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Abstract 10	

Cell migration is essential throughout the life of multicellular organisms, and largely depends 11	

on the spatial and temporal regulation of cytoskeletal dynamics, cell adhesion and signal 12	

transduction. Interestingly, Estrogen-related receptor alpha (ERRα) has been identified as a 13	

major regulator of cell migration in both physiological and pathological conditions. ERR⍺ is an 14	

orphan member of the nuclear hormone receptor superfamily of transcription factors and 15	

displays many biological functions. ERR⍺ is a global regulator of energy metabolism, and it is 16	

also highly involved in bone homeostasis, development, differentiation, immunity and cancer 17	

progression. Importantly, in some instances, the regulation of these biological processes relies 18	

on the ability to orchestrate cell movements. Therefore, this review describes how ERRα-19	

mediated cell migration contributes not only to tissue homeostasis but also to tumorigenesis 20	

and metastasis, and highlights the molecular and cellular mechanisms by which ERRα finely 21	

controls the cell migratory potential. 22	
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 25	

Introduction 26	

Cell migration is a crucial process driving morphogenesis throughout embryonic development. 27	

In the adult, cell movements participate in immune surveillance, tissue repair and renewal 28	

among other physiological processes (reviewed in 1). In addition, abnormal cell migration 29	

contributes to a wide variety of diseases such as chronic inflammatory diseases, mental 30	

retardation and cancer cell dissemination (reviewed in 2). Depending on the context, cells can 31	

migrate either individually or collectively in response to guidance cues (reviewed in 3,4). In 32	

most cases, cell movements require a polarized organization, an active remodeling of the actin 33	

and microtubule cytoskeletons, an interaction with the extracellular matrix (ECM) through 34	

integrin-mediated focal adhesions (FA) and the activation of migration-related signaling 35	

pathways (reviewed in 5–7) (Fig. 1). Although cell migration has been extensively studied, the 36	

complex mechanisms involved in the regulation of these events are still incompletely 37	

understood.  38	

Estrogen-related receptor alpha (ERRα, encoded by ESRRA) is an orphan nuclear receptor 39	

acting as a transcription factor. It exerts multiple essential biological functions through its 40	

capacity to control specific target gene expression and, particularly, its involvement in cell 41	

metabolism and cancer progression has been widely described (reviewed in 8–10). Importantly, 42	

ERR⍺ has been shown to play a crucial role in the regulation of cell movements during both 43	

development and adulthood and it also regulates cancer cell migration (Fig. 2). Herein, the 44	

review focuses on the ERRα-dependent mechanisms that contribute to cell migration in these 45	

different contexts. 46	

 47	

Structure and regulation of ERRα  48	
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ERRα (NR3B1) has been identified in 1988 based on the high sequence similarity within 49	

its DNA binding domain to that of the Estrogen receptor alpha (ERa) 11. ERRα belongs to a 50	

nuclear receptor subfamily that comprises two other isoforms in mammals encoded by 51	

distinct genes: ERRb (NR3B2) and ERRg (NR3B3). However, since no natural ligands have been 52	

identified so far, the ERRs are considered orphan nuclear receptors (reviewed in 12,13). 53	

As other nuclear receptors, ERRα displays a typical conserved structural organization, 54	

comprising a highly variable amino-terminal domain (the A/B domain), a centrally located 55	

DNA-binding domain (DBD) that includes two Zn fingers, a flexible hinge region and a carboxy-56	

terminal ligand-binding domain (LBD) containing a transcription transactivation region 57	

(reviewed in 14,15). The ERRα-DBD specifically binds to the consensus DNA sequence 58	

TnAAGGTCA, referred to as estrogen-related response element (ERRE) 16,17. Strikingly, the 59	

sequence-dependent DNA shape of this binding site contributes to the stabilization of the 60	

ERRα homodimer and facilitates its asymmetric positioning on DNA 18,19. As shown by 61	

structural analysis, the ERRα-LBD includes a putative small binding ligand pocket (LBP) almost 62	

completely filled with bulky side chains of amino acids that confers an active conformation to 63	

ERRα in a ligand independent-manner 20. However, the existence of ligands regulating ERRα 64	

activity by inducing conformational changes and/or modulating the recruitment of cofactors, 65	

cannot be excluded. In this way, specific ERRα synthetic ligands such as compound A, 66	

compound 29 and XCT790 have been identified. These compounds which have the ability to 67	

enter the ERRα-LBP by significantly changing its conformation and consequently deactivate 68	

the receptor, are called inverse agonists (reviewed in 12,13). Importantly, ERRα activity mostly 69	

depends on its association with cofactors that are differentially expressed in cells and tissues 70	

21,22. In addition, post-translational modifications such as phosphorylation, sumoylation or 71	

acetylation of ERRα can modulate its transcriptional activity in a cell type, cofactor and 72	
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promoter-dependent manner 23–27. The modulation of ERRα expression is also crucial for the 73	

regulation of its functions (reviewed in 12).  74	

 75	

The ERR isoforms 76	

As mentioned above, the ERR subfamily consists of three ERR isoforms (ERRα, b and g). All 77	

three isoforms show a high sequence identity in their DBD and their LBD is less conserved. The 78	

ERRs recognize the same specific DNA sequences and thus exhibit some overlapping functions 79	

by regulating similar targets genes in a ligand-independent manner. However, they also 80	

display differential activities which may depend on their tissue specificity or different 81	

expression levels.  82	

Similar to ERRα, ERRg is strongly expressed in tissues with high energy demand and plays a 83	

role in the regulation of energy metabolism (reviewed in 15,28). In addition, analysis of knockout 84	

mice has revealed that both ERRα and ERRg act as major regulators of heart functions 29,30 85	

(reviewed in 15). ERRg is also involved in the control of the differentiation of mesenchymal 86	

stem cells and in the maintenance of bone homeostasis (reviewed in 31). At first glance, ERRα 87	

and ERRg appear to play opposite roles in cancer cells, respectively inducing or inhibiting 88	

cancer progression. ERRg is weakly expressed in endometrial, colorectal, prostate and gastric 89	

cancers. By contrast, it is highly expressed in breast and ovarian cancers and this correlates 90	

with a favorable prognosis 32(reviewed in 21,33). Specifically, ERRg has been shown to inhibit 91	

breast, gastric and colorectal cancer cell proliferation and tumor growth, in part, by repressing 92	

the Wnt signaling pathway or by inducing oxidative metabolism and mesenchymal-to-93	

epithelial transition 34,35,32. However, a pro-tumoral activity of ERRg has also emerged. 94	

Notably, its upregulation promotes cancer cell proliferation and invasion 36–40 (reviewed in33). 95	
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Interestingly, in the same way as ERRα, ERRg can drive cell migration to facilitate cancer 96	

progression 40.  97	

ERRb is mainly expressed in embryonic cells and the ERRb knockout demonstrates a major 98	

role of this receptor in the regulation of placental formation, the maintenance of pluripotency 99	

of embryonic stem cells and the specification of epithelial cells of the inner ear (reviewed in 100	

15,31). ERRb is globally poorly or not expressed in adult and cancer tissues (reviewed in 21). 101	

However, ERRb is significantly expressed in the brain and involved in the regulation of stress 102	

response, food intake, satiety and whole-body energy balance (reviewed in 15). Interestingly, 103	

ERRg appear to have opposite effects on these processes, suggesting a tight tissue-dependent 104	

regulation of the ERR isoform activity or expression. Splicing ERRb isoforms have been 105	

identified and shown to be expressed in glioblastoma cell lines and tumors 41,42. In particular, 106	

the long ERRb2 isoform plays an antitumor role by inducing apoptotic cell death and 107	

restricting glioblastoma cell growth and migration 42. ERRb and the ERRb2 isoform have also 108	

been shown to inhibit prostate and breast cancer cell proliferation 43 (reviewed in 21). 109	

 110	

Main biological functions of ERRα 111	

ERRa is a key regulator of cellular metabolism 112	

ERRα is widely expressed in embryos and adult tissues. Of interest, ERRa has been identified 113	

as a master regulator of cellular energy metabolism, mostly in tissues with high-energy 114	

demand such as the skeletal muscle, kidney, liver, heart and adipose tissue. Importantly, ERRa 115	

binds to the promoter regions of many genes involved in oxidative phosphorylation, ATP 116	

synthesis, fatty acid oxidation, pyruvate metabolism, tricarboxylic acid (TCA) cycle, glycolysis, 117	

mitochondrial biogenesis and mitophagy (reviewed in 9,44). These metabolic functions of ERRa 118	

mainly involve the peroxisome proliferator-activated receptor g (PPARg)-coactivator 1⍺ (PGC-119	
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1α) and PGC-1β coactivators (45,46 and reviewed in 47). However, in some cases, the cofactors 120	

RIP140 and NCOR1 can also be involved (reviewed in 15). In addition, a crosstalk between ERRa 121	

and the thyroid hormone receptors (THR) has been shown 48,49. Notably, TH induces 122	

mitochondrial metabolic pathways such as oxidative phosphorylation, fatty acid oxidation and 123	

TCA cycle through ERRa in a THRB1 and PGC-1α-dependent manner. ERRa also contributes to 124	

the TH-mediated regulation of mitochondrial fission, biogenesis and mitophagy 49. 125	

Interestingly, TH has been shown to modulate breast cancer cell migration 50,51. A coordinated 126	

ERRa-THR effect may thus be possible, although not demonstrated, in this regulation. 127	

Unsurprisingly, the alteration of the metabolic pathways regulated by ERRa is associated with 128	

human metabolic diseases such as heart failure, diabetes and obesity (reviewed in 15). ERRa 129	

also contributes to the specific metabolic adaptations of cancer cells (reviewed in 9,44).  130	

 131	

ERRa modulates the differentiation of multiple mesenchymal lineages 132	

ERRa has been shown to control the differentiation of mesenchymal stem cells towards 133	

specific cell fates. For instance, the expression of ERRα increases early during myogenesis in 134	

parallel with that of the PGC-1α coactivator, and both factors contribute to the myogenic 135	

program in vitro and ex vivo (52–56 and reviewed in 15). Particularly, ERRα promotes myocyte 136	

differentiation through the modulation of mitochondrial metabolism and MAPK signaling (30,54 137	

and reviewed in 15,57). Similarly, ERRα may contribute to muscle regeneration in mice by 138	

regulating the expression of metabolic genes 58. Furthermore, ERRα plays a major role in bone 139	

homeostasis by repressing osteoblast differentiation both in vitro and in vivo (  and reviewed 140	

in 15,57). Additionally, a role of ERRα in the differentiation of adipocytes and chondrocytes in 141	

culture is supported by several studies (59,62,63 and reviewed in 57). 142	

 143	
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ERRa is involved in cancer progression and invasion 144	

Importantly, ERRα is strongly expressed in various types of cancers, and its elevated 145	

expression is associated with metastasis and poor prognosis 64–74.  146	

Many studies have demonstrated that ERRa plays a role in tumor growth and progression. 147	

Notably, ERRa promotes proliferation of colon, pancreatic, lung and breast cancer lines either 148	

by acting downstream of the HER2/IGF-1 pathways or by modulating the expression of the 149	

p21 cell cycle inhibitor, members of the cyclin family or other cell cycle regulators (74–77 and 150	

reviewed in 21,78). In addition, ERRa stimulates angiogenesis by directly inducing the 151	

expression of the vascular endothelial growth factor (VEGF) in several cancer cell lines 79–81. 152	

Furthermore, ERRa enhances Hypoxia-Inducible Factor 1a (HIF-1a)-mediated transcription 153	

and consequently facilitates tumor and blood vessel growth in mice under hypoxic conditions 154	

81,82. ERRa also contributes to the metabolic switch of cancer cells, also termed the Warburg 155	

effect, by stimulating aerobic glycolysis 83,84. Moreover, ERRa contributes to Epithelial-156	

Mesenchymal Transition (EMT), and promotes cell migration and extracellular matrix (ECM) 157	

invasion (85–87 and reviewed in 9, also see below).  158	

 159	

ERRa-mediated regulation of cell migration  160	

ERRa promotes the migration of cells during development and adult tissue homeostasis 161	

without interfering with their differentiation 162	

Gastrulation is an early developmental process during which cell migration leads to massive 163	

reorganization of the embryo, allowing the establishment of the three embryonic tissue layers. 164	

Later, cells migrate within layers and differentiate to form tissues and organs (reviewed in 88). 165	

Interestingly, ERRa function is not required for cell fate determination in zebrafish embryos, 166	

but it plays a major role in controlling different morphogenetic movements during zebrafish 167	
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gastrulation 89. However, the molecular mechanisms by which ERRa regulates these cellular 168	

movements have not yet been characterized. WNT11 regulates hypoblast cell movements 169	

during zebrafish gastrulation and it also has been identified as a transcriptional target of ERRa 170	

that promotes cancer cell migration (90,91, also see below). Altogether, this suggests that the 171	

wnt11-dependent signaling pathway could be involved downstream of ERRa to control 172	

orientated cell movements at the onset of gastrulation (Fig. 3).  173	

Furthermore, ERRa has been shown to modulate osteoblast differentiation and bone 174	

formation (see above). It also regulates the migration of osteoclasts. Indeed, loss of ERRa 175	

activity leads to actin filament disorganization, reduced adhesion and inhibition of 176	

transmigration of mature osteoclasts in vitro. It also results in a decreased expression of 177	

osteopontin, integrin b3 and altered localization of c-src that may contribute to the adhesion 178	

and migration defects observed 92 (Fig. 3). Thus, ERRa may participate in the regulation of 179	

bone homeostasis and remodeling by acting on the osteoblast lineage but also by controlling 180	

osteoclast migration. In addition, ERRa regulates the migration of macrophages ex vivo and in 181	

vivo; this probably depends on its capacity to modulate the expression of TNFAIP1 and the 182	

stability of the RhoA GTPase in these cells 85 (Fig. 3). Of interest, inhibition of cell migration 183	

resulting from the loss of function of ERRa does not result from an impaired differentiation of 184	

the osteoclast precursors and macrophages in these conditions 85,92.  185	

 186	

ERRa can behave as a negative or positive modulator of vascular cell migration and 187	

angiogenesis  188	

 Angiogenesis is a process by which new vessels form; this involves the proliferation, 189	

migration and differentiation of endothelial cells (EC). ERRa is a major regulator of 190	

angiogenesis under both physiological and pathological conditions (reviewed in 9, see also 191	
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below). Interestingly, this function of ERRa relies in part on its ability to regulate EC migration. 192	

ERRa has been shown to be expressed in EC from different tissues and it can either repress or 193	

enhance EC migration and angiogenesis, depending on the cellular context and the availability 194	

of cofactors. Gene expression analysis of ERRa-deficient EC indicates that the receptor mainly 195	

acts as a transcriptional repressor of target genes associated with angiogenesis, cell adhesion 196	

and cell migration 93. In particular, ERRa modulates the expression of the vascular endothelial 197	

growth factor (VEGF) and also inhibits the expression of several migratory and cell-adhesion 198	

genes such as Pecam, Mmp3, Cdh3 and Esam1 which are all involved in angiogenic regulation 199	

(Fig. 3). As a consequence, ERRa plays a role in limiting angiogenesis by negatively controlling 200	

EC migration, tube formation and sprouting in response to growth factors in vitro and in vivo 201	

93.  202	

In contrast, ERRa facilitates angiogenesis through the induction of VEGF expression and 203	

secretion from several cell types 79–82,94–96. In response to a deprivation in nutrients and 204	

oxygen, the cofactor PGC-1a coactivates ERRa to induce the expression of VEGF, and this may 205	

contribute to the physiological response to ischemia 94 (Fig. 3). Similarly, flavonoids of 206	

Scutellaria baicalensis root such as Baicalin stimulate the expression of VEGF through the 207	

ERRa-PGC-1a pathway, and consequently induce EC migration and sprout formation 80. In 208	

addition, ERRa regulates the neovascularisation process through VEGF to facilitate tumoral 209	

growth and progression in mice. ERRa also enhances the expression of osteoprotegerin that 210	

can contribute to the angiogenic process 95,97. Furthermore, ERRa interacts with and stabilizes 211	

HIF-1a, and stimulates the expression of its target genes including VEGF (Fig. 3). The functional 212	

interaction between ERRa and HIF-1a plays thus an important role in adapting cancer cells to 213	

in vitro and in vivo hypoxic conditions, and promotes angiogenesis, tumoral growth and 214	

invasion 81,82. In addition, ERRa induces the expression of eNOS in EC, an enzyme that 215	
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generates nitric oxide (NO). As a consequence, ERRa may promote tumor progression through 216	

the NO-mediated regulation of EC migration, vascular permeability, blood vessel remodeling 217	

and angiogenesis 98,99 (Fig. 3). 218	

ERRa also positively controls the migration of vascular smooth muscle cells (VSMCs). VSMCs 219	

are important components of blood vessel walls that maintain structural integrity and drive 220	

the contraction of the vascular wall. The platelet-derived growth factor (PDGF), mainly 221	

produced by VSMCs, vascular endothelial cells, platelets or macrophages in the injured 222	

vascular walls is involved in vascular remodeling (reviewed in 100). Interestingly, ERRa is 223	

required both in vitro and in vivo for platelet-derived growth factor (PDGF)-induced 224	

proliferation and migration of VSMC through the regulation of RhoA/p27/Cdks and Wnt4/b-225	

catenin pathways 101 (Fig. 3). In this way, ERRa acts as an effector of PDGF in controlling 226	

vascular remodeling, and thus may contribute to the development of cardiovascular diseases 227	

such as atherosclerosis and restenosis 100,101. 228	

 229	

ERRa plays a role in the induction of Epithelial-Mesenchymal Transition  230	

 EMT is a cellular process that leads to the conversion of epithelial cells into 231	

mesenchymal cells. EMT occurs during embryonic development and becomes reactivated in 232	

pathological contexts such as inflammation and cancer progression. During EMT, epithelial 233	

cells lose their polarity and cell-cell junctions, and gain migratory and invasive properties 234	

(reviewed in 102).  235	

ERRa has been shown to induce EMT in cancer cells and consecutively to promote their 236	

migration. Interestingly, multiple mechanisms are involved in ERRa-induced EMT (Fig. 3). 237	

Depletion of ERRa in a range of cancer cell lines has been shown to increase the expression of 238	

E-cadherin, a marker of epithelial cells, and to decrease the expression of vimentin, fibronectin 239	
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and N-cadherin which mark a mesenchymal phenotype 74,103–109. Interestingly, in most of these 240	

cancer cells, ERRa drives EMT and maintains the mesenchymal phenotype by regulating the 241	

expression of the transcription factors SNAIL, SLUG and/or Zinc-finger E-box-binding 1 (ZEB1) 242	

74,103,106,107,110,111. In gallbladder cancer cells, ERRa promotes EMT and cell migration through 243	

the regulation of the expression of Nectin cell adhesion molecule 4 (Nectin-4) and the 244	

activation of PI3K/AKT pathway 107. In addition, ERRa regulates cell migration in vitro, tumor 245	

growth and invasion in vivo via the activation of the fibronectin and STAT3 pathways that 246	

promote EMT 104–106. In turn, the JAK2/STAT3 pathway positively regulates the expression of 247	

ERRa to induce EMT 111. ERRa also regulates the expression and the secretion of TGF-b by 248	

osteosarcoma and endometrial cancer cell lines, which can activate ERRa expression via a 249	

positive feedback mechanism. As a consequence, ERRa mediates TGF-b-induced SNAIL 250	

activation, EMT and cell migration 106,112,113.  251	

Surprisingly, the ERRa-knockout mice exhibit no evident developmental abnormalities which 252	

is unexpected given the key role of ERRa in the regulation of EMT (see above). They were 253	

initially found to display reduced adiposity, peripheral fat deposits and resistance to high-fat 254	

diet-induced obesity 114. In addition, they show a decrease capacity in mitochondrial 255	

biogenesis and oxidative metabolism in the brown adipose tissue and they are consequently 256	

defective in adaptive thermogenesis 115. ERRa deficiency also produces behavioral 257	

disturbances associated with synaptic dysfunction 116,117. To some extent, ERRa and ERRg have 258	

overlapping functions, suggesting that the absence of a phenotype associated with a defective 259	

EMT might be attributed to functional redundancy between ERR isoforms during 260	

development.  261	

 262	

A crosstalk between ERa, ERBB2 and ERRα in breast cancers 263	
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 Based on the structural homology shared by ERRα and ERa, a potential functional 264	

relationship between these receptors has been suggested for years in breast cancers. 265	

However, a genome-wide analysis indicated that most of the ERRα target genes are distinct 266	

from those regulated by ERa in breast cancer cell lines and tumors samples, demonstrating 267	

that ERRα plays a role in breast cancers that is mainly independent of ERa 118,119. Nonetheless, 268	

ERRα and ERa regulate a small fraction of common target genes either through binding to 269	

distinct but closely located estrogen-response elements (EREs) and ERREs or through 270	

competitive binding to overlapping ERE / ERRE motifs. Interestingly, several of these common 271	

target genes are linked to the ErbB2 signaling 119. Specifically, ERRa and its cofactor PGC-1b 272	

are involved in the transcriptional regulation of ErbB2 and several co-amplified genes located 273	

within the ErbB2 amplicon that play a role in survival and cell migration in vitro, and tumor 274	

growth in vivo 120. In turn, the transcriptional ERRa activity is regulated by the EGF/ErbB2 275	

signaling pathway in breast cancer cell lines 24,64 (Fig. 3). Therefore, reciprocal regulation of 276	

ERRα and ErbB2 contributes to breast tumor development, progression and tamoxifen 277	

resistance 120.  278	

 279	

ERRa is a crucial factor regulating cancer cell migration  280	

ERRα has been identified as a major regulator of cancer cell migration and invasion (73,85–281	

87,91,118,121,122) (Fig. 3). Given the importance of altered metabolism in cancers as well as the 282	

fact that ERRa modulates different aspects of energy storage and consumption, it could be 283	

argued that all cancers phenotypes in which the receptor in involved are a consequence of its 284	

metabolic effects. However, ERRa regulates cancer cell migration in cells that do not express 285	

PGC-1a or –β 86. Furthermore, RNA-Seq approaches have shown that ERRa does not modulate 286	

the expression of metabolic targets in these cells although ChIP-Seq experiments indicate that 287	
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ERRa is bound to the regulatory regions of these genes 123. Altogether, this points to a critical 288	

effect of the coregulators bound by ERRa, that control different transcriptional targets and 289	

thus phenotypic outcome 124. 290	

Several studies demonstrated an interplay between ERRa and the Wnt/b-catenin signaling 291	

91,101,125. In cancer cells, ERRa and b-catenin interact, and depend on each other to regulate 292	

the expression of genes known to be involved in cell migration such as WNT11, MSX1 and N-293	

cadherin. Specifically, the ERRa/b-catenin/WNT11 axis plays a role in promoting prostate and 294	

breast cancer cell migration in vitro 91. Moreover, ERRα interacts with LSD1 and induces its 295	

demethylase activity on the lysine 9 of histone 3 at the promoter of common target genes, 296	

resulting in their transcriptional activation. In this way, ERRα and LSD1 promote breast cancer 297	

cell invasion in vitro through the stimulation of the Matrix Metalloproteinase 1 (MMP1) 298	

expression 86. Noteworthy, the nuclear respiratory factor 1 (NRF1) is required for the 299	

recruitment of LSD1 at the transcriptional start site of the ERRα-LSD1-positively regulated 300	

target genes and participates in the regulation of MMP1 expression and breast cancer cell 301	

invasion 87. Other matrix metalloproteinases, such as MMP13, also regulated by ERRα, could 302	

be involved in the degradation of the basement membrane, facilitating cell invasion 95. In 303	

addition, ERRa promotes the proliferation, migration and invasion of pancreatic cancer cell 304	

lines by enhancing the expression of the plasminogen activator inhibitor 1 (PAI1) and 305	

consequently activating the mitogen-activated protein kinase/extracellular signal-regulated 306	

kinase (MEK/ERK) pathway 74. 307	

Surprisingly, ERRα can also have a negative impact on breast cancer cell proliferation and 308	

migration in vitro and can decrease lung colonization in vivo by down-regulating the 309	

expression of the 40S ribosomal S6 kinase 1 (S6K1), a downstream effector of the mTOR 310	

pathway. As a consequence, ERRα knockdown leads to an upregulation of these cellular 311	
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processes and sensitizes the cells to mTOR inhibitors under reduced serum or glucose 312	

conditions 126. Interestingly, a connection between ERRα and mTOR signaling has been found 313	

previously, and in particular, ERRα has been implicated in the mTOR-mediated control of 314	

energy metabolism in the mouse liver 127. Therefore, it is possible that, when ERRα contributes 315	

to the metabolic adaptation of the cells, it can repress or activate cell proliferation and 316	

migration depending on the cellular context. In line with this hypothesis, other studies 317	

indicated that the cofactor PGC-1α requires ERRα to suppress prostate cancer metastasis; this 318	

relies on their capacity to modulate metabolic programs and to decrease the expression of 319	

specific genes, such as MYC, involved in cytoskeletal remodeling and prostate cancer cell 320	

invasion 128,129. On the other hand, ERRα has been shown to promote breast cancer metastasis 321	

to the bone, and the receptor activator of nuclear factor k B (RANK) identified as an ERRα 322	

target gene may contribute to this process. In this context, ERRa stimulates mTOR/S6K 323	

signaling and breast cancer cell migration in vitro in a RANK-dependent manner 130. 324	

Upregulated expression of the long non-coding RNA (lncRNA) SPRY4 intronic transcript 1 325	

(SPRY4-T1) has been found to be associated with a poor prognosis in hepatocellular carcinoma 326	

(HCC). In vitro, the knock-down of SPRY4-T1 leads to the downregulation of the ERRα 327	

expression at the mRNA level and the effects of SPRY4-T1 on HCC cell proliferation, colony 328	

formation, cell migration and invasion involve ERRα, suggesting a functional interaction 329	

between SPRY4-T1 and ERRα 121. Furthermore, ectopic expression of the microRNA 137 (miR-330	

137) has been shown to reduce the expression of ERRα by directly targeting the 3’UTR region 331	

of its mRNA in breast cancer cell lines. As a consequence, miR-137 decreases the proliferative 332	

and invasive capacities of the cells, at least in part, through the negative regulation of the 333	

ERRα target genes CCNE1 and WNT11 77. Similarly, miR-135a and miR-497 down-regulate the 334	

expression of ERRα and decrease cancer cell migration and invasion in vitro 131,132. Notably, 335	
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miR-497 can control cell behavior by reducing the expression of the macrophage migration 336	

inhibitory factor (MIF) and the activation of MMP9, two factors also regulated by ERRα 132. 337	

Importantly, deregulated expression of these miRNA has been reported in various types of 338	

cancers (77,131,132). This may thus contribute to the aberrant expression of ERRα in cancers, 339	

thereby facilitating cell proliferation, migration and invasion. 340	

 341	

ERRa coordinates the basic processes of cell migration  342	

Cell migration mainly depends on the dynamic organization of the actin and microtubule 343	

cytoskeletons, and requires adhesion to the ECM (reviewed in 5,7) (Fig. 1). Although numerous 344	

studies have reported a role of ERRa in cell migration, its involvement in cell adhesion has 345	

only been recently suggested. Zou and colleagues previously noticed that ERRa facilitates the 346	

attachment of prostate cancer cells to fibronectin, an ECM protein, but they did not explore 347	

the underlying mechanisms 81. As mentioned above, another report showed that ERRa 348	

depletion in ECs leads to the upregulation of genes linked to cell adhesion and cell migration 349	

93. Furthermore, bioinformatics analyses revealed that the RANK-ERRα regulatory interactome 350	

contains proteins associated with ECM regulation, cell adhesion and cell migration, some of 351	

which being encoded by putative ERRα target genes 130. Altogether, these studies have 352	

proposed new potential effectors of ERRα involved in cell adhesion and migration that need 353	

further investigation.  354	

Recent evidences indicated that ERRa plays an important role in regulating both the actin 355	

cytoskeleton and cell adhesion (Fig. 3). In that way, ERRa has been shown to regulate the actin 356	

cytoskeletal organization, the adhesion and migratory capacities of osteoclasts in vitro 92. In 357	

addition, ERRα promotes orientated migration of breast cancer cells by modulating the 358	

stability of the RhoA GTPase in vitro. Interestingly, increased RhoA activity resulting from ERRα 359	
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depletion induce cell disorientation that may result from impaired actin cytoskeletal 360	

organization and defective lamellipodium formation 85. Thereafter, it has been demonstrated 361	

that ERRa controls actin polymerisation in these cells through the modulation of the RhoA-362	

ROCK-LIMK-cofilin pathway. In addition, ERRa tightly regulates the expression of mitogen-363	

activated protein kinase kinase kinase kinase (MAP4K4), and consequently facilitates the 364	

turnover of focal adhesions, the main adhesive structures of the cells 133. Thus, these data 365	

establish a role for ERRa in coordinating focal adhesions and actin dynamics, that may 366	

contribute to cell migration in both physiological and pathological conditions. 367	

 368	

Concluding remarks 369	

ERRa has been shown to play a role in various biological processes that contribute to 370	

embryonic development, physiology and pathologies. Interestingly, as summarized here, 371	

ERRa is a key regulator of cell migration in all of these contexts (Fig. 2). ERRa controls the 372	

morphogenetic movement of cells during gastrulation in the embryo and also tightly modulate 373	

the migration of different cell types in the adult organism, thereby ensuring tissue 374	

homeostasis. In addition, ERRa has been widely implicated in cancer cell migration and 375	

invasion. Consequently, ERRa has often been proposed as a therapeutic target to inhibit 376	

cancer cell dissemination. However, global pharmacological modulation of ERRa activity or 377	

expression could cause undesired side-effects as they would impact on the physiological 378	

effects of the receptor. This strategy may thus be reconsidered. Recently, new cofactors of 379	

ERRa have been shown to be involved in the modulation of distinct sets of ERRa-target genes 380	

123, suggesting that the capacity of ERRa to regulate a given cellular process depends on its 381	

association with specific cofactors in a context-dependent manner. In that way, cofactors such 382	

as LSD1 or SET7 regulate a precise subset of ERRa-target genes involved in cancer cell 383	
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migration 86,123. Targeting the complex comprising ERRa and one of these cofactors may thus 384	

constitute a promising alternative approach to limit cancer spread. However, further 385	

investigations are required to achieve a better understanding of the cofactor-dependent 386	

mode of action of ERRa in tumors and other pathological contexts. Besides, it appears also 387	

important to dig more deeply into the factors and the mechanisms involved in the ERRa-388	

mediated cell movements in physiological environments.  389	
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Figure legends 788	

 789	

Figure 1: Core mechanisms of cell migration 790	

Cell migration, whether during embryonic development or in adulthood, plays a crucial role in 791	

various biological processes. At the onset of movement, cells undergo polarization and extend 792	

protrusions in the direction of migration. These protrusions are predominantly driven by the 793	

actin cytoskeleton and are stabilized by adhering to the extracellular matrix. Subsequently, 794	

these adhesions generate traction stresses, which enable the cells to propel forward, and 795	

disassembly of adhesion at the rear facilitates cell detachment. In addition, the microtubule 796	

cytoskeleton, which governs intracellular trafficking and signaling also participates in 797	

regulating the different steps of cell migration.  798	

 799	

Figure 2: ERR⍺ regulates cell migration in both physiological and pathological conditions  800	

ERR⍺ is involved in regulating morphogenetic movements during gastrulation and it also 801	

influences the movements of various cell types that participate to tissue remodelling and 802	

homeostasis. Furthermore, ERR⍺-mediated cell migration contributes to cardiovascular 803	

diseases and cancer progression. 804	

 805	

Figure 3: Molecular mechanisms through which ERR⍺ finely controls migration potential 806	

ERR⍺ orchestrates cell movements through diverse mechanisms. ERR⍺ engages in specific 807	

cofactor interactions, regulates gene expression and signaling pathways. As a result, these 808	

actions culminate in the modulation of cell migration and determine cellular responses based 809	

on the context. Figure adapted from images created with BioRender.com. 810	
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