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We study the dynamics of a fixed-wing at stall in a wind tunnel by measuring the aerodynamic
forces. We report experimental evidence of a critical Reynolds number from which low frequency
oscillations in the force are replaced by random bistable dynamics. In this new regime, the flow
explores each state intermittently with long residence times. This stochastic process can be modeled
as a continuous Markov chain, and equivalently, it shows a super-exponential scaling for the mean
residence times. Furthermore, the probability density function of the lift coefficient exhibits the
characteristic heavy tail of extreme events. Extreme minima and maxima are at the origin of the
transitions. We analyzed the evolution of these tails using extreme value theory to identify the
bifurcation points of the associated dynamical system. The results are in good agreement with a
user-defined threshold method, the advantage being the unambiguity in the computation.

I. INTRODUCTION

Following the pioneering work of Prandtl [1], one calls stall regime any flow pattern that involves a massive de-
tachment of the boundary layer from a wall. Stall has been studied in various geometries like backward-facing steps,
cavities, and airfoils, among others; for a nice review on the subject, see e.g. [2]. Stall in airfoils appears as the angle
of attack α increases and can be classified as one or a combination of three main types [3] that take into account
the behavior of the separation point and the appearance or not of a laminar separation bubble. The dynamics of
the bubble and hence, the laminar to turbulent transition of the boundary layer, is believed to be at the origin of
complex stall phenomena in airfoils, such as low-frequency oscillations [4–8] or hysteresis [6, 9–12]. These phenomena,
in turn, may have a dramatic effect on profile efficiency (wind turbine, propulsion...) or be a source of mechanical
damage. Low-frequency oscillations are global oscillations of the flow with a defined frequency much lower than
the vortex shedding frequency [4], while hysteretic loops in the lift force usually occur when two flow states coexist
over a finite range of α, resulting in bi-stability [9]. Parameters like velocity, geometry, free stream turbulence, and
acoustic disturbances can either amplify, delay or suppress the appearance of low-frequency oscillations and hysteresis
[4, 13]. It has been shown [6, 14] that large-scale modes dominate the dynamics at stall, involving saddle-node and
Hopf bifurcations in the case of low-frequency oscillations [6]. Multi-stability has been encountered in several fluid
mechanic systems ranging from small-scale flows [15–19] to large-scale geophysical flows [20–22] and in the transition
to turbulence [23–25]. They all share common statistical features such as exponential statistics of the residence times,
defined as the time-lapse in each state, and their mean values orders of magnitude larger than any hydrodynamic
timescale of the flows [25–27]. All these characteristics make this process fall into the theory of Markov chains in which
the transitions between states are considered rare events, namely events in which the probability of occurrence is low,
and they are approximately exponentially distributed [28]. Rare events are at the origin of extreme events [29] as
they result from the synergistic action between a low-probability event and the intrinsic dynamics of the system [30].
Extreme events are large deviations from normality exhibited by specific observables of a system. For a comprehensive
review of extreme events in fluid dynamics systems, see [30]. Under this framework, extreme rare events can either
be analyzed by using tools of residence time statistics or extreme value laws as both are equivalent [31–33]. In this
article, we experimentally study the stall dynamics of a thin symmetric airfoil (NACA0012) for Reynolds numbers
ranging from 50 000 to 110 000 (see definition in the next section). We confirm that low-frequency oscillations can
actually be observed on the lowest range of the Reynolds numbers, as reported in the numerical and experimental
studies of [5, 34, 35]. We discovered that beyond a critical value of the Reynolds number, the airfoil dynamics tran-
sits into random memory-less switches between the fully attached and the fully detached flow states, replacing the
low-frequency oscillations. In this new regime, the expected hysteresis loop is not observed due to the intermittent
dynamics, which connects the two branches of solutions for a fixed angle of attack. To the best of our knowledge,
this intermittent bi-stable dynamics has never been reported in airfoil stall dynamics yet and we show that it can be
described by the theory of continuous Markov chains and extreme rare events.
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FIG. 1: Experimental setup showing the wing of chord c and span s, the rotation plate, which controls the angle of
attack α, on which the force balance is mounted, and the hot wire placed in the wake.

II. EXPERIMENTAL SETUP

All the experiments were carried out in a closed loop wind tunnel with a 450 x 450 mm2 test section. The turbulence
intensity is constant for all the velocities tested and equal to 0.4%. The model analyzed is a 3D printed NACA0012
wing with a chord length c = 120mm and a span s = 450mm (FIG. 1). The wing is flushed on one side to an endplate
which in turn is connected to a balance-rotating platform (FIG. 1). This system allows to rotate the model with a
resolution of 0.02◦ and to measure lift (L) and drag forces with a resolution of 1mN. We also carried out hot-wire
(HW) measurements to differentiate between purely aerodynamic effects and airfoil vibrations in the spectra of the
forces. The probe model was P15 used together with a Mini CTA 54T30 from DANTEC, see FIG. 1 for its position
in the flow. The temperature in the test section was measured via a thermocouple with an accuracy of 0.1 ◦C. Six
Reynolds numbers were analyzed Re = U∞c/ν ∈ [5.31; 6.54; 7.84; 9.03; 10.3; 11.60] × 104, where U∞ is the velocity
at the inlet of the test section and ν the air viscosity at the flow temperature. In order to accurately characterize
phenomena around stall, the same rigorous measuring protocol was used for each of them. First, the stall zone is
identified by doing quick measurements with large ∆α steps; once the region was identified, small ∆α steps and long
measurements were performed. For the bistable case, the values adopted for the acquisition time and ∆α were based
on previous explorations that revealed the sensitivity of this phenomenon to small changes in the angle of attack
and the long characteristic times associated. A moving average filter of 1 s was applied in order to highlight the
bistability. For all measurements, the sampling frequency was set at 1 kHz. Most of the analysis shown in this article
was done over the lift coefficient CL = 2L/(ρU2

∞cs), where L is the lift force, although drag and hot wire data were
also analyzed and highlighted too the phenomena around stall.

III. DYNAMICS AND BIFURCATIONS

A. Dynamic regimes

As already stated, two different regimes were observed around stall when increasing Re. In order to analyze their
evolution FIG. 2 was constructed by finding the range of existence of each phenomenon in the α−Re plane. The phase
diagram is divided into two main regions: (i) below Rebs ≈ 9× 104, the flow exhibits a low frequency regime (LFO),
for a certain range of angle of attack which depends on Re, and (ii) above Rebs, the LFO regime disappears and a
bi-stable regime appears over a range of angles of attack which also depends on Re. Below Rebs, LFOs are observed
for angles of attack between the two red-circles dashed lines, while above Rebs, bistability is observed for angles of
attack between the two magenta squares-dashed-lines. Stall angles defined as the values from which the lift decreases
are also added as a reference. Low-frequency oscillations are observed when increasing Re above a certain threshold
Relfo ≈ 3 × 104 (not shown in the figure). The range of existence in α diminishes as Re increases until the critical
Reynolds number Rebs is reached, from where the phenomenon is not visible anymore. The characteristic signature
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of LFO is found by looking at the power spectral density (PSD) of any of the measured variables. In FIG. 3(b),
the hot wire spectrum is shown along with the corresponding time series FIG. 3(a), for a typical Re in this regime.
A clearly defined peak is visible around St = 0.007 where St = fc sin(α)/U∞ is the Strouhal number based on the
projected cross-section of the wing and f the frequency in Hz. This low-frequency large band peak is characteristic
of wings showing thin airfoil stall [4, 5, 8]. Increasing Re in this zone only shifts the peak to a slightly larger value of
the Strouhal number, up to St ≈ 0.01 at Rebs. This low-frequency peak is far from the wing-free vibration frequency.
The latter can be computed with the following equation [36], f1 = (1.8752/2π)

√
EI/ρBs4 where E is the Young’s

Modulus, I the second order area moment, ρ the density, B the cross-section and s the span of the wing. With the
dimensions and material of the airfoil, it yields f1 ≈ 15Hz and St ≈ 0.045, which is about an order of magnitude
larger than that of the LFO. Beyond Rebs, low-frequency oscillations are replaced by intermittent bistable dynamics
distinguished by two different states that are intermittently explored in time. Only at Rebs both regimes could be
observed. For a given Re in the bi-stable regime, hot wire time series (FIG. 4(a)) shows a random switching between
two states and the spectra (FIG. 4(b)) exhibits the characteristic 1/f2 behavior at low frequencies [15] with no sign
of the low-frequency peak. Another remarkable feature of each phenomenon is the small range of their existence in
α, going as small as ∆α = 0.18◦. As the focus of this article is on the intermittent dynamics, from now on, all the
results shown will be for a typical Re in this regime, particularly Re = 1.16× 105. Similar results have been obtained
for the other two Re tested in the bistable zone.

We also analyzed the influence of vibrations, surface roughness, boundary conditions, and installation effects on
the bistable regime. When both ends of the wing are fixed, the bistability threshold is shifted towards larger values of
the Reynolds numbers, but the dynamics remain qualitatively the same. We interpret the delay of the transition as
a consequence of the attenuation of the vibrations and, consequently, a reduction in the available energy to promote
random jumps. Wind tunnel characteristic frequencies were also ruled out as a possible source of excitation for
bistability. As stated in section II, the wind tunnel is a closed loop so for a fan with n blades, the blade pass
frequency is fb = nr where r is the rotating speed of the fan wheel. In our experiment fb = 100Hz which is way
larger than the timescales associated with the bistability. Preliminary tests done over an aluminum NACA 0012
profile with a smooth surface showed the intermittent bistable behavior around stall for a larger Rebs, showing that
the phenomenon is robust against surface roughness. This is similar to the influence of rugosity in the drag crisis on a
sphere, which is universal in some aspects, but still strongly affected by some effects, notably rugosity [37, 38]. Thicker
rugosity of 3D printed wing promotes turbulence and hence an earlier transition to bistability, whereas the smooth
surface of an aluminum wing delays the transition to larger values of the Reynolds number. Regarding simulations,
intermittent bursts in aerodynamic coefficients were observed in a NACA 4412 far from stall [39]. All of these results
show the universality and robustness of this phenomenon, but also the non-universality of the transition threshold.

B. Random switching dynamics

The mean behavior of the lift coefficient versus α is shown in FIG. 5. Samples inside the bistable region were
acquired for 30 minutes and in steps of ∆α = 0.04◦ while outside this region, the time was 2 minutes and ∆α = 1◦.
The mean lift (CLm

) evolution is typical of thin airfoils [9, 40], showing a small change of slope at small angles due
to the formation of the recirculation bubble, a soft decrease during stall followed by an increase at high angles. The
inset in FIG. 5 follows closely the progression of the bistability, revealing two bifurcation points at α = αA ≈ 10.90◦

and αD ≈ 10.72◦, between which two stable branches of high and low lift, respectively associated with an attached
(A) or detached (D) flow regime, both coexist. The values corresponding to each branch i.e. CLA

, CLD
are the two

most likely values of CL in the bimodal probability mass functions (PMF). The bifurcation angles are determined by
looking at the ratio between the probability associated with CLA

, CLD
. When this ratio goes below 10−3, we consider

the dynamics mono-stable. It is important to note that no hysteresis of the mean lift nor of the onset of bistability αbs

was observed in decreasing and increasing ramps of the angle of attack. An interesting feature is that once bifurcated,
each state remains almost the same throughout the bifurcation with only a small shift in value, and the overall average
CLm

depends mostly on the time spent in each state. This fact is well understood while seeing FIG. 6 in where the
PMF and the time series for three different angles are shown. At lower α (FIG. 6(a)) one state, A, prevails even
though some attempts to explore D are visible. When α increases, D occurs more frequently (FIG. 6(b)), until a
mono-stable state is reached when D prevails over A (FIG. 6(c)). Another salient feature is the standard deviation
associated with each state. As it is clearly seen in the time series of FIG. 5, the fluctuations of the lift force in state
D are much larger than those in state A, which is reflected in the width of the PMF peaks. High lift and small
fluctuations (state A) are related to a mostly attached boundary layer state while low lift and large fluctuations (state
D) are associated with a mostly separated boundary layer, as previously reported in [6, 41].
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FIG. 2: Phase diagram (α,Re) showing the two observed regimes. Green shaded area corresponds to the range of
existence of the low frequency regime (LFO) while the cyan shaded area corresponds to bistability. The abrupt

transition between the LFO regime and bistability is marked by the vertical line at Re = Rebs. The blue triangles
mark the start of the stall zone, the red circles the extreme angles between which the LFOs are observed, and the

magenta squares the extreme angles of the bistable dynamics.
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FIG. 3: Hot wire (a) time signal and (b) power spectral density (PSD), in the low frequency oscillation regime at
Re = 5.31× 104. The broadband spectrum of oscillations is centred on St ≈ 6× 10−2.

IV. STATISTICS OF THE RANDOM SWITCHING DYNAMICS

In this section, the statistics of the bistability are analyzed with the aim of understanding the nature of the stochastic
process and its evolution with the control parameters. Measurements with a duration of 1 hour were performed for
several angles in the region of interest as they showed fairly converged statistics and a reasonable overall time for a
given set. Nevertheless, isolated 8-hour acquisitions were also done to verify the statistical convergence.
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FIG. 4: Hot wire (a) time signal and (b) power spectral density (PSD), in the bi-stable regime at Re = 1.16× 105.
The characteristic slope in St−2 is clearly visible on the Strouhal range St ≤ 10−3.
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FIG. 5: CL vs α. Inset: zoom around stall exhibiting the bistability and its evolution. In the bistable range, the
blue circles mark the high CL associated with flow state A, the red squares the low CL associated with flow state D.

The black circles represent, for each value of α, the time-averaged value of CL.

A. Continuous Markov chains and superexponential scaling

After a temporal filtering of 1 s, the signal is binarized to extract the residence times τi , i ∈ [A,D] of each state.
The complementary cumulative distribution function (CCDF) of the residence times exhibits an exponential trend,
P (τi, α) ∝ exp[−τi/τ̄i(α)], where τ̄i(α) is the mean residence time, as shown in Fig. 7 for several angles of attack.
The exponential distribution is typical of a memoryless random process, which can thus be described as a continuous
Markov chain. The state space of the Markov process contains the two states S = {A,D}. In addition, as in bistable
systems cited in the introduction, the mean residence times in each state are much larger than any typical time scales
of the system. For example, compared to the convective time c/U∞ the residence time is 4 orders of magnitude higher.
The transitions between states can hence be considered as rare events, e.g., the probability of seeing a transition is
low.
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Solid lines are the double-exponential fits of the associated residence time distributions.

The evolution of the mean residence time τ̄i(α) (inverse of slopes in Fig. 7) with our control parameter α is presented
in Fig. 8 in a double log-linear scale. The linear behavior is compatible with a double-exponential functional shape
similar to other sub-critical systems like in the transition to turbulence [23, 42, 43] and the flow around a pendulum
[16]. The crossing between lines has a particular interpretation which will be discussed in the next section. Note that
because the range of angles of incidence is small (not even a decade), any super-exponential law could be a good fit for
the data, as was already mentioned in Hof et al. [24] on the transition to turbulence. This super-exponential scaling
directly results from the previously stated equivalence between continuous Markov chains and extreme value theory.

B. Extreme rare events analysis

As already established, the transitions between states can be considered as rare events. Additionally, we showed
the rise of an extreme value law as a consequence of the memory-less property of the process. All these facts lead us
to consider extreme events as responsible for the transitions. To support this theory, the probability density function
(PDF) of CL was plotted for two different angles of attack (see Fig. 9): one at the beginning of the bi-stable range
(Fig. 9(a)) and another one at the end (Fig. 9(b)). The comparison is made against a Gaussian fit of the core of the
PDF. The PDFs show the characteristic heavy tail typical of systems showing extreme events in both cases. We can
also look at the amplitudes of these events in terms of the standard deviation of the Gaussian fit. They span from
10 to 20 times this value, showing the large deviation from normality expected from these types of events. We note
that in Fig. 9(a) the extreme events are smaller values of CL e.g. minima, and in Fig. 9(b) larger values e.g. maxima.
In the attached state A, the system undergoes extreme minima in CL, triggering the transitions to D. In state D,
extreme maxima bring back the flow to state A. We can now see the interest in knowing more about the distribution
of maxima, CLmax

and minima CLmin
. Extreme value theory states that in the asymptotic limit i.e when the sample

size n → ∞, these distributions converge to the generalized extreme value distribution (GEV) [32] with the following
cumulative density function:

P = exp

{
−
[
1 + ξ

(
x− µ

σ

)]−1/ξ
}

(1)

where µ is the location parameter, σ is the scale parameter, and ξ is the shape parameter. The latter is related to the
kind of tail from the parent distribution, and consequently, it will determine the type of extreme value law. We call
parent distribution, the probability distribution of CL. When ξ < 0, the extremes follow a Weibull distribution, and
the tail of the parent distribution is bounded. When ξ > 0, the extreme events follow a Frechet distribution. The tail
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FIG. 9: Probability density function of CL showing the characteristic heavy tails of extreme events, when flow state
(a) A or (b) D dominates in the flow dynamics. The dashed line is a Gaussian fit of the dominant peak.

corresponds to a heavy one with a power decay law, as in Fig. 8. When ξ = 0, the extreme value law corresponds to a
Gumbel distribution and an exponential decay tail from the parent distribution. Therefore, by following the evolution
of the sign of ξ with α we have insight into the behavior of extreme events in the bistable regime and hence into the
probability of transition. This statistical procedure was applied in [32, 44] as a tool to detect the critical value of a
control parameter in turbulent flows. Here, ”critical value” is understood as the one producing a qualitative change
in the dynamics, e.g. a bifurcation. This threshold corresponds to a change of sign in ξ, meaning the transition from
a Weibull to a Frechet distribution or vice-versa, depending on the type of extreme events analyzed (maximum or
minimum). We apply this method to our time series following the steps and recommendations detailed in [32, 44]
with special care in the convergence of the GEV fit. All results are summarized in Fig. 10 along with representative
PDFs of the parent distribution CL to help the understanding. For the maxima (blue circles), negative values of ξ
are observed until α ≈ 10.78◦, then a zero crossing between α ≈ 10.78◦ and α ≈ 10.82 with positive values up to
α ≈ 10.94◦ where ξ becomes negative again. The first zero-crossing can be interpreted by looking at Fig. 8. The
angle of equal mean residence time for states A and D is between α ≈ 10.78◦ and α ≈ 10.82◦; before that angle, the
system spends more time in A, and afterward, in D. This reversal of states coincides with the first change of sign in
Fig. 10. By looking at PDFs inset, we can see the aforementioned reversal of probabilities. The second zero-crossing
corresponds to the bifurcation angle αA determined in section III B by means of a peak ratio criteria. Here, the PDF
right before the transition (see Fig. 10(IV)) shows the characteristic heavy tail (Frechet), and after this angle, this
tail disappears and is replaced by a bounded one (Weibull) like Fig. 10(V). Doing the same analysis for the minima
(red squares) we see that ξ goes from negative to positive around α ≈ 10.70◦ this value is close to the one previously
defined for αD i.e. the beginning of the bistable range. The system goes from bounded fluctuations (Fig. 10(I)) to
sporadic bursts of extreme minima (Fig. 10(II)). Then ξ continues to be positive until it crosses zero again between
α ≈ 10.78◦ and α ≈ 10.82◦ corresponding to the reversal of states. We can point out that αA is only identified
when looking at the maximum and αD at the minimum. This is because, in the first case, we look at the right tail
of the distribution (state A) and, in the second case, the left tail of the distribution (state D). It is important to
note that GEV are usually applied to distributions that are unimodal. Here we apply the GEV in an original way
to distributions showing bimodality, i.e. in the bistable range. This use is subsequently validated by the smooth
evolution of the shape parameter over the whole range of α for the maximum and minimum distributions. The GEV,
when fitted to our bimodal data, captures well the dominant peak and the tail of interest (maxima or minima). Had
we split the signal into two states, the result would have always been a Gumbel distribution (ξ = 0), missing the
reversal of states.

V. DISCUSSION AND CONCLUSIONS

The experiments revealed an unexpectedly rich dynamics with two very different regimes (Fig. 2): at low Reynolds
numbers, a deterministic oscillatory regime with a well-defined frequency, while at large Reynolds numbers, the
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showing lift coefficient PDF (parent distribution) evolution with α. The insets show the evolution of the pdf of the
lift coefficient when the angle of attack increases, from the single flow state with high lift (I) to the single flow state

with low lift (V), via the bistable regime (III) and intermediate regimes (II) and (IV).

dynamics is stochastic with no sign of oscillations. This represents a transition from a mono-stable system with a
limit cycle to a bistable system with random transitions between states. The experimental results and the study of [6]
suggest that the two deterministic states A and D appear and disappear through two saddle-node bifurcations, one
direct for α = αD(Re), the second indirect for α = αA(Re). This indicates that an unstable flow regime, presumably
transiently observed during the transitions between states A and D, also co-exists with the A and D branches, which
should collide with the A branch in αA and with the D branch in αD, as detailed in [6]. In contrast to [6, 41] where A
and D were absorbing states, the novel result here is that both states are explored intermittently over time, all other
parameters being fixed. The hysteresis loop usually observed at stall could not be observed due to the intermittent
switches between the two states, favored by the turbulent background fluctuations in the flow, analogously to the effect
of thermal noise or inlet boundary conditions in other bistable systems [45, 46]. By analyzing the bistability statistics,
we have shown that the process can be modeled as a continuous Markov chain. Former studies have already made
analogies between such continuous Markov chains and extreme value laws in order to compute transition thresholds for
the order parameter [16]. Here, we highlighted the mathematical link between continuous Markov chains and extreme
value laws expressed by the super-exponential behavior of the mean residence times. Based on the hypothesis that
extreme rare events are responsible for the transitions, we modeled the tail of the observable using extreme value
theory. We used this model to compute the bifurcation points of our system in an unambiguous manner without the
need to define thresholds by hand. Following [47] and although sometime found in literature, no critical dynamical
value of the order parameter is sought, beyond which the system would irremediably change of state, since these
bi-stable systems are likely to transit from one state to the other regardless of their current state. The current state
of the system only affects the probability it has to transit from one state to the other.

Although outside of the scope of this article, a stochastically forced model of the double saddle-node bifurcation,
together with a particle image velocimetry-based investigation of the flow structures are currently under investigation.



10

ACKNOWLEDGMENTS

We would like to thank T. Pichon, L. Cherfa, and E. Jean-Bart for their contribution to setting up the experiment.
We also thank Davide Faranda for his constant help in the analysis of extreme values theory

[1] O. Tietjens, Fundamentals of hydro-and aeromechanics, based on lectures by l. prandtl, Bull. Amer. Math. Soc 41, 173
(1935).

[2] S. Kline, On the nature of stall, J Basic Eng-t Asme 81, 305 (1959).
[3] G. B. Mccullough and D. E. Gault, Examples of three representative types of airfoil-section stall at low speed, Tech. Rep.

(1951).
[4] K. B. M. Q. Zaman, D. J. Mckinzie, and C. L. Rumsey, A natural low-frequency oscillation of the flow over an airfoil near

stalling conditions, J. Fluid Mech. 202, 403–442 (1989).
[5] H. Tanaka, Flow visualization and piv measurements of laminar separation bubble oscillating at low frequency on an airfoil

near stall, in 24th international congress of the aeronautical sciences (2004) pp. 1–15.
[6] D. Busquet, Study of a high Reynolds number flow around a two dimensional airfoil at stall; an approach coupling a RANS

framework and bifurcation theory, Ph.D. thesis, Institut polytechnique de Paris (2020).
[7] A. Broeren and M. Bragg, Low-frequency flowfield unsteadiness during airfoil stall and the influence of stall type, in 16th

AIAA Applied Aerodynamics Conference.
[8] P. J. Ansell and M. Bragg, Characterization of ice-induced low-frequency flowfield oscillations and their effect on airfoil

performance, in 31st AIAA Applied Aerodynamics Conference.
[9] T. Mueller, Unsteady stalling characteristics of thin airfoils at low reynolds number, in Fixed and Flapping Wing Aerody-

namics for Micro Air Vehicle Applications (American Institute of Aeronautics and Astronautics, 2001) pp. 191–213.
[10] Z. Yang, H. Igarashi, M. Martin, and H. Hu, An experimental investigation on aerodynamic hysteresis of a low-reynolds

number airfoil, in 46th AIAA Aerospace Sciences Meeting and Exhibit .
[11] L. Pohlen and T. Mueller, Boundary layer characteristics of the miley airfoil at low reynolds numbers, in Applied Aerody-

namics Conference.
[12] S. Mittal and P. Saxena, Prediction of hysteresis associated with the static stall of an airfoil, AIAA J. 38, 933 (2000).
[13] J. A. Hoffmann, Effects of freestream turbulence on the performance characteristics of an airfoil, AIAA J. 29, 1353 (1991).
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