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Abstract. We present a technique to lift some tilings of the discrete hyperbolic plane –tilings defined by a
1D substitution– into a zero entropy subshift of finite type (SFT) on non-abelian amenable groups BS(1,n)
for n ≥ 2. For well chosen hyperbolic tilings, this SFT is also aperiodic and minimal. As an application
we construct a strongly aperiodic SFT on BS(1,n) with a hierarchical structure, which is an analogue of
Robinson’s construction on Z2 or Goodman–Strauss’s onH2.

Résumé. Nous présentons une technique pour relever certains pavages du plan hyperbolique discret, ceux
définis par une substitution 1D, au sein d’un sous-décalage de type fini (SFT) d’entropie nulle sur les groupes
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sont bien choisis, on montre que ce SFT est également apériodique et minimal. En guise d’application nous
construisons un SFT fortement apériodique sur BS(1,n) avec une structure hiérarchique, qui est l’analogue
de la construction de Robinson sur Z2 ou de celle de Goodman–Strauss surH2.
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Introduction

Given a finitely generated group G and a finite alphabet A , the set A G can be endowed with the
prodiscrete topology. The group G acts —from the left— by translation on A G , and a classical
result states that with this topology, the set A G is a compact set. Elements of A G are called
configurations, and can be thought of as colorings of the group G with colors chosen among
the finite set A . Symbolic dynamics on G studies subshifts, i.e. sets of configurations of G that
are both invariant under the action of G , and closed for the product topology. Equivalently,
subshifts can be defined as sets of configurations that avoid some set of finite patterns —this
set of forbidden patterns not necessarily being finite. If the set of forbidden patterns can be
chosen finite, the subshift is called a subshift of finite type (SFT for short). SFTs are of particular
interest for two reasons. First, because they can be used to model real-life phenomena defined
through local interactions. Second, because their finite description allows to ask complexity and
computability questions.

Among questions related to SFTs, an open problem is to characterize groups G which admit a
strongly aperiodic SFT, i.e. an SFT such that all its configurations have a trivial stabilizer. The
same question for general subshifts —non SFT— has been answered positively [2, 13]. Free
groups cannot possess strongly aperiodic SFTs [19], and a finitely generated and recursively
presented group with an aperiodic SFT necessarily has a decidable word problem [16]. Groups
that are known to admit a strongly aperiodic SFT are Z2 [21] and Zd for d > 2 [10], fundamental
groups of oriented surfaces [8], hyperbolic groups [9], discrete Heisenberg group [22] and more
generally groups that can be written as a semi-direct product G = Z2 ⋊φ H , provided G has
decidable word problem [7], and amenable Baumslag–Solitar groups [11]. In [3] the authors adapt
the construction of [4, 5] to get a strongly aperiodic SFT on non-amenable Baumslag–Solitar
groups BS(m,n). None of these two constructions are, to the best of our knowledge, minimal
SFTs.

There are several techniques to produce aperiodicity inside tilings, but in the particular setting
of SFTs, two of them stand out. The first goes back to Robinson [21]: the aperiodicity of
Robinson’s SFT follows from the hierarchical structure shared by all configurations. Indeed, in
every configuration one sees different levels of squares, where all squares of a given level are
arranged according to a lattice, and are gathered by four to produce a square of higher level.
Since there are arbitrarily large squares, no non-trivial translation can keep the configuration
unchanged. The second technique goes back to Kari [17]: a very simple aperiodic dynamical
system is encoded into an SFT, so that configurations correspond to orbits of the dynamical
system. Aperiodicity of the SFT comes from both the aperiodicity of the dynamical system and
the clever encoding.

In this article we focus on the particular case where G is a Baumslag–Solitar group. Baumslag–
Solitar groups are examples of HNN extensions, a fundamental construction in combinatorial
group theory that plays for instance a key role in the proof of Higman embedding theorem [18].
There are described by the two generators and one relation presentation

BS(m,n) := 〈
a, t

∣∣ t−1am t = an〉
,

where m,n are two positive integers. The whole class of BS(m,n) is clearly separated into two
subclasses with radically different behaviors: the groups BS(1,n) are solvable hence amenable,
while the BS(m,n) groups with m,n > 1 contain free subgroups and are consequently non
amenable. Each of these two subclasses is also well-understood from a geometrical point of view,
since it is known under which condition two BS(m,n) are quasi-isometric:

• groups BS(1,n) and BS(1,n′) are quasi-isometric if and only if n and n′ have a common
power [12] — and in this case, the two groups are even commensurable;
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• groups BS(m,n) and BS(m′,n′) are quasi-isometric as soon as 2 ≤ m < n and 2 ≤ m′ <
n′ [23].

In [14] the author adapts [17] to an expansive setting, the trinary tiling, akin to BS(1,3). Later
in [4, 5] the example of aperiodic SFT that is given is a construction adapted from [17]. This SFT
is proved to be weakly aperiodic — all configurations have infinite orbit — in [4] for all Baumslag–
Solitar groups, and not strongly aperiodic for the non amenable ones. In [11] the authors show
that this SFT is actually strongly aperiodic for amenable Baumslag–Solitar groups.

In this article, we will only consider non abelian amenable Baumslag–Solitar groups BS(1,n)
with n ≥ 2. Our main result consists in a construction that allows to lift some particular tilings
of the discrete hyperbolic plane — tilings defined from a 1D substitution — into an SFT on
BS(1,n) (Theorem 15). If the substitution is well chosen, then the SFT is moreover minimal,
strongly aperiodic and has zero entropy (Propositions 24, 26 and 27). As an application, we
construct a strongly aperiodic SFT on BS(1,n) with a hierarchical structure, that goes back
to Robinson’s construction on Z2 [21] and Goodman-Strauss’s construction on the discrete
hyperbolic plane [15]. We strongly believe that this hierarchical SFT will also serve as a basis
for more sophisticated constructions.

1. Subshifts on amenable Baumslag–Solitar groups

In this section we start with basics of symbolic dynamics on finitely generated groups. The reader
shall refer to [1] for a more complete introduction. The set of non-negative integers {0,1,2, . . . } is
denotedN, andN∗ stands for {1,2, . . . }.

1.1. Subshifts on finitely generated groups

In this article A denotes a finite set, and G is a finitely generated group. The identity of G is
denoted 1G . Endowed with the prodiscrete topology, the set A G is a compact and metrizable
space. Elements of A G are called configurations, and can be though of as colorings of the group
G by the finite alphabet A . The shift map is the natural left action of G on A G by translation

S :

(
G ×A G → A G

(g , x) 7→ Sg (x)

)
where Sg (x) is the configuration such that (Sg (x))h = xg−1·h for every h ∈ G . The dynamical
system (A G ,S) is called a full-shift. Subshifts are subsystems of the full-shift, i.e. subsets
of A G that are both closed for the prodiscrete topology and invariant under the shift action.
Interestingly this dynamical definition of subshifts coincides with a combinatorial one. A pattern
is a finite configuration p ∈ A S , where S is a finite subset of G called the support of p. A
pattern p ∈ A S appears in a configuration x ∈ A G if there exists a group element g ∈ G such
that ph = (Sg (x))h for every h ∈ S. Otherwise we say that x avoids p. Given a set of patterns F ,
define XF as the set of configurations that avoid all patterns in F . A set of configurations Y is
a subshift if and only if there exists some F such that Y = XF . A subshift of finite type — SFT
for short — is a subshift for which the set of forbidden patterns F can be chosen finite. A sofic
subshift is a subshift which is the image of an SFT under a continuous and shift commuting map
— such maps are called morphisms.

Let x ∈ A G be a configuration. The orbit of x is the set of configurations or bS(x) = {Sg (x) |
g ∈G}, and the stabilizer of x is the subgroup st abS(x) = { g ∈G |Sg (x) = x}. A subshift X ⊆A G

is weakly aperiodic if for every configuration x ∈ X , |or bS(x)| =∞. A subshift X ⊆A G is strongly
aperiodic if for every configuration x ∈ X , st abS(x) = {1G }. The subshift X is minimal if it does
not contain a proper subshift or, equivalently, if the orbit of each configuration x ∈ X is dense.
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1.2. Baumslag–Solitar groups

Given two positive integers m and n, define the finitely presented group

BS(m,n) := 〈
a, t

∣∣ t−1am t = an〉
,

known as the Baumslag–Solitar group with parameters m,n. In this article we are only interested
in the case m = 1, which makes these groups solvable hence amenable. For the class of amenable
Baumslag–Solitar groups, there exists a short normal form, as stated below in Proposition 1.

Proposition 1. Every element of BS(1,n) can be uniquely written as one of the following words

• a j t−k with k ≥ 0 and j ∈Z,
• or t i a j with i > 0 and j ∈Z,
• or t i a j t−k with i > 0, k > 0 and n ∤ j .

Proof. Using the relation at = t an , one deduces that t−1a = an t−1. Combining these two
rewriting rules, any word on {a, a−1, t , t−1} can be rewritten as some t i a j t−k with i ,k ≥ 0 and j ∈
Z. If i = 0 or k = 0 then we are done. Otherwise if i ,k > 0 and j = n j ′, write t i a j t−k = t i−1a j ′ t−k+1

and iterate the process as soon as i ,k > 0 and n| j .
It remains to prove uniqueness. Note that for a given g , all words w in a, a−1, t , t−1 that

represent g should share the same quantity |w |t − |w |t−1 . So if g can be written as w = t i a j t−k

and w ′ = t i ′a j ′ t−k ′
with i , i ′,k,k ′ ≥ 0, and j , j ′ ∈ Z, then either i = i ′ = 0 and k = k ′, or k = k ′ = 0

and i = i ′, or i ,k, i ′,k ′ > 0 and n ∤ j , n ∤ j ′ and i −k = i ′−k ′. In the two first cases, we have directly
i = i ′, j = j ′ and k = k ′. In the third case, assume that i ′ = i +ℓ and k ′ = k +ℓ with ℓ ≥ 0. Then
necessarily tℓa j ′ t−ℓ = a j with n ∤ j and n ∤ j ′. This is not possible unless ℓ = 0, so we finally get
i = i ′, j = j ′ and k = k ′, and the normal form is unique. □

Remark that this normal form does not have minimal length: for instance the element t 2an2−1

could have been written using fewer generators as at 2a−1.
Consider the semi-direct product Z[ 1

n ]⋊ f Z given by

f :

(
Z → Aut

(
Z

[ 1
n

])
k 7→ x 7→ nk · x

)
.

Using the normal form of Proposition 1, we prove that BS(1,n) and Z[ 1
n ]⋊ f Z are isomorphic,

through

Φ :

(
BS(1,n) → Z

[ 1
n

]
⋊ f Z

t i a j t−k 7→ (
j ·n−i ,k − i

) )
.

Remark 2. Given two arbitrary words representing the same group element, why mustΦ agree?
Suppose an element g ∈ BS(1,n) can be written as w = t i anα j t−k for some α≥ 1 and n ∤ j . Using
that anα j = t−αa j tα, we deduce the word w ′ = t i−αa j t−k+α also represents the element g . And
since

Φ
(
t i anα j t−k

)
=

(
nα j ·n−i ,k − i

)
=

(
j ·n−(i−α), (k −α)− (i −α)

)
=Φ

(
t i−αa j t−(k−α)

)
=Φ(g ),

we conclude thatΦ is well-defined.

Proposition 3. The mapΦ is an isomorphism.
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Proof. We first check thatΦ is a group morphism. Take g ,h two group elements in G , and assume
they can be written as g = t i a j t−k and h = t i ′a j ′ t−k ′

. Recall that the law for the semi-direct
product is (h1,k1) · (h2,k2) = (h1 + f (k1)(h2),k1 + k2) for (hi ,ki ) ∈ Z[ 1

n ]⋊ f Z. Then on the one
hand

Φ(g h) =Φ
(
t i a j t−k · t i ′a j ′ t−k ′)

=Φ
(
t i a j t i ′ · t−k a j ′ t−k ′)

=Φ
(
t i+i ′a j ni ′ ·a j ′nk

t−k−k ′)
=

((
j ni ′ + j ′nk

)
n−(i+i ′),k +k ′− i − i ′

)
where the last equality comes from Remark 2, and on the other hand

Φ(g )Φ(h) =
(

j ·n−i ,k − i
)
·
(

j ′ ·n−i ′ ,k ′− i ′
)

=
(

j ·n−i +nk−i · j ′n−i ′ ,k +k ′− i − i ′
)

=Φ(g h),

which proves thatΦ is a group morphism.
Assume g = t i an j+r t−k and h = t i ′an j ′+r ′ t−k ′

and suppose Φ(g ) = Φ(h) with 0 ≤ r,r ′ < n —
r ̸= 0 if i , j > 0 and r ′ ̸= 0 if i ′, j ′ > 0. Then((

n j + r
) ·n−i ,k − i

)
=

((
n j ′+ r ′) ·n−i ′ ,k ′− i ′

)
,

which directly leads to i = i ′, j = j ′ and k = k ′, hence g = h. □

1.3. Structure of BS(1,n)

The Cayley graph of BS(1,n) with generating set {a, t , a−1, t−1} is made of several sheets that
amalgamate n by n, so that the global structure these sheets are arranged looks like an (n +1)-
regular tree. Each of these sheets is quasi-isometric to the hyperbolic planeH2. From now on, we
only consider the case n = 2, but the attentive reader will be convinced that the rest of the article
easily transposes to the general case n > 2.

We call rectangle any finite subset of BS(1,2) of the form

Rk,ℓ :=
{

tℓai t− j
∣∣∣ i ∈

[
0;(k +1) ·2ℓ−1 −1

]
and j ∈ [0;ℓ]

}
.

These rectangles are a classical example of a Følner sequence for BS(1,2). As so, they will be
used in the next section to define the topological entropy for subshifts on BS(1,2).

Proposition 4. The sequence
(
Rk,ℓ

)
k,ℓ∈N is a Følner sequence.

1.4. Entropy

The language of size (k,ℓ) of a subshift X ⊆ A BS(1,2) is the set of patterns with support Rk,ℓ that
appear in some configuration of X

Lk,ℓ(X ) := {
p ∈A Rk,ℓ

∣∣∃ x ∈ X ,∃ g ∈ BS(1,2) s.t. ∀ h ∈ Rk,ℓ, xg h = ph
}

.

The language of a subshift X ⊆A BS(1,2) is given by

L (X ) := ⋃
k,ℓ∈N

Lk,ℓ(X ),

and is the set of globally admissible patterns; i.e. finite patterns that can be extended into a valid
configuration.
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Figure 1. The rectangle R2,4 in BS(1,2). The leftmost sheet is pictured in blue, the rightmost
in red. The 24 −2 = 14 sheets in between are not pictured.

The entropy of a subshift X ⊆A BS(1,2) is given by

h(X ) := lim
k,ℓ→∞

log
(
♯Lk,ℓ(X )

)
|Rk,ℓ|

.

Since BS(1,2) is amenable, this limit exists and does not depend on the choice of the Følner
sequence [20]. Moreover, we have that

h(X ) = limsup
k,ℓ→∞

log
(
♯Lk,ℓ(X )

)
|Rk,ℓ|

.

2. Substitutions and their tilings

A — non-deterministic — substitution is σ= (A ,R), with A = {a1, . . . , an} a finite alphabet of size
n and R ⊂A ×A ∗ the set of rules of σ. A substitution σ is deterministic if for every letter a ∈A ,
there exists only one rule (a,σ(a)) ∈ R. In the deterministic setting, we associate to a substitution
σ its incidence matrix Mσ ∈Mn(N) given by Mσ(i , j ) = |σ(ai )|a j the number of occurrences of a j

inside the word σ(ai ). A substitution σ is primitive if there exists a power of Mσ for which all the
entries are positive. Perron-Frobenius theorem implies that the incidence matrix of a primitive
substitution admits an expanding eigenvalue, i.e. an eigenvalue λ which is real, greater than one
and greater than the modulus of all the other eigenvalues. Similarly, and following [1], we say
that a non-deterministic substitution σ = (A ,R) has an expanding eigenvalue if there exists a
real λ> 1 and a vector v : A →R+∗ such that, for every (a, w) ∈ R :

λ · v(a) =
|w |∑
i=1

v(wi ).
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•
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•• • •

ai -tile

(x, y)

(
x, y − log2(λ)

)

v(ai ) ·2y

log2(λ)

1
λv(w1) ·2y 1

λv(w2) ·2y

. . .

. . .

. . . 1
λv(wk ) ·2y

σ(ai ) = w1 . . . wk

Figure 2. An ai -tile for some letter ai ∈A with σ(ai ) = w1 . . . wk .

In the sequel we treat only the case of deterministic substitutions in order to simplify notations,
but all results presented still hold for non-deterministic substitutions.

Example 5. The deterministic substitution given by σ(a) = aab andσ(b) = ba has an expanding

eigenvalue λ= 3+p5
2 and associated eigenvector v = ( 1+p5

2 ,1
)
.

Letσ : A →A be a primitive substitution with an expanding eigenvalueλ> 1. The substitutive
subshift Zσ ⊂A Z is a two-sided one-dimensional subshift defined by

Zσ := {
z ∈A Z

∣∣∀ w ⊏ z, ∃ a ∈A and n ∈N s.t. w ⊏σn(w)
}

.

We now describe orbits of substitutions as tilings of R2, as done in [1], following [8], ultimately
from a remark by L. Sadun. A tile is a compact subset of R2 with non-empty interior. If T is a set
of tiles, not necessarily finite, a T -tiling or tiling by T is a collection of translated copies of tiles
which have pairwise disjoint interiors and whose union is the entire R2.

Let σ be a primitive substitution with an expanding eigenvalue λ > 1 and let v ∈ (R+)|A | be
an associated eigenvector. For every letter a ∈ A , define the a-tile in position (x, y) ∈ R2 as the
square polygon with |w |+3 edges pictured in Figure 2, where σ(a) = w1 . . . wk (horizontal edges
are curved to be more visible, but are in fact just straight lines).

Remark 6. The length of the top edge and the sum of lengths of bottom edges of this tile are the
same. Since Mσ · v =λ · v , one has

k∑
j=1

1

λ
v(wi ) ·2y = 2y

λ
·λ · v(a) = v(a) ·2y ,

so that the bottom right vertex
(
x+ 1

λ (v(w1)+·· ·+v(wk ))2y , y−log2(λ)
)

is indeed (x+v(a)·2y , y−
log2(λ)).

Proposition 7 ([1, Proposition 5]). If a primitive substitution σ has an expanding eigenvalue,
then there exists a σ-tiling.

If τ is a σ-tiling of R2, it can be seen as a mapping τ : R2 → A with additional properties.
Since A R2

is a compact space, from any sequence of σ-tilings one can extract a sequence that
converges to some mapping f :R2 →A .
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• •

• • • •

1+p5
2 2y

log2

(
3+p5

2

)

p
5−1
2 2y

p
5−1
2 2y 3−p5

2 2y

a-tile

• •

• • •

b-tile

2y

3−p5
2 2y

p
5−1
2 2y

Figure 3. The σ-tiles for σ(a) = aab,σ(b) = ba. For this substitution, λ = 3+p5
2 and

v = ( 1+p5
2 ,1).

a a b

a a b a a b b a

a a b a a b b a a a b a a b b a b a a

a a b a a b b a a a b a a b b a b a a a b a a b a a b b a a a b a a b b a b a a a b b a a a b a a b a

Figure 4. A finite piece of a σ-tiling for σ(a) = aab,σ(b) = ba.

Proposition 8. If (τn)n∈N is a sequence of σ-tilings of R2 converging to some f :R2 →A , then τ is
a σ-tiling of R2.

Proof. Let (τn)n∈N be a sequence ofσ-tilings ofR2 converging to some f :R2 →A . By definition,
for every k ∈N, there exists a Nk ∈Nwhich satisfies that

for every n ≥ Nk , (τn)|[−k;k]2 = f|[−k;k]2 .

Define a collection τ of σ-tiles as follows: an ai -tile in position (x, y) is in τ iff τNk contains an
ai -tile in position (x, y), where

k := ⌈
max

(|x|, |y |, ∣∣y − log2(λ)
∣∣ ,

∣∣x + vi ·2y ∣∣)⌉ .

One can easily check that this collection τ is a tiling of R2, and that τ seen as a mapping :R2 →A

coincide with f . □

3. σ-tilings as subshifts on BS(1,2)

For all this section we fix A a finite alphabet with at least two letters |A | ≥ 2 and σ : A → A ∗ a
primitive substitution with an expanding eigenvalue λ> 1. We denote Mσ the matrix associated
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with σ and v ∈ (R+)|A | an eigenvector associated with λ, so that Mσ · v = λ · v . In the sequel we
will need a technical additional assumption, that we now describe.

First note that for every k ∈N∗, the substitution σk has expanding eigenvalue λk > 1 and the
same eigenvector v . Thus choosing k big enough and since λ > 1, we can have log2(λk ) ≥ 3. We
redefine σk as σ. Second, since C v also satisfy M(C v) = λ(C v) for every C > 0, we may assume
without loss of generality that v(a) ≥ 3 for every letter a ∈ A . If this holds and that moreover
λ≥ 8, we say that σ and v have the unique size property.

We then introduce the notion ofΦ(g )-box for a group element g ∈ BS(1,2), and list some useful
properties on these boxes. If g ∈ BS(1,2) and g has normal form g = t i a j t−k , the Φ(g )-box is the
rectangle Φ(g )+ [0,2−i [×]− 1,0] in R2. A Φ-box is simply a Φ(g )-box for some group element
g ∈ BS(1,2).

Remark 9. The set of the Φ(g )-boxes for all elements g from the same sheet of BS(1,n) is a
partition of R2.

Φ(g )-box

Φ(g t )-box Φ(g t a)-box

This remark is an important ingredient of the construction of Section 4. Indeed, starting from
a configuration x, it will be enough to know the content of all Φ-boxes from the same sheet to
define a tiling of the plane R2.

Remark 10. For a given σ-tiling, everyΦ(g )-box contains exactly one among

• a vertical line of the σ-tiling;
• an horizontal line of the σ-tiling;
• a cross (intersection of a vertical and an horizontal lines) of the σ-tiling;
• a T (a vertical line that start immediately below an horizontal line) of the σ-tiling;
• nothing.

Proposition 11. If σ and v have the unique size property, then

(1) a σ-tile vertically intersects h or h +1Φ-boxes, where h := ⌊log2(λ)⌋ ≥ 3;
(2) for every a ∈ A , the top of an a-tile intersects w Φ-boxes horizontally, where 3 ≤ v(a) ≤

w < 2v(a);
(3) the number of Φ-boxes horizontally intersected by the bottom of a σ-tile uniquely deter-

mines the number ofΦ-boxes it intersects vertically.

Proof. The first two items are direct consequences of the definitions ofΦ-boxes and σ-tiles. The
third one is a little bit more subtle. Assume that an a-tile intersects N Φ-boxes on its bottom.
Denote α := ⌈ N

2h ⌉ and β := ⌈ N
2h+1 ⌉ so that α and β are the unique non-negative integers such that

α−1 < N

2h
≤α

β−1 < N

2h+1
≤β.
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Note that multiplying by 2 the line immediately above leads to α = 2β. So either the a-tile
vertically intersects h Φ-boxes, and then it horizontally intersects α Φ-boxes on its top, or the
a-tile vertically intersects h +1 Φ-boxes, and then it horizontally intersects β Φ-boxes on its top.
So the second item in Proposition 11 thus implies that

v(a) ≤α< 2v(a)

v(a) ≤β< 2v(a).

But since α = 2β, one cannot have both at the same time and only one holds, which gives the
number ofΦ-boxes the a-tile intersects vertically. □

From now on we assume σ and v have the unique size property. Define the subshift Yσ ⊂
A BS(1,2) as

Yσ :=
{

y ∈A BS(1,2)
∣∣∣∃ τ a σ-tiling s.t. yg = τ(Φ(g at )) ∀ g ∈ BS(1,2)

}
.

One may have expected to read yg = τ(Φ(g )) instead of yg = τ(Φ(g at )) in the definition of Yσ.
This is due to the definition ofΦ-box : if aΦ(g )-box can see for instance the top left corner of aσ-
tile (tiles t1 or t2), then g at — i.e. the bottom right corner of the Φ(g )-box — is the only element
that is certainly covered by this σ-tile in the σ-tiling.

Proposition 12. The set Yσ is a subshift.

Proof. We first prove that the set of configurations Yσ is S-invariant. Let y ∈ Yσ, then there exists
τ a σ-tiling of R2 such that yg = τ(Φ(g at )) for every g ∈ BS(1,2). Let h ∈ BS(1,2) and denote
z :=Sh(y). Then

zg = (
Sh(y)

)
g

= yh−1·g
= τ(

Φ(h−1 · g at )
)

= τ
((
α+2βx,β+ y

))
whereΦ

(
h−1)= (α,β) andΦ(g at ) = (x, y)

=
[

SΦ(h−1)(τ)
]

(g ),

where S is the R2-action given by

S :

(
R2 ×R2 →R2(
(α,β), (x, y)

) 7→ (
α+2βx,β+ y

) )
.

Since τ′ := SΦ(h−1)(τ) is also aσ-tiling if τ is, we have that zg = τ′(Φ(g at )) for every g ∈ BS(1,2) and
thus z =Sh(y) is also in Yσ.

We now check that Y is closed. Take (yn)n∈N a sequence of configurations of Yσ that converges
toward some y ∈ A BS(1,2). Assume that for every n ∈ N, τn is a σ-tiling such that τn(Φ(g )) =
(yn)g for every g ∈ BS(1,2). By compactness of A R2

, there exists φ an extraction such that the
subsequence (τφ(n)) is converging toward some τ : R2 →A . Moreover Proposition 8 implies that
τ is a σ-tiling of R2. Define now the configuration z ∈ Y by τ(Φ(g at )) = zg for every g ∈ BS(1,2).
One can check by a standard compactness argument that y = z. Finally the set Yσ is S-invariant
and closed, hence it is a subshift. □

The subshift Yσ is for sure effectively closed, since one can enumerate, by increasing size, the
complement of the language L (Yσ). Note also that for some substitutions σ, the subshift Yσ is
not an SFT. This is the case for Example 13.

Example 13. Let A = {0,1} and σ the length 3 substitution given by σ(0) = 010 and
σ(1) = 101. This substitution has two fixpoints ω = (01)Z and ω′ = (10)Z, and σ is not
recognizable: ω = . . .010101.0101010. . . can be parsed either as . . . (010)(101).(010)(101)(0. . .
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or as . . .0)(101)(01.0)(101)(010) . . . and thus has two different pre-images under σ. We use this
property to show that Yσ is not an SFT. By contradiction assume that Yσ is an SFT, and F ⊂A Rm,n

is a finite set of forbidden patterns that defines it: Yσ = XF . Then for j > n, the identity and the
element t j at− j cannot be both inside a same rectangle g ·Rm,n .

We construct two configurations x and y in Yσ, that arise from the two σ-tilings τ and τ′

pictured on Figure 5 (left): theσ-tilings τ and τ′ coincide on the bottom half plane R×R−, but the
choice to de-substitute the fixpoint ω immediately above that is different, so that τ and τ′ never
match again on the top half plane R ×R+. These two configurations x and y thus coincide on
every group element h = t i a j t−k with i > k and only there, see Figure 5 (middle).

0 1 0 1

1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0

0 1 0 1 0 1 0 1 0 1

σ-tilings τ and τ′

(common part pictured in black)

configurations x and y in Yσ
(common part pictured in black)

•
1G •g

configuration z in XF but not in Yσ

•
1G •g

Figure 5. The substitution given by σ(0) = 010 and σ(1) = 101 is not recognizable, hence
the subshift Yσ is not SFT.

We now fix some j > n, define g := t j at− j and a new configuration z ∈ {0,1}BS(1,2) by{
zh := yh if h = g ·ak · t−ℓ for some k ∈Z and ℓ ∈N;
zh := xh otherwise.

Then this configuration z belongs to the subshift XF , since every pattern z|h·Rm,n that appears
in z also appears in either y , if h = g ·ak · t−ℓ for some k ∈Z and ℓ ∈N, or x for every other group
element h. Nevertheless, the configuration z does not belong to Yσ, since a σ-tiling that would
correspond to z should be at the same time τ and τ′, which is impossible. Hence the subshift Yσ
is not SFT.

In the rest of the article, we wonder what more can be said about Yσ. In Section 4, we define
an SFT cover Xσ for Yσ. Section 5 is devoted to prove that the construction of Xσ is correct. In
Section 6 we then discuss dynamical properties of Yσ.
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4. An SFT on BS(1,2) to encode σ-tilings

We now describe an SFT Xσ on BS(1,2) that encodes σ-tilings, i.e. an SFT cover for the subshift
Yσ. The SFT is made so that a σ-tiling corresponds to a configuration in Xσ and vice-versa (see
Theorem 15). We first define integers h and wa for every letter a ∈A by

• h := ⌊log2(λ)⌋−1;
• for every a ∈A , wa := ⌊v(a)⌋−1.

Since we have chosen λ≥ 8, we have h ≥ 2. Similarly since the eigenvector v was chosen so that
v(a) ≥ 3 for every a ∈A , we get that wa ≥ 2 for every letter a ∈A .

Description of the alphabet. Denote M := maxa∈A |σ(a)|. We define a finite alphabet R that
contains letters like t1(b, j , a, i ), m3(a, i ) or b2(a, i ). More precisely, we consider the alphabet
R =T ∪M ∪B, where T stands for top, B for bottom and M for middle, where

T := t1 ∪ t2 ∪ t3 ∪ t4

M := m1 ∪m2 ∪m3 ∪m4 ∪m5

B := b1 ∪b2 ∪b3

with

α :={
α(b, j , a, i ) : a,b ∈A , i , j = 1. . . M

}
β :={

β(a, i ) : a ∈A , i = 1. . . M
}

for α ∈ {t1,m2} and every β ∈ {t2, t3, t4,m1,m3,m4,m5,b1,b2,b3}. The letters ti ,mi ,bi are the
pentagonal Wang tiles described below.

T
• • •

• •
t1(b, j , a, i )

(b, j ) (a, i )

• • •

• •
t2(a, i )

(a, i )
• • •

• •
t3(a, i )

(a, i )
• • •

• •
t4(a, i )

(a, i )

M
• • •

• •
m1(a, i )

(a, i )

• • •

• •
m2(b, j , a, i )

(a, i )

(b, j )

• • •

• •
m3(a, i )

(a, i )

• • •

• •
m4(a, i )

(a, i )

• • •

• •
m5(a, i )

(a, i )

B
• • •

• •
b1(a, i )

(a, i )

• • •

• •
b2(a, i )

(a, i )

• • •

• •
b3(a, i )

(a, i )

In the case of a letter t1
(
b, j , a, i

)
or m2

(
b, j , a, i

)
, we adopt the convention that (a, i ) is

associated with the rightmost shaded area, and (b, j ) with the leftmost one.

Intuition on the alphabet. Informally, every letter in r ∈ R gives some local information about
the σ-tiling encoded. Assume x ∈ Xσ and g ∈ BS(1,2) with normal form g = t i a j t−k , so that
Φ(g ) = ( j ·2−i ,k − i ). Then the letter r = xg describes what the Φ(g )-box geometrically captures
from the σ-tiling (which σ-tile is seen, and where it is with horizontal error 2k−i ) and also tells in
which position the σ-tile in from the other σ-tile immediately above it.

The letter r may code the presence of a vertical line (letters m1, m2 and b1), of an horizontal
line (letters t3 and t4), of a corner (letters t1 and t2) or the absence of borders ofσ-tiles (letters m3,
m4, m5, b2 and b3). Figure 6 should be interpreted this way: if a letter r ∈ R codes the presence
of an element (corner, vertical or horizontal line), it must be located somewhere inside the green
shaded area. For instance, the fact that xg ∈ t1 is equivalent to the presence of a top left corner
somewhere in Φ(g )+ [2k−i ;2k−i+1[×]−1;0]. Similarly, the fact that xg ∈ m2 is equivalent to the
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xg = t1(., ., a, .)

⇔

•Φ(g )

a-tile

xg = t2(a, .)

⇔

•Φ(g )

a-tile

xg = t3(a, .)

⇔

•Φ(g )

a-tile

xg = t4(a, .)

⇔

•Φ(g )

a-tile

xg = b1(a, .)

⇔

•Φ(g )
a-tile

xg = b2(a, .)

⇔

•Φ(g )
a-tile

xg = b3(a, .)

⇔

•Φ(g )
a-tile

xg = m1(a, .)

⇔

•Φ(g )
a-tile

xg = m2(a, .)

⇔

•Φ(g )
a-tile

xg = m3(a, .)

⇔

•Φ(g )
a-tile

xg = m4(a, .)

⇔

•Φ(g )
a-tile

xg = m5(a, .)

⇔

•Φ(g )
a-tile

Figure 6. Signification of the letter xg that appears in position g ∈ BS(1,2) inside a configu-
ration x ∈ Xσ. The black rectangle with top left corner labeled byΦ(g ) is theΦ(g )-box.

presence of a vertical line { j ·2i + x}× [k − i ,k − i +1[ with x ∈ [2k−i ;2k−i+1[. It follows that going
down — following generator t — inside a configuration x ∈ Xσ gives a better approximation of
where σ-tiles are.

Description of the local rules. Denote W := maxa∈A wa + 1. The set Aσ of allowed patterns
defining Xσ ⊂RBS(1,2) that we describe below is actually a subset of RR3M ,3(h+1) . For the purpose of
clarity, we do not present directly the set Aσ, but instead list some local rules that describe which
patterns are in Aσ

(1) colors should match on edges along generators a, a−1, t and t−1 — this condition is
nearest neighbor;

•
g

(b, j )

•
g ·a

(a, i )

(b, j )

{
xg = m5(b, j )

xg ·a = m2(b, j , a, i )
is allowed

•
g

(b, j ) (a, i )

•
g · t

(a, i )

{
xg = t1(b, j , a, i )

xg ·t = m4(a, i )
is allowed

(2) the type of letter of the first coordinate (T , M or B) is uniform on the set {g ·ak : k ∈Z}
for every g ∈ BS(1,2) — this condition is nearest neighbor;

•
g

(a, i )

(b, j )

•
g ·a

(c,k)

(a, i )

{
xg = t1(b, j , a, i )

xg ·a = m2(a, i ,c,k)
is forbidden (even if colors match)



566 Nathalie Aubrun and Michael Schraudner

(3) the dimensions of the connected shaded zones are bounded in coherence with the
substitution σ. More precisely: there are two possible heights for shaded zones: h and
h −1, independently from the letter a ∈ A coded. The top width of a shaded zone does
depend on the letter a ∈A coded, and can only take values from (wa −1) to (2wa −1).

(4) the letters in g , g t at−1 and g t a−1t−1 are synchronized:

(a) xg = t1(b, j , a, i ) ⇒
{

xg ·t at−1 = t2(a, i )
xg ·t a−1t−1 = t4(b, j )

(b) xg = b1(a, i ) ⇒ xg ·bab−1 = b1(a, i ) or xg ·t a−1t−1 = b1(a, i )
(c) xg = b3(a, i ) ⇒ xg ·bab−1 = b3(a, i ) or xg ·ba−1t−1 = b3(a, i )
(d) xg = m1(a, i ) ⇔ xg ·t a−1t−1 = m2(b, j , a, i )

• •
•
g g · t at−1g · t a−1t−1

(b, j )(b, j ) (a, i ) (a, i )

(a) xg = t1(b, j , a, i ) ⇒
{

xg ·t at−1 = t2(a, i )
xg ·t a−1t−1 = t4(b, j )

(a, i )
• •

•
g g · t at−1g · t a−1t−1

(a, i )
(a, i )

• •
•
g g · t at−1g · t a−1t−1

(a, i )

(b) xg = b1(a, i ) ⇒


xg ·bab−1 = b1(a, i )
or
xg ·t a−1t−1 = b1(a, i )

(a, i )
(b, j )

• •
•
g

g · t a−1t−1

(a, i )

(d) xg = m1(a, i ) ⇔ xg ·t a−1t−1 = m2(b, j , a, i )

(a, i )
• •

•
g g · t at−1g · t a−1t−1

(a, i )
(a, i )

• •
•
g g · t at−1g · t a−1t−1

(a, i )

(c) xg = b3(a, i ) ⇒


xg ·bab−1 = b3(a, i )
or
xg ·ba−1t−1 = b3(a, i )

(5) if a shaded area carries information (a, i ), then the shaded areas immediately below it
must carry information (a1,1), . . . , (a|σ(a)|, |σ(a)|) in this order, with σ(a) = a1 . . . a|σ(a)|.

(a, i )

(a1, 1) (a2, 2) (a3, 3) (a4, 4)

We have now completely defined an SFT Xσ ⊂RBS(1,2). In the next section, we prove that a σ-
tiling corresponds to a configuration in Xσ and vice-versa, which is the statement of Theorem 15.
The example depicted on Figures 7 and Figure 8 should help to understand configurations in Xσ.

5. The SFT Xσ encodes σ-tilings

Remind that π : R →A is the mapping defined by

π ((r, (a, i ))) = a

π
(
(r, (a, i ), (b, j ))

)= b

that only keeps from a letter r ∈ R the letter a ∈ A of the a-tile it encodes. Denote by pℓ,a,i the
pattern with support {1, a, . . . , aℓ−1} such that(

pℓ,a,i
)

1 = (b1, (a, i ));(
pℓ,a,i

)
a j = (b2, (a, i )) for every 1 ≤ j ≤ ℓ−2;(

pℓ,a,i
)

aℓ−1 = (b3, (a, i )).
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•g

•gt3a4t−3

•gt3a2t−3

•gt3a6t−3

•gt3at−3

•gt3a5t−3

•gt3a3t−3

•gt3a7t−3

•gt

•gt2a2t−2

•gt3at−2

•gt3a3t−2

•gt2

•gt3at−1

•gt3

Figure 7. Example of a configuration x in Xσ.

The pattern pℓ,a,i is locally admissible if and only if 2h−1(wa − 3)+ 2 ≤ ℓ ≤ 2h(2wa − 1). For
ℓ,m ∈N, denote

Cg ,ℓ,m :=
{

g ·ai t− j
∣∣∣0 ≤ i ≤ ℓ−1,0 ≤ j ≤ m

}
the g -cone of base ℓ and height m.

Lemma 14. Let x and y be two configurations in Xσ such that pℓ,a,i appears in x and y in position
g ∈ BS(1,2). Then there exists m ∈ {h,h −1} such that xg ′ = yg ′ for every g ′ ∈Cg ,ℓ,m .
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(a, 2) (b, 3) (a, 1) (a, 2) (a, 1) (b, 3) (b, 1) (a, 2) (a, 2)

(a, 1) (a, 1) (a, 2) (a, 2) (b, 3) (a, 1) (b, 1) (a, 2) (b, 3)

(a, 1) (a, 1) (a, 2) (b, 3) (b, 1) (a, 1) (a, 1) (b, 3) (b, 1)

(a, 1) (a, 1) (a, 2) (a, 2) (b, 3) (a, 1) (a, 1) (a, 2) (b, 3)

(a, 1) (a, 1) (a, 2) (a, 2) (b, 3) (a, 1) (a, 1) (a, 2) (b, 3)

(a, 1) (a, 2) (b, 3) (a, 2) (a, 1) (a, 1) (b, 1) (a, 2) (a, 2)

(a, 2) (a, 2) (b, 3) (a, 2) (a, 2) (a, 2) (b, 1) (a, 2) (a, 2)

(a, 1) (b, 3) (a, 1) (a, 2) (a, 1) (a, 2) (b, 1) (a, 2) (a, 2)

gt3a7t−3

•

gt3a6t−3

•

gt3a5t−3

•

gt3a4t−3

•

gt3a3t−3

•

gt3a2t−3

•

gt3at−3

•

g

•

Figure 8. The configuration x of Figure 7 pictured sheet by sheet this time. The σ-tiling
corresponding to x appears in red.

(a, i )•g •g ·a9

Figure 9. The pattern p10,a,i on the bottom of the g -cone Cg ,10,1.
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Proof. We only need to determine that the two configurations x and y coincide on some Cg ,ℓ,m

with m big enough, and the fact that m ∈ {h,h −1} will immediately follow from the local rule (3)
given on page 566. We distinguish between several cases that are summarized on Figure 10. With
these rules we reconstruct from bottom to top the shaded areas with bottom pℓ,a,i , by updating
the value of ℓ at each step as stated on the picture. Since these rules are totally deterministic, and
since the case wa − 1 ≤ ℓ ≤ 2wa − 1 is eventually reached, we necessarily obtain a pattern with
support Cg ,ℓ,m with only finite shaded areas on all its sheets. These shaded areas all have the
same height m (and m ≥ 2 by item 2 of Proposition 11), but their top widths may differ.

n even n odd

w
a
−1

≤
n
≤

2w
a
−1

n
>

2w
a
−1

n ←⌈n
2 ⌉n ←

{ n
2
n
2 +1

n ←⌈n
2 ⌉n ←

{ n
2
n
2 +1

Figure 10. The different cases to construct a shaded area starting from its bottom.

Finally since local rules 1 and 4 force a connected shaded component to wear the same
information (a, i ), all letters xg ′ and yg ′ for g ′ ∈ Cg ,ℓ,m are totally determined by the fact that
pattern pℓ,a,i appears in x and y in position g , and the lemma is proven. □

Lemma 14 ensures that a bottom pattern pn,a,i that appears in some position g ∈ BS(1,2)
forces the entire g -cone Cg ,n,h or Cg ,n,h−1 above it.

Define π : R →A the mapping given by

π ((r, (a, i ))) = a

π
(
(r, (a, i ), (b, j ))

)= b

that only keeps from a letter r ∈R the letter a ∈A of the a-tile it encodes.

Theorem 15. If τ is aσ-tiling, then there exists a configuration x ∈ Xσ such that τ(Φ(g at )) =π(xg )
for all g ∈ BS(1,2). Reciprocally, for every configuration x ∈ Xσ, one can associate a σ-tiling τ such
that τ(Φ(g at )) =π(xg ) for all g ∈ BS(1,2).

We will prove Theorem 15 in two steps: Lemma 19 and Lemma 20. Before going into the proofs,
remind that for g ∈ BS(1,2), theΦ(g )-box is the rectangleΦ(g )+ [0,2−i [×]−1,0] in R2.

Remark 16. The assumption that v(a) ≥ 3 for every letter a implies that at most one of the Φ(g )
andΦ(g a)-boxes may contain one object among vertical line, cross or T .

Remark 17. The assumption that log2(λ) ≥ 3 implies that at most one of the Φ(g ) and Φ(g t )-
boxes may contain one object among horizontal line, cross or T .
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Remark 18. Let g ∈ BS(1,2) and k ∈ N. Then the rightmost 2k−1
2k part of the Φ(g )-box is the

leftmost 2k−1
2k part of theΦ(g t k at−k )-box.

With all these remarks in mind, we are ready to prove Theorem 15. For clarity purpose, we split
the theorem into two lemmas.

Lemma 19. If τ is a σ-tiling, then there exists a configuration x ∈ Xσ such that τ(Φ(g at )) =π(xg )
for all g ∈ BS(1,2).

Proof of Lemma 19. Let τ be a σ-tiling. We define a configuration x ∈ RBS(1,2), and then prove
that x ∈ Xσ. First, every group element g ∈ BS(1,2) is associated the unique letter xg in R such
that π(xg ) = τ(Φ(g at )). We now need to determine the letter xg ∈ R, i.e. the type of letter, the
letter a ∈A and the index i (plus maybe another letter b and another index j ).

We first define all the xg such that xg ∈ T . To do so, for every group element g , we check
whether the Φ(g ), Φ(g a), Φ(g t ) and Φ(g at )-boxes are in one of the following cases (thanks to
Remark 16, this list is exhaustive):

(1) if theΦ(g )-box contains a cross or a T , and theΦ(g t )-box is empty, set xg ∈ t1;
(2) if the Φ(g )-box contains a cross or a T , and the Φ(g t )-box contains a vertical line, set

xg ∈ t2;
(3) if theΦ(g )-box contains an horizontal line and theΦ(g a)-box contains an horizontal line,

set xg ∈ t3;
(4) if the Φ(g )-box contains an horizontal line, the Φ(g a)-box contains a cross or a T , and

theΦ(g at )-box is empty, set xg ∈ t3;
(5) if theΦ(g )-box contains an horizontal line, theΦ(g a)-box contains a cross or a T and the

Φ(g at )-box contains a vertical line, set xg ∈ t4.

xg ∈ t1 =

⇔

• • •

• •Φ(g )

Φ(g t )

xg ∈ t2 =

⇔

• • •

• •Φ(g )

Φ(g t )

xg ∈ t3 =

⇔

• • •

• •Φ(g )
Φ(g a)

or

• • •

• •Φ(g )
Φ(g a)

xg ∈ t4 =

⇔

• • •

• •Φ(g )
Φ(g a)

From now on, no other group element g ∈ BS(1,2) will be designated a letter from T . We now
list all group elements g ∈ BS(1,2) that will be designated a letter from M \ {m3}. Again we check
whether theΦ(g ),Φ(g a),Φ(g t ) andΦ(g at )-boxes are in one of the following cases:

(1) if theΦ(g ) andΦ(g t )-boxes contain a vertical line, set xg ∈ m1;
(2) if theΦ(g )-box contains a vertical line and theΦ(g t )-box is empty, set xg ∈ m2;
(3) if the Φ(g )-box is empty and the Φ(g a) and Φ(g at )-boxes contain a vertical line (note

that this is equivalent to have xg a ∈ m1), set xg ∈ m4;
(4) if the Φ(g )-box and Φ(g at )-boxes are empty and the Φ(g a)-box contains a vertical line

(note that this is equivalent to have xg a ∈ m2), set xg ∈ m5.
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xg ∈ m1 =

⇔
• • •

• •Φ(g )

Φ(g t )

xg ∈ m2 =

⇔

• • •

• •Φ(g )

Φ(g t )

xg ∈ m4 =

⇔

• • •

• •Φ(g )
Φ(g a)

xg ∈ m5 =

⇔

• • •

• •Φ(g )
Φ(g a)

Now we force every element g ∈ BS(1,2) which has not yet been designated a letter in R and
which is such that some g ·ak has been designated a letter in M \ {m3} to get letter m3 (we fill in
the holes inside M -rows).

We finally list all group elements g ∈ BS(1,2) that will be designated a letter from B. Again we
check whether theΦ(g ),Φ(g a),Φ(g t ) andΦ(g at )-boxes are in one of the following cases:

(1) if theΦ(g t )-box or theΦ(g t a)-box contains a cross, set xg ∈ b1;
(2) if the Φ(g ) and Φ(g a)-boxes are empty and the Φ(g t )-box contains an horizontal line or

a T , set xg ∈ b2;
(3) if theΦ(g )-box is empty, theΦ(g t )-box contains an horizontal line or a T and theΦ(g a)-

box contains a vertical line, set xg ∈ b3.

xg ∈ b1 =

⇔

or

• • •

• •Φ(g )

Φ(g t ) • • •

• •Φ(g )

Φ(g t a)

xg ∈ b2 =

⇔

• • •

• •Φ(g )
Φ(g a)

Φ(g t )

xg ∈ b3 =

⇔

• • •

• •Φ(g )
Φ(g a)

Φ(g t )

A carefull observation of all possible cases treated by the three previous lists show that every
element g ∈ BS(1,2) necessarily falls into one of the cases described, so that every element
g ∈ BS(1,2) is now designated a letter from R.

To get a configuration x ∈ RBS(1,2), it only remains to assign letters from A and indices
to shaded connected areas. They are chosen to be identical for all letters in a same shaded
area. Consider one shaded area. The top left corner, of type t1 or t2, appears in some position
g ∈ BS(1,2). The corresponding Φ(g )-box contains a top left corner of a σ-tile. Denote a the
corresponding letter : assign the letter a to every letter in R belonging to the shaded area.
To determine the index i , it is enough to look at the σ-tile immediately above in the σ-tiling.
Assume it is a a′-tile, and that our shaded area corresponds to the index i such that σ(a′)i = a:
assign the index i to every letter in R belonging to the shaded area. For letters in t1 or m2, the
additional letter b and index j are chosen to be the letter and index associated with the shaded
area immediately to the left.

We now check that this configuration x ∈ RBS(1,2) in actually in Xσ (local rules are listed on
page 565). By construction, it is straightforward that local rules 1, 2 and 5 are respected. The
definition of σ-tiles (see page 559) implies that local rule (3) is satisfied. And a careful reading of
Remark 18 ensures that local rule 4 always holds. Finally, we can associate to everyσ-tiling a valid
configuration x ∈ Xσ such that τ(Φ(g at )) =π(xg ) for all g ∈ BS(1,2), so Lemma 19 is proven. □

Lemma 20. For every configuration x ∈ Xσ, one can associate a σ-tiling τ such that τ(Φ(g at )) =
π(xg ) for all g ∈ BS(1,2).
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Before going into the proof of Lemma 20, we focus on the left borders of the shaded areas in
configurations of Xσ. Let D be the transducer depicted on Figure 11. A transition (q, w, q ′) in D

should be interpreted as: if a letter q appears in some position g in a configuration x from Xσ,
then the letter q ′ may appear in position g ·w in x.

Figure 11. The transducer D that summarizes how letters from alphabet R can be arranged
to form the left border of shaded areas. The transition in green corresponds to the situation
pictured to the right.

We could have constructed a bigger transducer that would imply all letters from R, but for the
purpose of Lemma 20 we only need to focus on letters t1, t2,m1,m2 and b1 since there are the
only ones that may appear on the left border of a shaded area. Note that this transducer D is non
deterministic, but for our purpose the uniqueness of the infinite path described in Proposition 21
is enough.

Proposition 21. Let x be a configuration of Xσ. Let g0 ∈ BS(1,2) be a group element such that
xg0 ∈ t1 ∪ t2. Then there exists a unique infinite path (qi , wi )i ∈N in the transducer D such that

xg0·∏n
i=0 wi

∈ qn

for every n ∈N.

Proof. The proof follows directly from a careful observation of the local rules, and more particu-
larly local rule 1 (see Page 565). □

Let x ∈ Xσ and g0 ∈ BS(1,2) such that xg0 ∈ t1 ∪ t2 ∪b1 ∪m1 ∪m2. Assume that g0 has normal
form g0 = t i a j t−k . Thanks to Proposition 21, there exists an infinite path (qi , wi )i ∈N in the
transducer D such that

xg0·∏n
i=0 wi

∈ qn

for every n ∈N and this path is unique. Define

v
(
xg0

)
:= j ·2−i +2k−i ·

( ∞∑
ℓ=0

δt a
wℓ

·2−ℓ−1

)
∈

[
j ·2−i ; ( j +1) ·2k−i

]
to be the position of the vertical line initialized at g0 in x, where δr

q is the Kronecker symbol that
equals 1 if q = r and 0 otherwise.



Nathalie Aubrun and Michael Schraudner 573

Proposition 22. For a given configuration x ∈ Xσ and group element g0 ∈ BS(1,2), define the finite
word h ∈ {t a, t }M as the label of the M first transition of the unique path given by Proposition 21.
Then

v
(
xg0

)= v
(
xg0·h

)
.

Proof. First note that if
(
qi , wi

)
i ∈N is the unique infinite path in the transducer D for g0, then

(qi+M , wi+M )i ∈N is the unique infinite path in the transducer D for g0 ·h. Then, using the normal
form of g0 and the fact that t−k a = a2k

t−k , we deduce the normal form for g0 ·h.

g0 ·h = t i ·a j · t−k ·h0 . . .hM−1

= t i ·a
j+2k−1·δt a

h0 · t−(k−1) ·h1 . . .hM−1

= t i ·a
j+2k−1·δt a

h0
+2k−2·δt a

h1 · t−(k−2) ·h2 . . .hM−1

= t i ·a
j+∑M−1

ℓ=0 2k−ℓ−1·δt a
hℓ · t−(k−M)

There are now two cases. If M −k ≤ 0, then we have the normal form for g0 ·h. By definition,

v(g0 ·h) =
(

j +
M−1∑
ℓ=0

2k−ℓ−1 ·δt a
hℓ

)
·2−i +2k−M−i ·

∞∑
ℓ=0

δt a
wM+ℓ ·2−ℓ−1

= j ·2−i +2k−i

(
M−1∑
ℓ=0

2−ℓ−1 ·δt a
hℓ

+
∞∑
ℓ=0

δt a
wM+ℓ ·2−M−ℓ−1

)

= j ·2−i +2k−i

(
M−1∑
ℓ=0

2−ℓ−1 ·δt a
hℓ

+
∞∑

ℓ=M
δt a

wℓ
·2−ℓ−1

)
= v(g0)

and we are done.
If M −k ≥ 0, then using the fact that at k = t k a2k

we get that the normal form for g0 ·h is this
time

g0 ·h = t i+M−k ·a
2M−k

(
j+

M−1∑
ℓ=0

2k−ℓ−1·δt a
hℓ

)

and thus

v(g0 ·h) = 2M−k

(
j +

M−1∑
ℓ=0

2k−ℓ−1 ·δt a
hℓ

)
·2−i−M+k +2−i−M+k ·

∞∑
ℓ=0

δt a
wM+ℓ ·2−ℓ−1

= j ·2−i +2k−i

(
M−1∑
ℓ=0

2−ℓ−1 ·δt a
hℓ

+
∞∑

ℓ=M
δt a

wℓ
·2−ℓ−1

)
= v(g0)

and the proposition is proven. □

Proof of Lemma 20. Let x be a configuration in Xσ. We proceed in two steps

(1) every sheet of x defines a σ-tiling;
(2) the σ-tiling defined by one sheet of x is compatible with all the sheets.

Step 1: every sheet of x defines a σ-tiling. Consider one sheet in x. Our strategy to define τ a σ-
tiling is the following : we first partially describe a tiling through all its vertical lines, then using
the fact we want a σ-tiling, we define horizontal lines and the type — i.e. the letter a ∈ A — of
every σ-tile. In what follows we speak of absolute — horizontal or vertical — positions.

(1) Thanks to Proposition 22, every top tile t1(. . . , i ≥ 2) or t2(. . . , i ≥ 2) in position g defines
a semi-infinite vertical line : its horizontal position is completely determined and equals
v(xg ), while its vertical position is only known up to some error.
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(2) Now that all the horizontal positions of semi-infinite vertical lines are known, we deduce
the exact position of all tiles composing τ from the definition of σ-tiles (see Figure 3).
Note that the type of tile a ∈ A is given by the letter t1 or t2 on the top left corner. An
a-tile with left and right borders at horizontal positions xℓ and xr respectively should be
at position

(
xℓ, log2

( xr −xℓ
v(a)

))
.

With these two conditions together, the tiling τ we get is indeed a σ-tiling.

Step 2: all sheets define the same σ-tiling. We need to check that two different sheets give the
same σ-tiling under the construction described immediately above. This is actually ensured by
local rule 4 on page 566: this condition forces left border of shaded area to be synchronized
between merging sheets, hence the horizontal positions of vertical lines do not depend on the
sheet chosen. □

Proposition 23. The subshift Xσ is an SFT cover of Yσ, and this latter is consequently a sofic
subshift.

Proof. This is a direct consequence of Theorem 15: the onto morphism from Xσ to Yσ is the
letter-to-letter morphism given by the local map π. □

6. Dynamical properties of Xσ

Proposition 24. The subshift Xσ is minimal if and only if log2(λ) is irrational.

Proof. Assume that log2(λ) is irrational. Let x, y be two configurations in Xσ. We prove that the
orbit of x is dense in Xσ, i.e. that for every ε > 0, there exists some g ∈ BS(1,2) such that Sg (x)
is close enough to y , i.e. that d(Sg (x), y) < ε. We fix ε = 2−N and we proceed in two steps. First
we use that the set {⌈k · log2(λ)⌉−k · log2(λ) | k ∈Z} is dense in [0;1], since log2(λ) has be assumed
irrational. Thus by a shift t k , we can synchronize the tilings τS

tk (x) and τy so that their sequences
of height h and height h + 1 rows coincide at least on the ball of radius N . Second we use that
since the substitutionσ is primitive, then the subshift Zσ is minimal. With a shift t n aℓt−n we can
perform an horizontal shift of ℓ2−n on τS

tk (x) so that d(St n aℓt−n t k (x), y) < ε by minimality of Zσ
as required. Thus Xσ is minimal.

Conversely, assume log2(λ) is rational and can be written as log2(λ) = p
q with p, q ∈N∗ and q ∤ p

(unless q = 1). Then with q rows of σ-tiles, we get a stripe of height p ∈N∗. Assume that the top
of this stripe has integer vertical coordinate y ∈Z. Then all other stripes of q rows of σ-tiles have
integer coordinates. Denote τ thisσ-tiling, and x ∈ Xσ the corresponding configuration obtained
as in the proof of Lemma 19. If we consider h̃ := (hi )i ∈Z the sequence of h’s and (h +1)’s where
hi is the number of Φ-boxes a σ-tile intersects vertically on the i th row of τ, we get a periodic
sequence with period H = h1 . . .hq . And so h’s and h +1’ have frequencies fh = |{i∈[1;q]|hi=h }|

q and

fh+1 = 1− fh in h̃. Also since we have chosen that all stripes of q rows of σ-tiles have integer
coordinates, we deduce that both h1 = h and hq = h.

Define δ := min
{
d

(
i · p

q ,N
)∣∣ i = 1. . . q −1

}
. Then necessarily δ > 0, otherwise q ∤ p. Consider

τ′ the σ-tiling obtained by vertically shifting τ by +δ
2 , and denote x ′ the associated configuration

in Xσ and h̃′ := (
h′

i

)
i∈Z the sequence of h’ and h +1’ where h′

i is the number of Φ-boxes a σ-tile
intersects vertically on the i th row of τ′. Similarly to h̃, the sequence h̃′ is periodic with period
q , but with h′

1 = h +1. So the frequencies of h’ and h +1’ in h̃ and h̃′ are strictly different, thus
x ′ cannot be in the orbit of x. And finally the subshift Xσ is not minimal, which terminates the
proof. □

Proposition 25. The subshift Yσ is strongly aperiodic if log2(λ) is irrational.
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δ= 1
3

↑+ δ
2

Figure 12. Illustration of the proof that if log2(λ) is rational, then Xσ is not minimal: two
σ-tilings τ and τ′ that give two configurations x and x ′ both in Xσ but not in the same orbit.

Proof. Let y ∈ Yσ, and assume that h is a period for y : for every g ∈ BS(1,2), one has yg = yh−1g .
If h−1 has normal form h−1 = tℓam t−p and g at has normal form g at = t i a j t−k , the fact that

yg = yh−1g is equivalent to

τ
(

j ·2−i ,k − i
)
= τ

((
j +m ·2i−p

)
2p−ℓ−i , p −ℓ+k − i

)
for a certain σ-tiling τ. Fix i = j = 0 in this equality. Then for every k ∈N, one has

τ(0,k) = τ
(
m ·2p−ℓ, p −ℓ+k

)
.

Since log2(λ) is irrational, there exists some k0 ∈ N such that τ(0,k0) and τ(m · 2p−ℓ, p −ℓ+ k0)
do not belong to the same horizontal row of σ-tiles. Thus two different rows of σ-tiles in τ are
the same, up to an horizontal translation by m ·2p−ℓ. This is possible only if the translation by
(m ·2p−ℓ, p−ℓ) is trivial, i.e. h = 1. Finally every configuration y ∈ Yσ has a trivial stabilizer, so the
subshift Yσ is strongly aperiodic. □

As an immediate consequence of Proposition 25 and Proposition 23 we get that the SFT Xσ is
also strongly aperiodic, provided log2(λ) is irrational.

Proposition 26. The SFT Xσ is strongly aperiodic if log2(λ) is irrational.

Since Xσ is minimal, then it has zero entropy as a direct consequence of a result by Barbieri [6].
Thanks to Lemma 14, we can also prove that the SFT Xσ has zero entropy in the general case.

Proposition 27. The SFT Xσ has zero entropy.

Proof. Choose k and ℓ such that ℓ>> h. Recall that

Rk,ℓ :=
{

tℓai t− j
∣∣∣ i ∈

[
0;(k +1) ·2ℓ−1 −1

]
and j ∈ [0;ℓ]

}
.
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We define three subsets of Rk,ℓ :

Bottom :=
{

tℓai t− j
∣∣∣ i ∈

[
0;(k +1) ·2ℓ−1 −1

]
and j ∈ [0;k]

}
;

Left :=
{

tℓai t− j
∣∣∣ i ∈

[
0; ·2ℓ−1 −1

]
and j ∈ [0;ℓ]

}
;

Right :=
{

tℓai t− j
∣∣∣ i ∈

[
k ·2ℓ−1; (k +1) ·2ℓ−1 −1

]
and j ∈ [0;ℓ]

}
;

Top :=
{

tℓai t− j
∣∣∣ i ∈

[
0;(k +1) ·2ℓ−1 −1

]
and j ∈ [ℓ−k;ℓ]

}
.

Denote N := ♯Bottom+ ♯Left+ ♯Right+ ♯Top. Then

N = 2(k +1)2 ·2ℓ−1 +2ℓ ·2ℓ−1,

and since |Rk,ℓ| = ℓ · (k +1) ·2ℓ−1, we get that limk,ℓ→∞ N
|Rk,ℓ| = 0.

Consider now a pattern p with support Rk,ℓ that is in the language of Xσ. Then by
Lemma 14 and Local rule 5, the pattern p is entirely determined by pBottom∪Left∪Right∪Top. Hence
♯Lk,ℓ(Xσ) ≤ |R|N and consequently

h(Xσ) = lim
k,ℓ→∞

log
(
♯Lk,ℓ(Xσ)

)
|Rk,ℓ|

≤ lim
k,ℓ→∞

|R| N

|Rk,ℓ|
= 0.

So the SFT Xσ has zero entropy. □

7. An application: a hierarchical strongly aperiodic SFT on BS(1,2)

7.1. Robinson hyperbolic tileset

In the classical construction of a strongly aperiodic SFT on Z2 [21], all valid tilings present a
hierarchical structure of squares of increasing size, where the same process is repeated to obtain
bigger and bigger squares: four squares of the same size are gathered to form a bigger square. The
smallest squares are enforced by bumpy tiles (tiles 1 on Figure 13).

The situation is more complex on H2, and instead of bumpy tiles and others, we use the five
shapes pictured on Figure 14. These preliminary local rules already impose strong constraints
of valid tilings. The global structure of A/B/C/D/E tilings appears on Figure 15. Indeed, first
remark that decorations on left and right sides of the tiles impose that horizontal rows are either
composed with A/B/C or with D/E. Then a careful study of the corners show an alternation of
A/B/C rows and D/E rows, and that inside an A/B/C row, B tiles necessarily appear one time in
two.

On Figure 15 is pictured what would be an hyperbolic analogue of a square of level 1 in the
Robinson tiling on Z2: on the same horizontal row, two nearest neighbor tiles B carry the top
left and top right corners of the square; the bottom corners are located two rows below, but the
geometry of H2 imposes that, between these two corners carried by tiles B, we find 52 − 1 = 24
other tiles B. Figure 15 show that, contrary to the Z2 case, not all the B tiles carry a corner of a
square. Thus we will need many more tiles than on Z2.

Before we go any further in the description of tiles of the hyperbolic Robinson tiling, one
can already notice that constraints imposed by the five shapes of tiles are strong, and almost
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Figure 13. On the left the six tiles from which one gets the whole Robinson’s tileset, thanks
to rotations and reflections. On the right a pattern made with Robinson’s tileset.

Figure 14. The five shapes of tiles A, B, C, D and E onH2. Tile B is the only one with bumpy
corners, tiles A and C have both bumpy and dented corners while tiles D and E have only
dented corners.

Figure 15. Location of the B tiles (in grey) in a tiling. In blue, the expected shape of a square
of level 1.
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Figure 16. The additional decorations on tiles A/B/C/D/E to get the hyperbolic Robinson
tileset, as they are presented in [15] and reproduced by kind permission of the author.

deterministic in some sense. Denote σ the non-deterministic substitution on the alphabet
{A,B ,C ,D,E } given by the rules

σ(A) = DDEDD

σ(B) = DDDDD

σ(C) = DDEDD

σ(D) = BCBCB or CBCBC

σ(E) = CBABC.

A careful comparison between the orbits of this substitution σ and the A/B/C/D/E tilings
shows that an orbit of σ can be seen as an A/B/C/D/E tiling, and vice-versa.

Proposition 28. To every tiling of H2 with tiles A/B/C/D/E, one can associate the orbit of a bi-
infinite word w ∈ {A,B ,C ,D,E }Z under the action of σ.

If we add extra decorations to the tiles A/B/C/D/E, we get new tilings of H2. Thanks to
Proposition 28, one can think about these tilings as SFTs on orbit graphs of σ, so that the
construction of Section 5 can be used.

We now enrich the basic tileset {A,B ,C ,D,E } by adding decorations pictured on Figure 16 so
that the description of the hyperbolic Robinson tileset is finalized.

With the enriched tileset obtained by adding decorations from Figure 16 to the A/B/C/D/E
tiles, we can tile the discrete hyperbolic plane H2, and the structure of tilings is schematized on
Figure 17.

To obtain a tileset analogue with Robinson’s and Goodman-Strauss’s on every BS(1,n) with
n ≥ 2, it suffices to apply Theorem 15 to the σ-tilings with σ the substitution on alphabet
{A,B ,C ,D,E } defined above, and to enrich the SFT Xσ with local rules so that the hyperbolic
Robinson’s tiling is copied out on every sheet of BS(1,n).

Theorem 29. For every n ≥ 2 there exists a strongly aperiodic SFT on BS(1,n) such that every
configuration x of the SFT carries an hyperbolic Robinson tiling on every single sheet of x.
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Figure 17. Schematic view of the first levels of the hierarchy of squares enforced by the
hyperbolic Robinson’s tileset. hyperbolic squares of level 1, 2 and 3 are pictured in blue,
green and red. The structure that appears is an hyperbolic analogue of the one visible on
Figure 13.
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[22] A. A. Şahin, M. Schraudner and I. Ugarcovici, “A strongly aperiodic shift of finite type on the

discrete Heisenberg group using Robinson tilings”, Ill. J. Math. 65 (2021), no. 3, pp. 655–
686.

[23] K. Whyte, “The large scale geometry of the higher Baumslag-Solitar groups”, Geom. Funct.
Anal. 11 (2001), pp. 1327–1343.


	Introduction
	1. Subshifts on amenable Baumslag–Solitar groups
	1.1. Subshifts on finitely generated groups
	1.2. Baumslag–Solitar groups
	1.3. Structure of BS(1,n)
	1.4. Entropy

	2. Substitutions and their tilings
	3. sigma-tilings as subshifts on BS(1,2)
	4. An SFT on `3́9`42`"̇613A``45`47`"603ABS(1,2) to encode sigma-tilings
	5. The SFT X sigma encodes sigma-tilings
	6. Dynamical properties of X sigma
	7. An application: a hierarchical strongly aperiodic SFT on BS(1,2)
	7.1. Robinson hyperbolic tileset

	Acknowledgments
	Declaration of interests
	References

