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A LOWER BOUND ON THE CRITICAL MOMENTUM

OF AN IMPURITY IN A BOSE–EINSTEIN CONDENSATE

BENJAMIN HINRICHS AND JONAS LAMPART

Abstract. In the Bogoliubov–Fröhlich model, we prove that an impurity immersed in a Bose–Einstein
condensate forms a stable quasi-particle when the total momentum is less than its mass times the
speed of sound. The system thus exhibits superfluid behavior, as this quasi-particle does not experience
friction. We do not assume any infrared or ultraviolet regularization of the model, which contains
massless excitations and point-like interactions.

1. Introduction

An impurity in a Bose–Einstein condensate will create excitations out of the ground state and may
form a quasi-particle, called the Bose polaron, consisting of the particle and a surrounding cloud of
excitations. The system is of interest in physics as the impurity can reveal properties of the condensate,
such as superfluidity. Moreover, Bose–Einstein condensates are finely controllable experimental platforms
from which one hopes to learn about polaron physics in solids by analogy.

The Bogoliubov–Fröhlich Hamiltonian is an effective model for such a system, in which the particle
is linearly coupled to Bogoliubov’s excitation field. This model is relevant if the interaction between the
particle and the bosons is sufficiently weak to not significantly impact the condensate [GD16], though
there is some debate in the physics literature on what effects this model can or cannot capture [CLB15,
GSSD17]. Recent mathematical results prove that it provides an accurate description of the system in
certain mean-field [MS20, LP22] and dilute [LT] regimes.

In this letter we start from the translation-invariant Bogoliubov–Fröhlich Hamiltonian in R
3 and prove

that the Bose polaron is stable when the total momentum is less than the impurity mass times the speed
of sound. Mathematically, this corresponds to proving that the Hamiltonian at fixed total momentum
has an eigenvalue at the bottom of its spectrum. Since the excitations in this model are massless,
this eigenvalue is always embedded in the essential spectrum. One expects that beyond some critical
momentum this eigenvalue disappears and the system exhibits a Cherenkov transition. That is, the
polaron would radiate sound waves, thereby slowing down to a stable state of smaller momentum. This
has been validated numerically in [SSG+21a, SSG+21b], but there does not seem to be a mathematical
proof of such a statement.

The dichotomy of stability at small velocities and a friction effect at high velocities has been studied in
a model of a classical particle interacting with sound waves in the series of works [FGS11, FGS12, EG12,
EFG+13, FG14a, FG14b], and later in [Lég20]. This model can be related to the Bose polaron system in
a mean-field regime with a heavy impurity [DFPP14]. A simplified model is obtained by decoupling the
directions of propagation of the particle and the waves, which limits the back-reaction of the field on the
particle. Such a model was studied in [BDB02] in the quantum mechanical and [DBFS17] in the classical
setting.

1.1. The Bogoliubov–Fröhlich Polaron. The Bogoliubov–Fröhlich Hamiltonian is characterized by
the dispersion relation of the field of excitations, or phonons, and the form factor of the interaction. The
dispersion relation is

(1.1) ω(k) :=
√
c2|k|2+ξ2|k|4,

where c > 0 is the speed of sound and ξ = 1/(2mB), for the mass mB of the bosons in the gas. The form
factor of the particle-phonon interaction is

(1.2) vΛ(k) := g1|k|<Λ

√
|k|2/ω(k),

where Λ is an ultraviolet cutoff (that may take the value infinity) and g is a coupling constant, whose
value will not be important in our analysis.
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Our model is then realized as a selfadjoint lower-semibounded Hamiltonian on the bosonic Fock space
F over L2(R3). We use the standard notation ak, a

∗
k for the creation and annihilation operators on

F in the sense of operator-valued distributions. As usual, writing dΓ(f) =
∫
f(k)a∗kakdk and ϕ(g) =∫

(g(k)∗ak+g(k)a
∗
k)dk for second quantization and field operators, respectively, we define the Bogoliubov–

Fröhlich Hamiltonian at momentum P ∈ R
3 with cutoff Λ <∞ by

(1.3) HΛ(P ) :=
1
2 (P − dΓ(p̂))2 + dΓ(ω) + ϕ(vΛ),

where p̂ = (p̂1, p̂2, p̂3) denotes the vector of multiplication operators on L2(R3) given by p̂if(k) = kif(k).
Note that we have set the impurity mass equal to one, keeping c, ξ and g as the model parameters.
Moreover, we may choose g ≥ 0 without loss of generality, as the models with different signs (phases) in
the coupling are unitarily equivalent via eiarg(g)dΓ(1).

By the Kato–Rellich theorem, it follows from standard estimates that HΛ(P ) is a selfadjoint lower-
semibounded operator with D(HΛ(P )) = D(H0(0)) = D(dΓ(p̂)2) ∩ D(dΓ(ω) for all Λ < ∞, since
vΛ, ω

−1/2vΛ ∈ L2(R3).
For Λ = ∞, H(P ) is defined by the following renormalization result from [Lam20]. For the convenience

of the reader, we sketch the proof in Section 2.

Proposition 1.1. There exist (ΣΛ)Λ≥0 ⊂ R and, for all P ∈ R
3, a selfadjoint lower-semibounded

operator H(P ) (given in Theorem 2.1) such that HΛ(P )−ΣΛ converges to H(P ) as Λ → ∞ in the norm
resolvent sense.

Proof. The statement is that of Theorem 2.1 with κ = 0. �

We are interested in studying the critical momentum of the operator H(P ).

1.2. Critical Momentum. As described earlier in this introduction, the polaron may become unstable
for large momentum. We define the the critical momentum as

(1.4) P∗ := sup{P ∈ R
3 : inf σ(H(P )) is an eigenvalue of H(P )}.

The main result of this article can now easily be stated.

Theorem 1.2. For any coupling constant g ≥ 0 and any speed of sound c > 0, we have

P∗ ≥ c.

Proof. The statement is an immediate corollary of Theorem 3.1. �

Remark 1.3. It would be interesting to show that P∗ is finite, and that there is a unique transition, i.e.,
inf σ(H(P )) is an eigenvalue for all P < P∗. The numerical study [SSG+21a] supports this picture and
indicates that the second derivative of E has a jump at P∗. Moreover, [SSG+21a, Fig.3(e)] suggests that
P∗ increases from c to infinity as g → ∞.

Remark 1.4. An interpretation of the statement is to think of P∗ = m∗c, where m∗ is the effective mass
of the polaron (compare [SSG+21b]). Then we have shown m∗ ≥ 1, meaning that the quasi-particle is
heavier than the impurity of mass one, in agreement with the picure that the particle is dressed by a cloud
of phonons, increasing its effective mass. This definition of an effective mass is, of course, different from
the common definition by the curvature ∂2|P |E(P )|P=0 at zero, but one may still expect similar qualitative

behavior, see [Sei21, DS20] for a discussion of the latter quantity in the Fröhlich polaron model.

In order to prove Theorem 1.2, we have to deal with both an ultraviolet and an infrared problem. The
first is due to the fact that v∞ /∈ L2(R3) (and also ω−1/2v∞ /∈ L2(R3)). Using the method of interior
boundary conditions, we can nevertheless describe the Bogoliubov–Fröhlich Hamiltonian, in particular its
domain, without any ultraviolet regularization. This goes back to a recent article by the second author
[Lam20], building on techniques developed for the related Fröhlich and Nelson models in [LS19] and
improved on in the subsequent articles [Sch19, Lam19, Sch21, Lam23].

The infrared problem is due to the fact that ω(0) = 0, which entails that H(P ) does not have a spectral
gap and inf σ(H(P )) = inf σess(H(P )). For massive polaron models, i.e., models satisfying ess inf ω > 0,
the existence of ground states is well known, see for example [Frö73, Spo88, DG99]. In the massless
case, one distinguishes between the infrared singular case v/ω /∈ L2(R3) and the infrared regular one
v/ω ∈ L2(R3). In the infrared singular case, e.g., the famous Nelson model [Nel64], absence of ground
states at arbitrary total momentum (and all non-zero couplings) has been shown, cf. [Frö73, HH08,
Dam20, DH22]. In our case, however, the model is infrared-regular, as can be easily checked. There exists
a variety of perturbative methods to prove existence of ground states in such a case for small values of the
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total momentum and the coupling constant, e.g., operator theoretic renormalization [BFS98], iterated
perturbation theory [Piz03, DP14] and functional integration methods [Spo98, BHL+02]. In particular,
in presence of an ultraviolet cutoff Λ <∞ and for small coupling, the fact that P∗ > 0 follows from [DP14,
Proposition 1.1]. Hence, we extend the existence of ground state to the case without ultraviolet cutoff,
arbitrary coupling and a larger set of total momenta. The method we use in our proof is an adaption
of a compactness argument first applied in [GLL01] and subsequently employed in the study of various
models, e.g., the spin boson model [HHS21], the Nelson model [HM22, HHS23] and the Pauli–Fierz model
[Mat16, HS23]. The general strategy is to introduce an artificial boson mass κ > 0, and then prove that
the set of ground states with κ→ 0 is pre-compact and provides a minimizing sequence for H(P ).

In the remainder of this letter, we sketch the renormalization procedure leading to Proposition 1.1 in
Section 2 and give the proof of Theorem 1.2 in Section 3.

2. Renormalization and Properties of the Bogoliubov–Fröhlich Polaron

In this section, we sketch the proof of Proposition 1.1, by reviewing the renormalization method
employed in [Lam21]. The key idea is to identify a divergent and P -independent contribution ΣΛ to
inf σ(HΛ(P )). This contribution is of the form

(2.1) ΣΛ = e1Λ + e2 log Λ +O(1).

The two divergent contributions of different orders arise in a two-step procedure of rewriting HΛ(P ).
Throughout this section, we assume P ∈ R

3 to be fixed. We emphasize that most of the defined
objects, except for the contributions to ΣΛ, do have a P -dependence. We now fix some parameter µ > 0
and define

(2.2) GΛ = −
(
a(vΛ)(H0(P ) + µ)−1

)∗
.

Employing that ω−1v ∈ L2(R3), one can show that GΛ is a bounded operator, including the case Λ = ∞,
see the proof of Theorem 2.1 below for more details. Further, for Λ <∞, we have the simple identity

(2.3) HΛ(P ) = (1−G∗
Λ)(H0(P ) + µ)(1 −GΛ)−G∗

Λ(H0(P ) + µ)GΛ − µ,

which follows by expanding the product. The first singular contribution is contained in the term

(2.4) −G∗
Λ(H0(P ) + µ)GΛ = −a(vΛ)(H0(P ) + µ)−1a∗(vΛ)

To make it explicit, we will put the creation and annihilation operators in this expression in normal
order. With the pull-through formula ak(H0(P ) + µ)−1 = (H0(P − k) + ω(k) + µ)−1ak, which holds by
inspection on every n-particle sector of F (see for example [BFS98, Lemma IV.8]), we find

− a(vΛ)(H0(P ) + µ)−1a∗(vΛ) = −

∫
ak
vΛ(k)vΛ(ℓ)

H0(P ) + µ
a∗ℓdkdℓ(2.5)

= −

∫
vΛ(k)

2

H0(P − k) + ω(k) + µ
dk −

∫
a∗ℓ

vΛ(k)vΛ(ℓ)

H0(P − k − ℓ) + ω(k) + ω(ℓ) + µ
akdkdℓ.

With this order of a∗ℓ , ak, the second term will be well defined also for Λ = ∞ as an unbounded operator,
since the decay of akΨ in k for an element Ψ of its domain will make the integral convergent. For the first
term this is not the case, and we will need to first subtract its divergent contribution to take Λ → ∞.
This can be chosen as

(2.6) Σ
(1)
Λ = −

∫
vΛ(k)

2

1
2k

2 + ω(k)
dk,

which has a divergence proportional to Λ since vΛ(k) is of order one for large k. We then define
TΛ,1 = ΘΛ,1,0+ΘΛ,1,1, where ΘΛ,1,0 = θΛ,1,0(dΓ(p̂), dΓ(ω)) is a multiplication operator in the momentum
representation and ΘΛ,1,1 =

∫
a∗ℓθΛ,1,1(dΓ(p̂), dΓ(ω), k, ℓ)akdkdl is an integral operator, with

(2.7)

θΛ,1,0(p, η) = −

∫ (
vΛ(k)

2

1
2 (P − p− k)2 + η + ω(k) + µ

−
vΛ(k)

2

1
2k

2 + ω(k)

)
dk

θΛ,1,1(p, η, k, ℓ) = −
vΛ(k)vΛ(ℓ)

1
2 (P − p− k − ℓ)2 + η + ω(k) + ω(ℓ) + µ

.

Now, TΛ makes sense also for Λ = ∞, since the integral defining θΛ,1,0 has a limit for Λ → ∞, and hence
we could try to employ the identity

(2.8) G∗
Λ(H0(P ) + µ)GΛ − Σ

(1)
Λ = TΛ
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to define the second term in (2.3) for a definition of H(P ). This is not enough, however, to remove the
cutoff completely, since the (form) domain of the first term (1−G∗

∞)(H0(P )+µ)(1−G∞) is not contained
in the (form) domain of T∞. To remedy this issue, we include TΛ with the free operator.

For Λ ∈ R+ ∪ {∞}, let

(2.9) G̃Λ = −
(
a(vΛ)(H0(P ) + TΛ + µ)−1

)∗
.

Then we can write a similar identity to (2.3) for Λ <∞, explicitly

(2.10) HΛ = (1− G̃∗
Λ)(H0(P ) + TΛ + µ)(1 − G̃Λ)− a(vΛ)(H0(P ) + TΛ + µ)−1a∗(vΛ)− TΛ − µ.

Expanding the resolvent gives

− a(vΛ)(H0(P ) + TΛ + µ)−1a∗(vΛ)− TΛ(2.11)

= Σ
(1)
Λ + a(vΛ)(H0(P ) + TΛ + µ)−1TΛ(H0(P ) + µ)−1a∗(vΛ)

= Σ
(1)
Λ + a(vΛ)(H0(P ) + µ)−1TΛ(H0(P ) + µ)−1a∗(vΛ)

− a(vΛ)(H0(P ) + µ)−1TΛ(H0(P ) + TΛ + µ)−1TΛ(H0(P ) + µ)−1a∗(vΛ).

The term in the last line is regular in the case Λ = ∞ and will be treated as a remainder, while the
first still contains the logarithmic divergence. To extract this, we proceed as before and put the creation
and annihilation operators in normal order. However, there is now also the possibility of picking up a
commutator between the operators in ΘΛ,1,1 and the outer creation/annihilation operators. With this in
mind, the term with no remaining creation and annihilation operators reads
∫
vΛ(k)

2θΛ,1,0(dΓ(p̂) + k, dΓ(ω) + ω(k))

(H0(P − k) + ω(k) + µ)2
dk −

∫
vΛ(k)vΛ(ℓ)θΛ,1,1(dΓ(p̂), dΓ(ω), k, ℓ)

(H0(P − k) + ω(k) + µ)(H0(P − ℓ) + ω(ℓ) + µ)
dkdℓ.

These integrals have a logarithmic divergence as Λ → ∞, captured by

(2.12)

Σ
(2)
Λ =

∫
vΛ(k)

2θΛ,1,0(k, ω(k))

(12k
2 + ω(k))2

dk

−

∫
vΛ(k)

2vΛ(ℓ)
2

(12k
2 + ω(k))(12 (k + ℓ)2 + ω(k) + ω(ℓ))(12ℓ

2 + ω(ℓ))
dkdℓ.

After subtracting this, we define T̃Λ = ΘΛ,2,0 +ΘΛ,2,1 +ΘΛ,2,2, where ΘΛ,2,0 is a multiplication operator
of the same type as ΘΛ,1,0, and ΘΛ,2,1,ΘΛ,2,2 are integrals with one, respectively two, remaining creation
and annihilation operators. The expression for ΘΛ,2,0 is given by

θΛ,2,0(p, η) =

∫
vΛ(k)

2θΛ,1,0(p+ k, η + ω(k))

(12 (P − p− k)2 + η + ω(k) + µ)2
dl(2.13)

+

∫
vΛ(k)vΛ(ℓ)θΛ,1,1(p, η, k, ℓ)

(12 (P − p− k)2 + η + ω(k) + µ)(12 (P − p− ℓ)2 + η + ω(ℓ) + µ)
dkdℓ− Σ

(2)
Λ ,

where we observe that Σ
(2)
Λ is simply the value of the integrals at P = p = η = µ = 0. The integral

operators have the kernels

θΛ,2,1(p, η, k, ℓ) =
vΛ(k)vΛ(ℓ)θΛ,1,0(p+ k + ℓ, η + ω(k) + ω(ℓ))

(12 (P − p− k)2 + η + ω(k) + µ)(12 (P − p− ℓ)2 + η + ω(ℓ) + µ)
(2.14)

+

∫
vΛ(ξ)

2θΛ,1,1(p+ ξ, η + ω(ξ), k, ℓ)

(12 (P − p− ξ)2 + η + ω(ξ) + µ))2
dkdl

θΛ,2,1(p, η, k1, k2, ℓ1, ℓ2) =
vΛ(k1)vΛ(ℓ1)θΛ,1,1(p+ k1 + ℓ1, η + ω(k1) + ω(ℓ1), k2, ℓ2)

(12 (P − p− k1)2 + η + ω(k1) + µ)(12 (P − p− ℓ1)2 + η + ω(ℓ1) + µ)
.(2.15)

Again, the definition of T̃Λ may be extended to Λ = ∞ since these functions are defined also for this
value. Finally, the definition of the remainder term reads

(2.16)
RΛ = −a(vΛ)(H0(P ) + µ)−1TΛ(H0(P ) + TΛ + µ)−1TΛ(H0(P ) + µ)−1a∗(vΛ)

= G∗
ΛTΛ(H0(P ) + TΛ + µ)−1TΛGΛ,

which defines a bounded operator also for Λ = ∞.
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Since we require an infrared regularization in Section 3 additionally to the ultraviolet one provided
by the cutoff Λ, we directly consider the family of operators Hκ,Λ given by (1.3) with ω replaced by
ωκ = ω + κ, i.e.,

(2.17) Hκ,Λ(P ) := HΛ(P ) + κN for κ ≥ 0, Λ ∈ R+,

where N = dΓ(1) is the particle number operator as usual. Note that D(Hκ,0(P )) = D(H0,0(0))∩D(κN),
so we simply denote this domain by D(Hκ,0). For Λ <∞, (2.17) immediately defines a selfadjoint lower-
semibounded operator on D(Hκ,0), since vΛ ∈ L2(R3).

The preceding discussion applies in the same way with ωκ, yielding objects TΛ = Tκ,Λ, G̃Λ = G̃κ,Λ,

T̃Λ = T̃κ,Λ, whose dependence on κ we will not make explicit. Proposition 1.1 is now a consequence of
the following theorem for κ = 0.

Theorem 2.1 ([Lam21]). Let κ ≥ 0 and let G̃∞, T∞, T̃∞, R∞ be defined by (2.9), (2.7), (2.13)–(2.15),
and (2.16) with ω = ωκ respectively. The operator

Hκ,∞(P ) = (1− G̃∗
∞)(Hκ,0(P ) + T∞ + µ)(1 − G̃∞) + T̃∞ +R∞ − µ

D(Hκ,∞(P )) =
{
ψ ∈ F : (1− G̃∞)ψ ∈ D(Hκ,0)

}

is selfadjoint and bounded from below. We have the convergence

Hκ,Λ(P )− Σ
(1)
Λ − Σ

(2)
Λ → Hκ,∞(P )

in norm resolvent sense, where Σ
(i)
Λ , i = 1, 2 are defined as in (2.6) and (2.12).

Sketch of the proof. We give a short outline of the proof with references to key technical lemmas for the
convenience of the reader. Throughout this proof, κ ≥ 0 is fixed.

The first step is to prove that

‖TΛψ‖ ≤ C‖(Hκ,0(P ) + 1)1/2ψ‖ for Λ ∈ R+ ∪ {∞},

‖(TΛ − T∞)ψ‖ ≤ CΛ‖(Hκ,0(P ) + 1)1/2+εψ‖,
(2.18)

with ε > 0 and limΛ→∞ CΛ = 0 (the part ΘΛ,1,0 can be bounded by an elementary calculation; concerning
ΘΛ,1,1, see [Lam19, Lem.17] and [Lam23, Lemma B.2] for proofs in the case κ > 0 that are easily adapted
to κ = 0).

Using this, one shows that for Λ ∈ R+ ∪ {∞}, G̃Λ are bounded operators on F , satisfying

(2.19) ‖(Hκ,0(P ) + µ)sG̃Λ‖ ≤ C, (Hκ,0(P ) + µ)s(G̃Λ − G̃∞)
Λ→∞
−→ 0 for 0 ≤ s < 1/4.

This follows easily from the bound ‖a(f)dΓ(η)−1/2‖ ≤ ‖f/η‖, v/ω ∈ L2(Rd) and the fact that TΛ is an
infinitesimal perturbation of Hκ,0(P ).

In particular, for µ large enough, ‖G̃Λ‖ < 1, so 1 − G̃Λ is invertible. This shows that D(Hκ,∞(P )) is
dense and combined with (2.18), the operator

(2.20) K := (1− G̃∗
∞)(Hκ,0(P ) + T∞ + µ)(1 − G̃∞)

is selfadjoint and bounded from below on this domain. The terms T̃∞, R∞ will be treated as perturbations

of K. For R∞, boundedness follows directly from the properties of TΛ and G̃Λ.

For T̃Λ one can again show

‖T̃Λψ‖ ≤ C‖(Hκ,0(P ) + 1)εψ‖,(2.21)

‖(T̃Λ − T̃∞)ψ‖ ≤ CΛ‖(Hκ,0(P ) + 1)εψ‖(2.22)

for ε > 0 and limΛ→∞ CΛ = 0 (cf. [Lam23, Lemma B.2], [Lam19, Lem.19]). This implies that

‖T̃∞ψ‖ ≤ ‖T̃∞(1− G̃∞)ψ‖+ ‖T̃∞G̃∞ψ‖(2.23)

≤ C(‖(Hκ,0(P ) + 1)ε(1− G̃∞)ψ‖+ ‖(Hκ,0(P ) + 1)εG̃∞ψ‖)

≤ δ‖Kκψ‖+ Cδ‖ψ‖

for any δ > 0. Thus Hκ,∞(P ) is selfadjoint by the Kato–Rellich theorem.
Convergence of resolvents follows from the identity (2.10), the resolvent formula and the convergence

properties of TΛ, G̃Λ already mentioned. �

From the proof, we also obtain the following Lemma 2.2, which relates the domains of H(P ) and N . It
will be important to our proof of Theorem 1.2 in the next section.
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Lemma 2.2. For any P ∈ R
3, the subspace D(N) ∩ D(H0,∞(P )) is a core for H0,∞(P ). Further,

D(Hκ,∞(P )) = D(N) ∩D(H0,∞(P )) for all κ > 0 and Hκ,∞(P ) = H0,∞(P ) + κN .

Proof. From Theorem 2.1, we know that D(Hκ,∞(P )) = (1 − G̃∞)−1D(Hκ,0). Moreover, for any core C

of Hκ,0(P ), (1 − G̃∞)−1C is a core for Hκ,∞(P ), since (1 − G̃∞)−1 : D(Hκ,0) → D(K) is continuous for

the graph norms. Hence, to prove the domain statements, it suffices to show (1 − G̃∞)D(N) = D(N).

This follows from the observation NG̃∞ = G̃∞(N + 1), implying

‖N(1− G̃∞)ψ‖ ≤ ‖Nψ‖+ ‖G̃∞‖‖(N + 1)ψ‖,(2.24)

‖Nψ‖ ≤ ‖N(1− G̃∞)ψ‖+ ‖NG̃∞ψ‖ ≤ ‖N(1− G̃∞)ψ‖ + ‖G̃∞‖‖(N + 1)ψ‖,(2.25)

from where we conclude using ‖G̃∞‖ < 1. Moreover,

(2.26) Hκ,∞(P ) = H0,∞(P ) + κN

holds since both sides are the weak graph limit of Hκ,Λ(P ), by Theorem 2.1, [RS72, Thm.VIII.26], and
the uniform bound ‖Nψ‖ ≤ C‖(Hκ,Λ(P ) + µ)ψ‖. �

Remark 2.3. One can observe that D(H(P )) 6= D(H(P ′) for P 6= P ′. This is the case because

(2.27) (H0(P ) + µ)−1dΓ(p̂)G∞,

which is proportional to the difference of G∞ for two different values of P , does not map D(H0) to itself.
It does, however, map the form domain of Hκ,0(P ) to itself, so the operators with different total momenta
still have comparable quadratic forms. Notwithstanding, this fact will not be used in our arguments.

3. Existence of Ground States

In this section, we prove the following theorem.

Theorem 3.1. If |P |< c, then inf σ(H(P )) is an eigenvalue of H(P ).

To prove the statement, we approximate H(P ) = H0,∞(P ) by the infrared regularized Hamiltonians
Hκ,∞(P ) with κ > 0 introduced in (2.17). Further, we write

(3.1) Eκ,Λ(P ) := inf σ(Hκ,Λ(P )) for all κ ≥ 0, Λ ∈ R+ ∪ {∞}, P ∈ R
3.

Let us first observe that the ground state energies converge, when removing any regularization.

Lemma 3.2. For any fixed κ ≥ 0, Λ ∈ R+ ∪ {∞} and P ∈ R
3, we have

Eκ,∞ = lim
σ→∞

Eκ,σ and E0,Λ = lim
η↓0

Eη,Λ.

Proof. The first statement is a consequence of the norm resolvent convergence established in Theorem 2.1
(cf. [dO09]). For the second statement, we observe that D(N)∩D(H0,Λ(P )) is a core for H0,Λ(P ), by the
Kato–Rellich theorem for Λ < ∞ and by Lemma 2.2 for Λ = ∞. Hence, picking any ε > 0, there exists
ϕε ∈ D(N) ∩ D(H0,Λ(P )) with ‖ϕε‖ = 1 such that 〈ϕε, H0,Λ(P )ϕε〉 < E0,Λ(P ) + ε. Further employing
that Hη,Λ(P )−H0,Λ(P ) ≥ 0 (as a form inequality), again by (2.17) and Lemma 2.2, we find

E0,Λ(P ) ≤ Eη,Λ(P ) ≤ 〈ϕε, Hη,Λ(P )ϕε〉 = 〈ϕε, H0,Λ(P )ϕε〉+ η 〈ϕε, Nϕε〉 ≤ E0,Λ + ε+ η 〈ϕε, Nϕε〉 .

First taking η ↓ 0 and then ε ↓ 0 finishes the proof. �

The mass term κN ensures the existence of a spectral gap for small enough P , as a consequence of the
following well-known HVZ-type theorem [Frö73, Møl05].

Proposition 3.3 ([Møl05, Theorem 1.2]). For all κ > 0, Λ ∈ R+, we have

(3.2) inf σess(Hκ,Λ(P )) = inf
k1,...,kn∈R

3

n∈N

[
Eκ,Λ(P − k1 − · · · − kn) + ω(k1) + · · ·ω(kn) + nκ

]
.

In view of the above proposition, we need to estimate the difference E(P − k)−E(P ). This can be done
using simple convexity arguments, cf. [LMS07, HHS23].

Lemma 3.4. Let κ ≥ 0, Λ ∈ R+ ∪ {∞} and P,K ∈ R
3. Then

Eκ,Λ(P −K)− Eκ,Λ(P ) ≥ −|K||P |.
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Proof. First, we assume that κ > 0 and Λ <∞ and prove the inequalities

(3.3) 0 ≤ Eκ,Λ(P )− Eκ,Λ(0) ≤
1
2 |P |

2 for all P ∈ R
3.

The first inequality goes back to Gross [Gro72], see [Hin22, Lemma 3.4] for a recent adaption which covers
our case. Now, note that Proposition 3.3 combined with the first inequality yields

(3.4) inf σess(Hκ,Λ(0)) ≥ Eκ,Λ(0) + κ,

so Eκ,Λ(0) is a discrete eigenvalue with corresponding normalized eigenvector ψ0 ∈ D(Hκ,Λ(0)) =
D(Hκ,Λ(P )). Then

Eκ,Λ((P )) ≤ 〈ψ0, Hκ,Λ(P )ψ0〉 = Eκ,Λ(0) +
1
2 |P |

2+ 〈ψ0, P · dΓ(p̂)ψ0〉 .

This implies 1
2 |P |

2+ 〈ψ0, P · dΓ(p̂)ψ0〉 ≥ 0 for all P ∈ R
3. Letting P → 0, this yields e · 〈ψ0, dΓ(p̂)ψ0〉 ≥ 0

for all normalized e ∈ R
3, whence 〈ψ0, dΓ(p̂)ψ0〉 = 0. This proves the upper bound in (3.3).

Clearly, the map

(3.5) P 7→ 1
2P

2 − Eκ,Λ(P ) = − inf
ψ∈D(Hκ,Λ(P ))

〈ψ, (−P · dΓ(p̂) + 1
2dΓ(p̂)

2 +Hκ,Λ(0))ψ〉

is convex, as a supremum over linear functions of P . By a general result on convex functions taking
nonnegative values below the standard parabola (essentially the fact that such a function must lie below
any segment that intersects its graph and is tangent to the parabola, cf. [LMS07, Appendix A] or [HHS23,
Cor. A.6]), this gives for κ > 0, Λ <∞

(3.6) Eκ,Λ(P −K)− Eκ,Λ(P ) ≥

{
−|K||P |+ 1

2 |K|2 if |K|≤ |P |,

− 1
2 |P |

2 if |K|> |P |.

In both cases the right hand side is larger than −|K||P | as claimed. This proves the claim for κ > 0 and
Λ <∞. The general statement follows from the convergence results of Lemma 3.2. �

Corollary 3.5. If |P |≤ c, then Eκ,Λ(P ) is a discrete eigenvalue of Hκ,Λ(P ) for all κ > 0 and Λ ∈
R+ ∪ {∞}.

Proof. First assume Λ <∞. Combining the HVZ Theorem, Proposition 3.3, with Lemma 3.4 gives

(3.7) inf σess(Hκ,Λ(P ))− Eκ,Λ(P ) ≥ inf
k1,...,kn∈R

3

n∈N

( n∑

i=1

(ω(ki) + κ)− |P |
∣∣∣
n∑

i=1

ki

∣∣∣
)
.

Since the absolute value is subadditive and ω(k) ≥ c|k|, this is larger than κ for |P |≤ c, which proves the
statement in the case Λ < ∞. The case Λ = ∞ directly follows from Theorem 2.1, since norm resolvent
convergence implies convergence of inf σess(Hκ,Λ(P )) and Eκ,Λ(P ). �

We now identify a compact set in Fock space containing the (normalized) ground states of Hκ,Λ(P ). To
this end, we define

(3.8) Gr :=
{
ψ ∈ F : ‖akψ‖≤

r√
|k| ∨ |k|2

, ‖(ak+p − ak)ψ‖≤
r|p|

|k|2
for a.e. k, p ∈ R

3, |p|≤ 1
2 |k|

}
.

Lemma 3.6. For all r > 0, the set Gr is pre-compact in F .

Proof. The elements of Gr are localized by the first bound, and regular by the second. Conditions of this
type are well-known to yield compactness, see [HHS23, Theorem 3.4] for a detailed proof. �

Now, we prove that Gr contains the ground states of Hκ,Λ(P ).

Proposition 3.7. If |P |< c , there exist r > 0 (depending on |P |, g and c) such that for all κ > 0 and

Λ ∈ R+ ∪ {∞} and any normalized ψ ∈ D(Hκ,Λ(P )) with Hκ,Λ(P )ψ = Eκ,Λ(P ), we have ψ ∈ Gr.

Proof. Throughout this proof, r > 0 denotes a (not necessarily fixed) constant solely depending on |P |,
g and c. Especially, r is independent of κ or Λ. Further, fix κ > 0, Λ <∞ and ψ as in the statement.

The starting point of our proof is the the pull-through formula

(3.9) akψ = −vΛ(k)Rκ,Λ(P, k)ψ with Rκ,Λ(P, k) := (Hκ,Λ(P − k)− Eκ,Λ(P ) + ω(k) + κ)−1 ,

which holds true for almost every k ∈ R
3. To check this, compute using the commutation relations

(3.10) 0 = ak(Hκ,Λ(P )− Eκ,Λ(P ))ψ = vΛ(k)ψ + (Hκ,Λ(P − k) + ω(k) + κ− Eκ,Λ(P ))akψ.
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The formula then follows by applying Rκ,Λ(P, k), which is well defined since Eκ,Λ(P − k) ≥ Eκ,Λ(P ) −
|k||P |≥ Eκ,Λ(P ) − ω(k), by Lemma 3.4 and the assumption |P |≤ c, see e.g. [Gér00, Dam20] for more
details.

To estimate the resolvent, we use Lemma 3.4 to obtain the bounds

(3.11) Eκ,Λ(P − k)− Eκ,Λ(P ) + ω(k) ≥ ω(k)− |P ||k|≥

{
(c− |P |)|k| for all k ∈ R

3,
ξ
2 |k|

2 if |k|> 2ξ−1|P |.

Then using that Hκ,Λ(P − k) ≥ Eκ,Λ(P − k), it follows directly from the spectral theorem that

(3.12) ‖Rκ,Λ(P, k)‖≤

{
((c− |P |)|k|)−1 for all k ∈ R

3,

2ξ−1|k|−2 if |k|> 2ξ−1|P |.

Further employing |v(k)| ≤ g(
√
|k|/c ∧ 1) we find, for an appropriate choice of r,

(3.13) ‖vΛ(k)Rκ,Λ(P, k)‖ ≤
r√

|k| ∨ |k|2
,

which combined with (3.9) proves the desired bound on akψ in the definition (3.8).
Now let |p|≤ 1

2 |k|. The resolvent identity gives

(3.14)
ak+pψ − akψ =(vΛ(k + p)− vΛ(k))Rκ,Λ(P, k + p)ψ

+ vΛ(k)Rκ,Λ(P, k + p)[p · (P − k − dΓ(p̂))]Rκ,Λ(P, k)ψ.

Since |∇vΛ(ℓ)| ≤ Cω−1/2(k) for 1
2 |k| ≤ ℓ ≤ 3

2 |k|, cf. (1.2), using (3.12) yields

(3.15) ‖ (vΛ(k + p)− vΛ(k))Rκ,Λ(P, k + p)ψ‖ ≤
8C|p|

(c− |P |)|k|
√
ω(k)

≤
r|p|

|k|2
.

As ‖|P − k − dΓ(p̂)|Rκ,Λ(P, k)‖≤ 1, (3.13) also implies

(3.16) ‖vΛ(k)Rκ,Λ(P, k + p)[p · (P − k − dΓ(p̂))]Rκ,Λ(P, k)ψ‖ ≤
r|p|

|k|2
.

Combining (3.14), (3.15) and (3.16) and the definition (3.8), this proves that ψ ∈ Gr in the case Λ <∞.
As a consequence of norm-resolvent convergence and the uniform gap estimate in Corollary 3.5, the

spectral projections of Hκ,Λ(P ) converge to those of Hκ,∞(P ) (cf. [RS72, Theorem VIII.23]), whence the

ground states of Hκ,∞ are contained in the closure Gr. �

We conclude with the proof of our main result.

Proof of Theorem 3.1. Let ψκ denote any normalized ground state of Hκ,∞(P ) for κ > 0. Since
D(Hκ,∞(P )) ⊂ D(H(P )), cf. Lemma 2.2, we find

(3.17) 0 ≤ 〈ψκ, (H(P )− E(P ))ψκ〉 ≤ 〈ψκ, (Hκ,∞(P )− E(P ))ψκ〉 = Eκ,∞(P )− E0,∞(P )
κ↓0
−−→ 0,

by Lemma 3.2. Further, since (ψκ)κ>0 ⊂ Gr by Proposition 3.7, which is compact by Lemma 3.6, there
exists a zero sequence (κn)n∈N such that the limit ψ∞ = limn→∞ ψκn

exists. The estimate (3.17) then
implies that ψ∞ ∈ D(H(P )1/2), whence ψ∞ is a minimizer of the closed quadratic form of H(P ), and
thus an eigenvector, which finishes the proof. �
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