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Abstract 11	

In the clinic, chemotherapy is often combined with surgery and radiation to increase the chances 12	

of curing cancers. In case of glioblastoma (GBM), patients are treated with a combination of radio-13	

therapy and TMZ over several weeks. Despite its common use, the mechanism of action of the 14	

alkylating agent TMZ has not been well understood when it comes to its cytotoxic effects in tumor 15	

cells that are mostly non dividing. The cellular response to alkylating DNA damages is operated 16	

by an intricate protein network involving multiple DNA repair pathways and numerous check-point 17	

proteins that are dependent on the type of DNA lesion, the cell type, and the cellular proliferation 18	

state. Among the various alkylating damages, special focus has been directed towards O6-19	

methylguanine (O6-mG). Indeed, this lesion is efficiently removed via direct reversal by O6-20	

methylguanine-DNA methyltransferase (MGMT). As the level of MGMT expression was found to 21	

be directly correlated with TMZ efficiency, O6-mG was identified as the critical lesion for TMZ mode 22	

of action. Initially, the mode of action of TMZ was proposed to be as follows: when left on the 23	

genome, O6-mG lesions form O6-mG : T mispairs during replication as T is preferentially mis-24	

inserted across O6-mG. These O6-mG : T mispairs are recognized and tentatively repaired by post-25	

replicative mismatched DNA correction system (i.e., the MMR system). There are two models 26	
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(futile cycle and direct signaling models) to account for cytotoxic effects of the O6-mG lesions, both 27	

depending upon the functional MMR system in replicating cells. Alternatively, to explain cytotoxic 28	

effects of alkylating agents in non-replicating cells, we have proposed a “repair accident model” 29	

whose molecular mechanism is dependent upon crosstalk between the MMR and the base 30	

excision repair (BER) systems. The accidental encounter between these two repair systems will 31	

cause the formation of cytotoxic DNA double-strand breaks (DSBs). In this review, we summarize 32	

these non-exclusive models to explain cytotoxic effects of alkylating agents and discuss potential 33	

strategies to improve the clinical use of alkylating agents. 34	

 35	
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 38	

Introduction 39	

Chemotherapy is an indispensable approach to tackle a variety of diseases in hospitals [1,2]. 40	

Whether a chemical during chemotherapy is effective largely depends upon the cellular response 41	

that deals with the chemical. The representative chemical during the chemotherapy is generally 42	

alkylating agents leading to DNA damages [2,3]. Human cells have a variety of defense 43	

mechanisms to fix the DNA damages by means of intrinsic DNA repair systems. DNA damages 44	

induced by alkylating agents are usually repaired in three distinct categories of DNA repair 45	

pathways: direct reversal repair, base excision repair (BER) and mismatch repair (MMR). For 46	

instance, the direct reversal repair system includes direct conversion of the O6-methylguaine (O6-47	

mG) lesion to guanine through the suicidal enzymatic reaction of O6-methylguanine-DNA 48	

methyltransferase (MGMT), direct con-version of 1-methyladenine (1-mA) and 3-methylcytosine 49	

(3-mC) lesions to the adenine and cytosine, respectively, through the enzymatic reaction of 50	

alkylated DNA repair protein B homolog (ALKBH) proteins. While, repair via direct reversal is 51	

obviously the best way to maintain genetic integrity, only a small number of DNA lesions are 52	
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repaired by direct reversal. BER pathways are responsible for the repair of a variety of additional 53	

lesions, such as N3-methyladenine (N3-mA) and N7-methylguanine (N7-mG) [4–6]. If O6-mG 54	

lesions escape direct reversal by MGMT, during replication they are efficiently converted into pre-55	

mutagenic O6-mG : T mispairs that were shown to be recognized by the post-replication mismatch 56	

DNA repair pathway (MMR) [7,8]. Thymine opposite the O6-mG lesion is recognized as a DNA 57	

replication error in the context of MMR because the thymine is located on the nascent strand. 58	

During the process of MMR following the T-containing strand removal, T is frequently re-inserted 59	

across template O6-mG triggering thus reforming the initial O6-mG : T mispair and triggering a 60	

novel MMR attempt, leading to the so-called “futile MMR cycle”. These futile MMR cycling events 61	

have tentatively been proposed to ultimately lead to DSBs [9] (Figure 1). However, the molecular 62	

mechanisms supporting the formation of DSBs have remained elusive [10]. In contrast to detailed 63	

knowledge of the molecular mechanisms operating for individual DNA repair pathways, relatively 64	

little is known regarding crosstalks between repair pathways [6]. In order to obtain a more 65	

integrated view about potential interference between DNA repair pathways that operate 66	

simultaneously during exposure of DNA to alkylating agents, we implemented biochemical assays 67	

in Xenopus egg extracts [11]. Based on our experimental results, we proposed a model during 68	

which accidental interaction between BER and MMR pathways, simultaneously acting at closely 69	

spaced lesions, leads to DSBs [11,12]. In addition to the futile cycle model, the model that we 70	

propose adds a further dimension to the debate as it provides a molecular mechanisms of O6-mG 71	

induced cytotoxicity and cell death in case of non-dividing cells that represent the vast majority of 72	

cells in our bodies. In this review article, we will describe how the accidental encounter of two 73	

independent repair events, MMR and BER, taking place simultaneously at closely-spaced 74	

alkylation adducts in opposite DNA strands can lead to a DSB. In addition, we are suggesting that 75	

a similar model for the cytotoxic effects for methylazoxymethanol (MAM), a hydra-zine-related 76	

chemical, with carcinogenic and neurotoxic potential [13–15]. 77	
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 79	

Figure 1. The MMR-mediated futile cycle model driven by the persistent presence of the O6-mG 80	

lesion on the genomic DNA. Alkylating agents such as temozolomide (TMZ), widely used in the 81	

clinic to treat glioblastomas, induces a broad spectrum of adducts (lesions) on the genomic DNA. 82	

In the MMR-mediated futile cycle model, the O6-mG lesion among alkylating agent-induced DNA 83	

dam-ages is exclusively focused as an only source related to alkylating agent-induced cell death 84	

phenomenon. During DNA replication, thymine is preferentially incorporated opposite the O6-mG, 85	

forming the O6-mG : T mispair (left panel). This mismatch activates the MMR system. However, 86	

the O6-mG lesion remains persistently present in the parental strand, resulting in a novel MMR 87	

attempt which is futile by nature (right panel). Such iterative rounds of the MMR repair process 88	

could ultimately lead to cell cycle arrest and apoptosis. 89	

 90	

 91	

Clinical use of temozolomide (TMZ) 92	

Alkylating DNA damages in genomic DNA result from cellular metabolic products (endogenous 93	

alkylation) and from exogenous chemicals such as nitroso-compounds and chemotherapeutic 94	

agents [4,6]. With respect to chemotherapy, the alkylating agent temozolomide (TMZ) is widely 95	

used for the treatment of glioblastomas [1,2]. TMZ belongs to the group of triazene compounds 96	

and is the predominant mono-functional DNA alkylating agent used in the treatment of 97	

glioblastoma in combination with surgery and ionizing radiations [2,16,17]. During chemotherapy, 98	
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following oral administration, TMZ is rapidly converted into the active metabolite MTIC [5-(3-99	

methyl-1-triazeno) imidaz-ole-4-carboxamide] by cellular metabolic processes. After that, the 100	

MTIC spontaneously decomposes into a methyldiazonium ion which directly reacts with genomic 101	

DNA at the N7 position of guanine (N7-mG), the N3 position of adenine (N3-mA), and the O6 102	

position of guanine (O6-mG) as well as minor adducts at the N1 position of adenine (1-mA) and 103	

the N3 position of cytosine (3-mC). In order to repair the diversity of alkylating DNA damages, 104	

human cells utilize at least three DNA repair processes, the BER system, the MMR system and 105	

direct reversal repair proteins such as MGMT [18] and the ALKBH proteins [5,6]. Intriguingly, 106	

whereas the O6-mG lesion represents a minor fraction (i.e., <10%) among all TMZ-induced 107	

alkylating DNA lesions, these lesions turn out to be the most cytotoxic and mutagenic. Related to 108	

the cytotoxic effects, it is observed that DSBs trigger apoptosis after TMZ treatment [19]. The 109	

significant adverse effects of the O6-mG lesion were demonstrated through studies involving the 110	

direct reversal repair protein MGMT. When MGMT is highly expressed in cells, alkylating agent 111	

induced cell death phenomenon is largely blocked, thus highlighting the cytotoxic effect of O6-mG 112	

lesions. In contrast, upon loss of MGMT expression, cells become highly sensitive to alkylating 113	

agents [10,20]. These studies indicated that the presence of the O6-mG lesion on genomic DNA 114	

is a critical factor for TMZ-mediated cancer therapy. Therefore, different approaches aimed at 115	

maintaining O6-mG lesions on genomic DNA, such as depleting or inhibiting the MGMT protein, 116	

have been developed [20]. As an alternative mechanism leading to TMZ resistance, it has been 117	

reported that an efficient homologous recombination (HR) pathway can rescue glioblastoma-118	

derived tumor cells from TMZ-mediated cytotoxic effects [21,22]. 119	

 120	

The MMR-mediated futile cycle model driven by the persistent presence of the O6-mG lesion 121	

in the template strand 122	

Based upon the critical observation that O6-mG is the lesion that is responsible for cell death, led 123	

to the so-called futile (or abortive) MMR cycle model [8,23] (Figure 1). When O6-mG lesions 124	
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escape direct MGMT-mediated reversal, the replicative DNA polymerase predominantly 125	

incorporates thymine and, to a lesser extent, cytosine opposite the O6-mG lesion on the template 126	

DNA during the DNA replication. The resulting base-pairing geometry remains essentially 127	

unperturbed, and the T : O6-mG base pair evades the proofreading function associated with the 128	

replicative DNA polymerase. Frequent in-corporation of T opposite the O6-mG lesion turns out to 129	

be mutagenic, inducing GC to AT transitions [24]. Since O6-mG lesions, do not prevent progression 130	

of DNA replication, the recurrent occurrence of O6-mG : T mispairs leads to MMR-mediated 131	

cytotoxicity via a so-called “futile cycle model” as follows. As the replicative DNA polymerase re-132	

incorporates thymine opposite the O6-mG lesion thus re-forming the O6-mG : T mispair that is 133	

recognized as a DNA replication error in the context of the post-replication mis-match DNA repair 134	

pathway. The thymine on the nascent strand in the O6-mG : T mispair is recognized by the MutSa 135	

complex composed of MSH2 and MSH6 proteins as a replication error. The MutSa complex in 136	

turn recruits the MutLa complex composed of MLH1 and PMS2 proteins. After that, an 137	

endonuclease activity associated with the MutLa complex introduces a nick(s) in the T-containing 138	

nascent strand leading to the formation of a large single stranded DNA gap containing a persistent 139	

O6-mG lesion. During MMR synthesis, thymine is frequently re-incorporated opposite the O6-mG 140	

lesion [24], thus forming again the O6-mG : T mismatch base pair, thus the concept of abortive or 141	

futile mismatch repair cycles [8,25] as proposed over 40 years ago [23]. The intrinsic property of 142	

MMR to remove the nascent strand, inevitably leads to the permanence of the O6-mG lesion in 143	

the parental strand. This situation is quite unique to O6-mG when compared to base analogs such 144	

as 2-AP or BrdU that get incorporated in the nascent strand forming mismatched which are 145	

efficiently removed by the MMR system. Within the framework of the futile cycle model, with 146	

respect to cytotoxicity, it is supposed that the repeated rounds of excision and re-synthesis will 147	

eventually lead to activation of the ATR/CHK1 signaling cascade and the onset of apoptosis 148	

although no precise mechanism is available yet [4,6,26,27]. 149	
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 150	

The MMR-mediated direct signaling model complementing the futile cycle model 151	

There is a complementary model termed “direct signaling model” that has been proposed to 152	

explain the resulting onset of apoptosis induced by the presence of the O6-mG lesion dependent 153	

upon the DNA replication. It is suggested that recognition of the O6-mG : T mispair by MMR 154	

complexes MutSa and MutLa, further elicits the recruitment of the DNA damage response proteins 155	

ATR, ATRIP and TopBP1 resulting in activation of the DNA damage checkpoint response (DDR) 156	

[28,29]. In that model, the MutSa complex directly interacts with ATR, TopBP1, and Chk1 while 157	

the MutLa complex interacts with TopBP1 [30]. In conclusion, the DDR checkpoint signal cascade 158	

is activated via the activation of the MMR system, triggering the onset of cell cycle arrest and 159	

apoptosis. Both models (“futile cycle” and “direct signaling”) seem to fit the observation that normal 160	

stem cells exhibit MMR-dependent DDR signaling in response to O6-mG : T mismatches within 161	

the first S phase [31]. Overall, both O6-mG lesion-induced cell death models are in good 162	

agreement with published features, namely that a functional MMR pathway is indispensable [9], 163	

that impaired MGMT is essential [18] and that the occurrence of DNA strand breaks is positively 164	

correlated [10]. However, neither of these models can explain why the MMR-dependent DDR 165	

response requires two rounds of DNA replication in cancer cells [31]. 166	

 167	

The DNA repair accident model to explain the cytotoxic effects of the alkylating agent 168	

In combination with surgery and radiation during the clinical treatment of glioblastoma, the 169	

alkylating agent TMZ is used as a chemotherapeutic agent. Despite its many years of clinical use, 170	

the mode of cytotoxic action of TMZ remains elusive. Like other alkylating agents, TMZ induces a 171	

broad spectrum of DNA lesions, including N7-mG (70-75%), N3-mA (8-12%), and O6-mG (8-9%). 172	

As described above, distinct DNA repair systems deal with these lesions, namely BER for N7-mG 173	

and N3-mA lesions, direct reversal repair via MGMT protein or the MMR system for the O6-mG 174	

lesion. As discussed above, the cytotoxic mode-of-action of alkylating agents such as TMZ is 175	
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believed to result from MMR-mediated “futile cycling” and/or “direct signaling” at O6-mG : T 176	

mispairs. Furthermore, in addition to MMR, BER-derived repair intermediates have been proposed 177	

contribute to the cytotoxic effects of TMZ [32–34]. Alternative models involving crosstalk between 178	

the BER and the MMR systems [35] or accumulation of BER repair intermediates [32] suggest the 179	

occurrence of DNA double-strand breaks (DSBs) to explain cytotoxicity. 180	

In contrast to the aforementioned models (“futile cycling” and “direct signaling”) both of 181	

which require replication to form O6-mG : T mismatches (S phase), the vast majority of cells in 182	

glioblastoma tumors are non-dividing or quiescent [36]. Therefore, investigating the mechanism 183	

of action of TMZ in the absence of replication is of critical importance. To this end, we analyzed 184	

the fate of TMZ damaged DNA in extracts (Xenopus egg extracts) in the absence of replication. 185	

For that purpose, a recently developed plasmid DNA pulldown approach, termed IDAP (for 186	

Isolation of DNA Associated Proteins), was implemented. This approach, which aims at capturing 187	

nucleoprotein complexes formed on specific plasmids in nuclear extracts, was shown to be highly 188	

efficient and versatile [37–39]. Briefly, the core aspect of this methodology is to immobilize, on 189	

magnetic beads, a circular plasmid containing the DNA-of-interest. Plasmid immobilization is 190	

mediated by means of a specific oligonucleotide able to form a triple helix (TFO probe) with a 191	

cognate double-stranded DNA sequence present on the plasmid; the other extremity of the TFO 192	

probe harbors a biotin moiety that interacts with streptavidin-conjugated magnetic beads. To 193	

implement this approach in case of alkylation lesions, plasmid DNA treated by N-methyl-N-194	

nitrosourea (MNU: a TMZ mimic) was incubated with cell-free extracts prepared from Xenopus 195	

laevis eggs under non-replicating conditions. In this methodology, many proteins were isolated 196	

irrespective of the presence or the absence of DNA damages. Following identification of the 197	

captured proteins by means of mass spectrometry (MS) analysis, a variety of proteins were 198	

specifically recruited by the presence of MNU-induced DNA damages compared to undamaged 199	

plasmid. Interestingly, most MMR core proteins were highly enriched despite the absence of DNA 200	

replication. Biochemical assays were subsequently implemented to validate the MS data. It was 201	
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revealed that proteins of both the MMR and the BER systems are active on the damaged DNA 202	

treated by MNU. From the biochemical data, we concluded that when MMR and BER repair 203	

processes operate independently on lesions located in the same DNA molecule in opposite 204	

strands, a double-strand break may result from the accidental encounter of these two repair 205	

intermediates. [11]. We refer to such an event as a “repair accident” (Figure 2) [12].  206	

 207	

 208	

 209	

Figure 2. Repair Accident model. In case of treatment with an alkylating agent such as TMZ during 210	

chemotherapy, a variety of DNA damages appear and are repaired by multiple DNA repair 211	

pathways. Indeed, distinct DNA repair systems work independently dependent upon their 212	

substrate specificities. The BER system mainly acts at the N7-mG or the N3-mA lesion, while the 213	

core MMR proteins recognize not only the O6-mG : T base pair but also the O6-mG : C base pair 214	

as shown by our work [11]. Therefore, even in non-dividing or quiescent cells treated by alkylating 215	

agents, when an N7-mG or an N3-mA lesion are closely located with the O6-mG lesion (e.g., within 216	

several hundred nucleotides), the accidental encounter of BER and MMR derived repair 217	

intermediates were shown to lead to DSB when they occur within the same time frame. In non-218	
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dividing cells treated by an alkylating agent, the “repair accident model” scenario is as follows: 219	

when the MMR system recognizes the O6-mG : C base pair, the mechanism of initiation of the 220	

MMR reaction is presently unknown. It is likely that the strand discrimination signal is provided by 221	

a BER-mediated nick equally likely to occur in either strand. This is in contrast to the situation that 222	

occurs during replication where MMR is directed toward excision of the nascent strand. In any 223	

case, Exo1-mediated strand degradation or helicase unwinding assists the DNA gap formation. If, 224	

within the same timeframe, the MMR-mediated gap formation process encounters, in the opposite 225	

strand, a nick resulting from an independent BER repair intermediate in, a DSB will result.  226	

 227	

Genotoxic impact of methylazoxymethanol (MAM) 228	

MAM, which is a hydrazine-related chemical, is naturally found in foods including mushrooms and 229	

plants, possessing carcinogenic and neurotoxic potential (i.e., linked to cancer and neurological 230	

disease) following metabolic activation in the liver [13–15]. Like TMZ, the activated MAM induce 231	

a variety of DNA damages (e.g., O6-mG, N7-mG, 8-oxo-G), resulting in activation of multiple DNA 232	

repair systems including the MMR and the BER systems. Whereas the MAM-treated postmitotic 233	

cells undergo apoptosis or non-apoptotic cell death, the mechanism of action remains to be elusive. 234	

Given the similarity, between MAM and TMZ, in adduct formation, we suggest that cytotoxic effects 235	

of MAM in the postmitotic cells might be achieved within the framework of the “repair accident 236	

model” described above.  237	

 238	

Discussion 239	

From numerous studies in numerous cellular and animal models, it has been concluded that the 240	

cytotoxicity of alkylating agents, including the most crucial therapeutic agent TMZ, is mainly due 241	

to O6-mG lesions. The cytotoxic cascade depends on both MMR and DNA replication. To explain 242	

these features, two models (futile cycle and direct signaling models) have been proposed. In these 243	

models, the target of the MMR system is the O6-mG : T mispair formed during the DNA replication 244	
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[8]. However, since these models cannot explain all of the experimental observations, it suggests 245	

that there may be a missing piece to fully explain the alkylating agent-induced cytotoxic effects. In 246	

particular, the proposed models require DNA replication, a feature that is not encountered in most 247	

glioblastoma tumor cells that are non-dividing or quiescent [36]. In order to explain the intricate 248	

phenomena involved in alkylating agent-induced cytotoxic effects, a crosstalk between the MMR 249	

and the BER systems has been suggested [33–35]. The “repair accident model” proposed here 250	

suggests a mechanism for the formation of cytotoxic DSBs in the absence of the DNA replication 251	

by virtue of an accidental encounter of MMR and BER repair intermediates.  252	

When considering the clinical use of alkylating agents based on the repair accident model 253	

(Figure 2), as DSBs are formed as a consequence of concomitant processing of lesions by 254	

proteins of both the MMR and BER systems, enhancement of the cytotoxic effects may be 255	

achieved by partially impairing these repair systems, namely by slowing down the latter events 256	

such repair synthesis or ligation steps in either BER and/or MMR.  257	

In addition to the pre-existing two models (futile cycle and direct signaling models), the 258	

repair accident model will become the third model to compensate the weak points of the pre-259	

existing two models that are incompatible with the cytotoxic effects in non-dividing or quiescent 260	

cells. Furthermore, the idea of DSB formation in the repair accident model may become a 261	

molecular basis to explain the cytotoxic effects of MAM inducing cancer and neurological disease 262	

in non-dividing or quiescent cells 263	

 264	
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