
j∈C

Γj ,

ΓS =
⋃
j∈S

Γj .

Two consecutive generalized edges Γj and Γj+1 have an angle (in the interior of Ω)
which is denoted by θj = π/αj , where αj > 1/2 by definition. Finally, we call gener-
alized corner the intersection {Mj} = Γj ∩ Γj+1. In this report, we use either of the
decompositions

ΓC =
⋃

0≤k≤K
Γ
k
C =

⋃
j∈C

Γj .

Remark 1.1 Note that for all pairs of generalized edges imbedded in a common geo-
metrical edge Γ, one has αj = 1. This artificial decomposition, which allows to take the
change of the boundary condition on an edge γ in a way we hope to be elegant, will be
justified at Remark 2.9.

In the following, the adjective generalized will be understood.

In R2, there exist a scalar curl from R2 to R and a vector curl operator from R to R2.
We shall use boldface letters for functions, spaces of functions and operators with vector
values subsequently. We define the well-known spaces:
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H(curl ,Ω) = {v ∈ L2(Ω), curl v = ∂xvy − ∂yvx ∈ L2(Ω)},
H(div ,Ω) = {v ∈ L2(Ω), div v = ∂xvx + ∂yvy ∈ L2(Ω)}, and

H(div 0,Ω) = {v ∈ H(div ,Ω), div v = 0}.

Now, let ~ν = (νx, νy)
T be the unit outer normal at any point of the boundary (to the

exception of corners), we denote by ~τ = (νy,−νx)T the associated tangent vector: the
direct orthonormal reference is then (M,~τ, ~ν). On the boundary (cf. [13] (Lemma 1.3.3.2.
page 20)), we introduce the space:

H1/2(γ) = {µ ∈ L2(γ), |µ|1/2,γ <∞},with

|µ|1/2,γ =

[∫
γ

∫
γ

|µ(x)− µ(y)|2

||x− y||2
dσ(x)dσ(y)

]1/2

. (1.1)

where γ is any connected subset of the boundary Γ and dσ a measure on it (cf. [17],
pages 14-15). The associated norm is

||µ||1/2,γ =
[
||µ||20,γ + |µ|21/2,γ

]1/2
.

Remark 1.2 It is possible to give an alternate definition of the fact that a function
belongs to H1/2(γ) (and of (1.1)). Indeed, if γ is splitted up into γ =

⋃
j γj , with {mj} =

γj ∩ γj+1, one obtains by splitting up integrals that µ is in H1/2(γ) if and only if

µ|γj ∈ H
1/2(γj), and µ|γj

1/2
≡ µ|γj+1

at mj ,

where µj
1/2
≡ µj+1 at mj means∫

xj∈γj

∫
xj+1∈γj+1

|µj(xj)− µj+1(xj+1)|2

||xj − xj+1||2
dσjdσj+1 <∞, or equivalently∫ δj

0
|µj(xj(−σ))− µj+1(xj+1(σ))|2 dσ

σ
<∞, for some non negative δj .

The second characterization1,2 comes from [14] (page 17, following [9]).

In this report, we shall also often use the Sobolev space H̃1/2(γ) and its dual H̃−1/2(γ).
Let {p1,p2} denote the endpoints of γ and let d∂γ(p) = min(||p− p1||, ||p− p2||) for any

point p. We define H̃1/2(γ) by

H̃1/2(γ) = {f ∈ H1/2(γ), f/
√
d∂γ ∈ L2(γ)},

||µ||∼,1/2,γ =
[
||µ||21/2,γ + ||µ/

√
d∂γ ||20,γ

]1/2
.

Remark 1.3 Note again (see footnote 2) that we could have defined equivalently
d∂γ(p) by min(|σ(p)− σ(p1)|, |σ(p)− σ(p2)|). Indeed, the two quantities are equal if p is

1xj(−σ) (resp. xj+1(σ)) is the point of γj (resp. γj+1) at distance σ of mj .
2This characterization has two advantages and a drawback: first, it extends to the case of cracks;

second, it yields the characterization of the Sobolev space H̃1/2(γ) defined below; third, there is no clear (?)
equivalent definition for γ a part of the boundary of a domain in R3.
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close enough to either p1 or p2, and outside a vicinity of those two points, both definitions
yield values which are bounded below by a non negative constant.

One of the main properties of H̃1/2(γ) is that the continuation of any of its elements
by zero to Γ belongs to H1/2(Γ), which corresponds to one of the usual definitions of this
space (cf. [14]).

Proposition 1.1 Let µ be an element of H̃1/2(γ). Then its continuation by zero to Γ
belongs to H1/2(Γ). Conversely, if we let µ̃ be an element of H1/2(Γ) such that µ̃ = 0 on
Γ \ γ, then its restriction to γ is in H̃1/2(γ). Furthermore, both the continuation and the
restriction operators are continuous.

Proof: Let us consider first an element µ of H̃1/2(γ). By assumption,

µ ∈ L2(γ),

∫
γ

∫
γ

|µ(x)− µ(y)|2

||x− y||2
dσ(x)dσ(y) <∞, and

∫
γ

|µ(y)|2

d∂γ(y)
dσ(y) <∞.

Let µ̃ be its continuation by zero to Γ. By definition, µ̃ ∈ L2(Γ). In addition, if we let
γ∗ = Γ \ γ,∫

Γ

∫
Γ

|µ̃(x)− µ̃(y)|2

||x− y||2
dσ(x)dσ(y) = |µ|21/2,γ + 2

∫
γ
|µ(y)|2

∫
γ∗

dσ(x)

||x− y||2
dσ(y).

Now, let us choose R > 0 in such a way that γ∗∗ = {x ∈ γ∗, d(x, γ) ≤ R} is exactly made
up of two segments originating from p1 and p2. Finally, let γ∗∗∗ = γ∗ \ γ∗∗. We are now
in a position to use the estimate (i) in the next inequalities:∫

γ
|µ(y)|2

∫
γ∗

dσ(x)

||x− y||2
dσ(y) ≤

∫
γ
|µ(y)|2

∫
γ∗∗

dσ(x)

||x− y||2
dσ(y) +

l(γ∗∗∗)

R2
||µ||20,γ

≤ C2

∫
γ

|µ(y)|2

d∂γ(y)
dσ(y) +

l(γ∗∗∗)

R2
||µ||20,γ

≤ max(C2,
l(γ∗∗∗)

R2
)||µ||2∼,1/2,γ .

Thus µ̃ belongs to H1/2(γ). In addition, C2 depends on γ∗∗ and R, but not on µ, so the
continuation operator is continuous.

Conversely, let µ̃ ∈ H1/2(Γ) such that µ̃|γ∗ = 0. The regularity of µ̃ amounts to

µ̃ ∈ L2(Γ) and

∫
Γ

∫
Γ

|µ̃(x)− µ̃(y)|2

||x− y||2
dσ(x)dσ(y) <∞.

Let µ be its restriction to γ. Classically, µ ∈ H1/2(γ). Also, if we let C ′1 = 1/C1 in (i),∫
γ

|µ(y)|2

d∂γ(y)
dσ(y) ≤ C ′1

∫
γ
|µ(y)|2

∫
γ∗∗

dσ(x)

||x− y||2
dσ(y)

≤ C ′1

∫
γ∗∗

∫
γ

|µ̃(x)− µ̃(y)|2

||x− y||2
dσ(y)dσ(x)

≤ C ′1 |µ̃|1/2,Γ.

Therefore, µ is an element of H̃1/2(γ). Again, the constant do not depend on µ̃, which
proves that the restriction operator is continuous.
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Remark 1.4 This result is not a straightforward consequence of the classical definition
of the space H̃1/2(ω), where ω is an arbitrary subset of Rp (p ≥ 1), that is the space of
all f defined on ω such that their continuation by zero outside ω belongs to H1/2(Rp).
Indeed, in the above proposition, the continuation occurs on a polygonal boundary. For a
generalization to polyhedral domains, see [1] or [5].

For a field v, let vτ and vν stand for the tangential and normal components of v on Γ,
i. e. vτ = v · ~τ and vν = v · ~ν. Now, we are in a position to introduce

V = {v ∈ H(curl ; Ω) ∩H(div ; Ω), vτ |ΓC
= 0, vν |ΓS

= 0}.

The solution u to problem (1)-(4) precisely belongs to V when η = ν = 0. We shall
now investigate a number of properties related to V.

Let us define three spaces of stream functions:

Φ = {φ ∈ H1(Ω), ∆φ ∈ L2(Ω),
∂φ

∂ν |ΓC

= 0, φ|Γ0
S

= 0,
∂φ

∂τ |Γ∗S
= 0},

Φ0 = {φ ∈ Φ, φ|ΓS
= 0}, Φ∆ = {φ ∈ Φ, ∆φ = 0}.

Before we investigate the properties of these sets of functions, let us comment a little
bit on the definition of Φ. First, for φ ∈ Φ, as φ ∈ H1(Ω), φ|Γ0

S
belongs to H1/2(Γ0

S).

Furthermore, the relationship on Γ∗S is equivalent to φ|Γk
S

= ck, with (ck)1≤k≤K ∈ RK ,

according to [11] (Rmk 2.3, Chapter I, page 35).
Now, let us prove that the relationship on the normal derivative is to be understood

on H̃−1/2(ΓkC), for 0 ≤ k ≤ K. For that, we define the space

E(∆, L2(Ω)) = {φ ∈ H1(Ω), ∆φ ∈ L2(Ω)},

a subset of which is Φ. We denote by || · ||E the associated (graph) norm.

Proposition 1.2 Let φ ∈ E(∆, L2(Ω)) and let γ be any connected subset of Γ. Then

∂φ

∂ν |γ
∈ H̃−1/2(γ).

In addition, given a decomposition of the boundary Γ into a set of connected subsets
(γl)1≤l≤L, we arrive at the integration by parts formula

∀φ ∈ H1(Ω) such that φ|γl ∈ H̃
1/2(γl), 1 ≤ l ≤ L, and

∀φ′ ∈ E(∆, L2(Ω)),∫
Ω

(gradφ · gradφ′ + φ∆φ′) dx =
l=L∑
l=1

〈
∂φ′

∂ν |γl
, φ|γl

〉
H̃−1/2(γl),H̃1/2(γl)

. (1.2)

Proof: Indeed, for all φ ∈ H1(Ω) and φ′ ∈ H2(Ω),∫
Γ\γ

φ|γ
∂φ′

∂ν |γ
dσ +

∫
γ
φ|γ

∂φ′

∂ν |γ
dσ =

∫
Ω

(gradφ · gradφ′ + φ∆φ′) dx.

Now, take µ ∈ H̃1/2(γ) and denote µ̃ is continuation by zero to Γ. Thanks to Proposition
1.1, there exists C1 independent of µ such that ||µ̃||1/2,Γ ≤ C1 ||µ||∼,1/2,γ . Moreover, it is
well known (cf. [17] for instance) that there exist a second constant C2 independent of µ̃
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and φ ∈ H1(Ω) which satisfy φ|Γ = µ̃, and ||φ||1 ≤ C2 ||µ̃||1/2,Γ. Thus, there exists C3 such
that

∀µ ∈ H̃1/2(γ), ∃φ ∈ H1(Ω), φ|γ = µ, φ|Γ\γ = 0 and ||φ||1 ≤ C3 ||µ||∼,1/2,γ .

We arrive at ∣∣∣∣∫
γ
µ
∂φ′

∂ν |γ
dσ

∣∣∣∣ ≤ C3||µ||∼,1/2,γ ||φ′||E . (1.3)

The conclusion follows from [13] (see Lemma 1.5.3.9. page 59), where it is proved that
H2(Ω) is dense in E(∆, L2(Ω)).
Classically, if we let (φ′n)n be a sequence of elements ofH2(Ω) that converges to φ′ and E(∆, L2(Ω)),
we infer from (1.3) that (αn)n, with

αn =

∫
γ

µ
∂φ′n
∂ν |γ

dσ,

is a Cauchy sequence in R. Therefore, it admits a limit α which is, by definition, equal to

α =

∫
γ

µ
∂φ′

∂ν |γ
dσ.

Thus
∂φ′

∂ν |γ
∈ H̃−1/2(γ).

Assume that we are given the decomposition Γ = ∪1≤l≤Lγl. In order to prove the in-

tegration by parts formula, we simply write, for φ ∈ H1(Ω) such that φ|γl ∈ H̃1/2(γl),
1 ≤ l ≤ L, and φ′ ∈ H2(Ω)

∫
Ω

(gradφ · gradφ′ + φ∆φ′) dx =

l=L∑
l=1

∫
γl

∂φ′

∂ν |γl
φ|γldσ.

Using again the density of H2(Ω) in E(∆, L2(Ω)), together with (1.3), leads to (1.2).

Let γ and (γl)1≤l≤L be defined as above.

Proposition 1.3 Let v ∈ H(curl ; Ω), then vτ |γ ∈ H̃−1/2(γ). In addition,

∀φ ∈ H1(Ω) such that φ|γl ∈ H̃
1/2(γl), 1 ≤ l ≤ L, and

∀v ∈ H(curl ; Ω),∫
Ω

(curlφ · v − φ curl v) dx =
l=L∑
l=1

〈
vτ |γl , φ|γl

〉
H̃−1/2(γl),H̃1/2(γl)

. (1.4)

Let v ∈ H(div ; Ω), then vν |γ ∈ H̃−1/2(γ). In addition,

∀φ ∈ H1(Ω) such that φ|γl ∈ H̃
1/2(γl), 1 ≤ l ≤ L, and

∀v ∈ H(div ; Ω),∫
Ω

(gradφ · v + φ div v) dx =

l=L∑
l=1

〈
vν |γl , φ|γl

〉
H̃−1/2(γl),H̃1/2(γl)

. (1.5)

Proof: Simply reproduce that of the previous Proposition, with the help of the density
of H1(Ω) in either H(curl ; Ω) or H(div ; Ω).
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Remark 1.5 In particular, this tells that there is no hope of finding a solution u ∈
L2(Ω) to (1)-(4) (with f and g both in L2(Ω)) if either η|Γk

C
6∈ H̃−1/2(ΓkC) or µ|Γk

S
6∈

H̃−1/2(ΓkS) for some k.

We have the

Proposition 1.4 In L2(Ω), grad Φ0 ⊥ grad Φ∆.

Proof: Let φ ∈ Φ0 and φ′ ∈ Φ∆. We note first that as φ|Γ ∈ H1/2(Γ) and φ|ΓS
= 0, we

know that φ|Γk
C
∈ H̃1/2(ΓkC), for 0 ≤ k ≤ K. Then, thanks to (1.2),∫

Ω
gradφ · gradφ′ dx =

∫
Ω

(gradφ · gradφ′ + φ∆φ′) dx

=
∑
k

〈
∂φ′

∂ν |Γk
C

, φ|Γk
C

〉
+
∑
k

〈
∂φ′

∂ν |Γk
S

, φ|Γk
S

〉
= 0.

Now, in Φ, the norm

||φ||Φ =
[
||gradφ||20 + ||∆φ||20

]1/2
is equivalent to the graph norm ||φ||E =

[
||φ||21 + ||∆φ||20

]1/2
, due to the homogeneous

boundary condition on Γ0
S . Let (·, ·)Φ denote the associated scalar product. One has the

Corollary 1.1 Φ = Φ0

⊥Φ

⊕ Φ∆.

Proof: The orthogonality stems from the previous Proposition.

Now, let φ ∈ Φ. By [14] (Thm 2.1.1., page 38), there exists a unique element φ0 of Φ0

such that ∆φ0 = ∆φ in Ω. The conclusion follows as φ− φ0 clearly belongs to Φ∆.

As far as the regularity of elements of Φ is concerned, we have the

Theorem 1.1 Φ is imbedded in H5/4(Ω) algebrically. More precisely, let

α = min(αD, αN , αM/2), with

αD = min
j∈JD

(αj), αN = min
j∈JN

(αj), αM = min
j∈JM

(αj),

JD (resp. JN , JM ) being the set of indices such that there is a Dirichlet (resp. Neumann,
mixed) boundary condition on the couple of edges (Γj ,Γj+1).

Then, when α 6∈ N, Φ ⊂ H1+α−ε(Ω) (for any ε > 0) and Φ 6⊂ H1+α(Ω).
When α ∈ N, Φ ⊂ H1+α(Ω) and Φ 6⊂ H1+α+ε(Ω) (for any ε > 0).

Proof: Let φ ∈ Φ. Then, φ|Γk
S

= ck for 0 ≤ k ≤ K. If we let g = ∆φ ∈ L2(Ω), φ is now
the solution of

φ ∈ H1(Ω), ∆φ = g, φ|Γk
S

= ck,
∂φ

∂ν |Γk
C

= 0, for 0 ≤ k ≤ K. (1.6)
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In particular, the compatibility conditions ([14], page 59) are always satisfied: indeed,
according to our notations, these are

cj = cj+1 for j ∈ JD,
∂cj
∂νj±1

= 0 for j ∈ JM .

From this point on, one can apply Grisvard’s theory [14] directly. Indeed, one first splits
the unique solution of (1.6) into a regular part (which belongs to H2(Ω)) and a singular
part (Rmks 2.4.5. and 2.4.6. pages 58-59 and Corollary 2.4.4. page 58). Then, by
inspection, it is easily seen that the singular part, an explicit expression of which is known
near the corners, belongs to the aforementioned Sobolev spaces (Thm 1.2.18. page 8).
To complete the proof, one has α > 1/4 by definition.

Remark 1.6 The computations will be detailled in the Section 3, in the proof of
Theorem 3.5.

In the following, we denote by X ↪→ Y the topological imbedding (i. e. continuous)
of the Banach space X in the Banach space Y . Recall the

Theorem of the closed graph Let X and Y be two Banach spaces, and let u be a lin-
ear mapping from X to Y . Then u is continuous if and only if its graph {(x, u(x)), x ∈ X}
is closed in X × Y .

Then we have

Corollary 1.2 Let X, Y and Z be three Banach spaces such that

X ↪→ Z, Y ↪→ Z and X ⊂ Y.

Then X ↪→ Y .

Proof: Let i (resp. ix, iY ) denote the imbedding of X into Y (resp. of X into Z, of Y into
Z). Let us prove that {(x, i(x)), x ∈ X} is closed in X × Y .

For that, let (xn, i(xn))n be a Cauchy sequence in X × Y . Then (xn)n converges to some x in
X and (i(xn))n converges to some y in Y . By assumption, this implies

iX(xn) −→ iX(x) in Z

iY ◦ i(xn) −→ iY (y) in Z.

But iX(x′) = iY ◦ i(x′), ∀x′ ∈ X, and therefore iX(x) = iY ◦ i(x) = iY (y). iY being injective, we
finally get y = i(x), which leads to the conclusion.

Corollary 1.3 Φ is imbedded in H5/4(Ω) topologically, i. e. Φ ↪→ H5/4(Ω). Thus,

∃C(Ω) > 0, such that ∀φ ∈ Φ, ||φ||5/4 ≤ C(Ω) ||φ||Φ.

Proof: Indeed, by definition, Φ, H5/4(Ω) and H1(Ω) are three Banach spaces, and the
following holds:

Φ ↪→ H1(Ω) H5/4(Ω) ↪→ H1(Ω) Φ ⊂ H5/4(Ω).

[by definition] [Sobolev imbedding Theorem] [Theorem 1.1]
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Note that similar results can be obtained for

Ψ = {ψ ∈ H1(Ω), ∆ψ ∈ L2(Ω),
∂ψ

∂ν |ΓS

= 0, ψ|Γ0
C

= 0,
∂ψ

∂τ |Γ∗C
= 0},

Ψ0 = {ψ ∈ Ψ, ψ|ΓC
= 0}, Ψ∆ = {ψ ∈ Ψ, ∆ψ = 0}.

In particular, one has gradφ · gradψ = ∂φ
∂x

∂ψ
∂x + ∂φ

∂y
∂ψ
∂y = curlφ · curlψ pointwise, so in

L2(Ω),
curl Φ0 ⊥ curl Φ∆ and curl Ψ0 ⊥ curl Ψ∆.

With these definitions and results, we can now prove the

Theorem 1.2 In L2(Ω), one has

V = curl Φ0

⊥
⊕ curl Φ∆

⊥
⊕ grad Ψ0.

Proof: First, notice that both curl Φ and grad Ψ0 are subsets on V. Next, following [10],
for any element v of V, we define

ψ0 ∈ H1(Ω), such that ∆ψ0 = div v in Ω, ψ0|ΓC
= 0,

∂ψ0

∂ν |ΓS

= 0.

From [14], we know that there exists one and only one solution ψ0. By construction,
ψ0 ∈ Ψ0. Now w = v − gradψ0 is a divergence-free element of V. Also:

〈w · ~ν, 1〉 =

∫
Ω

div w dx =

∫
Ω

(div v −∆ψ0) dx = 0.

Then, as Ω is simply connected, there exists one and only one (see Thm 3.1, Chapter
1 of [11]) φ of H1(Ω) such that w = curlφ. In other words, as ∆ ≡ −curl curl and
∂φ/∂ν = (curlφ) · ~τ , ∂φ/∂τ = −(curlφ) · ~ν, φ satisfies the following:

φ ∈ H1(Ω), such that ∆φ = −curl w in Ω,
∂φ

∂ν |ΓC

= 0,
∂φ

∂τ |ΓS

= 0,

that is φ ∈ Φ. We already know that φ can be written as φ0+φ∆, with (φ0, φ∆) ∈ Φ0×Φ∆,
so there remains to check the orthogonality of curl Φ and grad Ψ0: as a matter of fact, if
we let φ ∈ Φ and ψ0 ∈ Ψ0, ψ0|Γk

S
belongs to H̃1/2(ΓkS), for 1 ≤ k ≤ K. Thus (1.5) finally

yields ∫
Ω

curlφ · gradψ0 dx = 0.

Corollary 1.4 Algebrically, V ⊂ H1/4(Ω). More precisely, when α 6∈ N, V ⊂ Hα−ε(Ω)
(for any ε > 0) and V 6⊂ Hα(Ω), whereas when α ∈ N, V ⊂ Hα(Ω) and V 6⊂ Hα+ε(Ω) (for
any ε > 0).

Proof: This is a straightforward consequence of the previous Theorem.

Remark 1.7 (For α 6∈ N) By taking φS ∈ Φ0 such that φS 6∈ H1+α(Ω), one gets a
function curlφS which does not belong to Hα(Ω).

Corollary 1.5 V ↪→ H1/4(Ω). As a consequence, V is compactly imbedded in L2(Ω).
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Proof: It suffices to remark that

V ↪→ L2(Ω), H1/4(Ω) ↪→ L2(Ω), and V ⊂ H1/4(Ω)

to prove the first part. Now, as H1/4(Ω) is compactly imbedded into L2(Ω) by the Sobolev
imbedding Theorem, the second part follows.

Remark 1.8 In a two-dimensional polygonal domain, this corresponds to the gen-
eralization of Weber’s imbedding result [18] to the case of mixed bounday conditions.

Now, for a given v of V, we are in a position to characterize (φ0, φ∆, ψ0) such that

v = curlφ0 + curlφ∆ + gradψ0, (φ0, φ∆, ψ0) ∈ Φ0 × Φ∆ ×Ψ0. (1.7)

Before we give the characterization, let us notice that, from its definition, it is clear
that Φ∆ is a finite dimensional space, a basis of which is the set of functions (χl)1≤l≤K
defined by

χl ∈ H1(Ω), such that ∆χl = 0 in Ω, χl|Γk
S

= δkl,
∂χl
∂ν |ΓC

= 0.

Indeed, it is clear that the linear combinations of the (χl)l span Φ∆ and, if χ =
∑

l βlχl = 0,
χ|Γl

S
= βl = 0. We thus define the capacitance matrix A = (Akl)1≤k,l≤K

Akl =

∫
Ω

gradχk · gradχl dx.

A is a symmetric positive definite matrix, as (y, Ay) = ||grad (
∑

k ykχk)||20.
One has the

Theorem 1.3 Let v ∈ V, then the triplet which satisfies (1.7) is characterized by

∆φ0 = −curl v

φ∆ =
∑

k ckχk, where
∑

lAklcl =
∫

Ω v · curlχk dx

∆ψ0 = div v.

Proof: This is already known for φ0 and ψ0. Concerning φ∆, written as the linear
combination above (with φ∆|Γk

S
= ck), one obtains by orthogonality∫

Ω
v · curlχk dx =

∫
Ω

curlφ∆ · curlχk dx =
∑
l

Aklcl.

Remark 1.9 The identity grad Ψ∆ = curl Φ∆ holds (see Annex B).

Remark 1.10 In all the proofs given above, the need for two distinct partitions of the
boundary Γ is now clear. Indeed, the first one,

ΓS =
⋃

0≤k≤K
ΓkS , ΓC =

⋃
0≤k≤K

ΓkC ,
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which is based on the connected components of ΓS and ΓC , is used in order to characterize
the space Φ∆. Whereas the second one,

Γ =
⋃

j∈C∪S
Γj , ΓC =

⋃
j∈C

Γj , ΓS =
⋃
j∈S

Γj ,

is needed to determine the regularity of functions that are considered throughout this
report.

Corollary 1.6 In V, || · ||V :

v 7→

[
||curl v||20 + ||div v||20 +

K∑
k=1

Rk(v)2

]1/2

,

with Rk(v) =

∫
Ω

v · curlχk dx,

is a norm which is equivalent to the canonical norm of V, i. e. ||v||0,div,curl.

Proof: We know that any v of V can be written as in (1.7), i. e.

v = curlφ0 + curlφ∆ + gradψ0.

Also, by orthogonality, one has

||v||20 = ||curlφ0||20 + ||curlφ∆||20 + ||gradψ0||20.

In addition, recall that φ0 and ψ0 are solutions of two variational problems, according to
[14] (Thm 2.1.1. page 38). The problems to be solved are respectively∫

Ω
gradφ0 · gradφdx =

∫
Ω
φ curl v dx, ∀φ ∈ {φ ∈ H1(Ω), φ|ΓS

= 0},∫
Ω

gradψ0 · gradψ dx = −
∫

Ω
ψ div v dx, ∀ψ ∈ {ψ ∈ H1(Ω), ψ|ΓC

= 0}.

Therefore, there exists a constant C1 independent of v such that ||curlφ0||0 ≤ C1 ||curl v||0
and ||gradψ0||0 ≤ C1 ||div v||0.

Concerning the remaining part, let ~c (resp. ~R) denote the vector with components ck
(resp. Rk(v)). One gets,

||curlφ∆||20 =

∫
Ω
|gradφ∆|2 dx =

∑
k,l

ck cl

∫
Ω

gradχk · gradχl dx

= (~c,A~c) = (A−1 ~R, ~R) ≤ 1

λmin
||~R||2 =

1

λmin

K∑
k1

Rk(v)2.

Thus, we arrive at

||v||0 ≤ C2 ||v||V , with C2 = max(C1,
1√
λmin

).

The conclusion follows.

Remark 1.11 An alternate proof can be derived by using the fact that V is compactly
imbedded into L2(Ω) (by contradiction). In the same way, one can prove that, in Φ, || · ||Φ:

φ→
[
||∆φ||20 +

∑K
k=1(φ|Γk

S
)2
]1/2

is equivalent to the graph norm || · ||E .
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Homogeneous boundary conditions

Given f and g elements of L2(Ω) and ~c ∈ RK , we consider the following problem, called
(PSS):
Find u ∈ H(curl ,Ω) ∩H(div ,Ω) such that

curl u = f in Ω, (2.1)

div u = g in Ω, (2.2)

u · ~τ = 0 on ΓC , (2.3)

u · ~ν = 0 on ΓS , (2.4)

Rk(u) = ck for 1 ≤ k ≤ K. (2.5)

Proposition 2.1 Take f , g and ~c as above. Then problem (PSS) admits a unique solution
u ∈ H(curl ,Ω) ∩H(div ,Ω).

Proof: This is a straightforward application of Theorem 1.3.

The vector ~c can be taken to be equal to zero, as this amounts to adding some
curlφ∆/gradψ∆. In the sequel, we shall actually consider that (2.5) holds with ck = 0,
for 1 ≤ k ≤ K, i. e.

Rk(u) = 0 for 1 ≤ k ≤ K.

2.1 A variational formulation of (PSS) via a stream function
when f = 0

Thanks to Theorem 1.3, u is a solution to (PSS) with f = 0 if and only if u can be written
in the form u = gradψ0, where ψ0 is the solution to the next problem, labelled (Pψ):
Find ψ0 ∈ H1(Ω) such that

∆ψ0 = g in Ω, (2.6)

ψ0 = 0 on ΓC , (2.7)

∂ψ0

∂ν
= 0 on ΓS . (2.8)

According to [14] (pages 36-39), (Pψ) is equivalent to the variational formulation
Find ψ0 ∈ Ψ− = {ψ ∈ H1(Ω), ψ|ΓC

= 0} such that∫
Ω

gradψ0 · gradψ dx = −
∫

Ω
g ψ dx, ∀ψ ∈ Ψ−.

13
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2.2 A variational formulation of (PSS) via a stream function
when g = 0

In this case, u satisfies to (2.1)-(2.5) if and only if u can be written in the form u = curlφ0

with φ0 the solution to (Pφ):
Find φ0 ∈ H1(Ω) such that

∆φ0 = −f in Ω, (2.9)

φ0 = 0 on ΓS , (2.10)

∂φ0

∂ν
= 0 on ΓC . (2.11)

From [14] again, we infer this time that (Pφ) is equivalent to the variational formulation
Find φ0 ∈ Φ− = {φ ∈ H1(Ω), φ|ΓS

= 0} such that∫
Ω

gradφ0 · gradφdx =

∫
Ω
f φ dx, ∀φ ∈ Φ−.

2.3 Another formulation of (PSS)

Proposition 2.2 An equivalent re-formulation of (PSS) is problem (PCC)
Find u ∈ H(curl ,Ω) ∩H(div ,Ω) such that

curl (curl u) = curl f in Ω, (2.12)

grad (div u) = grad g in Ω, (2.13)

u · ~τ = 0 on ΓC , (2.14)

u · ~ν = 0 on ΓS , (2.15)

Rk(u) = 0 for 1 ≤ k ≤ K, (2.16)

(curl u− f) = 0 on γ, meas(γ) > 0, (2.17)

(div u− g) = 0 on γ′, meas(γ′) > 0. (2.18)

Proof: It is clear that if u is a solution to (PSS), then it is also a solution to (PCC).
Conversely, if u′ is a solution to (PCC), then (2.12) implies curl (u− u′) = cst in Ω (Ω is
connected). As f = curl u in Ω, (2.17) yields curl (u−u′)|γ = 0, and therefore cst = 0. In
the same way, (2.13) and (2.18) lead to div u′ = div u. Thus u = u′.

2.4 A second variational formulation of (PSS)

Here, we choose to ”break the symmetry” in curl-div. For that, let us introduce the set
XC = {v ∈ H(curl ,Ω), v · τ|ΓC

= 0}. By assumptions (2.1) and (2.3), u belongs to XC .
In addition, (2.1) implies∫

Ω
curl u curl v dx =

∫
Ω
f curl v dx, ∀v ∈ XC .

Clearly, (2.5) yields (see Annex B)∫
Ω

u · gradψ∆ dx = 0, ∀ψ∆ ∈ Ψ∆.
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Let MC = Ψ− (see above). We now proceed to show that (2.2) and (2.4) lead to∫
Ω

u · gradψ dx = −
∫

Ω
g ψ dx, for all ψ in MC . Grisvard [14] (page 28) states that

Mm
C = MC ∩ Hm(Ω) is dense in MC for all m > 1. Therefore, if we choose a smooth

function ψ ∈ Mm
C , we can integrate

∫
Ω
ψ div u dx by parts (recall that u ∈ H1/4(Ω), and

so uν |γ ∈ H−1/4(γ)). Then∫
Ω
g ψ dx = −

∫
Ω

u · gradψ dx +
∑
k

{
〈uν , ψ〉Γk

S
+ 〈uν , ψ〉Γk

C

}
.

Thanks to (2.4) and ψ ∈ Mm
C , the bracketed terms vanish and so

∫
Ω

u · gradψ dx =

−
∫

Ω
g ψ dx. By density, this holds for all ψ ∈MC .

Thus, we come to yet another problem, called (PINT ): Find u′ ∈ XC such that∫
Ω

curl u′ curl v dx =

∫
Ω
f curl v dx, ∀v ∈ XC (2.19)∫

Ω
u′ · grad (ψ + ψ∆) dx = −

∫
Ω
g ψ dx, ∀(ψ,ψ∆) ∈MC ×Ψ∆. (2.20)

By construction, the solution u to (PSS) is a solution to (PINT ). There is a reciprocal
assertion.

Proposition 2.3 Let u′ be a solution to (PINT ). Then u′ = u.

Proof: Consider (2.20), for ψ = 0: this yields Rk(u
′) = 0 for 1 ≤ k ≤ K.

Next, let ψ∆ = 0 and ψ ∈ D(Ω): then div u′ = g in Ω.

In addition, for all µ ∈ H̃1/2(ΓkS), there exists ψ ∈ MC such that ψ|Γk
S

= µ (extend µ

by zero to Γ). Then we readily come to uν = 0 on ΓS .

Now, (2.19) can be rewritten

∫
Ω
h curl v dx = 0, ∀v ∈ XC , with h = (curl u′ − f) ∈

L2(Ω). Thus curlh = 0 in the sense of distributions, which implies in turn that h ∈ H1(Ω)
and, as a consequence, since Ω is connected, it is equal to a constant.

To conclude, if we let v ∈ XC such that

∫
Ω

curl v dx 6= 0, we find h = 0. Thus u′ is

the solution to (PSS).

Then, let us introduce a saddle-point formulation of (PINT ), i. e. the problem (PSP ):
Find (u′, ψ, ψ

∆
) ∈ XC ×MC ×Ψ∆ such that

a(u′,v) + b(v, (ψ,ψ
∆

)) =

∫
Ω
f curl v dx, ∀v ∈ XC (2.21)

b(u′, (ψ,ψ∆)) = −
∫

Ω
g ψ dx, ∀(ψ,ψ∆) ∈MC ×Ψ∆. (2.22)

Here, a(u,v) =

∫
Ω

curl u curl v dx and b(v, (ψ,ψ∆)) =

∫
Ω

v ·grad (ψ+ψ∆) dx are bilinear

continuous forms on XC ×XC and XC × (MC ×Ψ∆) respectively.
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We now establish the well-posedeness of (PSP ).

Proposition 2.4 There exists one and only one solution (u′, ψ, ψ
∆

) ∈ XC ×MC × Ψ∆

to (PSP ). In addition, ψ = ψ
∆

= 0 and u′ = u.

Proof: In order to prove that there exists a unique solution to this saddle-point problem,
we have to prove (cf. [11]) that

(i) a is K-elliptic, where K is the kernel of b.

(ii) An inf-sup condition holds.

(i) By definition,

K = {v ∈ XC , b(v, (ψ,ψ∆)) = 0, ∀(ψ,ψ∆) ∈MC ×Ψ∆}
= {v ∈ H(curl ,Ω), div v = 0, vτ |ΓC

= 0, vν |ΓS
= 0, ~R(v) = 0} ⊂ V.

Then, thanks to Corollary 1.6, a is K-elliptic.

(ii) The inf-sup condition is satisfied with a unit constant. Indeed, if we let (ψ,ψ∆) ∈
MC ×Ψ∆, then grad (ψ + ψ∆) belongs to XC and, as a consequence:

sup
v∈XC

|b(v, (ψ,ψ∆))|
||v||0,curl ||(ψ,ψ∆)||

≥ |b(grad (ψ + ψ∆), (ψ,ψ∆))|
||(ψ,ψ∆)||2

= 1,

where ||(ψ,ψ∆)|| = {||gradψ||20 + ||gradψ∆||20}1/2.

N. B.

∫
Ω

gradψ · gradψ∆ dx = 0 by orthogonality.

To conclude, if we let v = gradψ+ gradψ
∆

in (2.21), we come to ||(ψ,ψ
∆

)|| = 0 and
then u′ is the solution to (PINT ), i. e. u′ = u.
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Orthogonal decompositions and
singularities

Let V = V ∩H(div 0,Ω) and V0 = {v ∈ V, Rk(v) = 0, 1 ≤ k ≤ K}. Note that, in V0,
||v||V reduces to ||curl v||0. In a similar manner, in Φ0, ||φ||Φ is simply ||∆φ||0. In the
following, the notations V(0) and Φ(0) correspond either to the situation V and Φ or to V0

and Φ0. By applying standard results, one obtains the

Theorem 3.1 (i) ∆ is an isomorphism from Φ0 onto L2(Ω).

(ii) curl is an isomorphism from Φ(0) onto V(0).

(iii) curl is an isomorphism from V0 onto L2(Ω).

Proof: (i) stems directly from [14], Chapter II.

(ii) is a consequence of [11] (page 37).

(iii) is due to the identity −curl curl = ∆ and points (i) and (ii).

A direct consequence of Corollary 1.4 and Theorem 1.1 is that V0 and Φ0 are imbedded
into H1(Ω) and H2(Ω) respectively if and only if the value of the parameter α is larger
than or equal to one. In particular, this excludes a change of the boundary condition on a
geometrical edge. In the general case, we introduce the regularized spaces:

V0,R = V0 ∩H1(Ω) and Φ0,R = Φ0 ∩H2(Ω).

Remark 3.1 Clearly, it is possible to proceed in exactly the same way for W = {v ∈
V, curl v = 0} and W0 = {v ∈ W, Rk(v) = 0, 1 ≤ k ≤ K} by replacing Φ0 (resp. curl ,
curl ) by Ψ0 (resp. grad , div ). In this case, on simply uses the identity div grad = ∆.

3.1 Bilinear forms

Let VR = V ∩H1(Ω) be a regularized space.

In order to obtain interesting results, it is worthwhile to prove a density result a la
Costabel-Dauge-Nicaise [8]. Let

D = {v ∈ D(Ω)2, vτ |ΓC
= 0, vν |ΓS

= 0, v = 0 in a neighborhood of the corners (Mj)j}.

17
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Proposition 3.1 D is dense in VR.

Proof: We follow here the proof which can be found in [8]. Given u ∈ VR and ε > 0,
we shall build a function u∗∗∗ of D such that ||u− u∗∗∗||1 ≤ ε.

Let χ be a truncation function, equal to one in the vicinity of zero and to zero in the
vicinity of ∞, let rj denote the distance from the corner Mj and set Ωc

j = B(Mj , Rj) ∩ Ω
(for some positive Rj).

Step 1: Let us apply Lemma 2.4 (page 9) of [8] to get n ∈ N big enough and α > 0
small enough such that the function

uj = rαj (1− χ(nrj))u

of H1(Ωc
j) is such that ||u−uj ||1,Ωc

j
is small (with respect to ε). By construction, uj is equal

to zero in a neighborhood of the corner Mj and, in addition, u∗τ |ΓC∩∂Ωc
j

= u∗ν |ΓS∩∂Ωc
j

= 0.

It is then possible to build u∗ ∈ VR (locally equal to uj around Mj) such that

||u− u∗||1 ≤ ε/4;

u∗ = 0 in a neighborhood V0 of the corners.

Step 2: Let V ′0 be another neighborhood of the corners, V0
′ ⊂ V0. Then, u∗ is

regularized by convolution: let (χm)m be a sequence of mollifiers and set u∗∗ = u∗ ∗ χm
for m large enough with the properties:

a. u∗∗ = 0 in V ′0.

b. ||u∗ − u∗∗||1 ≤ ε/4.

c. ||u∗∗ · ν||1/2,ΓS
≤ ε/4Cν and ||u∗∗ · τ ||1/2,ΓC

≤ ε/4Cτ .

Properties a. and b. are consequences of the classical theory of convolution [4] (Proposi-
tion IV.18 page 68 for a. and Corollary IX.8 page 162, applied to a domain of class C1

”equivalent” to Ω\V ′0, for b.). What about c.? Here, Cν (resp. Cτ ) is equal to the norm of
the lifting operator Lν,ΓS

(resp. Lτ,ΓC
) of the normal (resp. tangential) trace of functions

of H1/2(ΓS) (resp. H1/2(ΓC)) into H1(Ω) which are equal to zero on V ′0 ∩ Γ. (ouf !)
Both Cν and Cτ thus depend on ε (via V ′0). But, like ε, they are given. Therefore, as far
as the traces are continuous with respect to the H1 norm of u∗ − u∗∗, c. can be obtained
through b..

Step 3: Classically [17], the lifting preserves the smoothness of the trace. A smooth
trace yields a smooth lifting. Thus, the nonzero boundary condition on u∗∗ is corrected
by taking:

u∗∗∗ = u∗∗ − Lτ,ΓC
(u∗∗τ )− Lν,ΓS

(u∗∗ν ).

Note that Lτ,ΓC
are two independent liftings thanks to the zero boundary condition in the

neighborhood of each corner;

||u∗∗ − u∗∗∗||1 ≤ ε/2 by construction.

As a conclusion, u∗∗∗ ∈ D and ||u∗∗ − u||1 ≤ ε.

In VR, after Costabel [7] who proved the result in three-dimensional polyhedral domains
(in the case when ΓS = ∅ or ΓC = ∅), the following result holds
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Theorem 3.2 ∀(u,v) ∈ V2
R:∫

Ω
grad u : grad v dx =

∫
Ω

div u div v dx +

∫
Ω

curl u curl v dx.

Before proving the Theorem proper, let us consider the case of smooth functions which
belong to D(Ω)2.

Proposition 3.2 Let (u,v) ∈ D(Ω)22
, then∫

Ω
grad u : grad v dx =

∫
Ω

div u div v dx +

∫
Ω

curl u curl v dx

+
∑
j∈C∪S

∫
Γj

{
∂uν
∂τ

vτ −
∂uτ
∂τ

vν

}
dσ,

where (Γj)j∈C∪S is the set of generalized edges and (uτ , uν) are the components of u in the
local reference (O, τj , νj) (i.e. for each Γj).

Proof: First, let us recall that, given two 2× 2 matrices A and B, one has

A : B =
2∑

i,j=1

aijbij .

As a consequence, integrating by parts, one obtains on the one hand∫
Ω

grad u : grad v dx = −
∫

Ω
(∆u1 v1 + ∆u2 v2) dx +

∫
Γ
(
∂u1

∂ν
v1 +

∂u2

∂ν
v2) dσ,

and, on the other hand,∫
Ω

div u div v dx = −
∫

Ω
(grad div u) · v dx +

∫
Γ

div u vν dσ,∫
Ω

curl u curl v dx =

∫
Ω

(curl curl u) · v dx−
∫

Γ
curl u vτ dσ.

In other respects

−(∆u1 v1 + ∆u2 v2) = (curl curl u) · v − (grad div u) · v,

thus one arrives readily at∫
Ω

grad u : grad v dx =

∫
Ω

div u div v dx +

∫
Ω

curl u curl v dx

+

∫
Γ
(
∂u1

∂ν
v1 +

∂u2

∂ν
v2) dσ −

∫
Γ

div u vν dσ +

∫
Γ

curl u vτ dσ.

From this point on, it is possible to split up each integral over Γ into a sum of integrals
over the Γj : on each edge, the vectors τ and ν are constant, and as a consequence one can
change the reference from (O,~e1, ~e2) to (O, τj , νj) in order to obtain

∂u1

∂ν
v1 +

∂u2

∂ν
v2 =

∂uτ
∂ν

vτ +
∂uν
∂ν

vν ,

curl u =
∂uν
∂τ
− ∂uτ

∂ν
,

div u =
∂uτ
∂τ

+
∂uν
∂ν

.
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This finally leads to the result.

Proof of Theorem 3.2: Let v ∈ D (and u ∈ D(Ω)2). Then∑
j∈C∪S

∫
Γj

{
∂uν
∂τ

vτ −
∂uτ
∂τ

vν

}
dσ =

∑
j∈S

∫
Γj

∂uν
∂τ

vτ dσ −
∑
j∈C

∫
Γj

∂uτ
∂τ

vν dσ.

Now, if u ∈ D, then uν |ΓS
= 0, which implies in turn ∂uν/∂τ|ΓS

= 0; in the same way,

∂uτ/∂τ|ΓC
= 0. Thus the above sum is equal to 0 for any (u,v) ∈ D2. The conclusion

follows thanks to the density of D in VR.

For an alternate proof (without the help of the density result), see Annex C.

Remark 3.2 The results of [7] (derivation of the formula in the case of smooth func-
tions) and [8] (density of locally zero smooth functions) allow to prove the same identity
in a polyhedron Ω with a Lipschitz boundary in the case of mixed boundary conditions,
u× n|ΓC

= 0, u · n|ΓS
= 0, where ΓC and ΓS are sets of faces.

3.2 Orthogonal decompositions and splitting of solutions

Recall that we introduced the regularized subspaces of V0 and Φ0 which we called V0,R

and Φ0,R. Let us prove that

Proposition 3.3 V0,R and Φ0,R are closed subspaces of V0 and Φ0 respectively.

Proof: Thanks to Theorem 3.2, for all v in V0,R, one has the identity ||v||0,curl ,div = ||v||1.
The above result is then a straightforward consequence of the completeness of H1(Ω) for
its canonical norm and of Corollary 1.6.

Concerning Φ0,R, according to Point (ii) of Theorem 3.1, it suffices to note that
curl−1(V0,R) = Φ0,R.

As a consequence, we may write

V0 = V0,R

⊥
⊕ V0,S and Φ0 = Φ0,R

⊥
⊕ Φ0,S .

In what follows, our aim will be to characterize the singular part of the solution u to
(2.1)-(2.5) when g = 0 and ~c = 0: u = uR + uS with uR ∈ V0,R and uS ∈ V0,S . Note
that it is equivalent to split up φ0 the solution to (2.9)-(2.11) into φ0 = φ0,R + φ0,S , with
φ0,R ∈ Φ0,R and φ0,S ∈ Φ0,S . For that, we rely on Theorem 3.1 and Grisvard’s orthogonal
decomposition of L2(Ω), stated below:

L2(Ω) = ∆Φ0,R

⊥
⊕ N.

According to [14] (Thm 2.3.3. and Lemma 2.3.2. page 47), an element of N is character-
ized by

Theorem 3.3 An element p of L2(Ω) belongs to N if and only if

∆p = 0 in Ω, p|Γj
= 0, j ∈ S, ∂p

∂ν |Γj

= 0, j ∈ C.1

1 In addition, there are some compatibility conditions in the neighborhood of corners (Mj)j∈JN only
(no condition for mixed corners, cf. [16]).
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We infer, from Theorem 3.1, the

Proposition 3.4

V0,S = curl−1N.

Φ0,S = ∆−1N.

In this way, we are able to characterize those elements of both V0,S and Φ0,S . Note that,
by construction, they satisfy to some orthogonality properties with respect to the scalar
products associated to || · ||V and || · ||Φ: they are orthogonal to the smooth fields of V0,R

and to the smooth potentials of Φ0,R respectively. In the next subsection, we shall derive,
following [2], an algorithm to compute the elements of both V0,S and Φ0,S .

3.3 Regularity of the singular part

We begin by some brief highlights of the theory developed by Grisvard. Then we reproduce
the framework developed in [2]. In short, Grisvard’s approach2 to singular solutions of
elliptic problems articulates along the following lines:

Lemma 3.1 Let v ∈ N , then v ∈ C∞(Ω \ O) where O is any neighborhood of the set of
corners (Mj)j.

Proof (Main steps): We know that v is harmonic in Ω, i. e. ∆v = 0, which yields that
v is locally C∞ (cf. for instance [12] (page 79)).
On the boundary, away from corners, let v be an extension of v across the boundary, by
odd or even reflection, depending on the boundary condition imposed on v. Then one
proves that ∆v = 0 in an open set which covers (locally) both sides of the boundary. (see
also Annex D).

There are several consequences to this Lemma: Let Ωc
j
def
= B(Mj , Rj) ∩ Ω = {(r, θ) ∈

]0, Rj [×]0, π/αj [} ∩ Ω, (r, θ) being the polar coordinates with center Mj and x− axis Γj
(note that we drop the suscript j for the polar coordinates).

[1] When the polar coordinates (r, θ) are used in a neighborhood of Mj , the boundary
condition can be written meaningfully as v = 0 or ∂v/∂θ = 0 for r > 0.

[2] In Ωc
j , ∆v = 0 is equivalent to

∂2v

∂r2
+

1

r

∂v

∂r
+

1

r2

∂2v

∂θ2
= 0, for 0 < r < R, 0 < θ < π/αj .

Now, it is clear from the Lemma that:

θ 7→ v(r eiθ) belongs to H2(]0, π/αj [), for 0 < r < R.

In other words, this function is in the domain Dj of the operator (in variable θ) Λj :
ϕ 7→ −ϕ′′ with ad hoc boundary conditions.
Thus one gets:

∂2v

∂r2
+

1

r

∂v

∂r
− 1

r2
Λjv = 0, 0 < r < R.

[3] Let (ϕj,m)m≥0 denote the eigenvectors of Λj , with eigenvalues λ2
j,m, λj,m ≥ 0. The

following holds:

2There are other relevant approaches, such as the use of the Mellin transform [3].
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Proposition 3.5 v can be written in the form
∑

m≥0 vj,m(r)ϕj,m(θ), with

vj,m(r) = αj,m r
λj,m + βj,m r

−λj,m , for 0 ≤ λj,m < 1,

= αj,m r
λj,m , for 1 ≤ λj,m.

Proof (Main steps): The ”separation of variables” which corresponds exactly, here, to
an expansion of r 7→ v(r eiθ) in the basis (ϕj,m)m≥0, is justified by Point [2] and the fact
that v ∈ C∞(]0, R[, Dj).
It is the property v ∈ L2(Ωc

j) which limits the value of vj,m(r) to αj,m r
λj,m , for 1 ≤ λj,m.

When λj,m = 0, there is a log(r) term which vanishes thanks to the orthogonality condi-
tions mentioned footnote 1.

From that point on, Grisvard proves:

Lemma 3.2 For each j and λj,m ∈]0, 1[, there exists σj,m ∈ N such that

σj,m − ηj(r)r−λj,mϕj,m(θ) ∈ H1(Ω),

where ηj is a cut-off function.

Proof (Main steps): Given uj,m = ηj(r)r
−λj,mϕj,m(θ), let fj,m = ∆uj,m. By construc-

tion fj,m is in L2(Ω).
There exists one and only one element of H1(Ω), called wj,m, the variational solution to
∆wj,m = fj,m with the relevant boundary conditions.
By a direct computation, it is easily checked ”by hand” that σj,m = uj,m−wj,m is in N .

This finally leads to

Theorem 3.4 dim N =
∑

j Card {λj,m, 0 < λj,m < 1}.

Using the above results, assuming that α < 1 (cf. Theorem 1.1), we are now in the
position to prove the

Theorem 3.5 An element u of V0 \ V0,R belongs to Hα−ε(Ω) for all ε > 0 and does not
belong to Hα(Ω).

Proof: u can be decomposed into uR + uS , with uS 6= 0. As uR is at least of regularity
H1 for both its components, there remains to study uS ∈ V0,S . From Proposition 3.4, this
amounts to studying elements of N . Let p = curl uS ∈ N .

From the short excerpts of Grisvard’s theory above, we know in particular that p is
smooth away from the corners. If we use the standard results of Annex D, we deduce
that φ = ∆−1p (∈ Φ0,S) is also smooth away from the corners: φ0,S ∈ C∞(Ω \ O), where
O is any neighborhood of the corners. As uS = curlφS , it is then clear that it is also
smooth away from the corners. The regularity of this function is therefore determined by
its behavior at the corners.

Let JDM (resp. JNM ) be the subset of JM such that there is a Dirichlet (resp. Neumann)
boundary condition on Γj in the definition of N . Then, with the help of the (local) polar
coordinates, (r, θ), we find by inspection that S0

j , the restriction of p to Ωc
j , takes one of

the following forms

S0
j =

∑
n≥n0

An,j r
nαj sin(nαjθ), if j ∈ JD,
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=
∑
n≥n0

An,j r
nαj cos(nαjθ), if j ∈ JN ,

=
∑
n≥n0

An,j r
(n+1/2)αj sin((n+ 1/2)αjθ), if j ∈ JDM ,

=
∑
n≥n0

An,j r
(n+1/2)αj cos((n+ 1/2)αjθ), if j ∈ JNM .

N. B. These expansions of variables are justified by Proposition 3.5.

The index of the first term, n0, depends on the values of the angle π/αj . As the
trigonometric functions are mutually orthogonal, the fact that S0

j belongs to L2(Ωc
j) yields:

[1] j ∈ JD or j ∈ JN : n0 = 0 if αj ≥ 1, n0 = −1 if 1 > αj > 1/2.

j ∈ JM : n0 = 0 if αj ≥ 2, n0 = −1 if 2 > αj ≥ 3/2, n0 = −2 if 3/2 > αj > 1/2.

[2]
∑
n≥n0

A2
n,j

n
Rj

2nαj is bounded, where Rj is the radius of Ωc
j .

Now, with Theorem 3.4, we conclude that, if j ∈ JD ∪ JN , the corner contributes for
one additional element of a basis of N if and only if αj < 1 ; if j ∈ JM , it contributes
for a single element if and only if 2 > αj ≥ 2/3, and for two elements if and only if
2/3 > αj > 1/2.3 4 This means that there is no contribution as soon as θj ≤ π (when
j ∈ JD ∪ JN ) and θj ≤ π/2 (j ∈ JM ). Also, based on this labeling of a basis of N , it
is clear that S0

j is determined by A−1,j when the summation begins at n0 = −1, and by
(A−2,j , A−1,j) when the value of n0 is −2.

Remark 3.3 Evidently, it is possible to give the following alternate characterization,
with the complex variable zj = reiθ and f(z) =

∑
n≥n0

An,j z
n:

S0
j (zj) = Im(f(z

αj

j )), if j ∈ JD or Re(f(z
αj

j )), if j ∈ JN

= Im(z
αj/2
j f(z

αj

j )), if j ∈ JDM or Re(zαj/2
j f(z

αj

j )), if j ∈ JNM .

Thanks to the result of Annex D, as both φ = −∆−1p and uS = −curl (∆−1p) are
smooth up to the boundary, the same tools (i. e. separiation of variables and expansion)
can be applied to derive the expressions of S2

j = φ|Ωc
j

and S1
j = uS |Ωc

j
. In both cases, the

solution is made up of two parts: a part which corresponds to the homogeneous problem,
and a particular solution. As before, in order to truncate the summation in a correct
manner, we use the properties S1

j ∈ L2(Ωc
j) and S2

j ∈ H1(Ωc
j). This yields:

S1
j =

∑
n≥n0

An,j r
nαj+1


− nαj

4nαj + 4
cos(nαjθ)

nαj + 2

4nαj + 4
sin(nαjθ)

+
∑
l≥l0

Bl,j r
lαj−1

 cos(lαjθ)

− sin(lαjθ)

 , [JD],

3λ2
j,m = (mαj)

2, if j ∈ JD ∪ JN . 0 < λj,m < 1 only for m = 1, αj < 1.
4λ2

j,m = ((m+ 1/2)αj)
2, if j ∈ JM . 0 < λj,m < 1 only for m = 1, αj < 2, and for m ∈ {1, 2}, αj < 2/3.
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=
∑
n≥n0

An,j r
nαj+1


nαj

4nαj + 4
sin(nαjθ)

nαj + 2

4nαj + 4
cos(nαjθ)

+
∑
l≥l0

Bl,j r
lαj−1

 sin(lαjθ)

cos(lαjθ)

 , [JN ],

=
∑
n≥n0

An,j r
(n+1/2)αj+1


− (n+ 1/2)αj

4(n+ 1/2)αj + 4
cos((n+ 1/2)αjθ)

(n+ 1/2)αj + 2

4(n+ 1/2)αj + 4
sin((n+ 1/2)αjθ)



+
∑
l≥l0

Bl,j r
(l+1/2)αj−1

 cos((l + 1/2)αjθ)

− sin((l + 1/2)αjθ)

 , [JDM ],

=
∑
n≥n0

An,j r
(n+1/2)αj+1


(n+ 1/2)αj

4(n+ 1/2)αj + 4
sin((n+ 1/2)αjθ)

(n+ 1/2)αj + 2

4(n+ 1/2)αj + 4
cos((n+ 1/2)αjθ)



+
∑
l≥l0

Bl,j r
(l+1/2)αj−1

 sin((l + 1/2)αjθ)

cos((l + 1/2)αjθ)

 , [JNM ].

As S1
j is in L2(Ωc

j), we find that l0 = 1 in the case when j ∈ JD ∪JN , whereas l0 takes the
value 0 when j ∈ JM , regardless of the value of αj . Then,

S2
j = −

∑
n≥n0

An,j
4nαj + 4

rnαj+2 sin(nαjθ) +
∑
l≥l0

Bl,j
lαj

rlαj sin(lαjθ), [JD],

= −
∑
n≥n0

An,j
4nαj + 4

rnαj+2 cos(nαjθ)−
∑
l≥l0

Bl,j
lαj

rlαj cos(lαjθ), [JN ],

= −
∑
n≥n0

An,j
4(n+ 1/2)αj + 4

r(n+1/2)αj+2 sin((n+ 1/2)αjθ)

+
∑
l≥l0

Bl,j
(l + 1/2)αj

r(l+1/2)αj sin((l + 1/2)αjθ), [JDM ],

= −
∑
n≥n0

An,j
4(n+ 1/2)αj + 4

r(n+1/2)αj+2 cos((n+ 1/2)αjθ)

−
∑
l≥l0

Bl,j
(l + 1/2)αj

r(l+1/2)αj cos((l + 1/2)αjθ), [JNM ].

N. B. The coefficients (Bl)l are identical in the expressions of S1
j and S2

j , as they are

related by the relationship S1
j = curlS2

j .
Then, the regularity of uS (resp. p, φ) is given by that of its local expansion (first

term of the second summation, in l), and the conclusion follows.
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Chapter 4

Annex

In the Annex, we give some results which are either standard or technical. By standard,
we mean that they can be found in advanced textbooks. By technical, we mean that the
computations are straightforward but sometimes a little bit too long to fit in the core of
the report itself.

A Distances

We consider the following situation, with edges Γ1 and Γ2 of length L1 and L2.

O

x

y
z

1

Γ

Γ

2

θ
*

Figure 4.1: Notations.

We prove that there exist non negative constants C1 and C2 which depend only on the
geometry such that

C1

||z||
≤
∫
t∈Γ2

dσ(t)

||z− t||2
≤ C2

||z||
, ∀z ∈ Γ1. (i)

Remark 4.1 This is a case similar to the one considered for instance in [13] ((1.3.2.12)),
with a difference due to the piecewise smoothness of the boundary Γ.

By symmetry, we can restrict θ∗ to ]0, π]. Let

z = (zx, zy)
T and I(z) =

∫
t∈Γ2

dσ(t)

||z− t||2
.

Let us focuse on two particular cases:

i
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[a] θ∗ = π:
zx spans ]− L1, 0[ and zy = 0 (this corresponds to a smooth boundary).

I(z) =

∫ L2

0

dt

(t− zx)2
=

[
− 1

t− zx

]L2

0

= − 1

L2 − zx
− 1

zx
= − 1

L2 + ||z||
+

1

||z||

=
L2

||z||(L2 + ||z||)
.

Then (i) holds for C1 =
L2

L1 + L2
and C2 = 1.

[b] θ∗ = π/2:
zx = 0 and zy spans ]− L1, 0[.

I(z) =

∫ L2

0

dt

t2 + zy2
=

1

|zy]

[
arctan(

t

|zy|
)

]L2

0

=
1

||z|]
arctan(

L2

||z||
).

As x 7→ arctan(x) is an increasing function in x, (i) holds for C1 = arctan(
L2

L1
) and

C2 = π/2.

Let us finally consider the general case:

[c] θ∗ ∈]0, π/2[∪]π/2, π[:

we have zy = −αzx, with α = tan(θ∗), and zy ∈]zmin
y , 0[, with zmin

y = − L1√
1 + 1/α2

.

I(z) =

∫ L2

0

dt

(t− zx)2 + zy2
=

∫ L2−zx

−zx

dt

t2 + zy2
=

1

zy

[
arctan(

t

zy
)

]L2−zx

−zx

=
1

|zy|

(
arctan(

1

α
)− arctan(

L2

zy
+

1

α
)

)
.

When zy spans ]zmin
y , 0[, zy 7→ − arctan(L2/zy + 1/α) is and increasing function in zy.

Therefore, if we let

C̃1 = arctan(
1

α
)− arctan(

1

α
− L2

L1

√
1 + 1/α2),

C̃2 = arctan(
1

α
) +

π

2
,

both constants are non negative and, in addition,

C̃1

|zy|
< I(z) <

C̃2

|zy|
, ∀zy ∈]zmin

y , 0[.

As
1

|zy|
=
√

1 + 1/α2
1

||z||
, (i) holds with Ci =

√
1 + 1/α2 C̃i, i = 1, 2.



B. IDENTIFICATION OF SPACES OF STREAM FUNCTIONS iii

B Identification of spaces of stream functions

Let us consider the spaces grad Ψ∆ and curl Φ∆. Ψ∆ is a finite dimensional space, a basis
of which is the set of functions (ηk)1≤k≤K defined by

ηk ∈ H1(Ω), such that ∆ηk = 0 in Ω, ηk |Γl
C

= δkl,
∂ηk
∂ν |ΓS

= 0.

By construction, w = grad ηk belongs to V. Thanks to Theorem 1.3, w ∈ curl Φ∆.
Therefore, grad Ψ∆ ⊂ curl Φ∆ and, as these vector spaces are both of dimension K:

grad Ψ∆ = curl Φ∆.

Then, one the one hand∫
Ω

grad ηk · curlχl dx =

〈
∂ηk
∂τ

, χl

〉
=

K∑
m=0

〈
∂ηk
∂τ

, χl

〉
Γm
S

+
K∑
m=0

〈
∂ηk
∂τ

, χl

〉
Γm
C

=

〈
∂ηk
∂τ

, 1

〉
Γl
S

.

N. B. The splitting of duality brackets is fully justified, as grad ηk ∈ H1/4(Ω). The same
argument carries below, as curlχl ∈ H1/4(Ω).

On the other hand∫
Ω

grad ηk · curlχl dx = −
〈
∂χl
∂τ

, ηk

〉
= −

K∑
m=0

〈
∂χl
∂τ

, ηk

〉
Γm
S

−
K∑
m=0

〈
∂χl
∂τ

, ηk

〉
Γm
C

= −
〈
∂χl
∂τ

, 1

〉
Γk
C

.

As a consequence 〈
∂ηk
∂τ

, 1

〉
Γl
S

+

〈
∂χl
∂τ

, 1

〉
Γk
C

= 0, 1 ≤ l, k ≤ K.

C An alternate proof

Theorem 4.1 ∀(u,v) ∈ V2
R:∫

Ω
grad u : grad v dx =

∫
Ω

div u div v dx +

∫
Ω

curl u curl v dx.

Proof: First, thanks to Proposition 3.2, we already know that for all (u,v) ∈ D(Ω)22
,

one has ∫
Ω

grad u : grad v dx =

∫
Ω

div u div v dx +

∫
Ω

curl u curl v dx

+
∑
j∈C∪S

∫
Γj

{
∂uν
∂τ

vτ −
∂uτ
∂τ

vν

}
dσ,
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where (Γj)j∈C∪S is the set of generalized edges and (uτ , uν) are the components of u in
the local reference (O, τj , νj) (i.e. for each Γj).

In the second place, with the help of the density of D(Ω)2 in H1(Ω), for all (u,v) ∈
D(Ω)2 ×H1(Ω), we arrive at∫

Ω
grad u : grad v dx =

∫
Ω

div u div v dx +

∫
Ω

curl u curl v dx

+
∑
j∈C∪S

∫
Γj

{
∂uν
∂τ

vτ −
∂uτ
∂τ

vν

}
dσ. (ii)

Unfortunately, it is not possible to perform the same operation twice without precau-
tions. Indeed, as uτ |Γj

and uν |Γj
are elements of H1/2(Γj), we know, from [15] (1st volume,

Prop 12.1, page 94), that

∂uτ
∂τ |Γj

and
∂uν
∂τ |Γj

then belong to H̃−1/2(Γj),

the application
∂·
∂τ |Γj

being continuous from H1/2(Γj) into H̃−1/2(Γj).

Remark 4.2 The alternate idea which consists in considering integral over the con-
nected components of ΓC and ΓS does not work either, as in this case the quantities uτ
and uν are not well-defined around the generalized corners.

Therefore, passing to the limit in (ii) requires that vτ |Γj
and vν |Γj

belong to H̃1/2(Γj).

This is precisely what we shall show for elements v of VR. First, for all (u,v) ∈ D(Ω)2×VR,
(ii) reduces to∫

Ω
grad u : grad v dx =

∫
Ω

div u div v dx +

∫
Ω

curl u curl v dx

+
∑
j∈S

∫
Γj

∂uν
∂τ

vτ dσ −
∑
j∈C

∫
Γj

∂uτ
∂τ

vν dσ. (iii)

Second, recall that {Mj} = Γj ∩ Γj+1 and let

H̃
1/2
∗ (Γj) = {µ ∈ H1/2(Γj),

∫
Γj

|µ(z)|2

||z−Mj ||
dσ(z) <∞},

H̃
1/2
∗ (Γj+1) = {µ ∈ H1/2(Γj+1),

∫
Γj+1

|µ(z)|2

||z−Mj ||
dσ(z) <∞}.

Third, on the couple of edges (Γj ,Γj+1), either a Dirichlet (j ∈ JD), a Neumann
(j ∈ JN ) or a mixed (j ∈ JM ) boundary condition is imposed. Then, for an element v of
VR, one can prove the following:

Proposition 4.1 (i) ∀j ∈ JD, vν |Γj
∈ H̃1/2

∗ (Γj) and vν |Γj+1
∈ H̃1/2

∗ (Γj+1).

(ii) ∀j ∈ JN , vτ |Γj
∈ H̃1/2

∗ (Γj) and vτ |Γj+1
∈ H̃1/2

∗ (Γj+1).

(iii) ∀j ∈ JM such that θj 6≡ π/2 [π],

– If Γj ⊂ ΓS and Γj+1 ⊂ ΓC : vτ |Γj
∈ H̃1/2

∗ (Γj) and vν |Γj+1
∈ H̃1/2

∗ (Γj+1).
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Figure 4.2: Around the corner Mj .

– If Γj ⊂ ΓC and Γj+1 ⊂ ΓS: vν |Γj
∈ H̃1/2

∗ (Γj) and vτ |Γj+1
∈ H̃1/2

∗ (Γj+1).

Proof: In the sequel, (O, x, y) is the absolute reference. Assume we have the following situa-
tion, with Γj+1 parallel to the x-axis:

Case (i): by definition, vτ |Γj
= 0 and vx|Γj+1

= vτ |Γj+1
= 0. We shall prove that vy |Γj+1

=

vν |Γj+1
belongs to H̃

1/2
∗ (Γj+1) (one proves vν |Γj

∈ H̃1/2
∗ (Γj) in a similar manner).

From that point on, the proof can be carried out in three steps:

(a1) vx|Γj
∈ H̃1/2

∗ (Γj): as v ∈ H1/2(Γ), vx ∈ H1/2(Γ), which implies in turn vx|Γj
∈ H1/2(Γj)

and

|vx|21/2,Γ =

∫
Γ

∫
Γ

|vx(z)− vx(t)|2

||z− t||2
dσ(z)dσ(t) <∞.

Now, vx|Γj+1
= 0 and thanks to (i), we arrive at (C ′1 = 1/C1)∫

Γj

|vx(z)|2

||z−Mj ||
dσ(z) ≤ C ′1 |vx|21/2,Γ <∞.

This proves (a1).

(b1) vy |Γj
∈ H̃1/2

∗ (Γj): by assumption, vτ |Γj
= 0 or, equivalently,

(− cos θj vx + sin θj vy)|Γj
= 0, with sin θj 6= 0.

(b1) thus follows from (a1).

(c1) vy |Γj+1
∈ H̃1/2

∗ (Γj+1): indeed, vy ∈ H1/2(Γ) and, from Annex A,∫
Γj+1

|vy(z)|2

||z−Mj ||
dσ(z) ≤ C ′1

∫
z∈Γj+1

|vy(z)|2 dσ(z)

∫
t∈Γj

dσ(t)

||z− t||2

≤ C ′1

∫
z∈Γj+1

∫
t∈Γj

{
|vy(z)− vy(t)|2

||z− t||2
+
|vy(t)|2

||z− t||2

}
dσ(z)dσ(t)

≤ C ′1

{
|vy|21/2,Γ + C2

∫
Γj

|vy(t)|2

||t−Mj ||
dσ(t)

}
.

Both terms are bounded, thanks to point (b1). In other words, vy |Γj+1
∈ H̃1/2

∗ (Γj+1).
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Case (ii): by definition, vν |Γj
= 0 and vy |Γj+1

= 0. We sketch the proof of the fact that vx|Γj+1

actually belongs to H̃
1/2
∗ (Γj+1).

(a2) vy |Γj
∈ H̃1/2

∗ (Γj): this is the transposition of (a1) with vy in lieu of vx.

(b2) vx|Γj
∈ H̃1/2

∗ (Γj): by hypothesis, vν |Γj
= 0. This can rewritten as:

(− sin θj vx − cos θj vy)|Γj
= 0, with sin θj 6= 0.

(b2) then follows from (a2).

(c2) vx|Γj+1
∈ H̃1/2

∗ (Γj+1): this is (c1) with vx in lieu of vy.

Case (iii): Assume (for instance) that vν |Γj
= 0 and vx|Γj+1

= 0, with cos θj 6= 0.

(a3) vx|Γj
∈ H̃1/2

∗ (Γj): same proof as in (a1).

(b3) vy |Γj
∈ H̃1/2

∗ (Γj): as vν |Γj
= 0,

(− sin θj vx − cos θj vy)|Γj
= 0, with cos θj 6= 0.

(b3) follows from (a3).

(c3) vy |Γj+1
∈ H̃1/2

∗ (Γj+1): same reasoning as in (c1).

Therefore, vy |Γj+1
∈ H̃1/2

∗ (Γj+1). In the same way, one gets that vx|Γj+1
∈ H̃1/2

∗ (Γj+1). This

completes the proof.

Assume that, for all j ∈ JM , θj 6≡ π/2 [π]. Then vν |Γj
∈ H̃1/2

∗ (Γj) and vτ |Γj
∈ H̃1/2

∗ (Γj)
for all the edges, thanks to the Proposition. Now, let u ∈ VR: by density, there exists a
sequence (uk)k of element of D(Ω)2 which converges to u in H1(Ω). Then according to

the continuity of µ 7→ ∂µ

∂τ |Γj

from H1/2(Γj) into H̃−1/2(Γj), one has

∂ukν
∂τ |Γj

→ ∂uν
∂τ |Γj

= 0 in H̃−1/2(Γj), ∀j ∈ S

∂ukτ
∂τ |Γj

→ ∂uτ
∂τ |Γj

= 0 in H̃−1/2(Γj), ∀j ∈ S.

Thus passing to the limit in (iii) is allowed and this leads to the conclusion.

Last, in the case when θj ≡ π/2 [π] for some j ∈ JM , then there is no additional diffi-
culty, although the results (case (iii)) of the previous Proposition don’t hold any more. In-
deed, if one assumes that (j, j+1) ∈ S×C, then let t = τj , n = νj and (u,v) ∈ D(Ω)2×VR.

[a] If θj = π/2:

∫
Γj

∂uν
∂τ

vτ dσ −
∫

Γj+1

∂uτ
∂τ

vν dσ =

∫
Γj

∂un
∂τ

vt dσ −
∫

Γj+1

∂(−un)

∂τ
vt dσ

=

∫
Γj∪Γj+1

∂un
∂τ

vt dσ.

[b] If θj = 3π/2:
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∫
Γj

∂uν
∂τ

vτ dσ −
∫

Γj+1

∂uτ
∂τ

vν dσ =

∫
Γj

∂un
∂τ

vt dσ −
∫

Γj+1

∂un
∂τ

(−vt) dσ

=

∫
Γj∪Γj+1

∂un
∂τ

vt dσ.

In other words, the mixed corner ”vanishes”, and it allows to consider the two edges
as a single one, Γj,j+1. The proof is then carried out using this new edge as, with the help

of Proposition 1.3 (gradun ∈ H(curl ,Ω)), we get
∂un
∂τ
∈ H̃−1/2(Γj,j+1).

Remark 4.3 If, for all the indices j, j is in JM and θj ≡ π/2 [π], then the sum of all
the boundary terms becomes∑

j∈S

∫
Γj

∂uν
∂τ

vτ dσ −
∑
j∈C

∫
Γj

∂uτ
∂τ

vν dσ =

∫
Γ

∂un
∂τ

vt dσ.

The problem then disappears altogether as now
∂un
∂τ |Γ

∈ H−1/2(Γ) and vt ∈ H1/2(Γ)

directly!

NB: a straighforward consequence of the proof of Proposition 4.1 is that there exist
constants C > 0 such that

(i) ∀j ∈ JD, ∀v ∈ VR,

||vν ||1/2,∗,Γj
< C ||v||1/2,Γ and ||vν ||1/2,∗,Γj+1

< C ||v||1/2,Γ.

(ii) ∀j ∈ JN , ∀v ∈ VR,

||vτ ||1/2,∗,Γj
< C ||v||1/2,Γ and ||vτ ||1/2,∗,Γj+1

< C ||v||1/2,Γ.

(iiia) ∀j ∈ JM s. t. θj 6≡ π/2 [π], Γj ⊂ ΓS and Γj+1 ⊂ ΓC ,

||vτ ||1/2,∗,Γj
< C ||v||1/2,Γ and ||vν ||1/2,∗,Γj+1

< C ||v||1/2,Γ.

(iiib) ∀j ∈ JM s. t. θj 6≡ π/2 [π], Γj ⊂ ΓC and Γj+1 ⊂ ΓS ,

||vν ||1/2,∗,Γj
< C ||v||1/2,Γ and ||vτ ||1/2,∗,Γj+1

< C ||v||1/2,Γ.

D Regularity of the solution to a Laplace problem

Let p ∈ N .

Proposition 4.2 The solution φ to the problem:
Find φ ∈ H1(Ω) such that

∆φ = p in Ω,

φ = 0 on ΓS ,

∂φ

∂ν
= 0 on ΓC ,

satisfies to φ ∈ C∞(Ω \ O), where O is any neighborhood of the corners (Mj)j.
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Proof:1 [1] φ is smooth inside Ω:

for that, given a neighborhood Oε = ∪jB(Mj , ε), ε > 0, let ηε ∈ D(R2) with the
properties:

ηε = 1 in Ωε = {x ∈ Ω, d(x,Γ) > ε},
= 0 outside Ωε/2.

η  = 1

η  = 0ε

ε

ε

ε

Figure 4.3: Ωε and ηε.

As a consequence, since p ∈ C∞(Ω \ Oε/2), pε = p ηε actually belongs to D(R2).

Now, let φε be the solution to ∆φε = pε in R2. If we call E the (elementary) solution
to ∆E = δ0, we know that, in polar coordinates, E = 1/r ∈ L1

loc(R2) and φε = E ∗ pε.
Thanks to [4] (page 69), φε ∈ C∞(R2). Then, ∆(φ− φε) = p (1− ηε) = 0 in Ωε. In other
words, (φ− φε) is harmonic in Ωε and therefore of class C∞ (cf. [12] (page 79)).

[2] φ ∈ C∞(Ω \ O);

Let us consider a given edge, Γj , of the boundary. We define local cartesian (orthonor-
mal) coordinates (x1, x2), such that ~e1 is parallel to Γj , and Γj is imbedded in x2 = 0. Let
us call R =]a, b[×]0, c[ a rectangle imbedded in Ω and I =]a, b[×{0}. By assumption, we
know that p ∈ C∞(R). Let R =]a, b[×]− c, c[.

(a) Assume that p|Γj
= 0, that is j ∈ S. Then, according to the local expansion of p

in polar coordinates, we obtain immediately:

∀α1,∀α2 even,
∂(α1,α2)

∂xα1
1 ∂xα2

2

p(x1, 0) = 0. (iv)

Indeed, as p is ”summable” in the variables (r, θ) in the angular sector ]0, Rj/2[×]0, π/αj [,
we can proceed by differentation under the sign Σ.

1for an alternate proof, see [4], pages 181-188.
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Then, we define the odd reflection of p, called p, in R, by:

p(x1, x2) = p(x1, x2) if x2 > 0,

= −p(x1,−x2) if x2 < 0.

Let us prove that p ∈ C∞(R). We already know that p ∈ C∞(]a, b[×{]−c, 0[∪]0, c[). There
remains to check that, for all (α1, α2) ∈ N2 and for all x1 ∈]a, b[:

lim
x+

2→0+

∂(α1,α2)

∂xα1
1 ∂xα2

2

p(x1, x
+
2 ) = lim

x−2 →0−

∂(α1,α2)

∂xα1
1 ∂xα2

2

p(x1, x
−
2 ). (v)

Clearly, the left-hand side of (v) is equal to

∂(α1,α2)

∂xα1
1 ∂xα2

2

p(x1, 0).

Concerning the right-hand side, let us prove by induction that, for all the elements
(x1, x

−
2 ) ∈]a, b[×]− c, 0[, one has:

∂(α1,α2)

∂xα1
1 ∂xα2

2

p(x1, x
−
2 ) = (−1)α2+1 ∂(α1,α2)

∂xα1
1 ∂xα2

2

p(x1,−x−2 ). (vi)

Indeed, it is true for α1 = 0 and α2 = 0. Assume it is true for (0, α2). Then:

∂α2+1

∂xα2+1
2

p(x1, x
−
2 ) = lim

h→0

1

h

{
∂α2

∂xα2
2

p(x1, x
−
2 + h)− ∂α2

∂xα2
2

p(x1, x
−
2 )

}
= (−1)α2+1 lim

h→0

1

h

{
∂α2

∂xα2
2

p(x1,−x−2 − h)− ∂α2

∂xα2
2

p(x1,−x−2 )

}
= (−1)α2+2 ∂

α2+1

∂xα2+1
2

p(x1,−x−2 ).

Therefore, it is true for all (0, α2). For a fixed α2, we now proceed by induction on α1. If
this is true for (α1, α2), then:

∂(α1+1,α2)

∂xα1+1
1 ∂xα2

2

p(x1, x
−
2 ) = lim

h→0

1

h

{
∂(α1,α2)

∂xα1
1 ∂xα2

2

p(x1 + h, x−2 )− ∂(α1,α2)

∂xα1
1 ∂xα2

2

p(x1, x
−
2 )

}

= (−1)α2+1 lim
h→0

1

h

{
∂(α1,α2)

∂xα1
1 ∂xα2

2

p(x1 + h,−x−2 )− ∂(α1,α2)

∂xα1
1 ∂xα2

2

p(x1,−x−2 )

}

= (−1)α2+1 ∂(α1+1,α2)

∂xα1+1
1 ∂xα2

2

p(x1,−x−2 ), QED.

Thanks to (vi), (v) holds for (α1, α2), such that α2 is odd. Thanks to (iv) and (vi), the
result is still valid for (α1, α2), such that α2 is even.

Therefore, p belongs to C∞(R).

N. B. Note that an alternate proof can be also obtained by using what follows.
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Let us prove now that φ, the odd reflection of φ, is also an element of C∞(R). For

that, given φ′ ∈ D(R), let φ
′

be the odd reflection of φ′. Finally, let ϕ ∈ D(R). With a
double integration by parts, we get:

< ∆φ
′
, ϕ >=< φ

′
,∆ϕ > =

∫
R
φ
′
∆ϕdx1 dx2

=

∫
R
φ
′
∆ϕdx1 dx2 +

∫
R′
φ
′
∆ϕdx1 dx2

= −
∫
R∪R′

gradφ
′ · gradϕdx1 dx2 + 2

∫
I
φ′(x1, 0)

∂ϕ

∂ν
(x1, 0) dx1

=

∫
R∪R′

∆φ
′
ϕdx1 dx2 + 2

∫
I
φ′(x1, 0)

∂ϕ

∂ν
(x1, 0) dx1.

For the first integration by parts, we used the property lim
x−2 →0−

φ
′
(x1, x

−
2 ) = −φ′(x1, 0),

whereas, for the second one, we used lim
x−2 →0−

∂φ
′
/∂ν′(x1, x

−
2 ) = −∂φ′/∂ν(x1, 0) (with the

help of (vi) for α1 = 0 and α2 = 1).

By density (cf. [13]), as φ is by definition an element of E(∆, R), we finally obtain
that, for all ϕ ∈ D(R):

< ∆φ, ϕ >=

∫
R∪R′

∆φϕdx1 dx2 =

∫
R∪R′

pϕ dx1 dx2.

Here, the second equality is derived from (vi), with (α1, α2) in {(0, 2), (2, 0)}. In other
words, we arrive at ∆φ = p in R. As p ∈ C∞(R), Point [1] shows that φ in its turn
also belongs to C∞(R), and therefore φ ∈ C∞(]a, b[×[0, c[). This proves the Proposition in
Case [a].

[b] On the other hand, if we suppose that ∂p/∂ν|Γj
= 0, that is j ∈ C, we obtain

successively:

∀α1, ∀α2 odd,
∂(α1,α2)

∂xα1
1 ∂xα2

2

p(x1, 0) = 0. (vii)

We define the even reflection of p in R by

p(x1, x2) = p(x1, x2) if x2 > 0,

= p(x1,−x2) if x2 < 0.

(v) holds with p thanks to (vii) and to the property hereunder.
For all (x1, x

−
2 ) ∈]a, b[×]− c, 0[, one has:

∂(α1,α2)

∂xα1
1 ∂xα2

2

p(x1, x
−
2 ) = (−1)α2

∂(α1,α2)

∂xα1
1 ∂xα2

2

p(x1,−x−2 ).

Finally, if we call φ the even reflection of φ, we readily reach, for all ϕ ∈ D(R):

< ∆φ, ϕ >=

∫
R∪R′

pϕ dx1 dx2.

Point [1] shows again that φ ∈ C∞(R), and the Proposition is therefore proved in the
general case.


