

Synthesis, NMR, IR, Raman spectra and DFT calculations of 1-octyl-1,4-diazabicyclo [2.2.2] octan-1-ium bis(trifluoromethylsulfonyl)imide

Boumediene Haddad, Silvia Antonia Brandán, Bekhaled Fetouhi, Annalisa Paolone, Mostefa Boumediene, Didier Villemin, Mustapha Rahmouni, Serge

Bresson

▶ To cite this version:

Boumediene Haddad, Silvia Antonia Brandán, Bekhaled Fetouhi, Annalisa Paolone, Mostefa Boumediene, et al.. Synthesis, NMR, IR, Raman spectra and DFT calculations of 1-octyl-1,4-diazabicyclo [2.2.2] octan-1-ium bis(trifluoromethylsulfonyl)imide. Journal of Molecular Structure, 2023, 1288 (4), pp.135792. 10.1016/j.molstruc.2023.135792 . hal-04727650v1

HAL Id: hal-04727650 https://hal.science/hal-04727650v1

Submitted on 9 Oct 2024 (v1), last revised 11 Oct 2024 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Journal of Molecular Structure

Synthesis, NMR, FT-IR, FT-Raman spectra and thermal studies of Choline bis(trifluoromethylsulfonyl)imide Ionic Liquid combined with DFT Calculations.

N	lanuscript Draft
---	------------------

Manuscript Number:	MOLSTRUC-D-24-00970				
Article Type:	Research Paper				
Keywords:	Choline-ionic liquids; bis(trifluoromethylsulfonyl)imide, NMR; Raman/IR vibrational spectra; TGA /DTA thermal analysis; DFT calculations				
Corresponding Author:	BOUMEDIENE HADDAD, Ph.D Universite Dr Tahar Moulay de Saida Saida, ALGERIA				
First Author:	BOUMEDIENE HADDAD, Ph.D				
Order of Authors:	BOUMEDIENE HADDAD, Ph.D				
	Silvia Antonia Brandán				
	María V. Castillo				
	Touil Aya Khadidja				
	Annalisa Paolone				
	Bekhaled Fetouhi				
	Nathalie Bar				
	Didier Villemin				
	Mustapha Rahmouni				
	Serge Bresson				
Abstract:	In an environmentally friendly manner, the reaction of choline chloride ([CHOL+][(CI-]) with lithium bis(trifluoromethanesulfonyl)imide ([Li+][(CF3SO2)2N-]) in water leads to the formation of the ionic liquid (IL) choline bis(trifluoromethanesulfonyl)imide ([CHOL+][(CF3SO2)2N-]). The ionic liquid IL have been characterized by using1H, 13C and, 19F-NMR, FT-IR and FT-Raman spectroscopies. The experimental spectra have been combined with B3LYP/6-311++G** calculations to obtain complete assignments of vibrational spectra of IL and its cation by using the scaled mechanical quantum force field (SQMFF) methodology and the Molvib program. Here, we reported the 102 vibration modes of IL and the 36 of cation together with the scaled force constants for both species. The predicted structure shows the formation of the S-O···H interaction in agreement with experiments. Very good correlations evidence the comparisons among the experimental and theoretical NMR, FT-IR and FT-Raman spectra. The existence ofthe strong S-O···H interaction and other weak H bonds interactions are supported by NBO and AIM calculations. The analyses of gap values suggest a higher reactivity of IL in gas phase and a higher stability in aqueous solution. The comparison of this IL with [C8DABCO+][(CF3SO2)2N-] reveal that the [C8DABCO+] cation increases the reactivity of latter IL in solution.Besides a detailed characterization of its thermal (TGA/DSC) is presented. Investigation of the thermal properties demonstrated that the investigated IL can be classified as an ionic liquid, as the melting temperature is near room temperature. A glass transition and a cold crystallization were revealed at -75 and -26 °C.				
Suggested Reviewers:	S. Selvaraj Selvaraj sselvaphy@yahoo.com				
	Rajendran Satheeshkumar drrsatheeshphd@gmail.com				
	Mohamed I. Attia mattia@ksu.edu.sa				

Cover Letter

Date: 04 th February, 2024, Saida

Pr. Dr. Boumediene HADDAD Department of Chemistry, Dr. Moulay Taher University, Saida, EN-NASR, BP : 138. Algeria.

Tel: +00213676802567 e-mail:<u>haddadboumediene@yahoo.com</u>

То

•

Editor J. Molecular Structure

Dear Editor;

I send the article for consideration to publication in Journal of Molecular Structure, " **Synthesis, NMR, FT-IR, FT-Raman spectra and thermal studies of Choline bis(trifluoromethylsulfonyl)imide Ionic Liquid combined with DFT Calculations.**", by Boumediene Haddad, Silvia Antonia Brandán,María V. Castillo, Touil Aya Khadidja, Annalisa Paolone, Bekhaled Fetouhi, Nathalie Bar, Didier Villemin, Mustapha Rahmouni, Serge Bresson

With my best regards, Sincerely yours,

Corresponding author.

(Pr. Boumediene HADDAD)

 MANUSCRIPT TITLE AND AUTHORS: "Synthesis, NMR, FT-IR, FT-Raman spectra and thermal studies of Choline bis(trifluoromethylsulfonyl)imide Ionic Liquid combined with DFT Calculations ", by Boumediene Haddad, Silvia Antonia Brandán,María V. Castillo, Touil Aya Khadidja, Annalisa Paolone, Bekhaled Fetouhi, Nathalie Bar, Villemin, Mustapha Rahmouni, Serge Bresson

- CORRESPONDING AUTHOR'S NAME: Boumediene HADDAD

Pr. Dr. Boumediene HADDAD Department of Chemistry, Dr. Moulay Taher University,

Saida, EN-NASR, BP : 138. Algeria.

Tel: +00213676802567

e-mail:haddadboumediene@yahoo.com

- MANUSCRIPT TYPE: FULL LENGTH Article

- MANUSCRIPT CATEGORY: Journal of Molecular Structure

- MANUSCRIPT'S SCIENTIFIC MOTIVATION: In an environmentally friendly choline chloride $([CHOL^{+}][(Cl^{-}])]$ the reaction of with lithium manner. bis(trifluoromethanesulfonyl)imide ($[Li^+][(CF_3SO_2)_2N^-]$) in water leads to the formation of the ionic liquid (IL) choline bis(trifluoromethanesulfonyl)imide ([CHOL⁺][(CF₃SO₂)₂N⁻]).The ionic liquid IL have been characterized by using¹H, ¹³C and, ¹⁹F-NMR, FT-IR and FT-Raman spectroscopies. The experimental spectra have been combined with B3LYP/6-311++G** calculations to obtain complete assignments of vibrational spectra of IL and its cation by using the scaled mechanical quantum force field (SQMFF) methodology and the Molvib program. Here, we reported the 102 vibration modes of IL and the 36 of cation together with the scaled force constants for both species. The predicted structure shows the formation of the S-O…H interaction in agreement with experiments. Very good correlations evidence the comparisons among the experimental and theoretical NMR, FT-IR and FT-Raman spectra. The existence of the strong S-O···H interaction and other weak H bonds interactions are supported by NBO and AIM calculations. The analyses of gap values suggest a higher reactivity of IL in gas phase and a higher stability in aqueous solution. The comparison of this IL with [C₈DABCO⁺][(CF₃SO₂)₂N⁻] reveal that the [C₈DABCO⁺] cation increases the reactivity of latter IL in solution.Besides a detailed characterization of its thermal (TGA/DSC) is presented. Investigation of the thermal properties demonstrated that the investigated IL can be classified as an ionic liquid, as the melting temperature is near room temperature. A glass transition and a cold crystallization were revealed at -75 and -26 °C.

Pr. Boumediene HADDAD

HIGHLIGHTS

- ✓ Choline bis(trifluoromethanesulfonyl)imide ionic liquid was synthetized.
- ✓ Characterization by NMR, FT-IR and FT-Raman spectroscopies.
- \checkmark The 102 vibration modes of IL and the 36 of cation are reported.
- ✓ NBO and AIM calculations support the existence of strong S-O…H interactions.
- ✓ Thermal (TGA/DSC) properties are presented.

Synthesis, NMR, FT-IR, FT-Raman spectra and thermal studies of Choline bis(trifluoromethylsulfonyl)imide Ionic Liquid combined with DFT Calculations.

Boumediene Haddad^{1,2,*}, Silvia Antonia Brandán³,María V. Castillo³, Touil Aya Khadidja^{1,4}, Annalisa Paolone⁵, Bekhaled Fetouhi^{6,7},Nathalie Bar²,Didier Villemin², Mustapha Rahmouni⁷, Serge Bresson⁸

¹Department of Chemistry, Faculty of Sciences, University of Saida - Dr. Moulay-Tahar, 20000, Algeria. ²LCMT, ENSICAEN, UMR 6507 CNRS, University of Caen, 6 bd MlJuin, 14050 Caen, France

³Cátedra de Química General, Instituto de Química Inorgánica, Facultad de Bioquímica. Química y Farmacia,

Universidad Nacional de Tucumán, Ayacucho 471, (4000) San Miguel de Tucumán, Tucumán, Argentina

⁴Chemistry Laboratory of Synthesis, Properties, and Applications (CLSPA-Saida), University of Saida, Algeria

⁵CNR-ISC, U.O.S. La Sapienza, Piazzale A. Moro 5, 00185 Roma, Italy

⁶Faculty of Natural and Life Sciences, University of Tiaret, BP78 ZaarouraTiaret 14000, Algeria

⁷ Synthesis and Catalysis Laboratory LSCT, Tiaret University, Tiaret, Algeria

⁸UP Transformations & Agro-Ressources, Institut Polytechnique UniLaSalle, SFR Condorcet 3417, BP 30313, F-60026 Beauvais, France.

*Corresponding author: Tel.: +213676802567 E-mail :<u>haddadboumediene@yahoo.com</u> (HADDAD Boumediene).

Abstract

In an environmentally friendly manner, the reaction of choline chloride ($[CHOL^+][(Cl^-)]$) with lithium bis(trifluoromethanesulfonyl)imide ($[Li^+][(CF_3SO_2)_2N^-]$) in water leads to the formation of the ionic liquid (IL) choline bis(trifluoromethanesulfonyl)imide ([CHOL⁺][(CF₃SO₂)₂N⁻]). The ionic liquid IL have been characterized by using¹H, ¹³C and, ¹⁹F-NMR, FT-IR and FT-Raman spectroscopies. The experimental spectra have been combined with B3LYP/6-311++G** calculations to obtain complete assignments of vibrational spectra of IL and its cation by using the scaled mechanical quantum force field (SQMFF) methodology and the Molvib program. Here, we reported the 102 vibration modes of IL and the 36 of cation together with the scaled force constants for both species. The predicted structure shows the formation of the S-O···H interaction in agreement with experiments. Very good correlations evidence the comparisons among the experimental and theoretical NMR, FT-IR and FT-Raman spectra. The existence of the strong S-O···H interaction and other weak H bonds interactions are supported by NBO and AIM calculations. The analyses of gap values suggest a higher reactivity of IL in gas phase and a higher stability in aqueous solution. The comparison of this IL with $[C_8DABCO^+][(CF_3SO_2)_2N^-]$ reveal that the [C₈DABCO⁺] cation increases the reactivity of latter IL in solution.Besides a detailed characterization of its thermal (TGA/DSC) is presented. Investigation of the thermal properties demonstrated that the investigated IL can be classified as an ionic liquid, as the melting temperature is near room temperature. A glass transition and a cold crystallization were revealed at -75 and -26 °C.

KEYWORDS: Choline-ionic liquids; bis(trifluoromethylsulfonyl)imide, NMR; Raman/IR vibrational spectra;

TGA /DTA thermal analysis; DFT calculations.

1. Introduction

For several years, there has been a increasing concern in the development of new solvents, in particular ionic liquids (ILs) and deep eutectic solvents (DES) [1] meeting certain green chemistry criteria and considering as potential environmentally friendly alternative solvents [2]. Both categories of solvents present attractive characteristics since they have a negligible saturated vapor pressure, are non-flammable and have good thermal and chemical stability [3]. These solvents can have very good ionic conduction when ionic molecules are integrated into the mixture [4] opening the possibility of using them in energy-related fields. In addition, the specific properties of ILs, modulated by the appropriate choice of couple anion-cation [5], justify their use in many fields such as the chemical industry [6], medicine [7], nanotechnologies [8], the field of energy [9] and in particular electrochemistry [10] or even in renewable energies [11]. Now, most of researchers have been focusing their attention on the synthesis of new DES and in the study of their properties for device applications. Thus, choline derivatives have been the subjects of numerous studies and play an essential role in the evolution of green chemistry. Therefore, the quaternary ammonium salt choline, also know as hepacholine, biocolina and lipotril and cholonium, has shown interesting and unique physico-chemical properties in various processes extraction [12]. Some metal-free cholinebased ionic liquids (ILs) were developed by Liu et al [13], with the aim to use them as catalysts in the glycolysis of PET. Rabhi et al. [14] evaluated a choline bis(trifluoromethylsulfonyl)imide based ionic liquid for the extraction of o-xylene, o-cresol and acetonitrile from the aqueous solution showing a good potential. Domanska et al. [15] found that $([CHOL^+][(CF_3SO_2)_2N^-])$ strongly interact with pyridene, leading to high heptane/pyridine selectivity, while Cesari et al. [16] demonstrated that [CHOL⁺][(CF₃SO₂)₂N⁻] is an appropriate solvent to recover phenolic compounds from water. Ribeiro et al. [17] haveinvestigated choline oxyanions salts attached with the acetate and dihydrogen phosphate anions by using the IR and Raman spectra. These authors evidenced the spectral marks of the H-bonds interactions and intramolecular motions of the ions. In other study, Ludwig et al. have revealed the effect of structural and dynamical behaviour of $[CHOL^+][(CF_3SO_2)_2N^-]$ on melting temperatures, viscosities and conductivities[18]. Nockemann et al. [19] reported binary mixtures of water with temperature effect on the thermophysical, and thermomorphic properties, as well as the optical properties of choline bis(trifluoromethanesulfonyl)imide, while Zhuravlev et al. [20] studied the electronic and vibrational properties of ILs synthesized with choline halides. To date, the experimental structure of $[CHOL^+][(CF_3SO_2)_2N^-]$ was determined by Nockemann et al. [19] by XRD but there are no studies reported on

topological, electronic and vibrational properties of[CHOL⁺][(CF₃SO₂)₂N⁻] nor any detailled assignments of its vibrational spectra. Hence, the present works aims to synthesize the [CHOL⁺][(CF₃SO₂)₂N⁻]IL through a simple metathesis reaction, and to characterize it by using ¹H, ¹³C and ¹⁹F-NMR, infrared, Raman spectroscopy combined with computational techniques in order to perform the complete vibrational assignments. Hence, its scaled harmonic force constants are reported. Moreover, the physical properties were investigated by DSC and TGA while the inter- and intra-molecular interactions are analyzed utilizing natural bond orbital (NBO) and atoms in molecules (AIM) calculations in addition to the IR and Raman spectra. Reactivities and behaviours of IL in different media are also predicted.

2. Experimental

2.1. Materials and methods

In the current work, all materials used had analytical grades and were not purified before being utilized. Choline chloride ([CHOL⁺][(Cl⁻]) (purity: 98%), and lithium bis(trifluoromethanesulfonyl)imide ([Li⁺][(CF₃SO₂)₂N⁻]) were commercially available from Fluka. Deionized H₂O was obtained by means of a Millipore ion-exchange resin deionizer.

Choline bis(trifluoromethanesulfonyl)imide, ([CHOL⁺][(CF₃SO₂)₂N⁻]) was synthesized at the LCMT Molecular and Thio-organic Chemistry Laboratory. Ionic liquid of $([CHOL^+][(CF_3SO_2)_2N^-])$ is prepared following our previous works [21-23], and was characterized by intermediary of NMR, IR and Raman spectroscopy. Firstly, the NMR analysis include¹H-NMR (600 MHz), ¹³C-NMR (150.87 MHz) decoupled only from ¹H and¹⁹F.¹⁹F-NMR (564.04 MHz) spectra were acquired on a Bruker-Neo 600MHz instrument; the chemical shifts were referenced to TMS as external standard. The spectra were measured in dimethylsulfoxide (DMSO- d_6), and the DMSO residual peak was used as the ¹H internal reference (quintuplet $\delta = 2.5$ ppm), while the DMSO-*d*₆central peak at $\delta = 39.5$ ppm was used as the ¹³C reference. The Raman spectrum of $([CHOL^+][(CF_3SO_2)_2N^-])$ was acquired by a Vertex 70-RAM II Bruker FT-Raman spectrometer in the4000-45 cm⁻¹ range (resolution=1 cm⁻¹, 128 scans for each spectrum) at room temperature. The FT-IR spectrum of ([CHOL⁺][(CF₃SO₂)₂N⁻]) was recorded by on a Bruker Vertex II-70RAM Spectrometer between 600and 4000 cm⁻¹ (resolution= 1 cm^{-1} , 64 scans per spectrum).

The thermal stability of $([CHOL^+][(CF_3SO_2)_2N^-])$ was examined by thermogravimetric analysis (TGA) between 25and700 °C, while the phase transition were examined by differential scanning calorimeter (DSC) between -80 and 200 °C.A Mettler Toledo DSC3 and a Setaram Setsys Evolution 1200 TGA system were used for DSC and TGA measurements,

which were both performed in an inert (argon) helium flux of 60 mL/min. The temperature rate for the measurements were 5 (DSC) or 10 °C/min (TGA).

In the present study, the choline bis(trifluoromethanesulfonyl)imide ([CHOL⁺][(CF₃SO₂)₂N⁻]) was synthesized through a simple anion exchange reactions as shown in **Scheme 1**.A solution of 2.87g(0.1M) of lithium bis(trifluoromethylsulfonyl)imide ([Li⁺][(CF₃SO₂)₂N⁻]) in 15 mL of distilled water and a solution of 1.32g (0.1M) of Choline chloride ([CHOL⁺][(Cl⁻]) in 15 mL of distilled water were mixed in a flask with stirring for 1 hour at room temperature. After isolation of ([CHOL⁺][(CF₃SO₂)₂N⁻]) (bottom) from lithium chloride (top) by centrifugation for 60 sinthe aqueous phase, the obtained ([CHOL⁺][(CF₃SO₂)₂N⁻])was washed a few times by deionized water in order to remove chloride impuritiesandthen dried in a vacuum better then 1 mbar for 12 h, to obtain a colorless liquid. Finally,([CHOL⁺][(CF₃SO₂)₂N⁻]) was dried in Ca₂Cl₂ to remove water traces. Coulometric Karl Fischer titration, performed by a Metrohm 831 instrument, found a water content lower than 523 ppm.

Scheme 1. General synthesis of Choline bis(trifluoromethylsulfonyl)imide.

2.2. Computational details

The starting initial structures of $[CHOL^+][(CF_3SO_2)_2N^-]$ IL and its cation were extracted from the CIF file of Ref [19] while the anion was removed from the IL using *GaussView*[26]. The structures of the cation and of the IL were optimized both in vacuum and in an aqueous solution at the B3LYP/6-311++G** level of theory/basis set, by means of Gaussian 16 [24,25,27].The structure of $[(CF_3SO_2)_2N^-]$ anion was taken from that previously reported at the same level of theory [21,22]. The integral equation-formalism polarizable continuum model (IEF-PCM) and universal solvation method (SMD) calculations were used for all calculations in solution [28-30].The MOLDRAW program was applied for the volume calculations [31].A calculation of the vibration frequencies was performed for all optimized structures.

The NBO and AIM2000 programs were employed to calculate atomic charges, bond orders stabilization energies, and topological properties [32-35]. The reactivity of the species was calculated based on frontier orbitals [21,22,36-37]. Harmonic force fields of the species were calculated and the assignment of the vibrations was performed accordingly. For that purpose, the scaled quantum mechanical force field (SQMFF) methodology was employed using

MOLVIB [38-40]. The Raman spectra predicted for the three specie in activities were transformed to intensities [41]. The electronic spectra in aqueous solution were investigated using time-dependent DFT calculations (TD-DFT) performed by Gaussian 16 [24,25,27].program by [26]. The NMR spectra were calculated applying the Gauge-Independent Atomic Orbital (GIAO) method [42].

3. Results and discussion

3.1. NMR spectra analysis

The synthesized [CHOL⁺][(CF₃SO₂)₂N⁻] IL was characterized by using ¹H, ¹³C and ¹⁹F-NMR spectroscopy technique. The experimental ¹H, ¹³C and and¹⁹F-NMR are given respectively in **Figs. 1, 2 and 3**. The NMR spectra show the following signals. ¹H-NMR (600 MHz, DMSO-d₆) $\delta_{\rm H}$ (ppm): 3.10 (s,CH₃, 9H), 3.40 (t, NCH₂, 2H, J=1.8 Hz),3.83 (tt, CH₂, 2H, J=5.4 and 1.4 Hz), 5.29 (t, OH, J_{H,OH}= 5.4 Hz). ¹³C-NMR (150.87) MHz, decoupled with ¹H, coupled with ¹⁹F, DMSO) $\delta_{\rm C}$ (ppm): 52.9, 55.2, 66.8, 116.1, 118.3, 120.12, 122.36.¹⁹F-NMR (564.04 MHz, DMSO) $\delta_{\rm F}$ (ppm): – 78.97(s, (CF₃).

In the ¹H-NMR spectrum, the single intensepeak at 3.10 ppm corresponds to nine protons (H_a) of three methyl groups bounded to the nitrogen atom [(CH₃)₃N⁺CH₂CH₂OH] with an integration of around 9.00 which have the same chemical and magnetic equivalence. The triplet at 3.40 ppm indicates protons (H_b) of methylene groups [(CH₃)₃N⁺CH₂CH₂OH], while the methylene protons $(H_c)[(CH_3)_3N^+CH_2CH_2OH]$ are centred at 3.83 ppm. Both triplets have an integration of around 2.00. On the other hand, the signal at $\delta = 5.29$ ppmwith an integration of around 1.00can be attributed to the proton (H_d) of hydroxyl group in the choline cation [(CH₃)₃N⁺CH₂CH₂OH]. The appearance of this signal as a triplet indicates that the –OH group of ([CHOL⁺]) was coupled with adjacent protons of the CH₂ throught the C-O-H. The agreement of these integration values evidence the structure of $[CHOL^+][(CF_3SO_2)_2N^-]$ and its high purity.Note that the experimental¹³C-NMR spectrum decoupled with ¹H but non decoupled with ¹⁹F also further corroborate the structure of ([CHOL⁺]) cation. Moreover, one finds a quartet (intensity 1,3,3,1) at 116.1, 118.3, 120.1, 122.4 ppm, consistently with the expected signals of the ([NTf₂⁻]) anion, $\delta = 119.21$ ppm with J_{C-F} ≈ 312 Hz [43]. Furthermore, ¹⁹F-NMR spectrum presents a singlet at δ = -78.97 ppm, in agreement with the presence of F atoms. This demonstrate the effectiveness of the anionic reaction.

Figure 2. Experimental ¹³C-NMR spectrum of [CHOL⁺][(CF₃SO₂)₂N⁻].

Figure 3. Experimental ¹⁹F-NMR spectrum of [CHOL⁺][(CF₃SO₂)₂N⁻].

The computed¹H,¹³C and ¹⁹F-NMR chemical shifts are reported in Tables 1, 2 and 3, where they are compared with the experimental values. The predicted values for the F atoms of anion and IL were obtained using CCl₃-F as reference. The optimized structures of cation, anion and IL are reported in **Figure 4**.

Figure 4. Optimized structures of cation, anion and $[CHOL^+][(CF_3SO_2)_2N^-]$ ionic liquid in gas phase by using the B3LYP/6-311G^{**} level of theory showing the formation of intra-molecular H bond between anO atom of S=O group and the H atom of OH group.

Experimental and computed values showbetter agreement for the ¹Hand ¹⁹F nucleui of the IL (0.57 and 21.62 ppm) than of the cation (1.01 and 32.75 ppm) while, on the contrary, for the ¹³C nucleus a higher RMSD value is observed for IL (7.16 ppm) as compared to value of cation (4.32 ppm). From the good concordances observed for the ¹H and ¹³C nucleus the molecular structure of IL was confirmed despite the lower correlations observed for the ¹⁹F nucleus, as also was observed for the same anion in ILs with different cations [21,22].The high RMSD observed for the ¹⁹F nucleus could be justified by the predicted C-F····H interactions, as we will see in the next section. In general, the observed variations could be ascribed to different solvent used and to other types of interactions in solution not considered in the calculations.

3.2. Optimizations in gas phase and aqueous solution

Figure 4 shows the optimized structure of $[CHOL^+][(CF_3SO_2)_2N^-]$ IL in which one can note an intra-molecular H bond between the O atom of a SO₂ group of $[(CF_3SO_2)_2N^-]$ and hydrogen atom of OH group of $[CHOL^+]$. **Table 4** shows the calculated total energies, volume (V) and dipole moment (μ) of the IL, anion and cation in different media. The anion presents higher μ and V in the two media than the cation and both species increase these values in the IL. Higher μ and V values are observed for the IL in solution (24.19 D and 317.6 Å³), as compared tothe gas phase (14.22 D and 311.5Å³). In solution, the cation and IL show a volume expansion, as a consequence of the increase in their μ values, while the anion decreases its V in water. **Figure S1** shows the different magnitudes, directions andorientations of the μ vectors of the three species. The vectors of cation and anion are shown in gas phase while for the IL they are reported in both media. In the IL the vector is oriented from the N of anion to the N of cation changing the direction and orientation in solution. Moreover, one can note that the values of total energies corrected by the Zero-point vibrational energy (ZPVE) are less negative than the non corrected ones, as observed in other ILs [21,22]. The difference between the uncorrected energy of the IL (-2156.5257 Hartrees) and the sum of the energies of the isolated cation and anions (-328.7894 and - 1827.6092= - 2156.3986 Hartrees) is the interaction energy between the ions.

Table 5 shows some predicted distances in the IL: the closest distances between anion and cation involveS2-O3…H18 (1.832Å) and S9-O10…H25 (2.160 Å)in the gas phase while in solution the closest distance is that of the former groups (1.948 Å. In Table 5 it is possible to observe short C-F…H distances, which can justify the high ¹⁹F chemical shifts predicted for IL.

In **Table 6**the geometrical parameters for the IL calculated in the two media are compared with the corresponding experimental ones reported in Ref [19] in the solid state. A better agreement is found for distances (0.055-0029 Å) than for angles (1.8-1.3 °). The values calculated in solution display in general a lower agreement with the experiments. Regarding the values, it is observed that the predicted bond O3-H18 lengths in both media (1.832, 1.948 Å) are different from the experimental one (1.703 Å), possibly because of the formation of hydrogen bonds in the real system. Also, as a consequence of cation-anion interactions the bond S2-O3-H18 angles change from 137.4 ° in gas phase to 130.0 ° in solution while the experimental value is slight lower (127.8 °). Thus, from Fig. 4 we observed the formation of S2-O3…H18 interaction and, for this reason, the related parameter (N1-S2-O3) changes notably in both media. On the other hand, few change is observed in the S2=O3 bond length (1.473 Å) in gas phase; however, a lower value (1.469 Å) than the experimental one (1.475 Å) is observed in solution. Obviously, the heavier S and O atoms are more difficult to modify than lighter H ones. The parameters related to CF₃ groups of anion and the quaternary N16 atoms of cation have extremely small changes in both media. However, in solution, the geometrical parameters of N1 atoms change probably because the lone pairs could be hydrated.

3.3. Atomic charges, molecular electrostatic potentials and bond orders

The Mulliken, Merk-Kollman (MK) and atomic natural population analysis (NPA) charges for all atoms of IL are compared in **Table S1**. The graphic comparison of the charges of N, C, O and F atoms are displayed in **Figure S3**. The variations of MK and NPA charges on those atoms follow practically the same behaviours in both media. Small values of Mulliken changes are calculated in a vacuum, while, on the contrary, some changes in these values occur in solution. The Mulliken charges on on S2 increases in gas phase while it decreases on S9.The MK charge on quaternary N16 is positive in both media , as expected for the cation, while NPA and Mulliken charge is negative. The values of NPA and MK charges of O, C and F show little change with the medium. In this study, the three types of charges in the two media show on N1 negative values, which are expected since that atom belongs to the anion.

To analyse the reaction sites in the IL and, also the strength of different bonds, the bond orders (BO) expressed as Wiberg indexes and the molecular electrostatic potentials (MEP)have been studied in both media. **Table S2** shows the two parameters for the [CHOL⁺][(CF₃SO₂)₂N⁻]IL in the two media. The MEP values change as expected considering the electronegativity of the atoms in the order F> O > S > N > C> H. The O atoms of the anion display the higher variations (0.055-0.019 a.u.) passing from vacuum to solution, while for the S (0.023 a.u.) and C (0.017-0.015 a.u.) atoms, lower values are predicted. Moreover, the lowest MEP values are calculated for the most labile atoms in both media (H18); hence, it is clear that this atom forms an H bond with the O3 atom of SO₂ group belonging to anion. Figure S3 reports the MEP surfaces of IL in the two media and one can visualize (i) the various electrophilic and nucleophilic sites of reaction and, (ii) the notable reduction of the energy in solution. The value decreases from 0.074 a.u.in vacuum to 0.011 a.u. in solution. From figure S3 it is observed that the regions corresponding to cationpresents blue colours and are electrophilic, which is expected because it is positively charged, while the red colours corresponding to anion are located on the O atoms and are the nucleophilic sites.

The bond orders (BO) by atom, expressed as Wiberg indexes, for the IL in the two media are displayed in Table S2: the values of all the atoms change in solution, with the exception of S2 and H36 atoms that have similar values independently of the medium. The slight differences observed in these values could be related to the formation of hydrogen bonds in solution.

3.4. NBO and AIM calculations

The investigation of stability of $[CHOL^+][(CF_3SO_2)_2N^-]$ in the two media is highly important, especially considering the hydrogen bond network which develops in the IL. Here, the stabilities of IL have been studied by using:(i) the acceptor-donor interactions energies (E2) calculated with the Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis [32] and(ii) by using the Bader's theory of atoms in molecules with the AIM 2000 program [33,34]. **Table S3** reports the E2 values [32]. Two different types of interactions are expected for the IL, as previously observed in other ILs [21,22]. The first one is the $n \rightarrow \sigma^*$ interaction

between the lone pairs of O, N and F atoms of $[(CF_3SO_2)_2N^-]$ to various anti bonding S-O, S-N, S-C, and C-F orbitals. The second type of interaction is the $\sigma^* \rightarrow \sigma^*$ one that involves the anti bonding S-O orbitals (see Table S3). The total energy is 1762.0 kJ/mol in vacuum and 1950.1 kJ/mol in solution. The similarity of these values point towards a similar stability of the IL in the two media, even though it seems slightly more stable in solution.

The AIM 2000 program [33,34] was used to investigate the topological properties of the IL in the various critical points. Table S4 reports the main interactions while Table S5 summarize the main values of the topological properties found both in gas and in solution phases. Figure S4 reports the location of the critical points. The new interactionsS9-O10···H25 and C19-H22···N1 in gas phase and, C12-F13···H25 in solution are shown in **Table S6**. Both NBO and AIM investigations suggest a good stability of $[CHOL^+][(CF_3SO_2)_2N^-]$, independently of the medium.

3.5. Frontier Orbitals calculations

The frontier orbitals and their differences are calculated to obtain the gap values and the reactivity of the IL. The global softness (S), hardness (η), and electrophilicity (ω) were calculated (see Table S7). For comparison, the same parameters were computed for the isolated ions. The gap of the cation largely exceeds that of the anion, while in the ionic couple one has an intermediate value, which is higher in solution(7.4640 eV) than in the gas phase (6.5360 eV); therefore, the IL is more reactive in vacuum and more stable in solution. Comparing the gap values of $[CHOL^+]$ $[(CF_3SO_2)_2N^-]$ IL with those reported for $[C_8DABCO^+][(CF_3SO_2)_2N^-]$ (6.7756 eV in gas phase and 5.7389 eV in solution) it is clear that this latter IL is more reactive in solution while the former is more reactive in gas phase [22]. Here, the $[C_8DABCO^+]$ cation increases the reactivity of $[C_8DABCO^+][(CF_3SO_2)_2N^-]$ in solution while [CHOL⁺] increases the reactivity of [CHOL⁺][(CF_3SO_2)₂N⁻] in gasphase. The frontier orbitals of $[CHOL^+][(CF_3SO_2)_2N^-]$ in the two media are reported in Figure S5; one can observe that the anion orbitals participate in the HOMO in gas phase but not in solution while the contrary is observed in the LUMO. The cation is involved in the HOMO in solution. Evidently, the different participations of HOMO and LUMO in the media justifies the higher reactivity of IL in vacuum and its higher stability (< reactivity) in solution. Consistently, the global electrophilicity index $\omega(3.1743 \text{ eV})$ in higher in the gas phase.

3.6. Vibrational study

We used calculation to optimize the structure of $[CHOL^+][(CF_3SO_2)_2N^-]$ IL with C_1 symmetry, with the SO₂ groups in opposite positions and with the CF₃ groups in Trans positions, as shown in Figure 4.In this IL, the presence of 36 atoms generates a total of 102 normal vibration modes, all a of them both Raman and infrared active. The experimental infrared and Raman spectra in the solid phase are compared respectively in Figures 5 and 6 with the spectra calculated for the ionic couple, the cation and anion in vacuum. Calculated and experimental spectra show a good correlation, especially the Raman one. Clearly, Figure 5 displays that the observed IR bands of IL in the region of higher wavenumbers are due to cation while the bands between2000 and 10 cm⁻¹ are due to cation and anion species. The theoretical infrared spectrum of IL, cation and anion are reported in Figure S6. The scaled quantum mechanical force field (SQMFF) method allowed to obtain the harmonic force fields of the ionic couple in the two media, by means of the MOLVIB suite [38-40]. For the IL and the cation the normal internal coordinates and transferable scaling factors were used while for the anion the normal internal coordinates of anion were obtained from the literature [22].A good agreement between the calculated and measured bands is observable in Table7, where also the assignment of the vibrations is reportedOne can note in Table 7, that due to the formation of hydrogen bonds between the two ions, the cation vibrational bands are displaced toward lower frequencies in the IL. The main assignments of the vibrational bands are reported in the following.

Figure 5. Experimental FT-IR spectrum of IL in the solid phase compared with the corresponding predicted for IL and its cation and anion in the gas phase by using the hybrid $B3LYP/6-311++G^{**}$ level of theory.

3.6.1. Vibrational band Assignment

3.6.1.1. 4000-2000 cm⁻¹ region. The OH stretching and the symmetric and antisymmetric stretching of CH_2 and CH_3 groups of the cations are expected [21,22] in this region. Calculations predict that the bands of the IL can be found at lower wavenumbers with respect to those of the cation, due to the interaction between the ions, as it was observed in other IL [22]. Moreover, the SQM calculations predict different assignments for the cation and the IL, due to the interaction between the ions, as previously investigated by NBO and AIM calculations. The assignment of the infrared and Raman bands observed in this region are displayed in Table 7. It can be noted that this IL does not possess intense Raman bands;

therefore, hence, the symmetric CH₂and CH₃stretching modes are assigned in the expected positions according to the SQM calculations.

3.6.1.2. 2000-1000 cm⁻¹spectral range. In this spectral range, the vibration modes of cation and IL, such as CH₃ and CH₂ deformation, OH deformation, CH₂ wagging, CH₃ and CH₂ rocking modes are expected in addition to SO₂ and CF₃ stretching modes of anion [21,22]. According to SQM calculations, the observed bands in the range 1507-1058 cm⁻¹ are ascribed to CH₃ and CH₂ deformation, CH₂ wagging, CH₃ and CH₂ rocking modes of the cation. Then, the interaction of cation with the anion leads to the shifting toward lower wavenumber of SO₂ stretching modes involved in the H bond interaction. Hence, in the anion the symmetric stretching mode $v_sSO_2(S2)$ is expected at 1056 cm⁻¹ while in the IL that mode is calculated at 1029 cm⁻¹. Also, the antisymmetric mode in the anion is predicted at 1236 cm⁻¹ while in the IL at 1234 cm⁻¹. However, the stretching modes of CF₃ groups remain practically in the same positions because these groups are involved in weak H bond interactions. The OH deformation mode in the cation is expected at 1164 cm⁻¹; on the contrary in the IL this mode is predicted in different positions and coupled with other modes due to participation of this group to strong S2-O3...H18interactions. The very strong infrared active bands centered at 1197 and 1149 cm⁻¹ are ascribed to deformation and torsion of OH group, as well as to the stretching modes of CF₃groups (see Table 7).Finally, the very strong IR band at 1071 cm⁻¹ is assigned to C-O and C-C stretching modes of cation and IL.

3.6.1.3. 1000-10 cm⁻¹ region. In this region, one can observe the CH₂ and CH₃ twisting and C-C, C-N and S-N stretching, as well as and CCC, CCN, skeletal modes of cation together with vibration modes of anion [21,22]. The CH₂ twisting modes are poorly influenced by the anion and are expected in the cation between 1053 and 843 cm⁻¹ while in the IL between 960 and 847 cm⁻¹. Here, it is observed that the SO₂wagging, rocking and twisting modes related to the S2-O3…H18 interaction are predicted in the IL at a higher wavenumber than in the to cation due to H bond. The vibration modes of CF₃ groups are poorly influenced by the cation and, thus, these modes in the IL are observed in the same regions observed for the anion.

Figure 6. Experimental FT-Raman spectrum of IL in the solid phase compared with the corresponding predicted for IL and its cation and anion in the gas phase by using the hybrid $B3LYP/6-311++G^{**}$ level of theory.

3.7. Scaled force constants

Scaled force constants for the $[CHOL^+][(CF_3SO_2)_2N^-]$ ionic liquid and its cation and anion in vacuum and solution were calculated at the B3LYP/6-311++G** level of theory/basis set

because these parameters show how the interactions influence the geometrical parameters and vibration modes. These factors have been obtained from the corresponding harmonic force fields previously reported [38-40].

In **Table 8**wereport main scaled internal force constants for the ionic liquid and the cation in the two media while for the $[(CF_3SO_2)_2N^-]$ anion the values in vacuum have been taken from previous literature at the same level of theory [22]. Comparing the $f(v_{OH})$ force constants of IL and cation, it is observed the decreasing of the values in the IL in the two media due to the formation of S2-O3···H18interaction where that group is involved. Note that all force constants of cation change in the IL as a consequence of interactions, with the exception of $f(\delta_{CH3})$ and $f(\delta_{CH2})$ force constants that show the same values. Hence, the effect of anion on the cation is clearly observed in these parameters. While the values of IL and anion are compared between them, it is observed that the force constants related to SO₂ groups demonstrate higher changes than to those corresponding to CF₃ groups. The observed changes here are attributed to the different interactions predicted by NBO and AIM calculations (see Tables 5, S3 and S4 and Figure S4).

4. Thermal analysis

The thermogravimetric analysis (TGA) of ILs is a powerful means which provides access to information linked to thermal behaviour, namely the degradation temperature[45].On the other hand, low temperature analysis by Differential Scanning Calorimetry (DSC) also makes it possible to determine phase transitions :Freezing, melting, glass transition, cold crystallisation and solid-solid transition temperatures. The curves measured for the mass variation and the heat flux as a function of temperature are presented in Figures 7 and 8.During the rise in temperature, a glass transition around -75°C and three endothermic peaks at 3, 27and 31°Cis observed. The first peak is ascribed to a solid-solid transition of ([CHOL⁺][(CF₃SO₂)₂N⁻]), the other two peaks at 27 and 31°C were associated to the melting process. This result agrees with previous study of Villanueva et al. [46].

Figure 7: DSC curve of $[CHOL^+][(CF_3SO_2)_2N^-]$.

The TGA curve reported in Figure 8 suggests that $([CHOL^+][(CF_3SO_2)_2N^-])$ decomposes in one step, the T_d value of $([CHOL^+][(CF_3SO_2)_2N^-])$ was higher than 400 °C with weight loss was observed starting from T_{id}= 360 °C and was completed at T_{fd}=475°C. The introduction of a bis(trifluoromethanesulfonyl)imide anion resulted in higher T_d values for $([CHOL^+][(CF_3SO_2)_2N^-])$. This result indicates that the thermal stability of the IL is strictly

Figure 8: TGA curve of $[CHOL^+][(CF_3SO_2)_2N^-]$.

5. Conclusions

In summary, the synthesis and experimental characterisation of $[CHOL^+][(CF_3SO_2)_2N^-]$ ionic liquid NMR, infrared and Raman spectroscopy was reported. Structural, topological, electronic and reactivity of IL in vacuum and aqueous solution have been predicted by using B3LYP/6-311++G** calculations. Studies on atomic MK, NPA and Mulliken charges and MEP, NBO and AIM, frontier orbitals have evidenced that the strong S-O···H interaction and other weak H bonds interactionsplay a very important role in determining the properties of this new IL. The MEP surfaces evidenced that the main reactive sites are located on positively charged N⁺ of the cation and on the SO₂ groups of the anions. Good agreement is observed between the predicted IR, ¹H-NMR and ¹³C-NMR,and Raman spectra and the experimental ones. A complete assignment of all vibration modes for the IL and its cation is suggested, together with the scaled force constants. In addition, the IL showed its melting temperature near at 30°C while a glass transition and a cold crystallization have been revealed at 3 and -26 °C.

Acknowledgements. This work was supported with grants from CIUNT Project N° D714 (Consejo de Investigaciones, Universidad Nacional de Tucumán), and with grants from financial support by The Ministry of Higher Education and Scientific Research (MESRS) of Algeria in PRFU project code: B00L01UN200120180002.The authors thank Prof. Tom Sundius for permission to use the MOLVIB program, Also, Prof Haddad boumediene would like to thank (BAKROU Habibo) for their fruitful support.

Supporting Information Available: Tables S1-S4 and Figures S1-S11.

Conflicts of interest

All authors declare that there are no conflicts of interest.

References
[1] J.Yu, X.Liu,S. Xu,P. Shao, J. Li, Z. Chen, C. M. Renard, Advances in green solvents for production
polysaccharide-based packaging films: Insights of ionicliquids and deepeutecticsolvents, CRFSFS. 22(2) (2)
1030-1057, <u>https://doi.org/10.1111/1541-4337.13099</u> .
[2] N. V. P.Veríssimo, C. U.Mussagy, H. B. S. Bento, J. F. B. Pereira, V. de Carvalho Sa
Ebinuma, Ionicliquids and deepeutecticsolvents for the stabilization of biopharmaceuticals: A review, Biotec
Adv. (2024) 108316, https://doi.org/10.1016/j.biotechadv.2024.108316.
[3] L. Y. Zhang, S. H. Liu, Y. Wang, Exploring the influence of the type of anion in imidazoliumionicliquid
its thermal stability, J. Therm. Anal. Calorim.148(11)(2023) 4985-4995, https://doi.org/10.1007/s10973
<u>12037-z</u> .
[4] B. Haddad,A.Kachroudi,G.Turky,E. H.Belarbi,A.Lamouri, D. Villemin, A.Sylvestre, interplaybetweenmolecular structure and dielectricproperties inionic liquids: A comparative study, J. Mol. 224 (2021) 114674, https://doi.org/10.1016/j.mollia.2020.114674
 [5] B. Haddad S. A. Brandan M. A. Assenine A. Paolone, D. Villemin, S. Bresson, Bidentate cation-
coordination in the ionic liquid 1-ethyl-3-methylimidazolium hexafluorophosphate supported by vibrat spectra and NBO, AIM and SQMFF calculations, J. Mol. Struct. 1212 (2020) 123
$\frac{\text{nttps://doi.org/10.1016/j.moistruc.2020.128104}}{\text{ICL} A A T His E K Silva M Cristianiai A I Mainellas Historiationitemeters de se$
[0] A. A. T.Hijo, E. K. Silva,M.Cristianin,A. J.Meirelles, High-intensityultrasoundassi emulsificationusingionicliquids as novelnaturally-derivedemulsifiers for foodindustry applications, Innov. Sci. Emerg. Technol.84 (2023) 103301, <u>https://doi.org/10.1016/j.ifset.2023.103301</u> .
[7] H. W. Khan, A. A. Elgharbawy, A. Bustam, M. Moniruzzaman,
(2021). Design and selection of ionicliquids via COSMO for pharmaceuticals and medicine. In Application
IonicLiquids in Drug Delivery (pp. 137-164). Singapore: Springer Singapore.
H.W. Khan, A.A. Elgharbawy, M.A. Bustam, M. Moniruzzaman, Design and Selection of IonicLiquids
COSMO for Pharmaceuticals and Medicine, in:Application of IonicLiquids in Drug Delivery,Spri
Singapore, 2021, pp. 137–164, <u>https://doi.org/10.1007/978-981-16-4365</u> .
[8] A. K.Parameswaran, J.Azadmanjiri, N.Palaniyandy, B. Pal, S.Palaniswami, L. Dekanovsky, Z.S.
Recentprogress of nanotechnology in the researchframework of all-solid-state batteries, Nano En
105(2023)107994, <u>https://doi.org/10.1016/j.nanoen.2022.107994</u> .
[9] M. Mirzaei-Saatlo, E. Asghari, H. Shekaari, B. G. Pollet, R. Vinodh, Performance of ethanolar
basedionicliquids as novel green electrolytes for the electrochemicalenergystorage applications, Electroc
Acta. 4/4 (2024) 143499, <u>https://doi.org/10.1016/j.electacta.2023.143499</u> .
[10] K. Morawska, U. Wardak, Application of ionicliquids in ion-selective electrodes and reference electrodes:
teview, Chemif Hys Chemi. (2024)e202500818, <u>https://doi.org/10.1002/cpnc.202500818</u> . [11] S. J. Dinor M. Kor, D. D. MacEarland V. Matuarak, J. M. Dringla, Iania liquida for renovable thermal as
[11] S. L. FIPELIVI. Kal, D. K. Wachanale, K. Waduszek, J. W. Philgle, Ionic liquids for renewable thermal elestorage a perspective. Graan Cham 24(1)(2022) 102-117-10.1020/D1CC02420K
5101age-a perspective, Oteen Chem. 24(1)(2022) 102-117, <u>10.1037/DIOC03420R</u> . [12] H. Tian P. Berton, R. D. Rogers, Cheline-based aqueous hinbasic systems: Overview of applications.
<i>Phase Fauilib</i> 502 (2019) 112258 https://doi.org/10.1016/i.fluid.2019.112258
[13]Y Lin X Yao H Yao O Zhon I Xin X Lin S & Zhang Degradation of noly (ethyleneterentity)
catalyzedby metal-free choline-basedionicliquids. Green Chem
22(10)(2020)3122-3131 https://doi.org/10.1039/D0GC00327A
[14] F Rabhi T Di Fietro F Mutelet H & Cit
Extraction of organic compounds from Aqueous Solution Using Choline bis(trifluoromethylsulforyl) imide I
Lia 360 (2022) 119432 https://doi.org/10.1016/i mollig.2022.119432
[15]U Domańska P Papis I & Szydłowski Thermodynamics and activitycoefficients
infinitedilution for organic solutes, water and diols in the ionicliquid choline his (trifluoromethylsulfonyl) init
Chem. Thermodyn. 77(2014)63-70. https://doi.org/10.1016/i.jct.2014.04.024
[16]L.Cesari.L.Canabady-Rochelle.
Extraction of phenolic compounds from a queous solution using choline bis (trifluor omethylsulfonyl) imide Fluic
Equilibria.446 (2017) 28-35.https://doi.org/10.1016/j.fluid.2017.04.022.
[17] Í. F. de Souza, V. H.Paschoal, K. Bernardino, T. A. Lima, L. L.Daemen, M. C. & Rit
Vibrationalspectroscopy and molecular dynamicssimulationofcholineoxyanionssalts, J. Mol. Lia. 340(2)
117100.https://doi.org/10.1016/j.molliq.2021.117100.
[18]A. Knorr, K. Fumino, A. M. Bonsa, R. & Ludwig, Spectroscopicevidenceof 'iumping and peckingofcholi
and H-bond enhanced cation – cation interaction in ionicliquids. PCCP. 17(46)(2015) 3(
30982. 10.1039/C5CP03412D.
[19]P.Nockemann, K.Binnemans, B.Thijs, T. N.Parac-Vogt, K.Merz, A. V. Mudring, C. & Glorieux Temper
drivenmixing-demixingbehaviorofbinary mixtures of the ionicliquid choline bis(trifluoromethylsulfonyl)
and water, J. Phys. Chem. B.113(5)(2009) 1429-1437.https://doi.org/10.1021/ip808993t.

[20]Y. Zhuravlev, K.Gordienko, D. Dyagilev, S.Luzgarev, S.Ivanova, A.& Prosekov, Structural, electronic, and vibrationalproperties of choline halides, Mater. Chem. Phys.246(2020) 122787. 1 https://doi.org/10.1016/j.matchemphys.2020.122787. 2 [21]B. Haddad,S. A.Brandán,B.Fetouhi,A.Paolone,M.Boumediene,D.,Villemin, S.&Bresson, Synthesis, NMR, 3 IR, Ramanspectra and DFT calculations of 1-octyl-1, 4-diazabicyclo [2.2. 2] octan-1-ium 4 bis(trifluoromethylsulfonyl)imide, (2023)J. Mol. Struct.1288 5 135792.https://doi.org/10.1016/j.molstruc.2023.135792. 6 [22]M. A.Assenine, B.Haddad, A.Paolone, S. A.Brandán, M.Goussem, D., Villemin, S.&Bresson, Synthesis, termal 7 vibrationalspectra and computationalstudiesofTrioctylmethylammonium-8 properties, bis(trifluoromethylsulfonyl)imideionicliquid, Mol. Struct.1232 9 J. (2021)130085.https://doi.org/10.1016/j.molstruc.2021.130085. 10 [23]M. Boumediene, B.Haddad, A.Paolone, M.Drai, D.Villemin, M.Rahmouni, O.& Abbas, Synthesis, termal 11 12 stability, vibrationalspectra and conformationalstudies of novel dicationic meta-xylyllinked bis-1-13 methylimidazoliumionicliquids. Mol. Struct.1186 (2019)J. 68-79.https://doi.org/10.1016/j.molstruc.2019.03.019. 14 15 [24] A.D. Becke, Density-functional exchange-energy approximation with correctasymptoticbehavior, Phys. Rev. A.38 (6) (1988) 3098-3100. https://doi.org/10.1103/physreva.38.3098. 16 17 [25] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energyformula into a functional 18 of the electron density, Phys. Rev. B.37 (1988) 785–789. https://doi.org/10.1103/physrevb.37.785. 19 [26] GaussView, version 6.1.1, R.D. Dennington, T.A. Keith, J.M. Millam, Semichem Inc., Shawnee Mission, 20 KS, 2019. 21 [27] Gaussian 16, Revision C.01, M.J. Frisch, G. W. Trucks, H.B. Schlegel, G.E. Scuseria, et al, Inc., 22 Wallingford CT, 2019. 23 [28] S. Miertus, E. Scrocco, J. Tomasi, Electrostatic interaction of a solute with acontinuum, Chem. Phys. 55 24 (1981) 117-129. https://doi.org/10.1016/0301-0104(81)85090-2. 25 [29] J. Tomasi, J. Persico, Molecular interactions in solution: an overview ofmethods based on continous 26 distributions of the solvent, Chem. Rev. 94 (1994)2027-2094. https://doi.org/10.1021/cr00031a013. 27 [30] A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based onsolute electron density and 28 a continuum model of the solvent defined by the bulkdielectric constant and atomic surface tensions, J. Phys. 29 Chem. B.113 (18) (2009)6378-6396. https://doi.org/10.1021/jp810292n. 30 [31] P. Ugliengo, MOLDRAW Program, University of Torino, DipartimentoChimicaIFM, Torino, Italy, 1998. 31 [32] E.D. Glendening, J.K. Badenhoop, A.D. Reed, J.E. Carpenter, F. Weinhold, NBO 3.1;Theoretical 32 Chemistry Institute, University of Wisconsin, Madison, WI, 1996. 33 [33] R.F.W. Bader, Atoms in Molecules, A Quantum Theory, Oxford University Press, Oxford, 1990, ISBN 34 0198558651. 35 [34] F. Biegler-Köning, J. Schönbohm, D. Bayles, AIM 2000; A program to Analyze and Visualize atoms in 36 molecules, J. Comput. Chem. 22 (2001) 545. https://doi.org/10.1002/1096-987X(20010415)22:5<545::AID-37 JCC1027>3.0.CO:2-Y. 38 [35] B.H. Besler, K.M. Merz Jr, P.A. Kollman, Atomic charges derived fromsemiempirical methods, J. Comput. 39 Chem. 11 (1990) 431-439. https://doi.org/10.1002/jcc.540110404. 40 [36] R.G. Pearson, Absolute electronegativity and hardness correlated with molecularorbital theory, Proc. Natl. 41 Acad. Sci. U.S.A. 83 (1986) 8440-8441. https://doi.org/10.1073/pnas.83.22.8440. 42 [37] R.G. Parr, L.V. Szentpaly, S. Liu, Electrophilicity index, J. Am. Chem. Soc. 121(1999) 1922-1924. 43 https://doi.org/10.1021/ja983494x. 44 [38] P. Pulay, G. Fogarasi, G. Pongor, J.E. Boggs, A. Vargha, Combination of theoretical ab initio and 45 experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (QM) force 46 fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene. J. Am. Chem. Soc. 105 (1983) 47 7073.https://doi.org/10.1021/ja00362a005. 48 [39] G. Rauhut, P. Pulay, Transferable Scaling Factors for Density Functional Derived Vibrational Force Fields. 49 J. Phys. Chem. 99 (1995) 3093-3100.https://doi.org/10.1021/j100010a019. 50 [40] T. Sundius, Scaling of ab-initio force fields by MOLVIB. Vib. Spectrosc. 29 (1-2) (2002) 89-95. 51 https://doi.org/10.1016/S0924-2031(01)00189-8. 52 [41] G. Keresztury, S. Holly, G. Besenvei, J. Varga, A.Y. Wang, J.R. Durig. Vibrational spectra of 53 monothiocarbamates-II. IR and Raman spectra, vibrational assignment, conformational analysis and ab initio 54 calculations S-methyl-N, N-dimethylthiocarbamate,SAA.49(13-14) (1993)2007-2026. of 55 https://doi.org/10.1016/S0584-8539(09)91012-1. 56 [42] R. Ditchfield, Self-consistent perturbation theory of diamagnetism. I. A gauge-invariant LCAO (linear 57 combination of atomic orbitals) method for NMR chemical shifts, Mol Phys. 27 (1974) 714-722. 58 https://doi.org/10.1080/00268977400100711. 59 60 61 62 17 63

[43] L. L. Tolstikova, A. V. Bel'skikh, and B. A. Shainyan, Trifluoromethanesulfonate, Trifluromethylsulfonylimide, and Bis(trifluoromethylsulfonyl)imide Salts and IonicLiquids

Based on 1,8-Diazabicyclo[5.4.0]undec-7-ene and 1,5-Diazabicyclo[4.3.0]non-5-eneRussian Journal of OrganicChemistry, 46,(2010) 383–388.<u>https://doi.org/10.1134/S1070428010030140</u>

[44] B. Haddad, S. A.Brandán, B.Fetouhi, M. Boumediene, A.Paolone, D. Villemin, S. &Bresson, Synthesis, NMR, vibrational spectroscopy, thermal and DFT studies of new DABCO hexafluorophosphate based ionic liquid, *J. Mol. Struct.* 1258 (2022) 132682. <u>https://doi.org/10.1016/j.molstruc.2022.132682</u>.

[45] B. Haddad, D. Villemin, E. H. & Belarbi, Synthesis, Differential Scanning Calorimetry (DSC) and Dielectric Relaxation Spectroscopy (DRS) Studies of N-methyl-N-propylpiperidiniumBis(trifluoromethylsulfonyl)imide, *Environ. Sci.*3(2012)312-319.

[46] M. Villanueva, J. J. Parajó, P. B. Sanchez, J. García, J. & Salgado, Liquid range temperature of ionic liquids as potential working fluids for absorption heat pumps, *J. Chem. Thermodyn*.91(2015) 127-135.<u>https://doi.org/10.1016/j.jct.2015.07.034</u>.

[47] B. Haddad,M. Boumediene,B.Khalili,K.Ghauri,A.Paolone,S.Taibi, S.&Bresson, Synthesis, vibrational and thermal studies of new 3, 3'-dibutyl-1, 1'-(1, 4-phenylenedimethylene)-bis (1H-imidazolium) ionic liquids: an experimental and quantum computational investigation, *J. Mol. Struct.* (2023) 137325. https://doi.org/10.1016/j.molstruc.2023.137325.

Figure Captions

Scheme 1. General synthesis of Choline bis(trifluoromethylsulfonyl)imide

Figure 1.Experimental Hydrogen atom labeling and ¹H-NMR spectrum of [CHOL⁺][(CF₃SO₂)₂N⁻].

Figure 2.Experimental ¹³C-NMR spectrum of [CHOL⁺][(CF₃SO₂)₂N⁻].

Figure 3.Experimental ¹⁹F-NMR spectrum of [CHOL⁺][(CF₃SO₂)₂N⁻].

Figure 4. Optimized structures of cation and IL by using the hybrid B3LYP/6-311++ G^{**} level of theory.

Figure 5. Experimental FT-IR spectrum of IL in the solid phase compared with the corresponding predicted for IL and its cation and anion in the gas phase by using the hybrid $B3LYP/6-311++G^{**}$ level of theory.

Figure 6. Experimental FT-Raman spectrum of IL in the solid phase compared with the corresponding predicted for IL and its cation and anion in the gas phase by using the hybrid $B3LYP/6-311++G^{**}$ level of theory.

Figure 7: DSC curve of $[CHOL^+][(CF_3SO_2)_2N^-]$.

Figure 8: TGA curve of $[CHOL^+][(CF_3SO_2)_2N^-]$.

Atoms	B3LYP/6-311++G**method		Exp. ^a
	[CHOL ⁺]	[CHOL ⁺]NTFS ₂ ⁻] ^a	
18-H	1.65	3.50	5.29
20-Н	2.93	2.91	3.10
21-Н	3.34	3.56	3.10
22-Н	2.94	2.98	3.10
24-H	2.99	2.94	3.10
25-Н	3.08	3.11	3.10
26-H	3.01	2.94	3.10
28-Н	4.06	4.08	3.83
30-Н	3.29	3.05	3.40
31-Н	3.57	4.02	3.40
32-Н	4.52	4.21	3.83
34-H	2.96	2.97	3.10
35-Н	2.64	2.68	3.10
36-H	3.34	3.53	3.10
RMSD	1.01	0.57	
	an	This work	

Table 1. Observed and calculated ¹H chemical shifts (δ in ppm) of $[CHOL^+][(CF_3SO_2)_2N^-]$ IL and its cation in aqueous solution by using the hybrid B3LYP/6-311++G**method.

This work.

Table 2. Observed and calculated ${}^{13}C$ chemical shifts (δ in ppm) of [CHOL⁺][(CF₃SO₂)₂N⁻]IL and its cation in gas phase by using the hybrid B3LYP/6-311++G**method

Atoms	B3LYP/6-311++G**method		Exp. ^a		
	[CHOL ⁺]	[CHOL ⁺]NTFS ₂ ⁻] ^a			
5-C	Anion	130.34	119.23		
12-C	Anion	130.34	119.23		
19-C	53.71	54.36	52.92		
23-C	57.67	58.01	52.92		
27-С	61.97	61.94	55.15		
29-C	71.34	72.62	66.84		
33-C	51.09	50.69	52.92		
RMSD	4.32	7.16			
^a This work.					

Atoms	B3LYP/6-	Exp. ^a			
	[NTFS ₂ ⁻] ^b	$[CHOL^+]NTFS_2^-]^a$			
6-F	-108.45	-101.19	-78.97		
7-F	-112.64	-102.79	-78.97		
8-F	-113.82	-98.1	-78.97		
13-F	-108.45	-96.85	-78.97		
14-F	-112.64	-103.12	-78.97		
15-F	-113.82	-100.78	-78.97		
RMSD	32.75	21.62			
^a This work.					

Table 3. Observed and calculated ¹⁹F chemical shifts (δ in ppm) of [CHOL⁺][(NTFS₂⁻] IL and its cation in gas phase by using the hybrid B3LYP method.

Table 4. Calculated uncorrected and corrected by ZPVE total energies (*E* and *E*_{ZPVE}), dipole moments (μ) and volumes (V) of [CHOL⁺][(CF₃SO₂)₂N⁻] ionic liquid and its cation and anion in gas phase and aqueous solution by using the B3LYP/6-311++G** method.

B3LYP/6-311++G** Method							
	[CHOL ⁺]						
Species	E (Hartrees)	E _{ZPVE} (Hartrees)	μ (D)	V (Å ³)			
Gas Phase	-328.7894	-328.5924	1.95	136.1			
Aqueus Solution	-328.8820	-328.6852	3.69	137.7			
	[(CF ₃)	SO ₂) ₂ N ⁻]					
Gas Phase	-1827.6092	-1827.5572	4.36	183.1			
Aqueus Solution	-1827.6810	-1827.5620	7.04	180.4			
$[CHOL^+][(CF_3SO_2)_2N^-]$							
Gas Phase	-2156.5257	-2156.2746	14.22	311.5			
Aqueus Solution	-2156.5699	-2156.3202	24.19	317.6			

Zero point vibrational energy (ZPVE)

Table 5. Calculated distances (in Å) of interactions predicted forthe[CHOL+][(CF_3SO_2)_2N-] ionic liquid in gas phase and aqueous solution by using theB3LYP/6-311++G** Method.

Interactions	Gas Phase	Aqueous solution
S2-O3…H18	1.832	1.948
S2-O4…F15	3.046	3.221
S9-O11…F6	3.015	3.234
S9-O10H25	2.160	
C5-F8H28	2.882	3.292
C12-F13····H22	2.790	3.098
C12-F13····H25		2.838
C19-H21O17	2.283	2.508
C19-H22…N1	2.519	
C29-H31…N1	2.224	2.664

^aThis work; Letters bold, shorter distances.

B3LY								
D ([CHOL ⁺][(($CF_3SO_2)_2N^-]^a$	Exp ^b					
Parameters	Gas Phase	Solution						
Bond lengths (Å)								
N1-S2	1.621	1.608	1.620					
N1-S9	1.627	1.612	1.616					
S2-O3	1.473	1.469	1.475					
S2-O4	1.452	1.465	1.458					
S2-C5	1.897	1.892	1.870					
O3-H18	1.832	1.948	1.703					
C5-F6	1.327	1.334	1.333					
C5-F7	1.334	1.335	1.334					
C5-F8	1.349	1.334	1.343					
S9-O10	1.469	1.464	1.477					
S9-O11	1.453	1.466	1.457					
S9-C12	1.896	1.892	1.875					
C12-F13	1.348	1.334	1.345					
C12-F14	1.335	1.335	1.336					
C12-F15	1.328	1.334	1.332					
N16-C19	1.514	1.503	1.515					
N16-C23	1.508	1.504	1.508					
N16-C29	1.533	1.525	1.540					
N16-C33	1.497	1.502	1.501					
O17-H18	0.977	0.971	0.980					
O17-C27	1.409	1.428	1.406					
RMSD	0.029	0.055						
	Bond a	angles (°)						
S2-N1-S9	126.2	125.7	127.4					
N1-S2-O3	105.6	107.7	103.0					
N1-S2-O4	117.2	117.1	117.7					
N1-S2-C5	104.5	103.4	104.5					
O3-S2-O4	119.3	117.9	120.2					
O3-S2-C5	102.4	103.9	103.4					
O4-S2-C5	105.9	104.9	105.8					
S2-O3-H18	137.4	130.0	127.8					
S2-C5-F6	111.7	110.1	111.0					
S2-C5-F7	109.2	109.1	110.5					
S2-C5-F8	109.6	110.3	109.2					
F6-C5-F7	109.4	109.1	108.8					
F6-C5-F8	108.6	109.1	108.8					
F7-C5-F8	108.4	109.1	108.2					

Table 6. Calculated geometrical parameters of $[CHOL^+][(CF_3SO_2)_2N^-]$ ionic liquid in gas phase and aqueous solution by using the B3LYP/6-311++G**method compared with the corresponding experimental ones [19].

RMSD	1.8	1.3	
N16-C29-C27	116.3	117.6	115.7
O17-C27-C29	114.7	115.1	118.5
H18-O17-C27	108.8	108.5	110.0
C29-N16-C33	111.5	111.3	111.2
C23-N16-C33	109.5	108.5	109.6
C23-N16-C29	107.4	107.2	107.6
C19-N16-C33	109.3	109.4	109.4
C19-N16-C29	110.9	111.8	110.5
C19-N16-C23	108.2	108.4	108.1
F14-C12-F15	109.3	109.1	109.1
F13-C12-F15	108.6	109.1	108.8
F13-C12-F14	108.3	109.0	108.4
S9-C12-F15	111.6	110.2	111.1
S9-C12-F14	109.1	109.2	109.4
S9-C12-F13	109.8	110.3	109.8
O11-S9-C12	105.8	104.9	105.5
O10-S9-C12	102.9	104.2	102.5
O10-S9-O11	120.0	118.4	119.4
N1-S9-C12	104.0	102.9	105.5
N1-S9-O11	116.9	116.6	118.0
N1-S9-O10	105.3	107.8	103.8

^aThis work, ^bFrom Ref [19].

Table 7. Observed and calculated wavenumbers (cm^{-1}) and assignments for $[CHOL^+][(CF_3SO_2)_2N^-]$ ionic liquid and its cation and anion in gas phase by using the hybrid B3LYP/6-311++G** Method.

Experi	mental ^a			B3L	YP/6-311++G*;	k	
Lapen	mentar		[CHOL ⁺] ^a	[(C	$F_3SO_2)_2N^-]^c$		$[CHOL^+][(CF_3SO_2)_2N^-]^a$
IR	Raman	SQM ^b	Assignments ^a	SQM ^c	Assignments ^c	SQM ^b	Assignments ^a
3555w		3672	νО2-Н3			3426	vO17-H18
3068vw		3064	$v_aCH_3(C4)$			3059	v _a CH ₃ (C19)
		3044	$v_a CH_3(C18)$			3039	v _a CH ₃ (C19)
		3035	$v_a CH_3(C8)$			3036	$v_aCH_3(C33)$
		3032	$v_a CH_3(C8)$			3021	$v_aCH_3(C33)$
		3029	$v_aCH_3(C4)$			3017	v _a CH ₃ (C23)
	3021w	3027	v _a CH ₃ (C18)			3014	v _a CH ₃ (C23)
2988vw		3003	$v_a CH_2(C14)$			2988	$\nu_a CH_2(C29)$
2958vw	2965w	2953	$v_sCH_2(C14)$			2946	v _s CH ₃ (C19)
		2948	$v_sCH_3(C4)$			2941	$v_a CH_2(C27)$
		2944	v _s CH ₃ (C18)			2937	v _s CH ₃ (C33)
		2940	$v_sCH_3(C8)$			2928	v _s CH ₂ (C29)
2908vw	2917w	2921	$v_a CH_2(C12)$			2921	v _s CH ₃ (C23)
	2813w	2890	$v_s CH_2(C12)$			2888	v _s CH ₂ (C27)
1652w	1530vw	1522	δCH ₂ (C12)			1507	δCH ₂ (C27)
1497w						1500	δCH ₂ (C29)
1485sh		1487	δCH ₂ (C14)			1473	$\delta_a CH_3(C19)$
	1463sh	1464	$\delta_a CH_3(C4)$			1462	$\delta_a CH_3(C23)$
	1454sh	1452	$\delta_{a}CH_{3}(C8) \delta_{a}CH_{3}(C18)$			1443	$\delta_a CH_3(C33)$
1438w	1441w	1445	$\delta_a CH_3(C18)$			1438	$\delta_a CH_3(C23)$
		1431	$\delta_a CH_3(C4), \delta_a CH_3(C18)$			1433	$\delta_a CH_3(C33)$
		1426	δ _a CH ₃ (C18), δ _a CH ₃ (C8)			1429	δ _s CH ₃ (C23),δ _s CH ₃ (C19)
	1419sh	1424	$\delta_a CH_3(C8)$			1411	$\delta_a CH_3(C19)$
		1414	$\delta_a CH_3(C4)$			1398	δО5-Н18-О17, δОН
1396sh		1397	wagCH ₂ (C12)			1395	wagCH ₂ (C29), δ _s CH ₃ (C33)
1382sh		1383	$\delta_s CH_3(C4)$			1388	δ _s CH ₃ (C23),δ _s CH ₃ (C19)
1361s		1381	$\delta_s CH_3(C18), \delta_s CH_3(C8)$			1379	δ _s CH ₃ (C33)
	1350sh	1352	wagCH ₂ (C14)			1350	wagCH ₂ (C27), wagCH ₂ (C29)
1331sh	1324w	1335	ρCH ₂ (C14)			1325	ρCH ₂ (C29)
1265sh		1276	ρCH ₂ (C12)			1266	ρCH ₂ (C27)
						1261	δΟ5-Η18-Ο17,τΟ5-Η18
1240sh	1248sh	1259	ρ'CH ₃ (C18), ρCH ₃ (C8)	1236	$v_a SO_2(S2)$	1258	$v_a SO_2(S3)$
	1230m			1221	$v_a SO_2(S3)$	1234	$v_a SO_2(S2)$
1227sh	1215sh	1228	ρCH ₃ (C4),ρCH ₃ (C18)			1223	δ05-H18-O17, ρ'CH ₃ (C19)
1197vs		1208	ρ'CH ₃ (C8), ρCH ₂ (C14)			1204	δΟ5-Η18-Ο17,τΟ5-Η18
1197vs	1189w	1164	δОН			1166	v _a CF ₃ (C8)
				1157	v _a CF ₃ (C9)	1157	v _a CF ₃ (C9)
1149s				1150	v _s CF ₃ (C8)	1149	v _a CF ₃ (C8), v _s CF ₃ (C8)
						1139	v _s CF ₃ (C8)
1134sh	1124m	1124	ρ'CH ₃ (C18)	1124	v _a CF ₃ (C9)	1122	ρCH ₃ (C23), ρCH ₃ (C19)
		1112	ρCH ₃ (C8), ρ'CH ₃ (C4)	1120	v _a CF ₃ (C8)	1116	ρ'CH ₃ (C33)
1103sh	1106sh			1108	$v_a CF_3(C9)$	1107	v _a CF ₃ (C9)

				1104	$v_a CF_3(C8)$	1104	$v_a CF_3(C8)$
1071vs	1073sh	1059	vC12-O2		/ /	1065	vC27-O17,vC27-C29
1056sh		1053	τwCH ₂ (C12)	1056	$vsSO_2(S2)$	1058	ρ'CH ₃ (C23),ρ'CH ₃ (C19) ρCH ₃ (C33)
1040sh	1041w	1050	ρ'CH ₃ (C8), ρCH ₃ (C18) ρCH ₃ (C4)	1041	$vsSO_2(S3)$	1039	δΟ5-Η18-Ο17,τΟ5-Η18
1038sh						1036	$vsSO_2(S3)$
1026sh	993w					1029	$vsSO_2(S2)$
972m	968sh			970	vS2-N1	960	τwCH ₂ (C27)
940w	948w	946	vC12-C14			940	vS2-N1, vS3-N1
		923	vN1-C8			932	vN16-C33
899sh	887sh	915	vN1-C4,vN1-C18			914	vN16-C23
885w	858w	843	τwCH ₂ (C14),vN1-C8			847	τwCH ₂ (C29)
808m		828	vN1-C14,vN1-C4			827	vN16-C19
760m	750sh	792w		732	$v_sCF_3(C9)$	737	v _s CF ₃ (C9)
736w	735vs			723	$\delta_s CF_3(C8)$	729	$\delta_s CF_3(C8), \delta_s CF_3(C9)$
674m	705sh			684	vS3-N1	688	τΟ5-Η18,τΗ18-Ο17
674m		678	vN1-C14			679	vN16-C29
649sh						644	τH18-O17
628s	626w			616	wagSO ₂ (S3)	590	wagSO ₂ (S2), wagSO ₂ (S3)
	581sh					582	δS2N1S3
				568	$wagSO_{2}(S2)$	559	τO5-H18,δSO ₂ (S2)
	550w			550	$\delta_a CF_3(C9)$	552	δ CF ₂ (C9)
				540	$\delta_{a}CF_{3}(C9)$	539	$\delta_a CF_3(C9)$
	533sh			538	$\delta_a CF_3(C8)$	535	$\delta_a CF_3(C8)$
		528	δN1C14C12, δO2C12C14	528	δ CE ₂ (C8)	534	δN16C29C27
	515sh	520		197	$\delta SO_{2}(S3)$	515	$\delta_{3}CF_{3}(C8)$
	509sh			483	$\delta SO_2(S2)$	496	δSO-(S3) δSO-(S2)
	446w	443	δC8N1C18	405		449	δC23N16C19
		435	δC18N1C4			440	δC33N16C19
	416sh	405	δ02C12C14	409	$\tau_{w}SO_{2}(S3)$	414	δC23N16C33, δO17C27C29
	398m	405		407		360	$\tau = SO_{2}(S2) + SO_{2}(S3) + OE_{2}(C8)$
		262	ρ'N1-C14, δC8N1C4	266	- 50 (52)	265	o'N16-C29
	354sh	505		300	$t_{w}SO_{2}(SZ)$	259	δS2-O5-H18
	346sh			221	aSO (S2)	244	δN1S3C9 δN1S2C8
	333sh			210	$\rho_{3}O_{2}(33)$	226	δS2-05-H18
	314m	201	oN1-C14	202	$\rho CF_3(C9)$	201	2N16 C20
	01.111	202	τOH	303	$\rho CF_3(C\delta)$	202	δ \$205H18 δ \$0 ₂ (\$2)
		295				295	Sostuno17, os uno
	280sh					290	τO5-H18 δS2-O5-H18
	2755	292	τ CH ₂ (C18)			209	τ CH ₂ (C23)
	2700	282	twen3(C10)	29.4	60 (62)	274	
	257sh	250	$\tau CH_2(CA) \tau CH_2(CR)$	284	$\rho SO_2(S_2)$	274	ρ50 ₂ (52),ρ50 ₂ (55) τ05-H18τH18-017
	2373h	259	$\delta N1C14C12$	259	v83-C9 v82-C8	255	vS2 C8 c ² CE (C8) vS2 C0
	2-12311	250	$\tau CH_{2}(C4) \tau CH_{2}(C8)$	252	102 00	250	$\rho^{2}CF_{3}(C9)$
	211sh	210	·weii3(07), vweii3(00)			218	τ_{w} CH ₃ (USS) τ_{w} CH ₃ (UIS)
	197sh			107	$\alpha^{2}CE_{2}(C0)$	207	0N1S3C9,0N1S2C8 7O5-H18 7H18 O17
	1,011			18/	ρ CI 3(C)	191	oCE ₂ (C9)
	168w	1.00	τC12-C14	186	$\rho CF_3(C8)$	189	$\tau 05_{-}H18_{-}H18_{-}O17$
	100 W	162	1012 017	163	0N1S3C9	1/3	

155sh			149	δN1S2C8	154	τΟ5-Η18,τΗ18-Ο17
133sh					136	vO5-H18
118m					112	τΟ5-Η18,τΗ18-Ο17
105sh			100	δS2N1S3	103	δN1S3C9,δN1S2C8
83sh					82	τO5-H18, δO5H18O17
70sh					65	τwC29-N16,τC27-C29
50m	57	τwC14-N1	60	τS2-N1	54	τS2-N1,τS3-N1
					41	δS2O5H18,δO5H18O17
			38	$\tau_w CF_3(C9)$	37	δ S2O5H18, τ OH, τ_w CF ₃ (C8) τ_w CF ₃ (C9)
			30	$\tau_w CF_3(C8)$	28	δS2O5H18, τO5-H18
					23	τwO5-S2
					19	τΟ5-Η18, τΗ18-Ο17
			5	τS3-N1	15	τO5-H18

Abbreviations: v, stretching; β , deformation in the plane; γ , deformation out of plane; wag, wagging; τ , torsion; ρ , rocking; τ w, twisting; δ , deformation; a, antisymmetric; s, symmetric; ^aThis work, ^bFrom scaled quantum mechanics force field with B3LYP/6-311++G** method, ^bFrom scaled quantum mechanics force field with B3LYP/6-311++G** method from Ref [22].

B3LYP method							
Force constants	6-311++G**						
Force constants -		[CHOL ⁺] ^a	$[(CF_{3}SO_{2})_{2}N^{-}]^{b}$	$[CHOL^+][(CF_3SO_2)_2N^-]^a$			
_	Gas	Aqueous Solution	Gas	Gas	Aqueous Solution		
f(vOH)	7.54	7.41		7.13	7.17		
f(vC-O)	4.96	4.52		5.19	4.66		
$f(\nu N-C)$	3.76	3.90		3.82	3.91		
$f(\nu CH_2)$	4.77	4.83		4.75	4.86		
$f(vCH_3)$	4.98	5,00		4.96	5.01		
$f(\delta CH_2)$	0.87	0.83		0.88	0.83		
$f(\delta CH_3)$	0.55	0.54		0.55	0.54		
$f(\delta OH)$	0.67	0.67		1.96	0.92		
$f(vSO_2)$			8.20	8.36	7.91		
$f(vCF_3)$			5.31	5.49	5.43		
f(vN-S)			4.56	4.17	4.43		
f(vS-C)			2.17	2.17	2.25		
$f(\delta SO_2)$			1.90	1.93	1.82		
$f(\delta CF_3)$			1.51	1.49	1.44		

Table 8. Scaled internal force constants for the $[CHOL^+][(CF_3SO_2)_2N^-]$ ionic liquid and its cation and anion in gas phase and aqueous solution by using the hybrid B3LYP/6-311++G**method.

Units are mdyn Å⁻¹ for stretching and mdyn Å rad⁻² for angle deformations. ^aThis work, ^bFrom Ref [22].

MATERIAL SUPPORTING TO

Synthesis, NMR, FT-IR, FT-Raman spectra and thermal studies of Choline bis(trifluoromethylsulfonyl)imide Ionic Liquid combined with DFT Calculations.

Boumediene Haddad^{1,2,*}, Silvia Antonia Brandán³,María V. Castillo³, Touil Aya Khadidja^{1,4}, Annalisa Paolone⁵, Bekhaled Fetouhi^{6,7},Nathalie Bar²,Didier Villemin², Mustapha Rahmouni⁷, Serge Bresson⁸

¹Department of Chemistry, Faculty of Sciences, University of Saida - Dr. Moulay-Tahar, 20000, Algeria. ²LCMT, ENSICAEN, UMR 6507 CNRS, University of Caen, 6 bd MlJuin, 14050 Caen, France

³Cátedra de Química General, Instituto de Química Inorgánica, Facultad de Bioquímica. Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, (4000) San Miguel de Tucumán, Tucumán, Argentina

⁴Chemistry Laboratory of Synthesis, Properties, and Applications (CLSPA-Saida), University of Saida, Algeria

⁵CNR-ISC, U.O.S. La Sapienza, Piazzale A. Moro 5, 00185 Roma, Italy

⁶Faculty of Natural and Life Sciences, University of Tiaret, BP78 ZaarouraTiaret 14000, Algeria

⁷ Synthesis and Catalysis Laboratory LSCT, Tiaret University, Tiaret, Algeria

⁸UP Transformations & Agro-Ressources, Institut Polytechnique UniLaSalle, SFR Condorcet 3417, BP 30313, F-60026 Beauvais, France.

*Corresponding author: Tel.: +213676802567 E-mail :haddadboumediene@yahoo.com (HADDAD Boumediene).

Figure S1. Orientations and directions of dipole moment vectors for $[CHOL^+][(CF_3SO_2)_2N^-]$ IL in both media and its $[CHOL^+]$ cationand $[(CF_3SO_2)_2N^-]$ anion in gas phase by using the hybrid B3LYP/6-311++G**level of theory.

Figure S2. Calculated atomic MK, Mulliken and NPA charges on the N, C, and F atoms of $[CHOL^+][(CF_3SO_2)_2N^-]$ IL, (a) in gas phase and (b) in aqueous solution by using the B3LYP/6-311++G** level of theory.

Figure S3.Calculated electrostatic potential surfaces on the molecular surface of $[CHOL^+][(CF_3SO_2)_2N^-]$ IL in gas phase and in aqueous solution by using the B3LYP/6-311++G** level of theory.Isodensity value of 0.004.

Figure S4. Molecular graphicsfor $[CHOL^+][(CF_3SO_2)_2N^-]$ IL,(a) in gas phase and (b) in aqueous solution by using the B3LYP/6-311++G** level of theory.

Figure S5.Characteristics of HOMO-LUMO orbitals for $[CHOL^+]$ $[(CF_3SO_2)_2N^-]$ IL showing the gap values in gas phase and aqueous solution by using the B3LYP/6-311++G** level of theory.

Figure S6.Theoretical FT-IR spectrum of ionic liquid in the gas phase (black colour) compared with the corresponding predicted for the cation (red colour) and anion(blue colour) by using the B3LYP/6-311++G** level of theory.

Table S1.Calculated atomic MK, Mulliken and NPA charges on the atoms of $[CHOL^+][(CF_3SO_2)_2N^-]$ IL in gas phase and in aqueous solution by using the B3LYP/6-311++G** level of theory.

B3LYP/6-311G**METHOD							
$[CHOL^+][(CF_3SO_2)_2N^-]$							
Atoms		Gas Phase			AqueousSoluti	on	
Atoms -	MK	Mulliken	NPA	MK	Mulliken	NPA	
1 N	-0.540	-0.722	-1.254	-0.589	-0.457	-1.206	
2 S	0.961	0.139	2.140	1.031	0.047	2.134	
30	-0.556	-0.134	-0.961	-0.583	-0.144	-0.954	
4 O	-0.485	0.049	-0.868	-0.595	-0.168	-0.931	
5 C	0.414	0.063	0.862	0.483	0.166	0.871	
6 F	-0.132	-0.016	-0.325	-0.154	-0.050	-0.338	
7 F	-0.157	-0.051	-0.334	-0.182	-0.067	-0.337	
8 F	-0.158	-0.061	-0.359	-0.148	-0.046	-0.336	
9 S	0.908	-0.014	2.132	0.987	0.174	2.128	
10 O	-0.539	-0.095	-0.943	-0.576	-0.136	-0.935	
11 0	-0.478	0.049	-0.872	-0.588	-0.178	-0.935	
12 C	0.460	0.067	0.861	0.483	0.034	0.869	
13 F	-0.182	-0.064	-0.356	-0.146	-0.018	-0.335	
14 F	-0.167	-0.055	-0.336	-0.178	-0.054	-0.337	
15 F	-0.135	-0.011	-0.326	-0.152	-0.041	-0.339	
16 N	0.177	-0.218	-0.348	0.493	-0.045	-0.339	
17 O	-0.647	-0.273	-0.765	-0.731	-0.365	-0.797	
18 H	0.463	0.392	0.509	0.462	0.416	0.501	
19 C	-0.278	-0.493	-0.359	-0.450	-0.414	-0.352	
20 H	0.150	0.182	0.199	0.184	0.234	0.224	
21 H	0.177	0.244	0.243	0.205	0.222	0.231	
22 H	0.125	0.249	0.248	0.194	0.231	0.227	
23 C	-0.382	-0.228	-0.358	-0.412	-0.306	-0.350	
24 H	0.172	0.179	0.207	0.191	0.212	0.228	
25 H	0.222	0.325	0.268	0.161	0.227	0.228	
26 H	0.172	0.181	0.205	0.186	0.214	0.227	
27 C	0.161	-0.619	-0.048	0.110	-0.630	-0.053	
28 H	0.055	0.219	0.195	0.076	0.242	0.196	
29 C	-0.202	-0.422	-0.201	-0.204	-0.388	-0.192	
30 H	0.133	0.166	0.207	0.153	0.222	0.237	
31 H	0.102	0.504	0.262	0.090	0.380	0.238	
32 H	0.068	0.160	0.171	0.111	0.198	0.198	
33 C	-0.594	-0.296	-0.350	-0.647	-0.360	-0.355	
34 H	0.218	0.182	0.214	0.234	0.210	0.229	
35 H	0.223	0.204	0.212	0.232	0.228	0.228	
36 H	0.268	0.219	0.228	0.270	0.210	0.228	

Table S2. Molecular electrostatic potentials (MEP) and Bond orders (BO) expressed as Wiberg bond index, totals by atom for the $[CHOL^+][(CF_3SO_2)_2N^-]$ IL in gas phase and in aqueous solution by using the B3LYP/6-311++G** level of theory.

Atoms	Ν	MEP (a.u.)	Bond Orders		
7 Romo	Gas	AqueousSolution	Gas	AqueousSolution	
1 N	-18.393	-18.401	2.476	2.531	
2 S	-59.004	-59.027	4.280	4.280	
3 O	-22.369	-22.388	1.605	1.609	
4 O	-22.375	-22.430	1.723	1.634	
5 C	-14.493	-14.508	3.645	3.655	
6 F	-26.551	-26.576	1.074	1.057	
7 F	-26.550	-26.569	1.058	1.054	
8 F	-26.547	-26.550	1.026	1.059	
9 S	-59.007	-59.030	4.286	4.287	
10 O	-22.373	-22.402	1.620	1.624	
11 O	-22.376	-22.433	1.718	1.629	
12 C	-14.494	-14.496	3.644	3.655	
13 F	-26.548	-26.524	1.028	1.058	
14 F	-26.551	-26.559	1.056	1.053	
15 F	-26.552	-26.565	1.073	1.057	
16 N	-18.222	-18.174	3.567	3.570	
17 O	-22.353	-22.359	1.793	1.751	
18 H	-0.991	-1.001	0.745	0.753	
19 C	-14.696	-14.653	3.740	3.758	
20 H	-1.051	-1.000	0.962	0.951	
21 H	-1.059	-1.031	0.943	0.949	
22 H	-1.060	-1.024	0.945	0.951	
23 C	-14.686	-14.638	3.750	3.755	
24 H	-1.043	-0.990	0.959	0.950	
25 H	-1.052	-1.015	0.930	0.950	
26 H	-1.043	-0.996	0.959	0.950	
27 C	-14.684	-14.665	3.865	3.838	
28 H	-1.080	-1.065	0.965	0.964	
29 C	-14.688	-14.650	3.803	3.820	
30 H	-1.049	-1.005	0.959	0.946	
31 H	-1.062	-1.038	0.941	0.947	
32 H	-1.080	-1.044	0.974	0.964	
33 C	-14.670	-14.627	3.784	3.759	
34 H	-1.030	-0.982	0.956	0.949	
35 H	-1.030	-0.983	0.957	0.949	
36 H	-1.034	-0.993	0.950	0.950	

B3LYP/6-311G**METHOD						
$[CHOL^+][(CF_3SO_2)_2N^-]$						
Delocalization	Gas	PCM				
$LP(2)N1 \rightarrow \sigma^* S2-C5$	69.1	73.3				
$LP(2)N1 \rightarrow \sigma^* S9-C12$	67.2	70.7				
$LP(2)O3 \rightarrow \sigma^* N1-S2$	67.0	72.1				
$LP(3)O3 \rightarrow \sigma^* S2-O4$	67.8	66.2				
$LP(3)O3 \rightarrow \sigma^* S2-C5$	53.2	60.2				
$LP(2)O4 \rightarrow \sigma^* N1-S2$	101.7	94.4				
$LP(3)O4 \rightarrow \sigma^* S2-O3$	72.1	60.2				
$LP(3)O4 \rightarrow \sigma^* S2-C5$	76.2	74.7				
$LP(2)F6 \rightarrow \sigma^* S2-C5$	44.4	42.3				
$LP(3)F6 \rightarrow \sigma^* C5-F8$	58.2					
$LP(3)F6 \rightarrow \sigma^* C5-F7$		54.0				
$LP(2)F7 \rightarrow \sigma^* C5-F6$	41.8					
$LP(2)F7 \rightarrow \sigma^*S2-C5$		42.1				
$LP(3)F7 \rightarrow \sigma^* C5-F6$		47.7				
$LP(3)F7 \rightarrow \sigma^* C5-F8$	63.2	42.1				
$LP(3)F7 \rightarrow \sigma^* C5-F7$	55.1					
$LP(2)F8 \rightarrow \sigma^*S2-C5$		44.8				
$LP(3)F8 \rightarrow \sigma^* C5-F6$		43.1				
$LP(3)F8 \rightarrow \sigma^* C5-F7$		47.2				
$LP(2)O10 \rightarrow \sigma^* N1-S9$	72.9	77.5				
$LP(3)O10 \rightarrow \sigma^* S9-O11$	64.5	63.7				
$LP(3)O10 \rightarrow \sigma^* S9-C12$	63.2	68.5				
$LP(2)O11 \rightarrow \sigma^* N1-S9$	103.9	94.8				
$LP(3)O11 \rightarrow \sigma^* S9-O10$	67.5	54.3				
$LP(3)O11 \rightarrow \sigma^* S9-C12$	81.4	79.0				
$LP(2)F13 \rightarrow \sigma^*C12$ -F15	46.7					
$LP(2)F13 \rightarrow \sigma^*S9-C12$		44.4				
$LP(3)F13 \rightarrow \sigma^*C12$ -F14	57.3	47.3				
$LP(3)F13 \rightarrow \sigma^*C12$ -F15		42.9				
$LP(2)F14 \rightarrow \sigma^*S9-C12$		41.8				
$LP(3)F14 \rightarrow \sigma^* C12$ -F13	62.0	42.8				
$LP(3)F14 \rightarrow \sigma^* C12$ -F15		47				
$LP(2)F15 \rightarrow \sigma^* S 9-C12$	45.2	41.8				
$LP(3)F15 \rightarrow \sigma^* C12$ -F13	54.7					
$LP(3)F15 \rightarrow \sigma^* C12$ -F14		55.0				
$\Delta ET_{LP \to \sigma^*}$	1556.4	1735.8				
σ *S2-O3 \rightarrow σ *S2-O4	87.2	214.3				
σ *S9-O10 \rightarrow σ *S9-O11	118.3					
$\Delta ET_{\sigma^* \to \sigma^*}$	205.5	214.3				
<i>DET</i> <i>TOTAL</i>	1762.0	1950.1				

Table S3. Main delocalization energy (in kJ/mol) of[CHOL⁺][(CF₃SO₂)₂N⁻] IL in gas phase and in aqueous solution by using the B3LYP/6-311++G** level of theory.

Table S4. Predicted intramolecular interactions for the $[CHOL^+][(CF_3SO_2)_2N^-]$ ionic liquid in gas phase and aqueous solution by using the topological properties and the B3LYP/6-311G** Method.

Interactions ^a					
Gas Phase	Aqueous solution				
S2-O3…H18	S2-O3…H18				
S2-O4…F15	S2-O4…F15				
S9-O11…F6	S9-O11…F6				
S9-O10…H25					
С5-F8…H28	C5-F8…H28				
C12-F13····H22	C12-F13····H22				
	C12-F13····H25				
С19-Н21…О17	C19-H21···O17				
C19-H22…N1					
C29-H31…N1	C29-H31…N1				

^aThis work; Letters bold, shorter distances.

Parameter				Gas Phase			
(a.u.)	S2-O3…H18	S2-O4…F15	S9-O11…F6	С5-F8…H28	C12-F13…H22	С19-Н21…О17	C29-H31…N1
$\rho(r_c)$	0.0296	0.0063	0.0067	0.0032	0.0052	0.0162	0.0181
$\nabla^2 \rho(r_c)$	0.1128	0.0251	0.0265	0.0142	0.0208	0.0537	0.0561
λ_1	-0.0432	-0.0051	-0.0056	-0.0028	-0.0048	-0.0172	-0.0205
λ_2	-0.0418	-0.0050	-0.0054	-0.0023	-0.0041	-0.0150	-0.0188
λ_3	0.1978	0.0352	0.0375	0.0193	0.0296	0.0859	0.0954
$ \lambda_1 /\lambda_3$	0.2184	0.1451	0.1483	0.1437	0.1608	0.2004	0.2146
Distance (Å)	1.821	2989	2.951	2.585	2.593	2.193	2.224
Parameter				Aqueussolutio	on		
(a.u.)	S2-O3H18	S2-O4…F15	S9-O11…F6	C5-F8H28	C12-F13…H22	С19-Н21…О17	C29-H31…N1
$\rho(r_c)$	0.0217	0.0048	0.0047	0.0012	0.0018	0.0114	0.0079
$\nabla^2 \rho(r_c)$	0.0874	0.0200	0.0197	0.0060	0.0087	0.0378	0.0235
λ_1	-0.0292	-0.0033	-0.0032	-0.0009	-0.0015	-0.0106	-0.0072
λ_2	-0.0275	-0.0020	-0.0017	-0.0008	-0.0012	-0.0086	-0.0067
λ_3	0.1441	0.0253	0.0246	0.0077	0.0114	0.0570	0.0374
$ \lambda_1 /\lambda_3$	0.2028	0.1294	0.1283	0.1196	0.1291	0.1860	0.1918
Distance (Å)	1.955	3.210	3.223	3.274	3.043	2.482	2.622

Table S5. Analysis of the topological properties for the $[CHOL^+][(CF_3SO_2)_2N^-]$ ionic liquid in gas phase and aqueous solution by using the B3LYP/6-311++G** Method.

Parameter			
(a.u.)	S9-О10…H25	C19-H22…N1	C12-F13····H25
$\rho(r_c)$	0.0160	0.0104	
$\nabla^2 \rho(r_c)$	0.0576	0.0306	
λ_1	-0.0183	-0.0097	
λ_2	-0.0174	-0.0086	
λ_3	0.0933	0.0490	
$ \lambda_1 /\lambda_3$	0.1957	0.1988	
Distance (Å)	2.215	2.678	
Parameter		Aqueussolution	
(a.u.)	S9-О10…H25	C19-H22…N1	C12-F13····H25
$\rho(r_c)$			0.0030
$\nabla^2 \rho(r_c)$			0.0132
λ_1			-0.0027
λ_2			-0.0026
λ_3			0.0185
$ \lambda_1 /\lambda_3$			0.1464
Distance (Å)			2.838

Table S6. Analysis of the topological properties for the $[CHOL^+][(CF_3SO_2)_2N^-]$ ionic liquid in gas phase and aqueous solution by using the B3LYP/6-311++G** Method.

Table S7. Calculated HOMO and LUMO orbitals, energy band gap, global hardness (η) , global softness (*S*) and global electrophilicity index (ω) for the [CHOL⁺][(CF₃SO₂)₂N⁻] ionic liquid in gas phase and aqueous solution by using the B3LYP/6-311++G** method. The parameters for cation and anion in gas phase are also presented by using the B3LYP/6-311++G** method.

Frontierorbitals	Gas	Phase	6-311++G**		
(eV)	6-311++G**	6-311++G**	[CHOL ⁺]	$[(CF_3SO_2)_2N^-]^a$	
	[CHOL ⁺]	$[(CF_3SO_2)_2N^-$	Gas Phase	AqueousSolution	
HOMO	-12.1197	-6.0443	-7.8229	-7.8824	
LUMO	-4.0861	-1.8039	-1.2869	-0.4184	
GAP	8.0337	4.2404	6.5360	7.4640	
		Descriptors			
Х	8.1029	3.9241	4.5549	4.1504	
μ	-8.1029	-3.9241	-4.5549	-4.1504	
η	4.0168	2.1202	3.2680	3.7320	
S	0.1245	0.2358	0.1530	0.1340	
ω	8.1727	3.6314	3.1743	2.3079	

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

The authors declare no conflict of interest.

Pr. Boumediene HADDAD

