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ABSTRACT: Double allylic substitution is an attractive approach to build molecular complexity from simple starting ma-
terials by creating two new bonds in one-pot. However, this type of reaction has been doomed by chemoselectivity and 
regioselectivity issues. In this manuscript, we describe a new approach to introduce a-la-carte two new C–C, C–N, C–O or 
C–S bonds in a chemo- and regioselective fashion. The reaction relies on sequential dual catalysis with Lewis acid and 
palladium. The scope is remarkably broad, and the reaction can be diastereoselective using secondary alcohols as the first 
nucleophile. 

Allylic substitution is arguably one of the most power-
ful tools for the creation of new C–C and C–heteroatom 
bonds in organic synthesis.[1] The best example is the 
venerable Tsuji-Trost reaction, which is commonly em-
ployed as a region- and stereoselective method for the 
creation of C–C, C–O, C–N and C–S bonds.[2] Despite the 
recognized utility and existing knowledge of this reaction, 
double allylic substitution sequences are surprisingly 
scarce, considering the high level of molecular complexity 
that could be attained through such one-pot approach.[3-5] 
Indeed, the successive allylic alkylation of 3,4-
difunctionalized butene derivatives presents many chal-
lenges (Scheme 1A). First, the regioselective introduction 
of two nucleophiles implies discriminating between elec-
trophilic positions 1 and 3 for the first substitution and 
positions 2 and 4 for the second one. In particular, only 
reaction at C1 in the first step will induce migration of the 
olefin moiety and allow a productive process, while regi-
oisomer B will not allow a second allylic substitution. In 
addition, the fact that compound A resulting from a first 
allylic substitution is also a substrate for a second allylic 
substitution raises chemoselectivity issues. If one wants to 
introduce two different nucleophiles, a competitive reac-
tion leading to C could occur in a one-pot process. Final-
ly, in order to be a useful tool for organic chemists, the 
reaction needs to depend on simple precursors and be 
carried out in a one-pot process.[6] 

Most previous examples of double allylic substitution 
elude the question of chemoselectivity by employing a 
dual nucleophile.[4] For example, in 2012 Clavier and co-
workers reported the one-pot double allylation of 1,3-

diketones using an allylic dicarbonate,[4a] an elegant ex-
ample from readily available substrates (Scheme 1B). On 
the other hand, in order to introduce two different nucle-
ophiles in each of the substitution, one has to tune the 
substrate in order to have two different leaving groups 
which can be substituted sequentially, as reported by 
Dieter et al. in 2008 (Scheme 1C).[5] Although this latter 
example is chemoselective, the substrates are not readily 
available, require additional steps for the introduction of 
two different leaving groups[7] and suffer from a lack of 
diversity. Herein, we propose to solve the question of 
regio- and chemoselective double allylic substitutions 
from readily available alkenyl vic-diols using a sequential 
dual catalysis approach, in which each catalytic system 
will allow the introduction of a different nucleophile at 
will.[8] 

Taking inspiration from the work of Borhan’s group on 
diol activation,[9] we imagined that alkenyl vic-diols could 
be activated by trimethyl orthoacetate to form a cyclic 
orthoester intermediate (Scheme 1D). The addition of a 
Lewis acid would exacerbate the nucleophilicity of the 
orthoester intermediate, facilitating the first allylic substi-
tution. During this process, ring-opening of the transient 
cyclic orthoester would result in the formation of an al-
lylic acetate, which could sequentially undergo a classical 
Tsuji-Trost reaction in the presence of a palladium cata-
lyst. This dual catalysis approach would solve the prob-
lems of chemoselectivity inherent to double allylic substi-
tutions. Nevertheless, this raises the question of catalyst 
compatibility between the Lewis acid and Pd catalysts.[10] 



 

The regioselectivity of each substitution will also be a key 
challenge for this double transformation. 

Herein, we present a novel method for the double al-
lylic substitution of alkenyl-vic-diols, employing dual 
catalysis (Lewis acid/transition metal). This approach 
enables the introduction of two distinct nucleophiles, 
providing direct access to complex molecular scaffolds. 

 

Scheme 1. Challenges and solutions for the double 
allylic substitution. 

 

At the outset of the work, we screened conditions for 
the first allylic substitution. Although many Lewis acids 
promoted the reaction, BF3•Et2O proved superior to every 
other catalyst (see the supplementary information for 
detailed optimization). Moreover, the two sequential 
substitution reactions could be achieved in one-pot by 
simply adding [Pd(allyl)Cl]2, XantPhos, and a THF solu-
tion of sodium dimethylmalonate as the second nucleo-
phile. The reaction proceeded well for the formation of 
variously substituted tetrahydrofuran products (Scheme 
2). In particular, the reaction benefited from a Thorpe-
Ingold effect (2a-2d). Even sterically demanding tertiary 
alcohols performed well as nucleophiles. The reaction 
could be applied to the synthesis of tetrahydropyran 2f, 
although with lower yield. Finally, other O-nucleophiles 
such as phenol and carboxylic acid also proceeded (2g, 
2h). Remarkably, the lactone functionality in 2h was not 
affected during the subsequent Tsuji-Trost reaction. The 
first substitution was not limited to the formation of new 
C–O bonds. Indeed, various protected amines could be 
employed, leading to the formation of pyrrolidine deriva-

tives 2i-2l having Ts, Ac, Boc and Tf protecting groups on 
the amino functionality. Finally, a C–S bond could also be 
forged using a thiol as the nucleophile, leading to tetra-
hydrothiophene 2m. 

 

Scheme 2. Scope of nucleophiles for the first allylic 
substitution. Reactions were carried out using 1 (0.2 
mmol), trimethyl orthoacetate (0.3 mmol), BF3•Et2O 
(0.04 mmol) in DCM, then [Pd(allyl)Cl]2 (0.01 mmol), 
XantPhos (0.02 mmol) and a solution of sodium ma-
lonate (0.4 mmol in 1 mL THF) were added in the 
same pot. 

  

We also explored the scope of nucleophiles for the sec-
ond substitution (Scheme 3). From triol 1a, various C–C 
bonds could be formed in the second substitution reac-
tion under Tsuji-Trost conditions. In particular, maloni-

trile (2n), diketone (2o), -cyanoester (2p) and -
nitrosulfone (2q) led to the desired products having a new 
C–C bond. As expected, no diastereoselectivity was ob-
served in the case of 2p and 2q. Interestingly, using Mel-
drum acid as the nucleophile, a double Tsuji-Trost reac-
tion occurred, with Meldrum acid reacting twice (2r). 
New C–N bonds could be formed using amine nucleo-
philes. In particular, secondary amines led to the for-
mation of products 2s-2v in good yields. Primary amines 
such as benzylamine could also react, albeit providing 
lower yield (2w). Phthalimide was also a suitable N-
nucleophile, leading to a protected primary amine 2x. The 
use of sulfinates as nucleophile afforded sulfones 2y-2z, 
through formation of a C–S bond. In particular, sulfone 2z 
has the required benzothiazole substituent for the modi-
fied Julia olefination.[11] 

 

 

 

 

 



 

Scheme 3. Scope of nucleophiles for the second al-
lylic substitution. Reactions were carried out using 
1a (0.4 mmol), trimethyl orthoacetate (0.6 mmol), 
BF3•Et2O (0.08 mmol) in DCM, then [Pd(allyl)Cl]2 
(0.02 mmol), XantPhos (0.04 mmol) and a solution of 
nucleophile (0.8 mmol in 1 mL THF) were added in 
the same pot. 

  

After exploring the scope of this reaction, we started to 
study the reaction stereoselectivity in the first allylic sub-
stitution. Starting from diastereoenriched substrate 1n (dr 
= 16:1), the Lewis acid-catalyzed reaction proceeded with 
poor diastereoconservation (Scheme 4A). Remarkably, 
only one regioisomer was observed in this reaction. Simi-
larly, from enantioenriched 1f, the product 3b was ob-
tained with poor enantioconservation. Nevertheless, we 
could exploit the absence of stereospecificity by perform-
ing diastereoselective reactions starting from secondary 
alcohols (Scheme 4B). The diastereoselectivity ranged 
from moderate for methyl-substituted secondary alcohols 
(2aa, dr = 3:1) to good in the case of cyclohexyl or isopro-
pyl substituents (2ab, 2ac, 2ae) to excellent in the case of 
more sterically demanding tert-butyl substituents (2ad, 
dr > 20:1). Secondary benzyl alcohol led to the desired 
THF product in lower yield and poor diastereoselectivity. 

 

 

 

 

 

Scheme 4. Stereoselectivity studies. 

 

We wondered whether the first step could proceed us-
ing a different orthoester as activator. We were pleased to 
observe that upon treatment of 1a with trimethyl ortho-
benzoate and catalytic amount of BF3•Et2O the cyclisation 
occurred, affording allylic benzoate 3c (Scheme 5A). We 
were also interested by the use of hard nucleophiles in 
order to expand the scope of the second substitution 
(Scheme 5B).[12] Unfortunately, the one-pot double allylic 
substitution did not proceed using phenyl magnesium 
bromide as the second nucleophile. Starting from inter-
mediate 3d resulting from the first allylic substitution, the 
reaction mainly led to decomposition and only 12% of the 
desired product 2ag was observed. On the other hand, 
using one equivalent of copper cyanide instead of the 
palladium catalyst allowed conversion of triol 1a into 2ag 
efficiently. This result is particularly surprising given the 
precedents suggesting that presence of copper promotes 
an SN2’ type reaction.[13] A deeper study on this reaction 
mechanism is currently ongoing. We also decided to 
showcase the utility of our method by achieving the syn-
thesis of dienyl-THF structure 4. For that, the product 2z 
was subjected to modified Julia olefination conditions. 
Dienyl-THF structures are particularly relevant as they 
can be found in various fungal metabolites, and are also 
involved in the biosynthesis of diverse natural products.[14] 

 

 

 

 



 

Scheme 5. Miscellaneous observations. 

 

To further understand the role and compatibility of 
each catalyst, we performed control experiments. Intro-
duction of the Pd catalyst XantPhos ligand and sodium 
malonate nucleophile from the beginning of the reaction 
led to recovery of starting 1a. On the other hand, intro-
duction of Pd catalyst and XantPhos ligand from the be-
ginning of the reaction, followed by sodium malonate 
nucleophile after the first substitution afforded the de-
sired product with similar efficiency compared to the 
general conditions. Finally, without BF3•Et2O the reaction 
did not proceed. 

 

Table 1. Control experiments.  

 

Deviation from standard conditions Result 

None 66% (isolated) 

Pd/XantPhos and sodium malonate in-
troduced from the beginning 

No reaction 

Pd/XantPhos introduced from the begin- 75% (NMR 

ning, sodium malonate introduced after 
one night 

yield) 

Pd/XantPhos introduced from the begin-
ning, no BF3•Et2O, sodium malonate 
introduced after one night 

No reaction 

 

In order to support our mechanistic hypothesis of pre-
activation of the allylic diol as a mixed cyclic orthoester, 
we treated alkenyl vic-diol 5 with trimethyl orthoacetate 
(Scheme 6A). We could observe in NMR the formation of 
mixed cyclic orthoester 5. Therefore, we propose the 
mechanism described in Scheme 5B. The diol moiety 1a 
reacts with trimethyl orthoacetate to form the intermedi-
ate mixed cyclic orthoester I. This mixed orthoester can 
be activated by the Lewis acid to generate an intermediate 
carbocation II or III, triggering the cyclization and con-
comitant ring-opening of the cyclic orthoester, affording 
the THF ring as well as the allylic acetate moiety. Alterna-
tively, a direct substitution upon activation of I by the 
Lewis acid could also take place. The lack of stereospeci-
ficity in this reaction could be explained by the two possi-
ble faces of approach in the case of an antiperiplanar 
substitution of the nucleophile relative to the leaving 
group. 

 

Scheme 6. Mechanistic proposal. 

 

To conclude, in this manuscript we describe a new me-
thod involving sequential dual catalysis for the one-pot 
double allylic substitution of alkenyl vic-diols. Remarkab-
ly, this method allows to introduce two different nucleo-
philes at will in a regio- and chemoselective manner. The 
scope of nucleophiles is remarkably broad, and two new 
C–C, C–N, C–O or C–S bonds can be formed in this one-
pot process. Although the first allylic substitution is not 
stereospecific, the reaction can proceed with good dias-
tereoselectivity in the case of secondary alcohol nucleo-
philes. This new reactivity paves the way to the quick 
formation of diverse complex molecular scaffolds. Further 
studies regarding the reaction mechanism and stereosel-
ectivity will be performed in the future. 
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